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Summary
Background The causal relevance of polyunsaturated fatty acids (PUFAs) for risk of site-specific cancers remains
uncertain.

Methods Using a Mendelian randomization (MR) framework, we assessed the causal relevance of PUFAs for risk of
cancer in European and East Asian ancestry individuals. We defined the primary exposure as PUFA desaturase
activity, proxied by rs174546 at the FADS locus. Secondary exposures were defined as omega 3 and omega 6 PUFAs
that could be proxied by genetic polymorphisms outside the FADS region. Our study used summary genetic data on
10 PUFAs and 67 cancers, corresponding to 562,871 cases and 1,619,465 controls, collected by the Fatty Acids in
Cancer Mendelian Randomization Collaboration. We estimated odds ratios (ORs) for cancer per standard deviation
increase in genetically proxied PUFA exposures.

Findings Genetically elevated PUFA desaturase activity was associated (P < 0.0007) with higher risk (OR [95% con-
fidence interval]) of colorectal cancer (1.09 [1.07–1.11]), esophageal squamous cell carcinoma (1.16 [1.06–1.26]), lung
cancer (1.06 [1.03–1.08]) and basal cell carcinoma (1.05 [1.02–1.07]). There was little evidence for associations with
reproductive cancers (OR = 1.00 [95% CI: 0.99–1.01]; Pheterogeneity = 0.25), urinary system cancers (1.03 [0.99–1.06],
Pheterogeneity = 0.51), nervous system cancers (0.99 [0.95–1.03], Pheterogeneity = 0.92) or blood cancers (1.01 [0.98–1.04],
Pheterogeneity = 0.09). Findings for colorectal cancer and esophageal squamous cell carcinoma remained compatible
with causality in sensitivity analyses for violations of assumptions. Secondary MR analyses highlighted higher omega
6 PUFAs (arachidonic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid) as potential mediators. PUFA
biosynthesis is known to interact with aspirin, which increases risk of bleeding and inflammatory bowel disease. In a
phenome-wide MR study of non-neoplastic diseases, we found that genetic lowering of PUFA desaturase activity,
mimicking a hypothetical intervention to reduce cancer risk, was associated (P < 0.0006) with increased risk of
inflammatory bowel disease but not bleeding.

Interpretation The PUFA biosynthesis pathway may be an intervention target for prevention of colorectal cancer and
esophageal squamous cell carcinoma but with potential for increased risk of inflammatory bowel disease.

Funding Cancer Resesrch UK (C52724/A20138, C18281/A19169). UK Medical Research Council (MR/P014054/1).
National Institute for Health Research (NIHR202411). UK Medical Research Council (MC_UU_00011/1,
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U01 CA164973).
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(http://creativecommons.org/licenses/by/4.0/).
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Introduction
Polyunsaturated fatty acids (PUFAs) are substantial
components of the diet, contributing about 4–11% of
total energy intake in Europe.1 The most important
PUFA classes are the omega 3 family, derived from
alpha-linolenic acid, and the omega 6 family, derived
from linoleic acid (LA). Omega 3 and omega 6 PUFAs
are metabolized by delta-5 (D5D) and delta-6 (D6D)
desaturases to their respective long-chain metabolites.
PUFAs are important precursors for eicosanoid hor-
mones and regulate several processes implicated in
cancer and other diseases, including inflammation,
thrombosis and insulin resistance.2,3

Most meta-analyses of observational studies support
the existence of protective associations between omega 3
PUFAs and cancer risk,4–13 whereas associations with
omega 6 PUFAs are unclear.11,14,15 In randomized
controlled trials (RCTs), there is little evidence for
benefit from interventions on omega 3 or omega 6
PUFAs but some evidence that increased total PUFA
intake might increase cancer risk.16–18

Interpretation of the observational evidence is un-
dermined by study heterogeneity and other limitations.
For example, the correlation between dietary-recall
methods and fatty acid biomarkers is weak-to-modest
(ranging from 0.12 to 0.37),19–21 suggesting substantial
scope for measurement error. In two meta-analyses,
biomarker and dietary recall-based studies tended to
give results in opposite directions.22,23 Increasing the
scope for study heterogeneity, fatty acid measurements
in different tissues capture different temporal patterns
of intake.15 Null findings from RCTs could reflect the
impact of high background intake of supplements or
fish (major sources of omega 3 PUFAs), short follow-up
www.thelancet.com Vol 91 May, 2023
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Research in context

Evidence before this study
Most meta-analyses of observational studies support the
existence of protective associations between omega 3
polyunsaturated fatty acids (PUFAs) and cancer risk, whereas
associations with omega 6 PUFAs are unclear. In randomized
controlled trials (RCTs), there is little evidence for benefit
from interventions on omega 3 or omega 6 PUFAs but some
evidence that increased total PUFA intake might increase
cancer risk (see supplement for literature search strategy). The
current evidence base is subject to limitations, including
measurement error and study heterogeneity in the
observational data and the potential influence of high
background PUFA intake and short follow-up time in RCTs.
RCTs have also focused primarily on overall cancer incidence,
with little evidence on site-specific cancers.

Added value of this study
We addressed the continuing uncertainty on the causal
relevance of PUFAs for risk of site-specific cancers through a
Mendelian randomization study design, an approach that
exploits natural randomization of germline genotypes to
strengthen causal inference in observational studies. We used
summary genetic data on 67 cancers in European and East
Asian ancestry studies, corresponding to 562,871 cases and
1,619,465 controls, collected by the Fatty Acids in Cancer

Mendelian Randomization Collaboration. We found robust
genetic evidence compatible with a causal effect of increased
PUFA biosynthesis on risk of colorectal cancer and esophageal
squamous cell carcinoma, with little evidence for associations
with male or female reproductive cancers, blood cancers,
urinary system cancers or nervous system cancers. Further
analyses highlighted omega 6 PUFAs, such as arachidonic
acid, as potential mediators of findings for colorectal cancer
and identified increased risk of inflammatory bowel disease as
a potential consequence of interventions to inhibit PUFA
biosynthesis.

Implications of all the available evidence
Dietary guidelines typically recommend replacement of
saturated with polyunsaturated fat for prevention of coronary
heart disease. Our findings suggest, however, that such advice
should potentially be reconsidered in individuals with an
increased risk of colorectal cancer. Our findings are compatible
with RCT evidence that interventions on PUFAs have little to
no effect on overall cancer incidence but is beneficial for
prevention of colorectal adenomas, a precursor for colorectal
cancer. Taken together, our findings support the design of
trials to evaluate the role of interventions on omega 6 PUFAs
for colorectal cancer prevention but highlight inflammatory
bowel disease as a potential adverse effect.

Articles
times and the possible importance of exposure before
middle age (the typical age of study participants). Pre-
vious RCTs have also focused primarily on omega 3
PUFAs and overall cancer incidence, with little evidence
on site-specific cancers.

We addressed the continuing uncertainty on the
causal relevance of PUFAs for risk of site-specific can-
cers through a Mendelian randomization (MR) study
design, defining the primary exposure as PUFA desa-
turase activity and secondary exposures as individual
omega 3 and omega 6 PUFAs. The MR approach ex-
ploits natural randomization of germline genotypes to
strengthen causal inference in observational studies24

and addresses many of the aforementioned limita-
tions. For example, germline genetic variation can be
used to model lifelong exposure, avoiding limitations
due to short follow-up time or long exposure latencies,
and can be measured with high accuracy, conferring
less susceptibility to the measurement error biases of
dietary studies. Additionally, germline genetic variants
are fixed, and their distribution is generally random in
the population with respect to socioeconomic or envi-
ronmental confounders, meaning that MR findings are
less susceptible to reverse causation and confounding
seen in observational studies. Subject to satisfaction of
the instrument variable assumptions, estimates derived
from MR can be interpreted as causal.24 Our study made
www.thelancet.com Vol 91 May, 2023
use of summary data generated in genome-wide asso-
ciation studies (GWAS) of 10 PUFAs and 67 cancers,
corresponding with up to 562,871 cases and 1,619,465
controls and 43 consortia or biobanks, collected by the
Fatty Acids in Cancer Mendelian Randomization
Collaboration (FAMRC).25
Methods
Our study had six design components (Supplementary
Fig. S1): 1) definition of PUFA exposures; 2) design of
instruments for PUFA exposures; 3) MR analyses of
PUFAs and cancer risk; 4) sensitivity analyses for vio-
lations of assumptions; 5) modelling to identify sources
of heterogeneity in findings amongst cancers; and 6) a
phenome-wide MR study (MR-PheWAS) of non-
neoplastic diseases to assess potential for adverse ef-
fects from interventions on PUFA biosynthesis.

Definition of primary and secondary PUFAs
In the present study, we defined our primary PUFA
exposure as activity of D5D and D6D, enzymes encoded
by the FADS1 and FADS2 genes. D5D and D6D catalyse
rate-limiting desaturase steps in omega 6 and omega 3
PUFA biosynthesis (Supplementary Fig. S2) and are
strong determinants of variation in most PUFAs.
Defining our primary exposure in this way, rather than
3
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as individual PUFAs, had two key advantages. First,
instruments designed for individual PUFAs will be
largely driven by the FADS region, making corre-
sponding MR results highly redundant. Second, our
exposure choice makes it easier to justify MR assump-
tions because: i) the FADS region has a proven biolog-
ical role in PUFA metabolism; and ii) MR studies
conducted at the protein level are less susceptible to
horizontal pleiotropy bias.26 We further defined a set of
secondary exposures as omega 3 and omega 6 PUFAs
that could be instrumented by variation outside the
FADS region.

Design of instrument for primary exposure
We used the following product-to-substrate ratios as
biomarkers of enzyme activity: for D5D, the ratio of
arachidonic acid to dihomo-gamma-linolenic acid
(AA:DGLA) and for D6D, the ratio of gamma-linolenic
acid to LA (GLA:LA) (Supplementary Fig. S1). For ana-
lyses of European ancestry individuals, we derived
summary data for AA:DGLA and GLA:LA by applying
GWIS27 (Genome-Wide Inferred Statistics for Functions
of Multiple Phenotypes) to summary data for AA,
DGLA, GLA and LA obtained from the Cohorts for
Heart and Aging Research in Genomic Epidemiology
study (N = 8631).28 For analyses of East Asian ancestry
individuals, we obtained summary data for AA:DGLA
and GLA:LA from the Singapore Chinese Health Study
(N = 1316).29

We identified single nucleotide polymorphisms
(SNPs) associated with the D5D and D6D activity bio-
markers using a conventional threshold of GWAS
statistical significance (P < 5 × 10−8) and with linkage
disequilibrium (LD) clumping to prune for indepen-
dence. This identified rs174546 as the most strongly
associated and only independent variant for AA:DGLA
(standard deviation [SD] change per C allele = 0.87
[standard error = 0.01]; r2 = 0.33, P < 5 × 10−100) and
GLA:LA (SD change per C allele = 0.38 [0.02]; r2 = 0.06,
P < 5 × 10−100) in Europeans and GLA:LA (SD change
per C allele = 0.72 [0.03]; r2 = 0.23, P < 5 × 10−100) in
East Asians (Supplementary Table S1). No associations
were identified for AA:DGLA in East Asians (P = 0.11).
Since rs174546 is associated with both D5D and D6D
activity biomarkers in European ancestry individuals,
we interpret rs174546 as an instrument for PUFA
desaturase activity. See the Supplementary methods for
further details on the primary instrument.

Design of instruments for secondary exposures
To identify instruments for secondary exposures
(defined as omega 3 or omega 6 PUFAs that could be
instrumented by variation outside the FADS region) we
performed LD clumping on summary data for 14
PUFAs measured in six studies. When multiple studies
were available for the same PUFA, we restricted ana-
lyses to the single largest study for that PUFA. Potential
bias from this strategy, which we consider to be mini-
mal, is discussed in the Supplementary methods. For
studies of European ancestry, this identified 124 SNPs
associated with 14 PUFAs. Four of the 14 PUFAs could
not be instrumented by variation outside the FADS re-
gion and were excluded. The retained secondary expo-
sures included five omega 3 PUFAs and five omega 6
PUFAs (variation explained, excluding the FADS region,
ranged from 0.36% to 2.52% for omega 3 and 0.47% to
4.59% for omega 6). For studies of East Asian ancestry,
only one PUFA was identified that could be instru-
mented by variation outside the FADS region. We
therefore excluded studies of East Asian ancestry from
secondary analyses. See Supplementary Tables S1–S3
and the Supplementary materials for further details on
the PUFA exposures, their genetic instruments, and the
instrument selection strategy.

Mendelian randomization analyses of PUFAs and
cancer risk
Summary data were available for 90 cancers derived
from 51 studies, cleaned and harmonised by the
FAMRC25 (Supplementary Table S4). For primary ana-
lyses we focused on 67 cancers with greater than 1000
cases and 1000 controls, derived from 43 studies
(Supplementary Tables S5 and S6). Per SD increase in
genetically proxied PUFA desaturase activity, we esti-
mated we had ≥80% power to detect odds ratios (ORs)
≥1.05 for 22 cancers, ≥1.10 for 45 cancers and ≥1.15 for
63 cancers (alpha = 0.05).

We estimated the effect of the PUFA desaturase
biomarker on cancer risk using the Wald ratio:

̂ßIV = ̂ßZY

̂ßZX

in which ̂β ZY is the log OR for cancer (Y) due to
rs174546 (Z) and ̂β ZX is the SD change in PUFA
desaturase activity (X) due to rs174546. The fatty acid
ratios AA:DGLA and GLA:LA were used as biomarkers
for PUFA desaturase activity in European and East Asian
ancestry studies, respectively. ̂β IV can be interpreted as
the estimated log OR for cancer per SD increase in the
PUFA desaturase biomarker due to rs174546, with
variance estimated as the standard error for ̂β ZY divided
by ̂β ZX. When summary data were available for the
same cancer from multiple independent studies, we
conducted MR analyses separately for each study, and
then combined the MR results by fixed effects meta-
analysis using inverse variance weights (an alternative
approach gave similar results; see supplementary
materials). MR analyses were conducted using the
TwoSampleMR R package (version 0.5.6),30 and we used
a Bonferroni corrected alpha error threshold of 0.05/67
(0.0007) to identify associations. To boost power, we
also combined MR results across cancers for selected
www.thelancet.com Vol 91 May, 2023

www.thelancet.com/digital-health


Articles
biological systems (reproductive cancers, nervous sys-
tem cancers, urinary cancers and blood cancers) using
random effects meta-analysis, implemented in the meta
package.31 Z and Cochrane’s Q tests were used to assess
differences in MR findings amongst selected cancers.
Analyses made allowance for potential sample overlap
between studies (Supplementary methods). To identify
additional potential associations, we also searched for
cancers associated with rs174546 (or LD proxies) in the
GWAS catalog up until 19 January 2021.32

In secondary MR analyses of selected cancers, we
further assessed evidence for associations with omega 3
and omega 6 PUFAs using instruments that were inde-
pendent of the FADS region. For seven of 10 PUFAs with
multiple instrumental SNPs, we estimated associations
using inverse variance weighted (IVW) linear regression
(theWald ratiomethodwas using for the remaining three
PUFAs). The variance for the IVW effect was estimated
using a random effects model, except when there were
only two independent instrumental SNPs or there was
under-dispersion in effect estimates,33,34 in which cases a
fixed effects model was used.We used an alpha threshold
of 0.05 to identify potential associations.

Sensitivity analyses for violations of assumptions
Inference of causal effects in our estimates requires
satisfaction of the following instrumental variable as-
sumptions: (1) the selected SNPs are associated with the
exposure; (2) the selected SNPs are not associated with
confounders; and (3) the selected SNPs are associated
with cancer exclusively through their effect on the expo-
sure.24 If these assumptions are satisfied, the selected
SNPs are valid instrumental variables, and an association
between the exposure and cancer can be interpreted as
causal. We conducted three sets of analyses to assess the
sensitivity of our findings to violations of these assump-
tions (name of assumption in brackets): colocalisation
analysis (assumption 2 or no genomic confounding),
within-sibship MR analyses (assumption 2 or no con-
founding by population stratification) and effect decom-
position analyses (assumption 3 or no horizontal
pleiotropy bias) (details in Supplementary methods).
Colocalisation analyses, which provide evidence against
genomic confounding, were conducted using the coloc
package35 and assessed evidence for sharing the same
causal variant amongst cancer, PUFA desaturase activity
(as proxied by the fatty acid ratios AA:DGLA or GLA:LA)
and FADS1 and FADS2 gene expression at the FADS
region. Within sibship MR analyses were conducted us-
ing data on 19,588 sibships fromUKBiobank.36,37 In effect
decomposition analyses, we estimated associations of
rs174546 with 36 selected and biomedically important
characteristics, including lipids and anthropometrics, and
then modelled the extent to which any identified associ-
ations (defined as P values < 0.0013 [alpha of 0.05/36])
could explain our findings using the product of co-
efficients method.38
www.thelancet.com Vol 91 May, 2023
Modelling sources of heterogeneity
To identify sources of heterogeneity in MR findings
amongst cancers, we assessed the impact of cancer-level
characteristics using a meta-regression approach39

(Supplementary methods). We modelled the following
cancer-level characteristics: smoking (i.e. whether
smoking is an accepted cause of the cancer40,41), chronic
inflammation (whether the cancer has an accepted rela-
tionship to a chronic inflammatory condition42), cancer
incidence,43 survival time,43 median age-at-diagnosis43

and tissue-specific rates of stem cell division.44 Ana-
lyses made allowance for sample overlap between studies
and assessed the sensitivity of findings to alternative
cancer groupings. We interpret findings from this
approach as exploratory and used an alpha threshold of
0.05 to identify potential sources of heterogeneity.

Phenome-wide Mendelian randomization study of
non-neoplastic diseases
PUFA biosynthesis interacts with aspirin, which is known
to increase risk of bleeding and inflammatory bowel dis-
ease. To identify possible adverse effects from hypothet-
ical interventions on the PUFA biosynthesis pathway, we
conducted an MR-PheWAS of non-neoplastic outcomes,
using disease associations curated by OpenGWAS.45,46

Associations with non-neoplastic diseases were esti-
mated using the same procedure described above for
primary MR analyses. The selected non-neoplastic out-
comes covered a wide range of disease areas, including
autoimmune, inflammatory, bleeding, cardiometabolic,
psychiatric, neurological, bone and connective tissue
conditions. We used an alpha threshold of 0.05, with a
Bonferroni correction for multiple testing (0.05/84 out-
comes = 0.0006), to identify potential associations.

Ethics
This work used summary data from previously pub-
lished GWAS or summary data from GWAS conducted
in UK Biobank under application number 15825. Rele-
vant approvals were obtained by each of the previously
published studies. An ethics statement for each
included GWAS can be found in Supplementary
Table S6. For GWAS conducted in UK Biobank under
application number 15825, UK Biobank has obtained
Research Tissue Bank (RTB) approval from its ethics
committee that covers the majority of proposed uses of
the Resource. The UK Biobank Research Ethics Com-
mittee (REC) approval number is 16/NW/0274.

Role of funders
The funding institutions had no role in the design and
conduct of the study; collection, management, analysis,
and interpretation of the data; preparation, review, or
approval of the manuscript; and decision to submit the
manuscript for publication.

Analyses were conducted in R version 4.0.4. P values
were two-sided. MR results were visualised using the
5
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metafor or ggforestplot packages.39,47 The scripts used for
the analyses can be found in our github repository
(https://github.com/mightyphil2000/fatty-acids).

Results
Genetically proxied higher PUFA desaturase activity was
associated (P < 0.0007) with higher risk of colorectal
cancer (including subtypes), esophageal squamous cell
carcinoma, lung cancer, respiratory and intrathoracic
cancer, non-melanoma skin cancer, basal cell carcinoma,
and overall skin cancer (Fig. 1 and Supplementary
Table S7). Findings were not substantially different
amongst independent studies for each cancer (Phet ≥ 0.03)
(Supplementary Figs. S3–S8). Findings for colorectal
cancer and lung cancer were similar amongst studies of
European and East Asian ancestry (Supplementary
Figs. S3 and S4) and were also similar amongst tumour
subtypes for colorectal cancer (P = 0.13 for distal versus
proximal colorectal cancer; P = 0.64 for colon versus rectal
cancer) and lung cancer (P = 0.94 for difference amongst
adenocarcinoma, squamous carcinoma and small cell
lung cancer). We saw little evidence (OR reported per SD
increase in PUFA desaturase activity) for associations with
male and female reproductive cancers (OR = 1.00 [95%
CI: 0.99–1.01],Pheterogeneity = 0.25), urinary system cancers
(1.03 [0.98–1.07], Pheterogeneity = 0.51), nervous system
cancers (0.99 [0.95–1.03], Pheterogeneity = 0.92) or blood
cancers (1.01 [0.98–1.04], Pheterogeneity = 0.09) (Fig. 1 and
Supplementary Table S8). A search of the GWAS catalog
identified an association with increased risk of laryngeal
squamous cell carcinoma in East Asians (OR = 1.37 [95%
CI: 1.28–1.47] per copy of the allele associated with higher
PUFA desaturase activity) (Supplementary Table S9).

Secondary MR analyses
To assess the potential role of omega 3 and omega
6 PUFA exposures in our findings, we conducted addi-
tional MR analyses of colorectal cancer, lung cancer and
basal cell skin cancer, restricted to individuals
of European ancestry and excluding the FADS region
from the genetic instrument (Figs. 2 and 3 and
Supplementary Fig. S9). Genetically proxied omega 3
PUFAs were not associated with the selected cancers in
analyses that excluded the FADS region (P
values > 0.13), albeit with wide confidence intervals
indicating potential lack of power. In contrast, a number
of omega 6 PUFAs were associated with risk of colo-
rectal cancer and lung cancer (P < 0.05) in analyses that
excluded the FADS region (OR [95% CI] per SD in-
crease in genetically proxied PUFA): AA with higher
risk of colorectal cancer (1.22 [1.02–1.45]), GLA with
higher risk of lung cancer (1.16 [1.02–1.31]) and DGLA
with higher risk of colorectal cancer (1.08 [1.01–1.15])
and lung cancer (1.10 [1.01–1.21]). No associations were
observed with basal cell carcinoma.
Sensitivity analyses
As a sensitivity analysis for genomic confounding, we
assessed evidence for colocalisation of selected cancers
with PUFA desaturase activity and with expression of
the FADS1 and FADS2 genes in various tissues
(Supplementary Fig. S10, Supplementary Table S10 and
Supplementary results). Overall, the evidence for
colocalisation was strongest for colorectal cancer and
esophageal squamous cell carcinoma (posterior proba-
bilities for a shared causal variant [PPH4] > 80%) and
was weakest for basal cell carcinoma (PPH4 < 8%). There
was strong evidence for colocalisation of lung cancer
with FADS1 gene expression in adipose subcutaneous
tissue (PPH4 = 96%) but not with FADS1 gene expres-
sion in lung tissue or with PUFA desaturase activity
(PPH4 < 70%).

Findings from the within-sibship MR analyses were
broadly like the primary MR results for overall cancer
but were unclear for other selected cancers due to small
sample sizes (Supplementary Fig. S11).

In effect decomposition analyses (Supplementary
results), we found that the instrument for PUFA desa-
turase activity (rs174546) was associated (P < 0.0014)
with LDL cholesterol, total cholesterol, triglycerides,
HDL cholesterol, height, platelet count, heart rate and
age at menopause (Supplementary Fig. S12). However,
the magnitude of these associations was too small to
account for our colorectal cancer or lung cancer findings
(P values ≤ 0.013 for total versus indirect effects) or
implied implausibly large effects on colorectal cancer
(Supplementary Table S11). We also found that geneti-
cally proxied lifetime smoking could not account for our
colorectal cancer, lung cancer or basal carcinoma find-
ings (P values ≤ 4.72 × 10−03 for total versus indirect
effects) (Supplementary Table S12). Similar findings
were observed in decomposition analyses of cigarettes
smoked per day and lung cancer in ever smokers
(Supplementary Table S13).

Sources of heterogeneity
There was little evidence that MR results varied by can-
cer incidence, survival time, median age-at-diagnosis,
or tissue-specific rates of stem cell division (P ≥
0.56, Supplementary Figs. S13–S16; Supplementary
Table S14). MR results tended to be stronger for 13
“smoking-related” cancers (P = 0.003), nine cancers with
an accepted relationship to chronic inflammatory con-
ditions (P = 0.004) and digestive system cancers
(P = 0.019) (Supplementary Figs. S17–S19). Results were
similar in sensitivity analyses, including analyses that
adjusted for potential sample overlap (Supplementary
Table S14).

MR-PheWAS
Genetically proxied PUFA desaturase activity was asso-
ciated with higher risk of large artery stroke, asthma,
www.thelancet.com Vol 91 May, 2023
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Fig. 1: Association between genetically proxied polyunsaturated fatty acid desaturase activity and risk of cancer. Plotted data indicate
odds ratios for cancer per standard deviation increase in polyunsaturated fatty acid desaturase activity instrumented by rs174546. Point sizes
are proportional to the inverse of the variance for the log odds ratio. An alpha threshold of 0.0007 (0.05/67 cancers) was used to identify
associations. Abbreviations: OR, odds ratio; SD, standard deviation; CI, confidence interval; nmsc, non-melanoma skin cancer, ER, estrogen
receptor; LMP, low malignant potential; LG, low grade; SCC, squamous cell carcinoma; PUFA, polyunsaturated fatty acid.
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nasal polyps, hypothyroidism but with lower risk of in-
flammatory bowel disease and Crohn’s disease in an
MR-PheWAS (P < 0.0006, Supplementary Fig. S20).
www.thelancet.com Vol 91 May, 2023
This suggests that a hypothetical intervention to lower
PUFA desaturase activity, for purposes of cancer pre-
vention, might increase risk of inflammatory bowel
7
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Fig. 2: Association between genetically elevated polyunsaturated fatty acids and risk of colorectal cancer in 58,131 cases and 67,347
controls. Outcome summary data for colorectal cancer were derived from a meta-analysis of the GECCO, CORECT and CCFR studies. Summary
data for fatty acid exposures were derived from either the CHARGE consortium or UK Biobank. The Q P value was derived from a Cochran’s Q
test for heterogeneity in MR results amongst SNPs in the genetic instrument. The P value column represents the P value for association
between the PUFA and cancer, derived from inverse-variance weighted linear regression (>1 SNP) or a Wald ratio test (1 SNP). The “No. SNPs”
column represents the number of SNPs present in the genetic instrument. The FADS region (proxied by rs174546) was either included (black
data points) or excluded (red data points) from the genetic instrument. Individual PUFAs within the omega 3 and omega 6 sections are sorted
according to chain length (shorter to longer). Abbreviations: PUFAs, polyunsaturated fatty acids; SD, standard deviation.
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disease and Crohn’s disease. We did not see strong ev-
idence for associations with bleeding disorders.

Discussion
We found that genetically proxied PUFA desaturase
activity was associated with higher risk of colorectal
cancer, esophageal squamous cell carcinoma, basal cell
carcinoma, lung cancer and laryngeal squamous cell
carcinoma. Extending similar findings in previous
studies,48–53 we used colocalization analysis to demon-
strate that MR results for colorectal cancer and esoph-
ageal squamous cell carcinoma, but not lung cancer or
basal cell carcinoma, are robust to genomic confound-
ing. We also conducted sensitivity analyses for violations
of assumptions, which suggested that our findings
cannot be entirely explained by confounding by popu-
lation stratification or by pleiotropy with selected
biomedical factors, including smoking, anthropometrics
and lipids. We also found evidence that interventions to
inhibit the PUFA desaturase activity, for cancer pre-
vention, would increase risk of inflammatory bowel
disease and Crohn’s disease.
Potential mechanisms
Our findings are compatible with a causal effect of
increased PUFA desaturase activity on risk of colorectal
cancer and esophageal squamous cell carcinoma. A
plausible candidate mechanism is increased synthesis of
AA, which is the preferred substrate for cyclooxygenases
(COX) in the generation of pro-inflammatory and
carcinogenic eicosanoids, such as prostaglandin E2
(PGE-2)54–57 (see supplementary discussion for consid-
eration of other potential pathways). This would be
compatible with our secondary MR analyses, which
highlighted AA as a potential mediator. Consistent with
a pro-inflammatory mechanism, our MR results tended
to be stronger for cancers with known relationships to
chronic inflammatory conditions and smoking (a pro-
inflammatory factor54–59), and genetically proxied PUFA
desaturase activity was associated with chronic inflam-
matory conditions in MR-PheWAS.

The association with higher risk of colorectal cancer
but lower risk of inflammatory bowel disease may reflect
arachidonic acid and its role in inflammation, tissue
injury and wound healing.60 For example, eicosanoids
www.thelancet.com Vol 91 May, 2023
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Fig. 3: Association between genetically elevated polyunsaturated fatty acids and risk of lung cancer in 31,937 cases and 428,466
controls. Outcome summary data for lung cancer were derived from a meta-analysis of the ILCCO and UK Biobank. Summary data for fatty acid
exposures were derived from either the CHARGE consortium or UK Biobank. The Q P value was derived from a Cochran’s Q test for hetero-
geneity in MR results amongst SNPs in the genetic instrument. The P value column represents the P value for association between the PUFA
and cancer, derived from inverse-variance weighted linear regression (>1 SNP) or a Wald ratio test (1 SNP). The “No. SNPs” column represents
the number of SNPs present in the genetic instrument. The FADS region (proxied by rs174546) was either included (black data points) or
excluded (red data points) from the genetic instrument. Individual PUFAs within the omega 3 and omega 6 sections are sorted according to
chain length (shorter to longer). Abbreviations: PUFAs, polyunsaturated fatty acids; SD, standard deviation.
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derived from arachidonic acid metabolism play a role in
tissue repair, which may underlie the inverse association
with inflammatory bowel disease (since damage to the
intestinal lining promotes development of inflammatory
bowel disease61) but are also pro-inflammatory, which
might account for associations with increased cancer
risk.54–57 Increased synthesis of eicosanoids, derived from
arachidonic acid, may lead to increased cellular prolifer-
ation, promoting wound healing and decreasing risk of
inflammatory bowel disease but promoting carcinogen-
esis. The increased cancer risk might result from muta-
genic mechanisms (e.g. greater probability for cancer
causing mutations in dividing cells), or might reflect non-
mutagenic mechanisms, e.g. activation of otherwise
dormant cells that are carriers of cancer driver muta-
tions.62 This would also help explain why the strongest
MR findings in our study were at tissue sites directly
exposed to the external environment, which we speculate
reflects the greater susceptibility of these tissues to
external damage and increased cell turnover during tis-
sue repair. These considerations are compatible with the
known effect of non-steroidal anti-inflammatory drugs
(NSAIDs), such as aspirin, which inhibit the metabolism
www.thelancet.com Vol 91 May, 2023
of arachidonic acid, decrease risk of colorectal cancer and
increase risk of inflammatory bowel disease. The
increased risk of inflammatory bowel disease in aspirin
users may reflect inhibition of wound healing, leading to
increased interaction between the gut microbiome and
immune cells in the intestine lining.63,64

Clinical relevance
Our findings highlight PUFA biosynthesis and omega 6
fatty acids as possible intervention targets for colorectal
cancer prevention, which might be achievable through
dietary or chemoprevention strategies. For example,
NSAIDs, such as aspirin, inhibit COX mediated meta-
bolism of AA, which may contribute to the efficacy of
NSAIDs for cancer prevention.65–72 As to dietary strate-
gies, competitive inhibition of omega 6 PUFA biosyn-
thesis can be achieved through increased consumption
of foods or supplements rich in omega 3 PUFAs.73–77 In
the seAFOod Polyp Prevention trial participants,78 eico-
sapentaenoic acid (EPA, an omega-3 PUFA) and aspirin
reduced the number of colorectal adenomas, a precursor
for colorectal cancer, in individuals undergoing colo-
noscopy screening for one year. A potential safety
9
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concern is that NSAIDs may increase risk of inflam-
matory bowel disease and bleeding disorders. Consis-
tent with this, our MR-PheWAS identified increased
risk of inflammatory bowel disease, but not bleeding, as
a potential consequence of interventions to inhibit
PUFA biosynthesis pathway for cancer prevention.

To improve the safety profile, interventions could be
targeted to high-risk individuals (e.g. those with ad-
vanced adenomas on colonoscopy screening). Targeted
interventions may also be possible through treatment
stratification on FADS genotypes, with the expectation
that carriers of the C allele (the allele associated with
higher PUFA desaturase activity and increased cancer
risk) would obtain most benefit from interventions.
Compatible with this idea, the association between the
allele for increased PUFA desaturase activity and colo-
rectal cancer risk was weaker in self-reported aspirin
users.50 In addition, in a randomized crossover study,
dietary omega 3 PUFAs reduced circulating AA levels,
but this effect was greatest in carriers of the FADS risk
allele.76 Better-powered studies are required, however, to
validate these potential gene–environment interactions.

Dietary guidelines typically recommend replacement
of saturated with polyunsaturated fat for prevention of
coronary heart disease.1 Our findings suggest, however,
that such advice should potentially be reconsidered in
individuals with an increased risk of colorectal cancer.

We found little evidence for associations with most
cancers, including common reproductive cancers
(breast and prostate), which might help explain lack of
observed benefit in RCTs in which overall cancer inci-
dence was the primary endpoint.16,17

Confounding by population structure
There is evidence that the FADS locus is under selection
pressure,79 which increases the potential for confounding
by population stratification. Arguing against this possi-
bility: (1) findings from a within-sibling design were
similar to primary MR results for overall cancer (other
cancers could not be reliably assessed due to low power);
(2) findings for AA were similar across analyses that
excluded or included the FADS region; and (3) MR results
for colorectal cancer and lung cancer were consistent
across populations of European and East Asian ancestry.

Strengths and limitations
Our study was large and well powered for multiple can-
cers and included East Asian and European ancestry
studies. This allowed us to conduct a more systematic
analysis and develop insights into potential sources of
heterogeneity. Our MR results may, however, be sus-
ceptible to genomic confounding. Although this is less
likely for cancers showing strong evidence for colocali-
sation, the presence ofmultiple causal variants within the
same FADS haplotype31 would make it harder to identify
evidence against colocalisation. Horizontal pleiotropy
could also introduce alternative pathways from the
genetic instrument to cancer, which would invalidate our
conclusions. However, to account for our results, hori-
zontal pleiotropy would have to operate prior to trans-
lation of FADS transcripts into PUFA desaturases. Given
that our instrument directly affects PUFA desaturase
activity–most likely via an effect on FADS gene expres-
sion (supported by our colocalisation results)–pleiotropy
is more likely to be vertical, rather than horizontal, which
would be compatible with MR assumptions. Further
arguing against horizontal pleiotropy bias, in effect
decomposition analyses we found that pleiotropy with 36
biomedical characteristics, including known cancer risk
factors, could not account for our primary results. Results
for individual PUFAs in secondary MR analyses will
however be more susceptible to bias from horizontal
pleiotropy. For example, if linoleic acid were to have a
direct effect on cancer (i.e. an effect that was not medi-
ated by other PUFAs) this would invalidate causal in-
ferences about arachidonic acid. We did not correct
findings from secondary analyses of individual PUFAs
for multiple testing, which increases the potential for
false positives. The latter results should however be
considered exploratory and require confirmation in fol-
lowup studies. Finally, our study focused on European
and East Asian ancestry studies and therefore our find-
ings may not be generalizable to other populations.

Conclusion
The PUFA biosynthesis pathway may be an intervention
target for prevention of colorectal cancer and esophageal
squamous cell carcinoma but with potential for in-
creased risk of inflammatory bowel disease.
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