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Abstract

This review highlights some established and some more contemporary mechanisms responsible for heart failure (HF)-induced skeletal muscle

wasting and weakness. We first describe the effects of HF on the relationship between protein synthesis and degradation rates, which determine

muscle mass, the involvement of the satellite cells for continual muscle regeneration, and changes in myofiber calcium homeostasis linked to

contractile dysfunction. We then highlight key mechanistic effects of both aerobic and resistance exercise training on skeletal muscle in HF and

outline its application as a beneficial treatment. Overall, HF causes multiple impairments related to autophagy, anabolic-catabolic signaling,

satellite cell proliferation, and calcium homeostasis, which together promote fiber atrophy, contractile dysfunction, and impaired regeneration.

Although both wasting and weakness are partly rescued by aerobic and resistance exercise training in HF, the effects of satellite cell dynamics

remain poorly explored.
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1. Introduction

Skeletal muscle is the most abundant tissue in the human

body and is involved in various fundamental functions such as

mobility (locomotion and posture), inspiratory function, ther-

moregulation, metabolism of macronutrients such as glucose,

lipids, and amino acids,1 and it has also been described as an

endocrine organ.2 Skeletal muscle tissue has a remarkable

capacity to adapt to different stimuli (i.e., plasticity), dramati-

cally changing its mass and function according to each situa-

tion. While an increase in muscle mass (i.e., hypertrophy)

occurs in response to intense resistance exercise training

(RET) or the presence of certain hormones,3 loss of muscle

mass and strength are often observed in specific scenarios,

including physical inactivity, disuse, aging, and following

chronic diseases such as cancer and heart failure (HF).4

Chronic disease-related muscle wasting at its most severe is

often termed cachexia. Cachexia is defined as a complex,

multifactorial metabolic syndrome underpinned by an under-

lying illness and associated with a significant reduction in
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body mass derived from muscle tissue loss with or without

adipose tissue loss, and which cannot be reversed by conven-

tional nutritional interventions.5 Cachexia impairs quality of

life in patients by reducing the effectiveness of treatments;

indeed, evidence indicates that patients with cachexia exhibit

shorter survival than non-cachectic patients.6,7 In addition,

cachexia also affects the main muscle of respiration, the

diaphragm,8 the wasting of which exacerbates symptoms of

breathlessness and impairs ventilation, leading to life-threat-

ening respiratory failure.9 Nevertheless, it is important to

recognize a large proportion of patients may not present with

overt cachexia or wasting yet lose muscle strength due to

intrinsic muscle dysfunction (i.e., loss of function independent

of mass). Accordingly, it is important to appreciate both

aspects as key factors limiting quality of life in patients.10

Therefore, the recognition that chronic diseases inducing

both muscle mass loss and dysfunction as a widespread condi-

tion affect millions of people has stimulated the search for

treatments able to attenuate this and improve the quality of life

of patients. While no effective pharmacological treatments are

clearly established at present, exercise training has been

proposed as a potential therapeutic approach due to its various

effects on both the systemic and local muscle levels (i.e.,
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anti-inflammatory, immunological,11 anti-atrophic,12,13 and

pro-oxidative metabolism14). In terms of chronic diseases, HF

warrants important consideration because this condition

continues to increase in prevalence, is one of the most

common causes of hospitalizations15 and global deaths,16 and

there is no cure. Of note, cardiac dysfunction in HF poorly

correlates to symptoms and skeletal muscle dysfunction,

which indicates that a more complex situation is at play.17,18

Therefore, in this brief review, we outline selected mecha-

nisms underpinning limb and diaphragm muscle loss and

weakness in HF, with a specific focus on fiber atrophy, regen-

eration, and contractile dysfunction. We then highlight the

important benefits associated with exercise training for attenu-

ating skeletal muscle impairments (as summarized in Fig. 1).

Unless otherwise noted, we focus mostly on studies of HF

with reduced rather than preserved ejection fraction given that

more evidence is available, which allows for more robust

conclusions.
2. Effects of HF on fiber atrophy

The regulation of muscle mass and function reflects protein

turnover (i.e., the balance between protein synthesis and degra-

dation). The 2 major proteolytic systems involved in muscle

wasting are the ubiquitin proteasome system (UPS) and

autophagy-lysosomal system (for a full review see Singh

et al.19), although the calpain and caspase systems can also

play important roles.20 Whereas the UPS specifically degrades

myofibrillar proteins, autophagy is responsible for the clear-

ance of damaged cellular components via autophagosome
Fig. 1. Summary of the primary effects of heart failure on skeletal muscle fiber atro

following prolonged exercise training in patients and animal models. y means in an

decrease; = means no change; ? means lacking information yet. HF = heart failure

receptor 1; SC = satellite cell; UPS = ubiquitin proteasome system.
formation. The UPS system is regulated by ubiquitin enzymes

E1, E2, and E3, which respectively activate, carry, and bind

ubiquitin to target proteins before degradation at the protea-

some complex. The UPS is involved in a number of cachectic

conditions, displaying high levels of E3-ligases as well as

proteasome activity. Indeed, leg muscle samples (of the vastus

lateralis (VL)) from HF patients display an increase in the

protein content of E3-ligase muscle RING-finger protein-1

(MuRF-1),21,22 with concomitant increases in proteasome

activity.23 This finding was mirrored in a rat model of myocar-

dial infarction (MI)-induced HF, where proteasome activity

was higher in plantaris and soleus muscles.24 However, given

the limited access to patient samples, the role of autophagy in

HF-induced cachexia remains less clear. It is known, however,

that some autophagy-associated markers, such as the expres-

sion of microtubule-associated proteins 1A/1B light chain 3B

and B-cell lymphoma-2 interacting protein 3, are upregulated

in skeletal muscle during starvation periods, with forkhead

box protein O3 recognized as the most important transcription

factor controlling autophagy.25 Despite evidence from experi-

mental models of HF with preserved ejection fraction

(HFpEF) and MI indicating autophagy may be

dysregulated,26,27 clinical patient data is limited. However,

evidence indicates no difference in skeletal muscle mRNA

expression or protein content of lysosomal proteolysis marker

cathepsin L in patient tissue.22

As the underlying mechanisms of muscle wasting and HF

progression remain poorly understood, an elegant study

suggested the dysregulation of myokine expression from

wasting muscles impairs HF severity.28 The study observed
phy, satellite cells, and contractile dysfunction, as well as the secondary impact

imal models only; z means in healthy individuals. " means increase; # means

; ROS = reactive oxygen species; RT = resistance training; RYR1 = ryanodine



Skeletal muscle and exercise training in heart failure 559
that musclin expression is reduced in HF and the muscle-

specific disruption of musclin in mice contributes to the

progression of HF, while elevated musclin levels improved

cardiac function.28 This is one of the first studies to suggest a

link between skeletal-cardiac muscle cross talk in HF-induced

muscle wasting that could suggest a promising therapeutic

strategy.

Another mechanism that contributes to muscle wasting is an

inability to activate pro-hypertrophic pathways, which is a

condition known as anabolic resistance. In this sense, the key

mediator of myofibrillar protein synthesis and muscle growth

is the mechanistic target of rapamycin complex 1 (mTORC1)

pathway. The activation of mTORC1 by upstream factors

insulin-like growth factor-1 (IGF-1) and protein kinase B

(Akt) phosphorylates downstream targets ribosomal protein S6

kinase beta-1, eukaryotic translation initiation factor 4E-

binding protein 1, and eukaryotic initiation factor 4E to acti-

vate protein translation.29 It has been shown that HF patients

with reduced or preserved ejection fraction alike displayed

reduced skeletal muscle mRNA expression and protein content

of IGF-1.21,30 In line with this, phosphorylated Akt protein

content is also lower in the skeletal muscle of HF patients,31

which is perhaps indicative of impaired translational activity

as it is in other conditions such as cancer.13 One other key

study in mice post-MI showed that muscle-specific overex-

pression of IGF-1 blocked atrophy via normalizing Akt phos-

phorylation in line with inhibiting E3-ligase expression and

proteasome activity.32 Interestingly, despite past evidence

suggesting a poor link between cardiac dysfunction and skel-

etal muscle changes in HF, a study using dual X-ray absorpti-

ometry showed left ventricular assist device recipients gained

muscle mass within 6 months of surgery.33 However, it

remains unclear whether the increased muscle mass in HF

patients was caused by increased blood flow or improvements

in physical activity given the expected reduction in symptoms.

Unfortunately, no muscle biopsies were taken to further inves-

tigate mechanistic signaling. Thus, it is important to consider 2

mechanistic angles in HF, both the hypertrophic and atrophic

signaling nexus.

Alongside the mTORC1 pathway, the key upstream regu-

lator of muscle protein balance is cell metabolism. Mitochon-

dria regulate energy metabolism by integrating key cell

signaling pathways related to oxidative stress and energy

production.34 Mitochondrial dynamics have been shown to

regulate muscle mass in aging. It was observed that physical

inactivity contributes to age-related decline in the activity of

optic atrophy gene 1 (OPA1), one of the genes regulating mito-

chondrial dynamics and biogenesis, which are associated with

muscle atrophy.35 It was also observed that a muscle-specific

deletion of OPA1 alters mitochondrial morphology and func-

tion, leading to endoplasmic reticulum stress, which then

induces a catabolic program via the unfolded protein response

and forkhead box Os.35 The role of mitochondria dynamics in

the context of HF remains to be explored. However, evidence

has shown that mRNA expression of OPA1 and peroxisome

proliferator-activated receptor-gamma coactivator-1a were

downregulated in female HF patients who also present
impaired in situ mitochondrial function.36 Interestingly, these

changes were not observed in male patients. Instead, male HF

patients present functional impairments related to complex I

oxidative phosphorylation, indicating an important divergence

in phenotype between sexes.36

Accordingly, HF patients present a number of structural

abnormalities in the mitochondria, including a reduction in

size37 and content36,38 as well as fluid accumulation and

membrane disruption.37 In addition, HF patients with diabetes

also present impairments in mitochondrial function in situ,

including reduced oxygen flux and coupling efficiency as well

as a concomitant increase in reactive oxygen species (ROS)

production.39 Please refer to Lv et al.34 for an in-depth review

of mitochondrial dynamics in HF.
3. Effects of HF on satellite cells (SCs) and muscle

regeneration

The changes in protein turnover leading to muscle hyper-

trophy or atrophy do not occur according to the simplistic

balance between protein synthesis and degradation but may be

affected by nuclear turnover. Hypertrophy can occur by accre-

tion of new myonuclei by muscle stem cell or SC fusion,

which in turn helps expand cytoplasmic volume,40 while loss

of myonuclei by cell apoptosis can lead to muscle atrophy.41

Therefore, impairments to SCs may also contribute to reduced

skeletal muscle mass in HF (Fig. 1).

SCs are located between the sarcolemma and basal lamina

of muscle fibers42 and usually reside in a resting state known

as quiescence, which is characterized by the expression of

transcription factor paired box 7 (Pax7).43 In response to exer-

cise and/or muscle injury, Pax7 is downregulated, and SCs

enter an activated state.44 In turn, SCs proliferate and differen-

tiate under the control of a group of transcription factors

termed myogenic regulatory factors, with a proportion also

returning to quiescence to repopulate the SC pool.45 Differen-

tiated cells fuse with one another to form new myofibers or

with damaged myofibers to facilitate repair and myonuclear

turnover. The understanding of the role of SCs in muscle has

improved with the development of the Pax7-diptheria toxin A

mouse model, which allows conditional ablation of SCs upon

tamoxifen administration,46 although this is yet to be tested in

the context of HF. Despite proving critical for injury-induced

skeletal muscle regeneration,47,48 the role of SCs in muscle

growth remains controversial.49,50 Evidence suggests that SCs

are required for optimal hypertrophy in aged muscle51 and in

response to chronic overload,52 while impairments in SC func-

tion have been identified in patients and in various experi-

mental models of muscle wasting.53,54

In the context of HF, only a handful of studies have

explored the link between muscle atrophy and SCs. In a trans-

genic dilated cardiomyopathy mouse model, the plantar flexors

were stimulated in vivo before their ability to regenerate

following eccentric forced dorsiflexion contraction-induced

damage was assessed.55 The study showed that the plantar

torque recovered by 95% within 2 weeks of injury in controls,

but that it was attenuated in HF mice with the number of
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centrally located nuclei substantially elevated.55 While these

results suggest that HF impairs skeletal muscle regeneration

after injury, the study concluded this was SC-independent

given that the number of Pax7 positive cells was unchanged

between groups. Clearly further experiments directly assessing

SC function in HF will be needed to verify this assumption.

Additional data confirmed that the SC number per 100

myofibers in the tibialis anterior muscle of obese HFpEF rats

at baseline was not different when compared to lean controls.56

In contrast, fiber size and SC abundance have been reported to

be reduced in the gastrocnemius muscle post cardio toxin-

induced muscle injury following 7 days of treatment with

angiotensin II (i.e., a known peptide hormone playing a signifi-

cant role in the development of cardiovascular disease).57

Furthermore, to aid clinical translation and better explore the

effects of HF on SC dynamics, the study confirmed that

following MI in mice, the number of SCs in the gastrocnemius

muscle was lower in comparison to that of the respective sham

control group, while pharmacological blockade of the angio-

tensin Type I receptor prevented this. This further supports

the viewpoint that angiotensin II could be an upstream trigger

of myofiber atrophy in HF not only by regulating the transcrip-

tion factor EB�MuRF-1 axis58 but also by modulating SC

function.

While an SC abundance issue remains unclear in HF,

impairment of SC function and myogenic progression could

play an important role in driving muscle wasting, and its key

effect on proliferation has been identified. In support of this

understanding, myoblast determination protein 1 and

myogenin mRNA expression were attenuated 3 days post

injury in MI-induced HF vs. control mice.57 Furthermore,

isolated and cultured SCs treated with angiotensin II showed

impairments in proliferation as confirmed via bromodeoxyuri-

dine incorporation.57 Similarly, in humans, primary cultures of

skeletal muscle myoblasts isolated from the VL of 8 HF

patients (with reduced ejection fraction) and 8 healthy matched

controls showed proliferation kinetics were delayed at 90 h

into the growth phase.57,59 In addition, mRNA expression of

proliferation factors interleukin-6 and tumor necrosis factor

receptor 2 were attenuated in myoblasts derived from muscle

samples from HF patients with reduced ejection fraction.

Therefore, these findings suggest that SC proliferation is

impaired in HF, which may attenuate muscle repair and

contribute to atrophy. However, because it remains poorly

understood whether HF substantially impacts muscle regenera-

tion, further study in this area is warranted.
4. Effects of HF on contractile function

As presented above, muscle fatigue and weakness are key

features of HF. These are determined not only by muscle

wasting but also by intrinsic fiber dysfunction evident via a

reduction in specific force, which is often termed contractile

dysfunction and is consequent to impaired excita-

tion�contraction coupling (ECC).60 Impaired ECC increases

motor unit firing frequency to meet muscular demands, thereby

accelerating muscle fatigue and heightening symptoms of
ventilation/breathlessness.61 It is often underappreciated how

the loss of contractile function, which is a major clinical

problem in HF patients because it limits their daily activities

and quality of life, may also be caused by sarcopenia.62 Sarco-

penia is regularly used to define the loss of muscle mass and

strength associated with aging,63 with studies demonstrating

that low muscle force production is more predictive of falls

than is low lean mass.64,65

One contributing factor to impaired ECC in skeletal muscle

is decreased Ca2+ homeostasis (Fig. 1). In HF, cytosolic Ca2+

fluxes during muscle contraction are reduced in both limb

muscles66,67 and the diaphragm.68 Alterations in Ca2+ homeo-

stasis have profound effects on muscle performance, and it

seems that reduced sarcoplasmic reticulum (SR) release and

reuptake both contribute to muscle weakness in HF. Post-MI,

HF rats showed prolonged Ca2+ transients and reduced SR

release in extensor digitorum longus, accompanied by lower

twitch and tetanic tension as well as fatigue resistance;69 a

similar pattern was found in diaphragm fibers.68 Sarcoplasmic

or endoplasmic reticulum Ca2+ ATPase (SERCA) is largely

responsible for Ca2+ uptake in cardiac and skeletal muscle

(predominantly in the adult SERCA1a and neonatal SERCA1b

isoforms in skeletal muscle, with SERCA2a also present in

slow skeletal muscle70). HF rats have decreased SERCA1a

protein expression in limb and respiratory muscle, which

likely impairs Ca2+ reuptake to blunt ECC.70 A similar trend

was also observed in the VL of HF patients, whose biopsies

presented lower SERCA2a protein content and diminished

levels of phosphorylated phospholamban, both of which

reduce Ca2+ sequestration into the SR.71 Interestingly, expres-

sion of SERCA1 and SERCA2a were higher in diaphragm

biopsies from HF patients when compared to controls with

coronary heart disease, indicating a divergence between limb

and respiratory muscle.72 Strong evidence supports the idea

that the impairment of SR Ca2+ release dynamics in HF is

caused by dysfunction of the ryanodine receptor 1 (RYR1)

complex (i.e., the main channel responsible for SR Ca2+

release in skeletal muscle), which also disrupts basal fiber

homoestasis.67,73�75 For example, binding of FK506 binding

protein 12 (FKBP12, also termed calstabin) to RYR1 in order

to stabilize the closed state is diminished in HF.74 This is

partly due to hyperphosphorylation of RYR1 by protein kinase

A due to chronic b-adrenergic signaling,75 which promotes

Ca2+ leakage from the RYR1 into the cytoplasm. VL biopsies

from HF patients demonstrate hyper phosphorylation of RYR1

and depleted FKBP12 binding76 as well as lower 1,4 dihydo-

pyridine receptor (DHPR) protein content,71 while the

diaphragm in HF patients also showed lower incidence of

FKBP12 binding to the RYR1 complex.72 In addition, sensi-

tivity of single diaphragm muscle fibers to cytoplasmic Ca2+

concentrations is decreased in experimental HF, while single

muscle fibers in HF patients demonstrate reduced actomyosin

ATPase activity regardless of fiber type.77 These conditions

likely combine to further reduce contractile function.78 Other

factors that play a role include reduced contractile protein

content, per se, and the associated post-translational oxidative

modifications, with increased nicotinamide adenine
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dinucleotide phosphate (NADPH) oxidase and mitochondrial

ROS identified as contributing to diaphragm dysfunction

during experimental HF.79,80 Studies have further determined

that neuromuscular junction (NMJ) fragmentation occurs in

HF,81 as it does in aging,82 but it remains unclear whether this

reduces muscle function.83

Disruptions to Ca2+ homeostasis in HF may also exacerbate

atrophy in both limb and respiratory muscle. In an experi-

mental HF model, greater calpain activity has been found in

limb muscle84 alongside raised resting Ca2+ levels in atrophied

diaphragm muscle.85 High cytosolic Ca2+ concentrations can

activate calpains in skeletal muscle,86 which may accelerate

proteolytic activity via UPS to drive fiber atrophy.60,84

Calpains also induce sarcomere disorganization through the

degradation of the Z-disk, leading to a reduction in isometric

force. Calpain inhibition preserves sarcomere structure, indi-

cating the key role of calpains in contractile dysfunction.87

Furthermore, greater cytosolic Ca2+ concentration leads to

increased ROS production from the key sources, including

mitochondria, NADPH oxidase (Nox), and xanthine oxidase,

in both limb and diaphragm muscle in experimental

HF.60,72,80,88�90 Upregulation of Nox has been found in

diaphragm biopsies of HF patients, alongside greater protein

oxidation, in spite of increases in antioxidant enzymes.79 This

increase in ROS can lead to the upregulation of key catabolic

factors, such as E3-ligases, resulting in muscle atrophy and

post-translational oxidative modifications of sarcomeric

proteins, which contribute to impaired function.60 Targeting

these sources of ROS may prove beneficial in the treatment of

exercise intolerance in HF, a notion that is supported by

various studies. For example, reduction in mitochondrial ROS

through the use of a mitochondrial-targeted antioxidant80 and

a neutral sphingomyelinase inhibitor91 preserved diaphragm

dysfunction in HF rats post MI. Additionally, inhibition of

xanthine oxidase in mice with HF prevented the atrophy of

type I and type II fibers92 in limb muscle and preserved exer-

cise capacity. Interestingly, only certain isoforms of Nox seem

to play a role in diaphragm abnormalities in HF; knockout of a

subunit necessary for Nox2 activity restored diaphragm func-

tion,88 whereas Nox4 knockout had no impact on acute MI.93

While complex, ROS may also facilitate the dissociation of

FKBP12 from the RYR1, destabilizing the closed state and

perpetuating further Ca2+ leaks.94,95

Muscle force production is affected by mitochondrial

dysfunction and oxidative stress. However, the underlying

mechanisms by which oxidative stress contributes to HF-

related muscle wasting remain poorly understood. The role of

chronic oxidative stress in a mouse model lacking the antioxi-

dant enzyme copper-zinc-superoxide dismutase shows a

progressive decline in mitochondrial function and an increase

in ROS production caused muscle atrophy.96 When aged mice

were evaluated, a striking increase in muscle mitochondrial

content near the NMJs was found. However, the function of

mitochondria was impaired and an increase in denervated

NMJs leading to a reduction in force production was observed.

This study suggested that NMJ degeneration and mitochon-

drial dysfunction are potential mechanisms of sarcopenia.96
Given the greater prevalence of HF in older people97 and

the negative effects of aging on skeletal muscle, quantifying

the independent contribution of aging vs. HF to skeletal

muscle dysfunction is a complex task. In aging, uncoupling of

DHPR and RYR1 occurs, and Ca2+ spark duration is reduced,

both of which likely contribute to a reduction in specific force

generation.98,99 Similarly, HF risk is increased with sedentary

behavior, and exercise intolerance may limit physical activity

in HF patients,100 again complicating the roles of HF and inac-

tivity in muscle dysfunction. Indeed, inactivity has been found

to decrease specific force in young humans and old rats.101,102

Therefore, it is likely that abnormal Ca2+ homeostasis and

mitochondrial dysfunction in HF collectively contribute to

weakness not only via intrinsic fiber dysfunction but also by

promoting fiber atrophy.

5. The effects of exercise training on HF-induced muscle

wasting and dysfunction

In the past few years, research groups worldwide have tried

to uncover ways to prevent chronic disease-related muscle

wasting and dysfunction. Numerous pharmacological and non-

pharmacological interventions have been tested, but they have

shown limited efficacy.103 Therefore, a combination of inter-

ventions emphasizing the importance of a healthy lifestyle,

diet, and physical activity have been proposed. Exercise

training, specifically aerobic exercise training (AET), is asso-

ciated with improved quality of life, reduced hospitalizations,

and prolonged survival104 and should be considered an adju-

vant therapy to counteract muscle defects in HF.

AET can act in a preventive and/or therapeutic way for a

number of non-communicable chronic diseases.105,106 Among

several abnormalities observed in HF, one of the main features

is early muscle fatigue leading to exercise intolerance, and this

is related to reduced peak oxygen consumption.107,108 In fact,

lower aerobic capacity is strongly related with precocious

death in healthy subjects and those with cardiovascular

disease.109 More than a decade ago, high-intensity AET was

proposed as an alternative to moderate-intensity AET for stimu-

lating higher levels of peak oxygen consumption in HF

patients,110 but the effects of both AET protocols on muscle

indices are similar.111 Therefore, while AET plays an important

role as an adjuvant therapy for counteracting skeletal muscle

defects, an intriguing question remains whether RET might be a

more effective strategy. Therefore, we will briefly review how

AET and RET could benefit HF patients by impacting muscle

mass, regeneration, and function, as summarized in Fig. 1.

5.1. Muscle mass

Protein synthesis is essential for maintaining muscle mass,

and this seems to be modulated by exercise training in HF.

Previous studies showed that 8 weeks of moderate AET (tread-

mill) activated the Akt/mTORC1 signaling pathway to coun-

teract muscle wasting in an experimental model of HF.12 The

same type of exercise modulated that pathway in VL muscle

samples from patients (e.g., IGF-1 expression was higher 6

months after training).112
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It has been widely reported that the HF-related overactiva-

tion of UPS in skeletal muscle is due to increased oxidative

stress levels.113�115 In HF patients and animal models, AET

has been found to induce anti-inflammatory effects in addition

to improving antioxidant defenses, mainly by reducing the

pro-inflammatory cytokines of tumor necrosis factor-a and

interleukin-6 muscle expression116,117 and by increasing gluta-

thione peroxidase 1 and catalase enzyme activities.117 It was

also shown that MuRF-1 expression decreased after 12 weeks

of AET in HF patients, which was strongly correlated with

lower proteasome activity and decreased myofiber size

compared to non-trained HF patients.22,118 In addition,

moderate AET has been shown to help re-establish proteasome

homeostasis to attenuate muscle wasting in both animal

models and patients.119 Regarding other key proteolytic

systems, such as autophagy, further studies will be necessary

to clarify the impact of AET on HF.

Previously, RET was avoided by cardiac patients because it

was considered to be a potential cause of adverse ventricular

remodeling due to high-pressure loads during weightlifting.120

However, evidence from the past 2 decades points to the

contrary, and recommends RET (Fig. 1) across a range of

clinical populations.121,122 Indeed, RET provides many benefi-

cial effects not only in terms of muscle strength and func-

tion,123 but in terms of overall full-body mobility124 and

mental health125 as well. HF patients may also experience

skeletal muscle hypertrophy at the whole-muscle level126

although a lack of evidence remains available to firmly support

this suggestion (especially at the myofiber level) indicative of

anabolic resistance.127�129 In an MI model, 4 weeks of RET

was found to restore limb muscle weight (relative to body

mass) and muscle fiber area to that of sham operated

animals.130 This was associated with the reduction of MuRF-1

and muscle atrophy F-box mRNA expression to control levels,

decreases in myostatin protein expression, and increases in

factors associated with muscle growth.130 Interestingly, AET

also restored muscle mass and fiber area in the same study,

and both RET and AET were able to re-establish antioxidant

capacity and then reduce oxidative stress.130 Similarly, it was

found that high- and moderate-intensity AET restored cross

sectional area, mitochondrial function, antioxidant activity,

and reversed proteolytic signaling in an MI experimental

model.24 Likewise, maintaining mitochondrial function

through targeted anti-oxidant treatment prevented immobiliza-

tion-induced limb muscle atrophy.131 Collectively, therefore,

these studies suggest that both aerobic and resistance exercise

may prevent atrophy by reducing oxidative stress, in turn

blunting catabolic signaling.132
5.2. Contractile dysfunction

While most studies have focused on AET in HF, a study

where HF patients performed 18 weeks of RET showed

improvement in muscle strength despite a lack of myofiber

hypertrophy.31 This could have resulted from improvements in

force production for a given level of Ca2+, as is seen with

aging.133 Thus, it is important to realize that RET or AET may
be of benefit to the contractile function of muscle in HF

patients independent of muscle mass gains. Alternatively,

blood flow restriction exercise in the form of resistance exer-

cise and aerobic exercise134 showed benefits (e.g., in func-

tional capacity, isometric strength, endurance, and quality of

life) in HF patients after 6 weeks without concomitant

increases in mass.135

The mechanisms by which exercise training benefits

contractile function in HF are still being revealed, but one

of them appears to be related to HF-induced NMJ fragmen-

tation, which has negative effects on muscle mass.81 AET

has been shown to reduce the proportion of fragmented

NMJs in aged mice,136 and as such, this type of exercise

may play a role in preserving muscle mass in HF through

the same mechanism.

Another probable mechanism is related to the HF-induced

Ca2+ dysfunction of myofibers. It is known that exercise

training increases expression of DHPR, RYR1, and SERCA

proteins,137 with experimental models suggesting a link

between improved exercise tolerance in HF with AET and

restored expression of Ca2+-related proteins, in particular

DHPR, RYR1, SERCA1, and SERCA2.138 Studies have

shown that restoring Ca2+ homeostasis in skeletal muscle in

HF may be achievable via pharmacological treatment that

mimics exercise-related benefits. For example, the use of

RYR1 stabilizing agent S107 improves exercise tolerance in

diaphragm139 and limb muscles94 by reducing Ca2+ leaks

through improved FKBP12 binding. A rat model of HF

using abdominal aortic coarctation improved limb muscle

fatigue resistance and perfusion after 4 weeks of AET

(voluntary wheel running); these same markers also

improved in rats subject to 2 weeks of overload (a potent

angiogenic stimulus akin to RET).140 This suggests a close

link between peripheral vascular and contractile function in

HF. Improved mitochondrial function also occurs after

AET (and blood flow restriction exercise in the form of

resistance exercise135), likely improving oxidative capacity

to enhance fatigue resistance while reducing ROS produc-

tion to alleviate associated myofilament damage. Reducing

ROS production through exercise may result in reductions

in mitochondrial ROS through the use of a mitochondrial-

targeted antioxidant-maintained maximal specific force in

the diaphragm of mice with experimental HF.80

HF is also associated with respiratory muscle weakness,

and the effects of both AET and inspiratory muscle training

in HF patients were investigated by this. It showed that both

protocols are safe and effective in HF for improving quality

of life and enhancing muscle mass, leg blood flow, and

overall functional capacity.141 More direct studies assessing

fiber contractile function in the diaphragm have used HF

experimental models. For example, 9 weeks of AET

prevented diaphragm dysfunction in post-MI HF mice, and

such effects were associated with attenuated proteolytic

pathway expression (UPS and calpain) and oxidative contrac-

tile protein modifications (actin and creatine kinase), likely

via the upregulation of antioxidant enzyme expression.60

Similar findings have been reported in pre-HF animal models
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of hypertension where 4 weeks of high intensity interval

training prevented diaphragm dysfunction.142

5.3. Satellite cells

Limited evidence exists connecting the effects of exercise

training and SC dynamics in HF. SCs are activated in response

to exercise, which is concomitant with an increase in gene

transcription of myogenic regulatory factors,143�146 and an

increase in SC content is typically observed.147 In line with

this, endurance exercise training has been shown to alleviate

declines in SC content as well as impairments in proliferation

and differentiation capacity in aged rodents.148,149 Running

performance is also positively correlated with SC content in

the rats’ muscle.150 Whether similar exercise interventions can

alleviate SC impairments and thus exercise intolerance in HF

is unknown. One study proposed the importance of myofiber

capillarization for the SC response to RET-induced muscle

hypertrophy; thus, healthy young men and women underwent

aerobic conditioning for 6 weeks followed by 10 weeks of

RET in order to investigate how prior aerobic conditioning

alters SC content, activity, and myofiber hypertrophy.151

Those with the greatest capillary-to-fiber perimeter exchange

index before RET had the greatest change in muscle hyper-

trophy. Importantly, SC content, activation, and differentiation

increased more in the Type I myofiber, which may in part be

modulated by enhanced capillarity given the close relationship

between the SC and the endothelial niche.151 Moreover, base-

line capillarization has been found to be predictive of hypertro-

phic response in older people,152,153 who are thought to

demonstrate anabolic resistance.154 HF patients are well

known to have reduced capillarity, and a link between blunted

hypertrophy and lower capillarization was shown in experi-

mental HF rat models.140 This suggests that aerobic condi-

tioning prior to RET can improve muscle adaption by

increasing capillarization, thus reinforcing the idea that

engagement in a regular exercise training program involving

both aerobic and strength conditioning can be a reliable

strategy to counteract HF-induced muscle wasting and

dysfunction.

6. Contribution of aging and physical inactivity to the

skeletal muscle phenotype in HF

Given the greater prevalence of HF in older people97 and

the negative effects of aging on skeletal muscle, it is difficult

to separate out the contribution of HF per se to skeletal muscle

dysfunction. Indeed, in both aging and HF, the diaphragm

seems to demonstrate a reduction in fiber cross-sectional

area85,155 (although this isn’t always true in HF78). Similarly,

the isometric force of limb and diaphragm muscle is decreased

in both aging (i.e., sarcopenia)98,99 and HF,78 but reductions in

myofibrillar protein content do not account for all impairments

in function.156 Interestingly, skeletal muscle fatigue resistance

is maintained157 or improved with age but impaired in HF,158

and unfortunately, HF risk is increased with sedentary

behavior even while exercise intolerance limits the physical

activity of HF patients.100 However, while many of the
symptoms of HF may be attributable to inactivity,159 a number

of studies have confirmed the effects of HF are independent of

inactivity160,161 and age. For example, most animal studies of

HF use young animals, who still develop muscle dysfunction,

and data indicate muscle alterations are induced independent

of age, with young and old patients responding similarly to

exercise training.22 Therefore, some but not all muscle altera-

tions in HF can be explained by disuse and aging, which

clearly indicates the existence of a muscle pathology.
7. Conclusion and future perspectives

In this review, we have demonstrated promising progress in

understanding the basic mechanisms that underpin perturbed

skeletal muscle health in HF. This knowledge is pertinent

given that HF is one of the most common causes of hospitali-

zation15 and that low skeletal muscle mass is an independent

risk factor for mortality in HF.162 The problem is compounded

in societies with aging populations as HF is more prevalent in

older people,163 of whom 10% are estimated to have sarco-

penia.164 The mechanisms involved include impairments in

SC proliferation, anabolic�catabolic signaling, and myofiber

calcium homeostasis. Importantly, we have also shown that

exercise, particularly AET, attenuates a number of these

impairments in the context of HF (Fig. 1). Despite this, future

research is required to investigate the specific role played by

SCs in skeletal muscle dysfunction. Moreover, while it is well

established that exercise can reverse some skeletal muscle

deficits in HF, we have a poor understanding of how this is

achieved, which limits the potential benefits of exercise

prescription. Greater scientific understanding of the mecha-

nisms by which exercise improves skeletal muscle health in

HF would provide targets for pharmacological mimetics for

bedridden patients unable to perform physical activity, which

at present can only provide limited benefit.165
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