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Abstract. Digital interventions can be an important instrument in treating substance use 
disorder. However, most digital mental health interventions suffer from early, frequent 
user dropout. Early prediction of engagement would allow identification of individuals 
whose engagement with digital interventions may be too limited to support behaviour 
change, and subsequently offering them support. To investigate this, we used machine 
learning models to predict different metrics of real-world engagement with a digital 
cognitive behavioural therapy intervention widely available in UK addiction services. Our 
predictor set consisted of baseline data from routinely-collected standardised 
psychometric measures. Areas under the ROC curve, and correlations between predicted 
and observed values indicated that baseline data do not contain sufficient information 
about individual patterns of engagement. 
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1. Introduction  

Digital interventions (DIs) for people with substance use disorders (SUDs) are digitalised 
complements or temporary replacements of traditional face-to-face therapies such as 
cognitive behavioural therapy (CBT). With DIs being more cost-effective and 24/7 
accessible, they can represent an important instrument in treating SUDs. 

To derive improved mental health outcomes via a DI, users need to engage with DI 
content to a sufficient degree. However, maintaining user engagement has been a 
consistent problem for DIs for mental health [1]. Early, accurate prediction of level of 
DI engagement could allow users at high risk of poor engagement to be identified. This 
could potentially be used to target additional support. The basis of such prediction should 
be data collected early into the user journey, if feasible at first user contact with a DI, as 
dropout after first use is a common phenomenon. However, it is not clear if prediction is 
at all possible using such data, since real-world engagement may depend on multiple 
factors that may not be reflected in a one-off clinical assessment before engagement.  

The aim of this study is hence to assess whether engagement with one DI called 
Breaking Free Online (BFO) can be predicted using data collected at first DI use.  
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2. Methods 

2.1. Source of data 

Data were routinely collected from BFO users enrolled between July 2016 and October 
2022 in 513 community addiction services (CAS) in the UK. BFO is a self-guided digital 
CBT programme for SUDs, which for the past decade has been widely available to clients 
of CAS in the UK. Ethical approval for collection, storage and use of data accumulating 
from routine use of BFO by clients in participating treatment services, was obtained from 
an NHS Research Ethics Committee (London - South East, 16 May 2012 and 22 May 
2017, references 12/LO/0076 and 12/LO/0287). 

The BFO programme features six modules, with each split into one part  
psychoeducation and one part practice (applying what was learned in psychoeducation 
to one’s own life). These subparts are subsequently referred to as “strategies”, 
specifically, information strategies and action strategies. 

Users are required to complete a baseline assessment so that modules can later be 
recommended to them. The baseline assessment includes four questionnaires: the 
Severity of Dependence Scale (SDS) [2], the Patient Health Questionnaire 4 [3], the 
World Health Organization Quality of Life measure (items 1, 2, 17, 18,  and 20) [4] and 
the Recovery Progression Measure [5]. In addition, the baseline assessment also recorded 
user age, gender, ethnicity, abused substances, substance-using days in the preceding 
week and the user’s target for substance-free days per week. 

In addition to the assessment questionnaire data, assessment dates as well as module 
completion data, specifically the number of information and action strategy completions 
for each programme module and their most recent completion dates, were also available. 

2.2. Predictors 

The feature set we used to develop a prediction model of BFO engagement comprises 62 
features corresponding to every question in the baseline assessment and a set of derived 
variables, specifically (1) baseline abstinence defined as zero substance-using days per 
week, (2) the number of days from registration to first assessment completion, (3) the 
number of clinical complexity inducing factors present at baseline (including financial 
difficulties, cravings, difficulties with physical health, at work, or with housing) and (4) 
cutoff-based variables on baseline anxiety, depression and substance dependence. 

2.3. Outcomes 

We used 9 continuous variables as outcomes with each measuring a different aspect of 
user engagement, as follows: (1) the number of days from the first to the last use event, 
subsequently referred to as the number of accessed days, (2) the number of strategies 
completed, (3) the number of information strategies completed, (4) the number of action 
strategies completed, (5) the number of use events (all assessments + strategies 
completed), (6) the use rate (number of use events / number of accessed days), (7) the 
percentage of days actively engaged (with the number of days on which an assessment 
was completed - which empirically fall together with known days of module completion 
in 67% percent of cases - regarded as active engagement), (8) the median intermission 
length in days (with days on which no active engagement was registered described as 
intermission days) and (9) the mean absolute deviation (MAD) intermission length. Log-
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transformation was applied to all these variables. We also used the completion of 8 or 
more strategies as a binary outcome, referring to 8 sessions as the dose of talking therapy 
commonly received by patients completing a course of treatment through the NHS [6].  

2.4. Statistical analysis and missing data 

We predicted the 9 continuous outcomes and 1 binary outcome independently, using 
random forests and the XGBoost algorithm out-of-the-box with 10-fold cross validation. 
Stratification was applied to the target variable, with numeric strata being binned into 
quartiles. The average area under the receiver operating curve was used as a measure of 
predictive performance for binary outcome variables. Correlations between the observed 
and predicted values served as an assessment of predictive performance for the 
continuous outcome variables. The average root mean squared error (RMSE) was used 
to compare predictive performance between random forests and the XGBoost algorithm. 
We removed data from users who had >80% data missing on their baseline assessment 
(n = 706) as multiple imputation would be difficult for these users. For the remainder of 
the data, we opted for a complete case analysis as only 5% of these cases had incomplete 
data, and < 4% of cells were missing in total. R code for this analysis is available at 
https://github.com/franziskagunther/predict-engagement. 

Table 1. User characteristics at baseline. 

Characteristic Statistic/Label Value 
Age in years mean (SD, range) 40.1 (11.7, 18 - 84) 
Gender Female 

Male 
Other  

47.1% (10,745) 
52.5% (11,967) 
0.3% (79) 

Ethnicity White 
Asian / Asian British 
Black / Black British 
Mixed 
Other 

93% (21,207) 
1.9% (426) 
1.7% (382) 
2.7% (626) 
0.7% (150) 

Primary substances Alcohol 
Cocaine 
Marijuana 
Heroin 
Crack 
Other (46 other 
substances) 

63.8% (14,533) 
11.7% (2,659) 
7.9% (1,810) 
5.5% (1,248) 
3.5% (805) 
7.6% (1,741) 

Substance dependence (SDS sum score equal to or 
larger than 3) 

Yes 
No 

92.6% (20,494) 
7.4% (1,631) 

Anxiety (sum of first two PHQ-4 items equal to or 
larger than 3) 

Yes 
No 

69% (15,593) 
31% (7,007) 

Depression (sum of last two PHQ-4 items equal to or 
larger than 3) 

Yes 
No 

66.5% (15,023) 
33.5% (7,577) 

Substance-using days in the past week modes 0: 24.5%, 7: 38.1% 

3. Results 

We removed users who were younger than 18 (n = 82) or older than 89 years (n = 3). We 
also excluded users reporting a goal of increasing their substance consumption (n = 
1,314, possibly due to user interpretation of item as the desired number of substance-
consuming instead of substance-free days). Finally, we excluded users whose reports of 
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daily substance consumption was deemed to be clinically infeasible (n = 92). The final 
dataset included 22,796 users. Table 1 summarises their baseline characteristics. 

We first examined individual feature-outcome correlations and found these to be 
low (see Figure 1). Cross-feature correlations were high, instead. Finally, we used 
XGBoost and random forests to see if the combination of predictors could predict 
outcomes, but predictive performance was poor in all cases. We report prediction 
accuracy with the random forests which performed slightly better than XGBoost with 
regards to RMSE and AUC. We obtained an average AUC of 0.57 [CI: 0.56-0.58] for 
the prediction of completing n>=8 modules. Model performance did not improve for 
other values of n. Predictive performance for continuous outcomes was similarly low and 
correlations between observed and predicted outcomes ranged between 0.03 and 0.13. 

4. Discussion 

Prediction of real-world engagement in self-guided DIs for mental health could 
contribute to overcoming one of the field’s biggest problems; early and frequent dropout. 
Many DIs routinely administer assessments on users’ clinical characteristics before 
providing access to DI content which, in theory, represent easily obtained sets of 
predictors of possibly non-beneficial engagement at the earliest possible time point. 

We conducted a prediction study with data from the BFO programme in which all 
users, regardless of their actual level of engagement with the system, were included in 
the analysis. State-of-the-art prediction models were unable to accurately predict a range 
of engagement metrics from baseline assessment data which represents evidence against 
the predictability of engagement with BFO from clinical information at first access. 

 Multiple unmeasured factors may make prediction of user engagement challenging, 
such as the clinical complexity of individuals with SUD which likely interferes with 
engagement. Given the lack of prediction accuracy in this study, triaging new CAS 
clients for BFO use on the basis of their baseline assessment data may exclude 
individuals who may engage and possibly benefit from BFO if introduced to it. 

This research has some limitations. First, our metrics of engagement were 
behavioural, and do neither reflect cognitive or emotional involvement of users with the 
BFO programme nor benefit which may be achieved after minimal engagement. 
However, by including continuous engagement variables, we attempted to reflect that 
beneficial engagement can have individually different outlooks which is often ignored in 
studies using “minimal engagement” thresholds. Our decision of allowing for a variety 
of different engagement patterns also resulted in intentionally not removing engagement 
outliers, which may bias our outcomes.  

This study focused on a single DI. Examination of other DIs is desirable but 
complicated by access to commercially-sensitive data for independent researchers.  

5. Conclusion 

Early prediction of engagement is desirable in digital mental health. Our case study of 
prediction modeling of engagement in digital CBT for SUD suggests that information 
beyond clinical baseline characteristics is necessary to achieve accurate predictions. 
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Figure 1. Correlations between variables used for prediction modelling. 
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RPM: Impact of difficult situations

RPM: Cannot cope anymore
RPM: Low self−worth

RPM: Worries about own health
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RPM: Lack of self care
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