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RBNet: An Ultra Fast Rendering-based Architecture

for Railway Defects Segmentation
Mingxu Li, Bo Peng, Member, IEEE, Jian Liu, Donghai Zhai, Member, IEEE

Abstract—Inspection of railway defects is crucial for the safe
and efficient operation of trains. Recent advancements in convo-
lutional neural networks have led to the development of many
effective detection and segmentation algorithms, however, these
algorithms often struggle to balance efficiency and precision.
In this paper, we present a rendering-based fully convolutional
network that generates segmentation results through a coarse-
to-fine approach. This allows our framework to make full use of
low-level features while minimizing the number of parameters.
Additionally, our network generates segmentation results from
multiple scales of the feature map and uses residual connections
to improve low-level feature detection. To improve training, we
propose a novel method that augments the dataset by cutting
and pasting images and corresponding ground truth labels
horizontally. To better understand the patterns learned by our
model, we also generate importance and uncertainty maps to
make our model explainable. Our results show that the proposed
method outperforms other state-of-the-art image segmentation
methods with a higher frame rate and better performance.

Index Terms—railway surface defects, image segmentation,
rendering mechanism.

I. INTRODUCTION

IN the past hundred years, rail transit has always been a

core transportation component. The demand for passenger

and goods transportation has increased in tandem with soci-

ety’s and the economy’s ongoing development, increasing the

burden on rail surface maintenance. The repetitive motion of

trains on rails causes various surface defects, such as cracks,

spalling, corrugation, and rolling contact fatigue [1]. These

flaws make the rail more likely to collapse within a few

meters, which can result in serious accidents [1]. However,

the state of railroads will continuously deteriorate. It poses

a significant threat to railway safety, making it essential to

efficiently and accurately monitor rail surface conditions for

stable train movement.

Railway surface defects were primarily identified in the

early years through manual inspection [2], [3]. This method

had several drawbacks, including inefficiency, high costs, and

subjectivity based on the operator’s skill level. The limitations

of manual inspection have become increasingly unacceptable

as rail traffic continues to rise, necessitating the development

of objective solutions like ultrasonic inspection, eddy current

systems, and laser testing. The efficiency and objectivity of

the results are enhanced by these inspection techniques, which

are less expensive than manual inspection. These methods are

very effective at detecting internal defects. However, due to the

weak physical signals generated by the railway surface, they

are limited in detecting surface defects. Besides, these meth-

ods are sensor-based, affecting the results by environmental

changes and sensor quality.

Considering robustness and high precision, object segmen-

tation technology based on Convolutional neural networks

(CNN) has recently been utilized in numerous approaches

and applications for railway maintenance and monitoring.

Proper segmentation can help identify and locate railway

surface defects and failures. These defects and failures can

lead to accidents or other safety hazards if not detected and

repaired, so proper segmentation allows for early detection and

preventative maintenance, improving railway safety.

This paper aims to investigate how to quickly and effectively

segment the defect regions on rails. Rail defect segmentation

faces the following significant difficulties: 1) As depicted in

Fig. 6, it is simple to mis-segment because the boundary

between the defect region and the other region is unclear

and contains a mix of different information; 2) Common

segmentation models often have a large number of parameters,

which leads to high costs to segment defects on thousands of

kilometers of railway surfaces; 3) The current data augmen-

tation techniques can alter the track’s shape and frequently

introduce artificial pixels. Given this, we design RBNet. Our

contributions are as follows:

• A novel, lightweight network named RBNet is proposed

to automate rail defect segmentation. During the render-

ing process, the residual connections in this network are

utilized to retrieve the specifics of the low-level features.

• The segmentation model can achieve high accuracy with

minimal annotated samples thanks to a data enhancement

technique that avoids the issue of introducing artificial

pixels.

• A loss function is designed to improve segmentation

accuracy, allowing the network to focus more on error-

prone regions.

The rest of the paper is organized as follows: Section

II provides an overview of the related previous approaches.

Section III details the implementation of the proposed model.

Both the dataset enhancement method and the experimental

results are presented in Section IV. Finally, Section V provides

the conclusions.

II. RELATED WORKS

With the development of computer vision technology, re-

searchers have developed various applications and approaches
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to inspection and segmentation problems. Ge et al. [4] pro-

posed a novel active contour method driven by an adaptive

local pre-fitting energy function based on Jeffreys divergence

(APFJD) for image segmentation. The APFJD model, on the

other hand, can only effectively segment double-phase images

and produces fair results when it comes to segmentation.

Li et al. [5] used the local normalization (LN) method to

raise the contrast of the rail images. Second, they use defect

localization based on projection profile (DLBP) to find defects.

While maintaining a time of operation of less than 20 ms

per image, this strategy produces excellent detection results.

Similar studies have been conducted like [6], [7].

Since the boom of deep learning, more and more CNN-

based defect inspection models are typically used. Cao et al.

[8] propose a deep feature fusion-based network. Features

from different levels are extracted, outputs are generated, and

fusing all branch outputs produces the segmentation result.

However, due to the high computational cost, the algorithm

cannot be used for a broader range of inspections. Aydin et al.

[9] designed a lightweight and fusion model that combines the

two models’ features. This work used support vector machines

(SVM) [10] to identify the faults from the output of the fusion

model. Even though the fusion model provides richer features

for each sample, it may lead to confusion for SVM if the

features from the two encoders are vastly dissimilar, which can

result in wrong results. Zhang et al. [11] used the YOLOv3

and the improved SSD algorithms to generate two groups of

bounding boxes for the railway images. Then a fusion method

combines the outputs and generates the final results. However,

the defect detection model will not save the shape of the

defect area, making it difficult for maintenance staff to conduct

additional statistical analysis. Zheng et al. [12] suggested that

the railway be extracted from the image using the improved

YOLOv5 algorithm. The results of the segmentation are then

created using the Mask RCNN algorithm. Unfortunately, si-

multaneously running multiple models can significantly burden

the computing system. Jin et al. [13] obtained segmentation

results using the Expectation-Maximization algorithm. More-

over, the Faster RCNN algorithm is adopted to get detection

results. Finally, generate the segmentation map by taking

an intersection for the detection and segmentation results.

However, the algorithm is challenged by a variety of interfer-

ences in the complex railway environment. Zhang et al. [14]

proposed a new model to deal with the challenge of complex

backgrounds. The network fully utilizes context information

based on dense block, pyramid pooling module, and multi-

information integration. The article suggests cutting, grinding,

turning, and welding natural samples to create artificial defects

to expand the dataset to address the issue of difficult sample

collection. Artificial defects may not wholly replicate the

features of natural defects, even though they address the lack

of real samples. This can result in abnormal features that may

not accurately reflect the material’s or product’s performance

under actual conditions.

Despite the success of deep learning-based methods in

inspecting railway surface defects, they are not free of limi-

tations. While CNN-based models have proven effective, they

often include a large number of parameters, making them

difficult to use on devices with limited computing power.

Additionally, there is a risk of overfitting due to the scarcity

of open data sets available for training these models.

III. PROPOSED METHOD

This paper introduces a novel network architecture based

on the rendering mechanism to address the challenges of high

parameter count and low running efficiency in segmentation

models. Furthermore, to mitigate the issue of mis-segmented

edges, a new loss function is presented that emphasizes the

edges of defect areas, resulting in improved segmentation

accuracy. Additionally, a novel data augmentation method is

developed, which avoids the introduction of artificial pixels

and enables a higher accuracy of the model.

We use a probability representation, ranging from 0 to 1,

for each pixel’s likelihood of being a defect. Specific details

of our proposed method are presented in Fig. 2. The model

consists of two components: the baseline and the rendering

mechanism. Our approach is similar to conventional U-shape-

based models, but with two notable differences. First, instead

of combining the feature maps together, the proposed model

outputs the corresponding rail surface defects segmentation

results based on the feature maps of each individual scale.

Second, the RBNet involves only three max-pooling opera-

tions, which mitigates the loss of detailed information that

can occur due to due to the feature map being of small size.

A comparison between our proposed model and conventional

U-shape-based structures is shown in Fig. 1.

A. Baseline

1) Boneback: The backbone network plays a crucial role

in extracting features from the input images and passing them

to the subsequent component. In order to achieve simplicity,

we have adopted an encoder that consists of a three-stage

down-sampling structure to extract features from the input

image. Each stage consists of a convolution block with filter

numbers of 64, 128, and 256. As illustrated in Fig. 2(a),

the convolution block consists of a convolution operation, an

activation function, and normalization. At the end of each

stage, we use a max-pooling layer to preserve the essential

features and reduce the size of the feature map.

2) Render Network: To improve the performance of the

primary task, we proposed an auxiliary task that uses multi-

scale features. As shown in Fig. 2, the proposed network

employs an auxiliary task to approach the decoding process as

a rendering problem and generate segmentation results layer

by layer. Notably, our approach employs the auxiliary seg-

mentation task only during the training phase and eliminates

it for the testing phase, thus ensuring that the running speed

of our method remains unaffected. In particular, the number

of filters in the decoder block of each stage is the same as the

corresponding encoder stage, and the feature maps are resized

using the bilinear interpolation method. The pooling block

consists of a convolutional layer that has 256 filters with a

kernel size of 1 × 1, a batch normalization layer, and a ReLU

layer. The output unit of the segmentation model generates

the final segmentation map. It consists of a sigmoid layer
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(a) (b)

(c) (d)

Feature Map

Fused Map

Output

Auxiliary segmentation

Fig. 1. The comparison between different designs. (a) U-Net combines the
feature maps through lateral connections and produces the final result at the
deepest layer. (b) PANet employs the U-shape structure with an additional
bottom-up pathway. (c) FPN includes an extra unit for integrating features and
creates the final output. (d) RBNet integrates high-level features to recover
lost details and generates outputs of different resolutions.

followed by a convolutional layer that employs a filter with a 3

× 3 kernel size. This design enables the network to effectively

exploit multi-scale features, thereby enhancing its performance

on the primary segmentation task.

B. Loss Function

The proposed architecture generates outputs at multiple

scales, and consequently, the loss function is a combination

of multiple layers. Let M denote the number of up-sampling

stages in our network. The parametric set of the backbone is

denoted as W , and the parametric set for each output unit

is denoted as ω ∈ ω(1), . . . , ω(M). Therefore, the total loss

function can be expressed as the sum of the losses of all output

layers:

L(W,ω) =
M
∑

m=1

αml(W,ω(m)) (1)

The loss function used in our architecture generates outputs

at different scales separately and is a combination of multiple

layers. Let αm be the weight of the loss in the m-th layer and

l be the loss function.

For the railway surface defect segmentation problem, we ob-

serve that incorrect segmentation results are often distributed

at the boundary of defects, as shown in Fig. 6. This is due

to the fact that these pixels are located at the junction of two

regions that mix different information, making them difficult

to distinguish. In addition, rail defects are typically small, and

there is a significant imbalance between positive and negative

samples. As a result, whether or not the defect regions are

correctly classified may have little impact on the value of

the commonly used loss function. To address these issues, we

propose a loss function defined as:

l(m)(W,ω(m)) = β × l(m)
a + (1− β)× l

(m)
b

(2)

where la represents the loss of the boundary and lb repre-

sents the loss of the defects area. To compute the loss of each

output layer, we employ the Tversky Loss [15] and denote it

as l(m). Formally, the Tversky Loss is defined as follows:

l =

∑

i∈Y +

Pr(ŷi = 1|W,ω)

∑

i∈Y +

Pr(ŷi = 1|W,ω)

+θ ×
∑

i∈Y +

Pr(ŷi = 0|W,ω)

+(1− θ)×
∑

i∈Y −

Pr(ŷi = 1|W,ω)

(3)

where ŷi ∈ (0, 1) denotes the output of the sigmoid function at

pixel i. The term
∑

i∈Y +

Pr(ŷi = 1|W,ω) is the True Positives

and θ is the weight of the False Negatives.

To improve the segmentation performance, especially on the

edges of the defect regions, we use convolution operations to

extract the boundaries of both the outputs and the ground truth.

In binary images, similar to the Laplacian of the Gaussian edge

detector [16], we use convolutional operations to extract the

boundaries. The kernel is presented in Eq. (4):

k =





0 −1 0
−1 4 −1
0 −1 0



 (4)

We use Y +
a and Y −

a respectively to denote the set of defective

pixels and the set of non-defective pixels in the edges of

ground truth. Thus for la, Y + represents Y +
a in Eq.(3) and

for lb, Y + is the set of positive pixels in ground truth.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the implementation of RBNet,

which includes a proposed data enhancement method for the

railway surface defects dataset, as well as the evaluation

metrics and experimental results.

A. Implementation Details

We scaled the input image to 64× 1280 to better preserve

the railway features and minimize the number of parameters.

The segmentation model, as shown in Fig. 2, consists of three

outputs with decreasing resolutions from high to low, which

we refer to as the 3rd, 2nd, and 1st outputs. In Eq. (1), M

is equal to 3. To make RBNet focus on the last output, we

set α3 = α2 = 0.5 and α1 = 1. As shown in Fig. 3, we

chose the parameter value that gave the highest IoU and F1

scores and set β to 0.3. Additionally, we set θ to 0.3 in Eq.

(3) because false negatives lead to more serious problems than

false positives in defect inspection.
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Encoder Block Decoder Block

(a)

(b)

Batch normalization

Relu

3x3 - filter Conv

Upsampling

3x3 - 1 Conv

Sigmoid

Output Unit

(c)

Auxiliary segmentation

Only valid 

during training

Batch normalization

Relu

Relu

1x1 - filter/2 Conv

Relu

3x3 - filter/2 Conv

1x1 - filter/2 Conv

Batch normalization

Relu

Relu

1x1 - filter Conv

Relu

3x3 - filter Conv

1x1 - filter Conv

MaxPooling
Batch normalization

Relu

1x1 - 256 Conv

Pooling Block

C C

(d)

Encoder Block

Decoder Block

Output Unit
C Concatenate

Pooling  Block

Fig. 2. Overview of the proposed neural network architecture for defect inspection. (a), (b), (c) and (d) are the details of the Encoder Block, the Decoder
Block, the Output Unit and the Pooling Block.

During training, we used the Adam optimizer with a learn-

ing rate of 1e-4 to update the network parameters, and set the

batch size to 8. All experiments were conducted on a machine

equipped with an Nvidia RTX 3060 12G.

B. Evaluation Metrics

To provide a comprehensive evaluation, we use five eval-

uation metrics. Besides, True positives, false positives, true

negatives and false negatives are referred to as TP, FP, TN,

and FN respectively. The metrics are listed below:

IoU

F1 score

Beta

Fig. 3. The IoU and F1 scores vary along with beta value.

• Precision, indicates the proportion of true defects among

all predicted defects, is defined as follows:

Precision =
TP

TP + FP
(5)

• Recall, which indicates the proportion of correctly pre-

dicted defects to all defect regions, is defined as follows:

Recall =
TP

TP + FN
(6)

• F-measure, which is the harmonic mean of precision and

recall, is defined as follows:

F =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
(7)

where β is the parameter and is used to control the

influence between precision and recall. When β is set

to 1, precision and recall have the same impact on the

F-measure and the F-measure is named F1.

• IoU (Intersection over Union), which measures the over-

lap between the predicted and ground truth masks, giving

the similarity between them, is defined as follows:

IoU =
TP

FP + TP + FN
(8)

• Pixel Accuracy (PA), indicates the accuracy ratio of all

pixels, is defined as follows:

PA =
TP + TN

TP + TN + FP + FN
(9)
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C. Dataset

To achieve effective and robust segmentation results, a large

and diverse training dataset is critical. However, obtaining and

annotating a comprehensive railway surface defect dataset can

be challenging and expensive, resulting in a limited number of

publicly available datasets. The RSDD dataset [17] collected

by Gan et al. contains 67 and 128 samples for regular and high-

speed railways. Although this dataset is well annotated and

covers a wide range of scenarios, its size may not be sufficient

for training CNNs due to the limited number of samples.

To address a problem in railway surface defect inspection,

a data enhancement method based on the CutMix method

[18] is proposed. The method comprises three steps. Firstly,

two samples of the same type are randomly chosen and

designated as xA and xB , with corresponding labels denoted

as yA and yB , respectively. Subsequently, a cutting ratio Rc is

randomly selected from the range [0.25, 0.75]. A binary mask

N64×1280 ∈ {0, 1}, with the same size as the input images,

is generated, indicating where to cut and fill in from the two

samples. Finally, as illustrated in Fig. 4, the enhanced image

is produced, and the enhanced image and labels are denoted

as xmix and ymix, respectively:

xmix = N ⊙ xA + (1−N)⊙ xB

ymix = N ⊙ yA + (1−N)⊙ yB
(10)

This data enhancement method addresses the limitation

of the RSDD dataset, which includes scenarios of rail con-

nections, without introducing artificial pixels. In addition, it

merges two samples to create a fusion of different contextual

information, resulting in an augmented dataset. After augmen-

tation, the augmented dataset has a total of 5500 images,

5000 of which are used as the training set. To evaluate the

effectiveness of our proposed data augmentation method, we

conducted experiments comparing it with commonly used data

augmentation techniques (random rotation, scaling, cropping,

and mirroring) on the rail surface defect segmentation prob-

lem. As shown in Table. I, it is worth noting that our proposed

method produced significantly better results.

D. Experimental Results

To evaluate the segmentation performance of RBNet, we

compared the model with several state-of-the-art algorithms.

(a) (b) (c) (d) (e) (f)

Fig. 4. Visualization of the data augmentation. (a) xA. (b) yA. (c) xB . (d)
yB . (e) xmix. (f) ymix.

TABLE I
QUANTITATIVE COMPARISON BETWEEN DIFFERENT AUGMENTATION

METHODS

Method Precision Recall F1 IoU PA

the proposed method 0.8187 0.7342 0.7741 0.6315 0.9953

random rotation et al. 0.7753 0.4169 0.5423 0.3720 0.9919

All algorithms were implemented using the same experimental

setup as our model to ensure a fair comparison.

RBNet

MANet

SegNet

HRNet

DeepLabv3

LinkNet
FPN

SETR

BiSenetv2

Unet

CGnet

DeepLabv3+
Knet

Poolformer

Fig. 5. Precision–Recall curves on the enhanced RSDD dataset.

TABLE II
QUANTITATIVE COMPARISON ON OUR DATASET

Method Precision Recall F1 IoU PA

RBNet 0.8187 0.7342 0.7741 0.6315 0.9953

SETR [19] 0.7895 0.5413 0.6422 0.4730 0.9952

BiSenetv2 [20] 0.8410 0.5789 0.6858 0.5218 0.9940

MANet [21] 0.7929 0.7429 0.7671 0.6222 0.9953

DeepLabv3 [22] 0.6756 0.8401 0.7489 0.5986 0.9936

HRNet [23] 0.7178 0.7986 0.7560 0.6078 0.9942

SegNet [24] 0.7796 0.6683 0.7197 0.5621 0.9941

LinkNet [25] 0.8558 0.6460 0.7363 0.5826 0.9948

FPN [26] 0.8627 0.5632 0.6815 0.5170 0.9940

Unet [27] 0.8200 0.6381 0.7176 0.5997 0.9943

CGnet [28] 0.2284 0.7657 0.3519 0.2135 0.9681

DeepLabv3+ [29] 0.8228 0.6426 0.7216 0.5645 0.9681

Knet [30] 0.8510 0.6134 0.7129 0.5538 0.9944

Poolformer [31] 0.8572 0.6496 0.7391 0.5862 0.9948

The experimental results, as shown in Table II, indicate that

RBNet achieves a precision of 0.8186, a recall of 0.7341, an

F1 score of 0.7741, and an IoU of 0.6315. The comparison

with state-of-the-art algorithms, including HRNet, CGNet,

and DeepLabv3, shows that these methods have higher recall

values than RBNet. However, their precision and F1 scores are

significantly lower, which does not necessarily indicate better

segmentation performance.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)

Fig. 6. Visualization of the difference between ground truth and outputs obtained by various models. The fewer bright yellow points from (c) to (j), the better
the algorithm is. (a) Original images. (b) Ground truth.. (c) RBNet. (d) Unet. (e) FPN. (f) LinkNet. (g) SegNet. (h) HRNet. (i) DeepLabv3. (j) MANet. (k)
BiSenetv2. (l) SETR. (m) CGNet. (n) DeepLabv3+. (o) Knet. (p) Poolformer.

Furthermore, we plotted a precision-recall (PR) curve to

further evaluate the performance of RBNet. As shown in Fig.

5, the precision of the FPN model is slightly higher than

that of our model in the region with lower recall. However,

RBNet outperforms the FPN model in the higher recall region.

This analysis shows that RBNet is an effective algorithm for

accurate detection and segmentation of rail surface defects.

Furthermore, to further evaluate the segmentation perfor-

mance of the proposed RBNet algorithm, we selected several

samples and calculated their segmentation results. Since the

differences between the outputs of different segmentation

approaches are often tiny, we used visualization techniques

to highlight these differences. Specifically, we compared the

ground truth segmentation with the results obtained by differ-

ent methods and calculated the differences, which we denoted

as D:

D = GT ∪ Pre−GT ∩ Pre (11)

The ground truth segmentation is denoted as GT , while

the output from different models is denoted as Pre. The

visualization results are shown in Fig. 6. In the error map D,

pixels in bright green represent mis-segmented pixels. As can

be seen in the figure, RBNet produces fewer errors and is able

to segment rail defects more accurately. In particular, RBNet

shows fewer errors at the edges, which can be attributed to

the layer-by-layer rendering mechanism and the hybrid loss

function.

To further validate our approach, we also used real-world

images provided by ProRail [32]. The results are shown in Fig.

7, which indicates that our model performs well in real-world

scenarios and has a strong generalization ability.

E. Robustness and Generalization Ability

To assess the robustness and generalization of our model

to different sets of training and test images, we performed a

5-fold cross-validation. This ensures that both sets are from a

similar domain. The experimental results of the 5-fold cross-

validation are shown as box plots in Fig. 8. Note that the

differences between the experiments are negligible, as all

(
a
)
(
a
)

Fig. 7. Qualitative results of RBNet on the dataset provided by ProRail.

median lines fall inside the boxes. The interquartile ranges

for each metric are also not significantly different, indicating

that the results are not widely distributed. Therefore, the

cross-validation results demonstrate the generalizability and

robustness of our proposed model on unseen data.

0.85

0.80

0.75

0.70

0.65

Precision Recall F1 score IoU

Fig. 8. Box plot for cross-validation results.

In addition, we conducted experiments on several challeng-

ing samples from the dataset to evaluate the robustness of the

proposed model in dealing with noise, such as rust marks,
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Image

RBNet

GT

Image

RBNet

GT

Fig. 9. Performance of the algorithm under different types of noise.

stains, and spalling, which are often present on the railway

surface, as shown in Fig. 9. The experimental results show that

RBNet works well and there is almost no mis-segmentation

when noise is present on the track. This can be partly attributed

to the model have learned reasonable patterns during the

training process and the extracted features for defects and

noise are significantly different.

F. Ablation Studies

To analysis the effect of each module in RBNet, ablation

studies are conducted on the enhanced dataset. All other

configurations are kept the same, except for the variations

specified in the experiments. The results of the experiments

are presented in Table III. The model proposed in Fig. 2

is taken as the baseline. The results show that the proposed

combination of rendering mechanism and loss function has

significant advantages over the other configurations in the

main indicators. Experiment (a) achieves the best performance

compared to experiments (b), (c), (d) and (e), which shows that

the improvement of RBNet is cumulative and progressive.

TABLE III
THE ABLATION STUDIES FOR THE PROPOSED ARCHITECTURE ON OUR

DATA SETS

Settings Precision Recall F1 IoU

(a) Ours 0.8187 0.7342 0.7741 0.6315

(b) without rendering mechanism

+ with the proposed loss function 0.8043 0.6995 0.7482 0.5978

(c) without rendering mechanism

+ with the loss function in 1, 2 th layer 0.7987 0.6932 0.7422 0.5951

(d) without rendering mechanism

+ with the loss function in 1 th layer 0.7835 0.6995 0.7391 0.5949

(e) without rendering mechanism

+ without the proposed loss function 0.7811 0.6937 0.7348 0.5947

G. Model Complexity

Efficiency is crucial for defect inspection, and computa-

tional complexity plays a significant role in determining it. In

this section, we conducted an analysis based on the number of

parameters (Params), frames per second (FPS), and floating-

point operations (FLOPs). Table IV presents the results of all

methods. Compared to the competing models, RBNet strikes

a balance between speed and accuracy while maintaining a

reasonable number of parameters and FLOPs.

TABLE IV
THE COMPLEXITY ANALYZE FOR DIFFERENT ARCHITECTURE

Models Params FPS FLOPs

RBNet 2.36 M 95.60 4.71 M

SETR 310.68 M 14.98 66.42 G

BiSenetv2 14.8 M 53.06 3.87 G

MANet 140.61 M 57.96 23.28 G

DeepLabv3 39.63 M 51.96 51.23 G

HRNet 28.55 M 4.60 57.11 M

SegNet 2.94 M 87.34 5.871 M

LinkNet 28.73 M 23.36 57.46 M

FPN 26.86 M 24.41 53.73 M

Unet 32.51 M 24.30 65.03 M

CGNet 0.50 M 50.19 1.07 G

DeepLabv3+ 43.58 M 28.17 55.07 G

Knet 81.31 M 24.72 85.29 G

Poolformer 59.74 M 27.20 21.05 G

V. CONCLUSION

This study presents a lightweight fully convolutional net-

work for railway defect segmentation which introduces a

novel rendering mechanism to the segmentation task. The

rendering mechanism is designed to compensate for the low-

level information lost during the encoding process. In addition,

a novel loss function is employed to handle the imbalance be-

tween positive and negative samples and to address edge-prone

error prediction. The performance of the proposed method

is evaluated through extensive experiments, and the results

show that it outperforms existing state-of-the-art models. With

a small number of parameters and fast computation speed,

RBNet is suitable for low computational power devices and

has significant application potential.

Despite achieving a lightweight design, the proposed net-

work lacks the ability to extract high-level semantics, ren-

dering it incapable of directly segmenting railway defects

from images with complex backgrounds such as sleepers or

insulated joints, as shown in Fig. 10. In addition, accurately

Fig. 10. A sample that our model is unable to provide optimal results.
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determining the severity of the broken area from digital images

is of significant value in railway defect detection and is a

research direction we intend to explore in the future.
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