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Abstract

Multi-label recognition (MLR) with incomplete labels is

very challenging. Recent works strive to explore the image-

to-label correspondence in the vision-language model, i.e.,

CLIP [22], to compensate for insufficient annotations. In

spite of promising performance, they generally overlook the

valuable prior about the label-to-label correspondence. In

this paper, we advocate remedying the deficiency of label

supervision for the MLR with incomplete labels by deriving

a structured semantic prior about the label-to-label corre-

spondence via a semantic prior prompter. We then present

a novel Semantic Correspondence Prompt Network (SCP-

Net), which can thoroughly explore the structured semantic

prior. A Prior-Enhanced Self-Supervised Learning method

is further introduced to enhance the use of the prior. Com-

prehensive experiments and analyses on several widely used

benchmark datasets show that our method significantly out-

performs existing methods on all datasets, well demonstrat-

ing the effectiveness and the superiority of our method.

Our code will be available at https://github.com/

jameslahm/SCPNet.

1. Introduction

Multi-label recognition (MLR) aims to describe the im-

age content with various semantic labels [5, 26, 29, 30]. It

encodes the visual information into structured labels, which

can benefit the index and fast retrieval of images in broad

practical applications, such as the search engine [24,27] and

the recommendation system [2, 33].

Benefited from the development of deep learning, MLR

*Equal contributions. † Corresponding author.
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Figure 1. Overview of CNN-based, DualCoOp [26] and our SCP-

Net. Like DualCoOp, our SCPNet adopts CLIP as the base model.

Differently, our SCPNet aims to enhance the MLR with the prior

about the label-to-label correspondence. MC means multi-class.

CL denotes contrastive learning.

has achieved remarkable progress in recent years. How-

ever, collecting high-quality full annotations becomes very

challenging when the label set scales up, which greatly hin-

ders the wide usage of MLR in real scenarios. Recently,

researchers explore more feasible solutions for MLR. For

example, the full label setting is relaxed with a partial label

setting in [3, 21], which merely annotates a few labels for

each training image. One more extreme setting with solely

one single positive label is tackled in [8,16]. These settings

can be unified into a common issue of incomplete labels,

which relieves the burden of the full annotation and con-

siderably reduces the annotation cost. Therefore, it draws

increasing attention from both academia and industry.

Compared with the full label setting, the incomplete la-

bel setting encounters a dilemma of poor supervision, re-

sulting in severe performance drops for MLR. Existing

methods strive to regain supervision from missing labels by

exhaustively exploring the image-to-label correspondence

via semantic-aware modules [4,21] or loss calibration meth-



ods [8, 16, 32]. A convolutional neural network (CNN) pre-

trained on the ImageNet is usually leveraged to construct

the MLR model. Its multi-class softmax layer is often re-

placed by a multi-label sigmoid layer (Fig. 1 (a)). Such a re-

placement wipes out prior knowledge about the correspon-

dence between images and labels although it is necessary

and inevitable.

Recently, vision-language pretrained models have ob-

tained remarkable success in various vision tasks [26, 34,

35]. Thanks to their large-scale pretraining, the vision-

language model, e.g., CLIP [22], which is trained with 400

million image-text pairs, can well bridge the visual-textual

gap [26], providing rich prior knowledge for the down-

stream tasks. For the MLR task, Sun et al. [26] propose

a DualCoOp method, which is the first work to employ the

CLIP as the MLR base model. Through dual prompts, Du-

alCoOp directly adopts the text encoder in the CLIP as the

multi-label classification head (Fig. 1 (b)), without aban-

doning the visual-textual prior in the pretrained CLIP.

Despite its effectiveness, DualCoOp is still limited in

remedying the deficiency of label supervision, which is de-

sired for the MLR with incomplete labels. Intuitively, it is

convenient to reason unknown labels from annotated labels

by leveraging the correspondence among labels, e.g., tables

are likely to appear with chairs, and cars are usually ac-

companied by roads. Therefore, such a label-to-label cor-

respondence can help survive more label supervision and

thus benefit MLR with incomplete labels. Besides, although

most vision-language models do not encourage the con-

trastive learning among texts, they are still abundant in the

knowledge about the label-to-label correspondence because

of the large-scale cross-modality training. However, such a

valuable prior is rarely explored in the existing state-of-the-

art method, i.e., DualCoOp [26].

In this paper, we aim to mitigate such deficiency of label

supervision for MLR with incomplete labels by leveraging

the abundant prior about the label-to-label correspondence

in the CLIP [22]. We present a structured prior prompter

to conveniently derive a structured semantic prior from the

CLIP. Then we propose a novel Semantic Correspondence

Prompt network (SCPNet) (Fig. 1 (c)), which can prompt

the structured label-to-label correspondence with a cross-

modality prompter. Our SCPNet also equips a semantic as-

sociation module to explore high-order relationships among

labels with the guidance of the derived structured semantic

prior. A prior-enhanced self-supervised learning method is

further introduced to comprehensively investigate the valu-

able prior. As a result, our method can neatly calibrate its

predicted semantic distribution while maintaining the self-

consistency.

To verify the effectiveness of the proposed method for

MLR with incomplete labels, we conduct extensive exper-

iments and analyses on a series of widely used benchmark

datasets, i.e., MS COCO [19], PASCAL VOC [11], NUS

Wide [7], CUB [28] and OpenImages [17]. Experimental

results show that our method can significantly outperform

state-of-the-art methods on all datasets with a maximal im-

provement of 6.8%/3.4% mAP for the single positive la-

bel setting and the partial label setting, respectively, well

demonstrating its effectiveness and superiority.

Overall, our contributions are four folds.

• We advocate leveraging a structured semantic prior to

deal with the deficiency of label supervision for MLR

with incomplete labels. To this end, we extract such a

prior via a structured prior prompter.

• We present a semantic correspondence prompt Net-

work (SCPNet) based on a cross-modality prompter

and a semantic association module. The SCPNet can

adequately explore the structured prior knowledge,

thus boosting MLR with incomplete labels.

• We design a prior-enhanced self-supervised learning

method to further investigate such a structured seman-

tic prior, which can enjoy both distribution refinement

and self-consistency.

• Experimental results show that our method can con-

sistently achieve state-of-the-art performance on all

benchmark datasets, revealing the significant effective-

ness. Thorough analyses also demonstrate the superi-

ority of our method.

2. Related work

Multi-label recognition with full annotations. Multi-

label Recognition has long been a hot topic in the computer

vision field [1,21,30]. A generic method is to learn multiple

binary classifiers [8, 16], which usually takes no considera-

tion of the label correlation. Recently, the label-to-label cor-

respondence is established through graph neural networks

or transformer structures [6, 29]. These methods heavily

rely on the quality of label supervision. However, collect-

ing a large-scale dataset with complete labels is challenging

and expensive. In real scenarios, researchers explore much

more practical settings with incomplete labels, i.e., MLR

with partial labels and MLR with a single positive label.

Multi-label recognition with incomplete labels. In the

partial label setting, only a few labels need to be annotated

for each training image. Durand et al. [9] adopt a curricu-

lum learning based model to predict the missing labels dur-

ing the training procedure. Pu et al. [21] and Chen et al. [4]

transfer predictions of neighboring images via image-image

correlation. However, their performance is not guaranteed

in more severe scenarios, i.e., single positive label setting,

in which each image is provided with solely one positive

annotation. To tackle the issue of the single positive label,
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Figure 2. An overview of the proposed method. We design a semantic correspondence prompt network to explore the structured semantic

prior for MlR with incomplete labels. A prior-enhanced self-supervised learning strategy is used to enhance such exploration.

Cole et al. [8] propose a regularized online loss via a joint

optimization of label estimator and image classifier. Zhang

et al. [32] adopt a label correction process for the proba-

bility exceeding a fixed threshold. Kim et al. [16] propose

to reject or correct the large loss samples during training,

which can prevent over-fitting false negative labels. How-

ever, different from our solution, they usually independently

calibrate the importance of different labels [8, 16, 32], tak-

ing no consideration of the semantic correspondence among

labels.

Vision-language models in downstream visual tasks.

Radford et al. [22] exploit the contrastive learning with

large-scale image-text pairs, i.e., about 400 million pairs,

ending up with a powerful vision-language model, i.e.,

CLIP. Such a model shows remarkable generalization ca-

pability in downstream visual tasks [22]. Therefore, re-

searchers exhaustively explore how to leverage the abun-

dant vision-language correspondence [12, 14, 23, 26]. Sun

et al. [26] also employ CLIP for MLR. They present dual

prompts, i.e., a positive prompt and a negative one, to ex-

plore the rich image-to-label correspondence in CLIP. How-

ever, different from our motivation, they overlook the rich

label-to-label correspondence in CLIP.

3. Methodology

3.1. Structured Prior Prompter

For MLR with full annotations, existing methods can

achieve fruitful outcomes by exploring the semantic corre-

spondence between images and labels [6]. However, they

require abundant label supervision to obtain accurate la-

bel co-occurrence information for the estimation of label

relationships. Therefore, in MLR with incomplete labels,

the scarce label supervision greatly hinders their capabil-

ity to explore the semantic correspondence. Benefited from

the development of large-scale pretrained embeddings, e.g.,

Glove [20], or models, e.g., BERT [15] and CLIP [22],

we can easily obtain contextual representations for labels,

which can be directly used to derive such a label-to-label

correspondence. Such a annotation-free strategy is no-

tably appealing when no adequate label supervision is pro-

vided. Furthermore, the abundant correspondence prior in

the pretrained model can help associate the annotated label

with unknown labels, which promisingly alleviates the de-

ficiency of label supervision. Hence, we introduce a struc-

tured prior prompter to explore such a label-to-label corre-

spondence in the pretrained model. Considering the popu-

larity and the remarkable performance in the computer vi-

sion community, we choose the vision-language model, i.e.,

CLIP [22], as the target.

Specifically, in the proposed structured prior prompter,

for a set of to-be-explored labels Y = {y0, y1, ..., yn}, we

derive the label feature by feeding a prompt template, i.e., a

photo of a [CLS], into the text encoder of CLIP. We denote

the label feature as z̄i for each yi. Then the correlation prior

among labels, denoted as A = (aij)n×n, can be derived as:

aij = sim(z̄i, z̄j) (1)

where sim(·, ·) is the cosine similarity.

For each entry ai, we select the top K elements and

set the rest to zero, ending up with a sparse matrix, A′ =
(a′ij)n×n:

a′ij =

{

aij , if j ∈ topK(ai)
0, if j /∈ topK(ai)

(2)

Following [6], we mitigate the over-smoothness of graph

representation by adjusting the sparse graph A′ as follows:

āij =

{

(s/
∑n

i ̸=j′ a
′
ij′)× a′ij , if i ̸= j

1− s, if i = j
(3)

where s is a hyper-parameter which determines weights as-

signed to a node itself and its neighboring nodes. The label



correspondence graph G can be derived as:

a∗
ij =

I[āij ̸= 0] exp(āij/τ
′

)
∑

j I[āij ̸= 0] exp(āij/τ
′)

(4)

where τ
′

controls the distribution smoothness and I[·] is an

indicator function. We denote the the adjacency matrix of

G as A∗ = (a∗ij)n×n.

We see that A∗ emphasizes the importance of the node

itself and weights other nodes according to their relation-

ships (see Eq. (1)). Therefore, the fruitful label correspon-

dence can be encoded in such a structured graph, i.e., A∗,

providing rich structured semantic prior for MLR models.

3.2. Semantic Correspondence Prompt Network

As shown in Fig. 2, the SCPNet consists of a cross-

modality prompter and a semantic association module.

Cross-modality prompter (CMP). Previous works [4,

16, 21] usually employ a convolutional neural network pre-

trained on ImageNet, e.g., ResNet50. During fine-tuning in

the downstream MLR tasks, the prior knowledge about the

image-to-label correspondence is generally discarded due

to the semantic shift, i.e., different label sets between the

ImageNet and the MLR benchmark datasets. Differently,

we aim to take full use of such an image-label prior during

model optimization. Similar to [26], we resolve the prob-

lem of semantic shift by a cross-modality prompter, based

on a vision-language model, i.e., CLIP [22].

Formally, following [35], given a label set, i.e., Y =
{y0, y1, ..., yn}, we introduce m soft prompt tokens to ex-

tract its representation. For ease of explanation, we denote

the prompt as ti = {v1,v2, ...,vm, ei}, where v with a sub-

script denotes a soft prompt token and ei is the embedding

of yi. The label feature of yi, denoted as zi, can be derived

by the text encoder of CLIP. For an input image x, its vi-

sual representation, denoted as f , is extracted by the image

encoder of CLIP. The process of feature extraction can be

computed as follows:

f = F (x), zi = G(ti), (5)

where F (·) and G(·) denote the image encoder and the text

encoder in CLIP, respectively.

Semantic association module (SAM). As CMP still

lacks capturing the label-to-label correspondence, we fur-

ther equip a semantic association module to capture high-

order relationships among labels. Specifically, with guid-

ance of the structured semantic prior A∗ (see Eq. (4)),

we utilize L graph convolutional network (GCN) layers to

progressively refine the input features H0 = Z, where

Z = {z0, z1, ..., zn} is a combination of features for Y
as in Eq. (5). The l-th GCN layer is updated as follows:

H l+1 = ρ(A∗H lW l), (6)

where W with a superscript is a learnable parameter ma-

trix and ρ is a non-linear function. l ∈ [0, L). The fi-

nal refined label representations can be obtained through a

residual connection, i.e., Z∗ = H0 +HL. The likelihood

p(yi|x) can be computed as:

p(yi|x) = σ(sim(f , z∗
i )/τ), (7)

where zi
∗ denotes the refined feature for label yi.

Benefited from the GCN, the structured label-to-label

correspondence in CLIP, which is represented by A∗, can

be progressively refined in the label representation. There-

fore, during the semantic matching between the image fea-

ture and the label feature, i.e., Eq. (7), labels with high cor-

relations will obtain similar likelihoods, enabling a subtle

semantic association.

3.3. PriorEnhanced SelfSupervised Learning

The proposed prior-enhanced self-supervised learning

strategy, dubbed PESSL, aims to make full use of the struc-

tured semantic correspondence prior. We endow the pro-

posed PESSL with a self-supervised consistency loss and

a self-distillation objective that is boosted by a structure-

aware semantic calibration strategy.

Structure-aware semantic calibration. Intuitively, if

two labels are semantically correlated, they may be ob-

served in one image. For MLR, such a correspondence can

help decide potential semantic labels for an input image,

given its predictions. Therefore, we formulate the likeli-

hood of p(yi|x) as a weighted combination of likelihoods

for correlated neighboring labels of yi:

p∗(yi|x) =
∑

yj∈N (yi)
w(i, j)× p(yj |x) (8)

Here, w(i, j) is a correlation weight indicating the relation-

ship between yi and yj . N (yi) denotes a correlated neigh-

boring set of labels corresponding to yi.
For ease of explanation, we introduce a correlation ma-

trix W to represent the whole correlation among labels, i.e.,

W = (w(i, j))n×n. We then customize the whole process

as a function parameterized by W ∈ Rn×n and the distri-

bution over Y given the input x, i.e., p(Y |x) ∈ Rn×1:

SASC(p(Y |x),W) = Wp(Y |x) (9)

Prior-enhanced learning. Existing loss correction

methods individually reweight each label, without taking

into consideration the correspondence among labels. Here,

we propose to follow the self-supervised learning princi-

ple [25, 31] and introduce a self-distillation learning strat-

egy to benefit the MLR model from the structured semantic

correspondence among labels.

Specifically, we derive two different versions for the

input image x with one weak transformation ω(·) and



one strong transformation Ω(·), respectively. Their corre-

sponding semantic distributions, denoted as p(y|ω(x)) and

p(y|Ω(x)), respectively, can be derived by Eq. (7). Then we

use a consistency loss to encourage them to be consistent.

Different from [31], which simply regularizes the model

with the most confident label, we construct a set of con-

fident labels O(x) with the top highest probability larger

than a threshold T in p(y|ω(x)), i.e., O(x) = {c|c ∈
topK(p(y|ω(x)))∧p(c|ω(x)) > T (c)}. A dynamic thresh-

old strategy is performed for each label, as [31]. The con-

sistency loss is then derived by:

Lcst =−
∑Y

c∈O(x)
log p(c|Ω(x))

−
∑Y

c/∈O(x)
log(1− p(c|Ω(x)))

(10)

We calibrate the distribution of the weak-transformed

image, i.e., p(y|ω(x)), by using the SASC function (see

Eq. (9)):

p∗(y|ω(x)) = SASC(p(y|ω(x)),A∗) (11)

where A∗ represents the structured semantic prior, derived

by Eq. (4). Considering that compared with the weak-

transformed image, the strong-transformed image is usu-

ally more difficult to learn. Therefore, we employ a self-

distillation objective to optimize the distribution of the

strong-transformed image Ω(x) with the guidance of the

calibrated semantic distribution via the KL-divergence:

Ldstl = −
Y
∑

c

(

qwc log
qsc
qwc

+ (1− qwc ) log
1− qsc
1− qwc

)

(12)

where qwc = p∗(c|ω(x)) and qsc = p(c|Ω(x)).
Overall Objective. Finally, we formulate the prior-

enhanced self-supervised learning as a combination of the

consistency objective and the self-distillation objective:

Lpessl = λcstLcst + λdstlLdstl (13)

3.4. Network Optimization

During training, we adopt a multi-label classification ob-

jective over the predicted likelihood, i.e., p(yi|x) in Eq. (7),

to optimize our SCPNet, denoted as Lcls. We follow [32]

to design Lcls. The overall objective for the network opti-

mization is formulated as follows:

L = Lcls + Lpessl (14)

4. Experiment

4.1. Experiment Settings

Datasets. We conduct extensive experiments on several

standard benchmarks for MLR with incomplete labels, in-

cluding the single positive label setting and the partial la-

bel setting. For the single positive label setting, following

[16, 32], we use MS-COCO (COCO) [19], PASCAL VOC

(VOC) [11], NUSWIDE (NUS) [7], and CUB [28]. For the

partial label learning, we adopt MS-COCO (COCO) [19],

PASCAL VOC 2007 (VOC2007) [10] and Visual Genome

(VG-200) [18], as [4, 21]. We leave details of benchmark

datasets in the supplementary due to the space limit.

Implementation details. We leverage published CLIP

weights1 to initialize MLR models. To fairly compare the

proposed method with others, we adopt the ResNet50-based

CLIP and the Resnet101-based CLIP for the single positive

label and the partial label, respectively. During training, we

tune the image encoder and fix the text encoder of CLIP.

More details are provided in the supplementary.

Evaluation. By default, we employ the mean average

precision (mAP) as the evaluation metric, following pre-

vious works [5, 16, 32]. For the single positive label set-

ting, we perform two different setups, i.e., the LargeLoss

setup [16] and the SPLC setup [32], which are common in

the community. We leave the details in the supplementary

due to the space limit. For the partial label setting, follow-

ing [21], we randomly maintain partial labels for the train-

ing set with a ratio ranging from 10% to 90%. Apart from

performance on all ratios, we also report the average result.

4.2. Comparisons with StateoftheArts

MLR with single positive labels. We report the model

performance on both the LargeLoss setup [16] and the

SPLC setup [32]. To better reveal the effectiveness of the

proposed method, we also report the average performance

for both setups. As shown in Tab. 1, for both setups, our

method can significantly outperform existing methods on

all benchmark datasets, achieving state-of-the-art perfor-

mance. Specifically, in the LargeLoss setup, the proposed

SCPNet can obtain a maximal performance improvement

of 4.7% (NUS). As a whole, our method can accomplish

an overall performance improvement of 3.6%. In the SPLC

setup, the maximal performance improvement achieved by

our method can reach 6.8% (NUS). As a result, our method

can accomplish 4.7% improvement on average.

MLR with partial labels. As shown in Tab. 2, our

results also consistently surpass existing state-of-the-art

methods on all benchmark datasets, especially on the

COCO and VG-200. Compared with DualCoOp [26] which

also leverages CLIP to build MLR models, the proposed

method can obtain an improvement of 1.9% mAP on the MS

COCO. With a frozen image encoder during training as Du-

alCoOp, our method, denoted as SCPNet (ours)*, still en-

joys superior performance to DualCoOp. On the VOC2007,

our method obtains comparable performance with 0.3% im-

provement. However, under small ratios, our method shows

its superiority to DualCoOp, e.g., 0.8% improvement with

a ratio of 10%. On the VG-200, compared with SARB [21]

1https://github.com/openai/CLIP



Table 1. Comparison with the state-of-the-art methods for MLR with the single positive label (%).

Method
LargeLoss setup [16] SPLC setup [32]

COCO VOC NUS CUB Avg. COCO VOC NUS CUB Avg.

LSAN [8] 69.2 86.7 50.5 17.9 56.1 70.5 87.2 52.5 18.9 57.3

ROLE [8] 69.0 88.2 51.0 16.8 56.3 70.9 89.0 50.6 20.4 57.7

LargeLoss [16] 71.6 89.3 49.6 21.8 58.1 - - - - -

Hill [32] - - - - - 73.2 87.8 55.0 18.8 58.7

SPLC [32] 72.0 87.7 49.8 18.0 56.9 73.2 88.1 55.2 20.0 59.1

SCPNet (ours) 75.4 90.1 55.7 25.4 61.7 76.4 91.2 62.0 25.7 63.8

Table 2. Comparison with the state-of-the-art methods for MLR with partial labels (%).

Datasets Method 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

COCO

SSGRL [5] 62.5 70.5 73.2 74.5 76.3 76.5 77.1 77.9 78.4 74.1

GCN-ML [6] 63.8 70.9 72.8 74.0 76.7 77.1 77.3 78.3 78.6 74.4

SST [4] 68.1 73.5 75.9 77.3 78.1 78.9 79.2 79.6 79.9 76.7

SARB [21] 71.2 75.0 77.1 78.3 78.9 79.6 79.8 80.5 80.5 77.9

DualCoOp [26] 78.7 80.9 81.7 82.0 82.5 82.7 82.8 83.0 83.1 81.9

SCPNet (ours)* 80.3 82.2 82.8 83.4 83.8 83.9 84.0 84.1 84.2 83.2

SCPNet (ours) 79.1 82.1 82.8 83.9 84.5 84.9 85.4 85.7 85.9 83.8

VOC2007

SSGRL [5] 77.7 87.6 89.9 90.7 91.4 91.8 91.9 92.2 92.2 89.5

GCN-ML [6] 74.5 87.4 89.7 90.7 91.0 91.3 91.5 91.8 92.0 88.9

SST [4] 81.5 89.0 90.3 91.0 91.6 92.0 92.5 92.6 92.7 90.4

SARB [21] 83.5 88.6 90.7 91.4 91.9 92.2 92.6 92.8 92.9 90.7

DualCoOp [26] 90.3 92.2 92.8 93.3 93.6 93.9 94.0 94.1 94.2 93.2

SCPNet (ours) 91.1 92.8 93.5 93.6 93.8 94.0 94.1 94.2 94.3 93.5

VG-200

SSGRL [5] 34.6 37.3 39.2 40.1 40.4 41.0 41.3 41.6 42.1 39.7

GCN-ML [6] 32.0 37.8 38.8 39.1 39.6 40.0 41.9 42.3 42.5 39.3

SST [4] 38.8 39.4 41.1 41.8 42.7 42.9 43.0 43.2 43.5 41.8

SARB [21] 41.4 44.0 44.8 45.5 46.6 47.5 47.8 48.0 48.2 46.0

SCPNet (ours) 43.8 46.4 48.2 49.6 50.4 50.9 51.3 51.6 52.0 49.4

which enhances the MLR models with a structure-aware al-

gorithm, our SCPNet can significantly outperform it with

an average performance improvement of 3.4%.

These experimental results show that our method can

consistently obtain superior performance in different setups

for MLR with incomplete labels, well demonstrating the ef-

fectiveness. To verify the generalization of the proposed

method, we also investigate the effectiveness in the few-

shot partial label setting and the real partial label scenario.

We leave them in the supplementary due to the space limit.

4.3. Ablation Study

In order to analyze the effectiveness of each component,

we conduct the ablation study on both the single positive

label and the partial label settings. All results are shown

in Tab. 3. We also introduce a model that directly employs

Lcls to optimize a ResNet-based MLR model, as the base-

line. As shown in Tab. 3, each component can obtain con-

sistent performance improvement in all datasets. Specifi-

cally, compared with the baseline model, our CMP can ob-

tain an average performance of 1.99% mAP, indicating the

superiority of prompting a cross-modality vision-language

model. Augmented by SAM, our method can bring 0.69%
mAP improvement. Such improvements can be attributed

to the explicit semantic correspondence among labels cap-

tured by the proposed SAM component. Besides, the con-

sistency learning, i.e., Lcst, and the self-distillation objec-

tive, i.e., Ldstl, can lead to 1.25% and 1.56% performance

improvement, respectively. The overall improvement for

the proposed PESSL can reach 2.09%, well demonstrating

the strength of incorporating the structured semantic prior

during model optimization. Finally, our proposed SCPNet

can significantly outperform the baseline model with 4.77%
mAP improvement on average, well demonstrating the ef-

fectiveness and the superiority of the proposed method.

4.4. Model Analysis

Here, we perform comprehensive inspections for the pro-

posed method. All experiments are conducted in the single

positive label setting on the MS COCO dataset, by default.

Due to the space limit, we provide more analyses in the sup-

plementary material.



Table 3. Effect of different modules in the proposed SCPNet method for both the single positive label setting and the partial label setting

(%). An average of all metrics is also reported.

Model CMP SAM
PESSL Single Positive Label Partial Label

Avg.
Lcst Ldstl COCO VOC NUS CUB COCO VOC2007 VG-200

Baseline 73.18 88.07 55.18 19.99 77.41 88.32 46.39 64.08

SCPNet

✓ 74.36 88.46 60.66 21.42 80.90 89.16 47.55 66.07

✓ ✓ 75.12 89.09 61.08 21.66 82.12 90.16 48.11 66.76

✓ ✓ ✓ 75.70 90.92 61.75 23.67 82.85 92.50 48.70 68.01

✓ ✓ ✓ 75.84 90.92 61.56 24.51 83.35 93.21 48.83 68.32

✓ ✓ ✓ ✓ 76.42 91.16 62.04 25.71 83.76 93.49 49.36 68.85
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Figure 3. The structured semantic prior (left) and the learnt label representation (middle: in the baseline, right: in our SCPNet).

Table 4. Analysis on the correlation graph.

SAM PESSL mAP (%)

Static

Static 76.42

Dynamic 76.05

No 75.83

Dynamic
Static 76.08

Dynamic 75.84

Table 5. Analysis on the prior extraction (%).

Prior Dynamic Image Glove BERT CLIP

mAP 75.84 75.67 76.15 76.16 76.42

Correlation graph construction. We verify the positive

effect of the prior used in the correlation graph construction

for both SAM and PESSL. To achieve this goal, we discuss

two kinds of correlation graph: 1) a static one derived from

the pretrained CLIP model (see Eq. (4)), which captures the

structured semantic prior, and 2) a dynamic one achieved by

the learnable CMP, i.e., constructing the adjacency matrix

with label features zi computed by Eq. (5). We also report

PESSL without the prior, denoted as “No”. As illustrated

in Tab. 4, we can observe that our method can obtain the

optimal performance by using the static correlation graph

for both SAM and PESSL. Besides, the static graph can

substantially achieve better results than the dynamic one in

both components, revealing the advantage of the structured

semantic prior. We claim that in the MLR with incomplete

labels, the challenge of insufficient label supervision makes

the dynamic graph sub-optimal, thus inferior to the static

one. By comparing PESSL with the prior (Row 2) and the

one without the prior (Row 4), we can find that the latter

achieves inferior performance, which can demonstrate the

benefit of the proposed prior, i.e., A∗ in Eq. (4).

Prior knowledge extraction. We further investigate the

advantage of the proposed structured semantic prior ex-

tracted by CLIP with three other types of prior knowledge

as competitors. For a given label, 1) “Image” averages all

image features corresponding to it; 2) “Glove” represents

its feature by pretrained Glove word embeddings [20]; and

3) “BERT” extracts the label feature by the prompt learning

as ours. We also report the result of dynamic label-to-label

correspondence as the baseline. As shown in Tab. 5, com-

pared with Dynamic, except Image, Glove, BERT and CLIP

show consistent advantage because of their superior abil-

ity to capture the label-to-label correspondence. Besides,

our CLIP achieves the best performance, which reveals that

the CLIP-based structured prior is more matched with the

CLIP-based MLR model due to their consistent knowledge.

Generalization on the CNN-based architecture. To

show the generalization of the proposed prior-enhanced

method, we transfer our design principles to a vanilla



Table 6. Prior for MLR models with the ImageNet-based ResNet.

Image Encoder Label Encoder mAP (%)

ResNet sigmoid 73.18

ResNet Ours 74.72

Ours Ours 76.42

Table 7. Analysis on the number of GCN Layer, i.e., L (%).

L 2 3 4

mAP 75.88 76.42 76.22

Table 8. Analysis on λcst and λdstl (%).

λcst 0 1/16 1/8 1/4 1/8

λdstl 0 1/8 2/8 3/8

mAP 75.12 75.56 75.70 75.13 76.42 76.40 76.17

ResNet-based MLR model with a sigmoid layer as the label

encoder. We analyze the impact of replacing the sigmoid

layer with ours. As shown in Tab. 6, such modification can

result in a performance gain of 1.54%, demonstrating the

good generalization ability of the proposed method in the

CNN-based architecture.

Analysis on hyper-parameters. As shown in Tab. 7 and

Tab. 8, the best value of L, λcst and λdstl is at L = 3,

λcst = 1/8, and λdstl = 1/8, respectively. More analyses

can be found in the supplementary material.

4.5. More Insightful Analysis

To provide more insights about the effectiveness of the

proposed method, we conduct visualization analyses on the

structured semantic prior and the label representation in the

latent feature space. First, we present the structured se-

mantic prior about the label-to-label correspondence by vi-

sualizing the adjacency matrix, i.e., A∗ in Eq. (4) on MS

COCO. For ease of explanation, we select two categories,

i.e., animal and vehicle, and investigate the label correspon-

dence among labels associated with them. As shown in

Fig. 3, the used structured semantic prior can successfully

convey the similarity among labels although the CLIP is not

encouraged in the contrastive learning on the text. Second,

we visualize the label features in the baseline (weights in

the sigmoid layer) and our SCPNet (output of the SAM,

denoted as zi
∗ in Eq. (7)). We can observe that labels be-

longing to the same category are more well-aligned together

in our SCPNet, compared with those in the baseline model.

This result indicates that our SCPNet can reasonably derive

more discriminative label representations due to the appli-

ance of the structured semantic prior.

To verify the effect of the proposed structured semantic

prior on the issue of insufficient label supervision, we intro-
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Figure 4. The precision on the training set (left) and the mAP on

the test set (right).

duce a competitor model, i.e., CMP+Lcst, which wipes out

components involving the prior, i.e., A∗ in Eq. (4). We keep

track of the precision of model predictions on the training

set and the mAP result on the test set after each training

epoch. For CMP+Lcst, we also visualize the precision over

its calibrated predictions by the SASC(·) function. As il-

lustrated in Fig. 4 (left), compared with CMP+Lcst, both

SASC(CMP+Lcst) and our SCPNet can obtain consistent

improvements in terms of the label prediction precision. It

indicates that the quality of label supervision can be pro-

moted under the guidance of the proposed prior, thus bene-

fiting the performance on the test set (see Fig. 4 (right)).

5. Conclusion

In this paper, we drive a structured semantic prior about

the label-to-label correspondence from the vision-language

model, i.e., CLIP [22]. To mitigate the deficiency of label

supervision for MLR with incomplete labels, we introduce a

semantic correspondence prompt network, dubbed SCPNet,

which can explore such a structured semantic prior. It con-

structs a cross-modality prompter to leverage the explicit

image-to-label correspondence in the CLIP. A semantic as-

sociation module is equipped to associate related labels with

the help of such a meaningful structured semantic prior.

Furthermore, we propose a prior-enhanced self-supervised

learning method for network optimization. Experimental

results on a series of benchmark datasets for MLR with in-

complete labels show that our method can achieve state-of-

the-art performance on both the partial label setting and the

single positive label setting, well demonstrating its effec-

tiveness and superiority. In the future, we will further study

how to generalize our method to tackle other practical prob-

lems, e.g., the domain gap.
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