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Abstract

The development of electric vehicles (EVs) is expected to play an important

role in achieving the emission reduction targets in the transportation sector by

many countries and regions, including China’s dual carbon goals. A bottleneck

to the mass roll-out of EVs is the limited charging facilities. This paper consid-

ers the planning of charging facilities for a new developing area in a metropolis,

and an optimization model for charging station planning based on the dynamic

transportation system is proposed. The proposed model is developed using an

objective framework that considers the spatio-temporal characteristics of EV

charging demand in order to minimize the overall cost while the constraints

from suppliers and drivers are met. The Voronoi diagram is used to determine

the final service boundary of each charging station, and the effect is verified

in the planning of charge stations for the Yizhuang new town in Beijing. The

case study confirms that the proposed method can optimise the charging facil-

ities that fit well with the traffic network conditions. Furthermore, it is shown

that the charging demand varies in accordance with the population density and

regional functionality in different areas.
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1. Introduction

To address the climate change challenge and the issues of sever emissions

from substantive consumption of fossil fuels in all sectors, many governments

have committed to reducing greenhouse gas emissions, and around 140 countries

and regions worldwide have committed or considered achieving net zero by the5

middle or second half of this century. For example, the Chinese government has

proposed a number of measures to achieve the ’dual carbon’ goal, and the rapid

roll-out of electric vehicles (EVs) is considered a crucial measure for decreasing

carbon emissions (IEA, 2021).

Accordingly, the development of charging facilities has a considerable appli-10

cation potential, and both governments and energy-related business sectors have

placed great importance on the development of charging stations (Fathabadi,

2020a). The planning and design of charging stations is a complex process and

a number of questions need to be answered, for example: how many and where

should charging stations should be located in the planning area; what is the15

capacity for each charging station, etc (Lee and Han, 2017). In other words,

charging station planning is an optimization problem in which the quantity,

locations, and capacities of charging stations should all be determined, while

the objective function includes investment costs such as construction costs, op-

eration costs, and EV user travel costs (including power and time), and the20

constraints include power grid safety and EV drivers’ requirements (Zhao et al.,

2020; Cui et al., 2019).

The construction of charging stations would have a big impact on the power

grid network and traffic system (Umoren et al., 2020; Seyedyazdi et al., 2020).

Improper charging station location may lead to traffic congestion and inconve-25

nience to EV users, and further jeopardize the power grid’s stability and safety

(Mao et al., 2019; Xiong et al., 2017). Consequently, there has been much

effort reported on charging station optimization in recent years (Feng et al.,

2020). For example, some studies focus on the service provision of charging

infrastructure, primarily considering the uncertainties and complexities posed30
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by EV drivers and traffic conditions. In (Faridimehr et al., 2018), a two-stage

stochastic programming methodology is proposed in to arrange publicly acces-

sible charging stations while maximizing EV drivers’ convenience. The arrival

and dwelling times, the battery states, the drivers’ charging willingness, and

the number of EVs in the community have all been taken into account in this35

model. The scheduling of EV charging is based on the overall optimization of

the traffic system, including driving demands and road speed, which provides

convenience to EV drivers while making charging or battery swap decisions (Luo

et al., 2020). A novel planning method for fast charging facilities that takes into

account numerous factors in the system is presented to achieve the optimization40

of the objective to satisfy the demands of EVs, drivers, and traffic systems while

meeting the constraints for power grid safety (Kong et al., 2019). In conclusion,

these studies mainly analyse the behavior of EV users in the traffic network, re-

vealing the potential barriers in meeting consumers’ charging requirements and

optimizing the charging facilities while satisfying the constraints of the power45

system.

On the other hand, the coupling effects of the charging stations and traffic

system have also been researched, where the temporal-spatial charging demand

is considered (Koufakis et al., 2019; Jia et al., 2018; Jeon et al., 2021; Guo et al.,

2018). In (Dong et al., 2016), a spatial and temporal model is formulated to find50

the EV charging points on the round freeway, and the battery characteristics

and transportation behaviors are simulated using the Monte Carlo method. An

incentive-based demand response program, which combines both the investment

cost and demand response cost in the objective function, is developed and solved

using the particle swarm optimization method to overcome the complexity in-55

troduced by the high EV penetration in the network (Simorgh et al., 2018). The

GAMS solver is used to deal with a comprehensive planning model to identify

the optimal expansion strategy, in which the steady-state distribution of traffic

flows and driving range limited by battery capacity are considered (Wang et al.,

2018). The fast-charging station deployment problem is solved by considering60

the elastic charging demand which combines the driving distance and waiting
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time with the probability functions (Poisson-distribution and exponential dis-

tribution) (Gan et al., 2020). To handle single charging events in the highway

traffic system, a model based on actual demand profiles is introduced, in which

the temporal traffic pattern is obtained from a comprehensive datasets of indi-65

vidual car trips (Pesch et al., 2020). The travel and charging patterns for mini-

mizing the EVs’ cost in a system which is equipped with fast charging stations

are investigated, and various factors are considered, such as how the supplier

influences drivers’ charging behavior and how the drivers’ decision affects sta-

tion congestion and charging load (Moradipari et al., 2020; Falchetta, 2021). A70

four-step method to deploy normal and fast charging stations is proposed, which

estimates the charging demand distribution based on traffic statistics. (Wang

et al., 2019b)

In summary, most existing research has focused on EV users’ satisfaction lev-

els, such as the queuing time, the travel time and power needed, or the charging75

duration, etc. (Wang et al., 2021); while some other studies have investigated

the charging utilization based on the pricing mechanism or the profit maxi-

mization (Zhang et al., 2018; Moradipari and Alizadeh, 2019). The research

on highway traffic, fast-charging stations and steady-state traffic networks can

be found in (Kchaou-Boujelben, 2021; Funke et al., 2019). Furthermore, some80

studies on the layout of charging stations based on the charging demand for

the freeway or other countries are also reported, in which the charging demand

is formulated by statistic simulation methods (Yang et al., 2018; Wang et al.,

2019a). However, little has been done in the literature to examine the effects of

temporal and spatial charging demand, in other words, the dynamics of traffic85

systems as well as the power grid’s constraints in a metropolis.

This article aims to bridge the aforementioned gap and investigate the charg-

ing station planning based on the traveling and charging characteristics of EVs

at different time periods for a new development area of a metropolis. Firstly,

the dynamics of the traffic network need to be modelled based on the infor-90

mation of network topology, traffic flow, and road impedance. Secondly, the

spatio-temporal pattern of EV charging demand will be investigated by study-
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ing the probability distribution of EV mileage and the charging probability of

EVs, in an attempt to provide a rational basis for deciding the location and

scale of charging stations. Thirdly, taking the charging demand in the planning95

region as a preliminary, the charging station optimization model is constructed,

with the aim of minimizing the overall supplier and driver costs. Finally, the

charging station strategy is improved and implemented by using the Voronoi

diagram. For designing the charging stations in the Yizhuang new town in Bei-

jing, the quantity, capacity, and locations of charging stations are optimized100

while considering the limitations and constraints from both the traffic system

dynamics and the power network. Furthermore, the impact of EV charging load

with various EVs penetration rates in the planning system is investigated .

2. Problem formulation

2.1. The traffic network model105

The traffic network model, which includes the topology of the road network

and the formulation of traffic flow, is detailed below. A weighted directed graph,

based on the graph theory analysis, establishes the topology of the road network.

The schematic diagram of a traffic network system is shown in Fig. (1).𝑠1 𝑠2 𝑠3
𝑠4 𝑠5 𝑠6
𝑠7 𝑠8 𝑠9

𝑤𝑖,𝑗

Figure 1: The traffic network system
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The position of each road intersection is expressed by its longitude and110

latitude, and the distance matrix between traffic intersections is computed as

follows:



































Net = {S,W,T}

S = {si|i = 1, 2, ..., n}

W = {wi,j |i = 1, 2, ..., n, j = 1, 2, ..., n}

T = {t|t = 0, 1, ..., 24}

(1)

where Net denotes the traffic network system; S represents the set of intersec-

tions; n is the number of intersections; W indicates the road impedance matrix

from intersection i to intersection j; and T defines the set of time slots, which115

divides a day into 24 hours according to the references (Tehrani, 2015; Liu et al.,

2021; Pal et al., 2021).

Suppose that there exist two intersections which are related to each other,

indexed by i and j. The traffic flow between the two intersections can be

measured with the multi-parameter gravity model (Erlander and Stewart, 1990):120

V t
i,j = C

Nα
i N

γ
j

W t
i,j

(2)

where V t
i,j can be represented as the traffic flow between the two intersections at

time period t. C is the proportional coefficient; Ni and Nj are the ’mass’, which

can be reflected as the population sizes of areas with R as the radius centered

on points i and j respectively; α and γ are the application factors that alter the

population dependency. W t
i,j stands for the function of road impedance:125

W t
i,j = a0z

b
t +

∑

k

ak · xk (3)

where xk represent the factors that influence road impedance, such as minimum

velocity, number of traffic lanes, density of bus stops and signalized intersections,

number of non-motor vehicles, and so on. a0, ak and b are the estimated impact

factor parameters; zt denotes the road saturation level, which is related to the

time period t.130
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2.2. The EVs charging demand model

Because of mobility, the charging demand of EVs varies with time, which is

dependent on the factors such as driving mileage, state of charge and EV drivers’

charging willingness. We aim to fulfil the travelling requirements of EVs in the

charging demand model, which is complicated due to the large number of EVs,135

variety of travel mileages, and various states of charge (SOC) when drivers

decide to charge (for example: some people intend to charge when SOC is 20%

while some people prefer to charge when SOC is 10%). In this section, the

EV charging demand will be modeled based on the statistic of the whole traffic

system.140

(1) For EVs, the driving mileage per hour varies during the day. Therefore,

the percentage of mileage per hour over the total daily mileage is variable, and

its probability density curve can be described by a mixed Gaussian function

(FHWA, 2017; Calearo et al., 2021):

fs(x) =

K
∑

k=1

πk · e
−(

x−µk
σk

)2
(4)

where πk means the weight of the k-th Gaussian model and
∑K

k=1 πk = 1; µk145

and σk are the mean and variance values of k-th Gaussian model. The driving

mileage at time t would be:

L(t) = L0 ·

∫ t

0

fs(x)dx = L0 · Fs (t) (5)

where L0 stands for the daily driving mileage.

(2) Suppose the initial SOC of an EV is β0, thus the relationship between the

SOC of the EV’s battery and its driving mileage L(t) at time t can be expressed150

as:

SOCt = β0 −
L(t)

lmax

(6)

where lmax is the maximum range of EVs when they are fully charged.

(3) The SOC of EVs when drivers are willing to charge could be formu-

lated as a Weibull distribution, with the following probability density function
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(Fathabadi, 2020b):155

fSOC(x) = a · b · xb−1 · e−axb

(7)

where a and b are parameters of the Weibull distribution; suppose the SOC of

EV is β (0 < β < 1), and then the probability driver go to charge is:

Fsoc(β) =

∫ β

0

fSOC(x)dx (8)

(4) The probability of charging for an EV on the road at time t is:

Pcharg =

∫ SOCt

0

fSOC (x) dx =

∫ β0−
L(t)
lmax

0

fSOC (x) dx (9)

(5)The number of EVs that need to charge at a specific intersection i at time

t is given as:160

N t
i = V t

i · α · Pcharg (10)

where V t
i =

∑

j V
t
i,j is the real-time traffic flow of intersection i at time t based

on equation (2), avoiding double counting when calculating V t
j . α stands for

the penetration level of EVs on the road.

(6) Assume there are I intersections in the planning area, the total number

of EVs to be charged in one day is formulated as:165

Ξ =

I
∑

i=1

24
∑

t=1

N t
i (11)

Based on the aforementioned definitions, instead of using the static demand

model based on the conventional location theory (Williams, 1997), the objective

of optimizing charging facilities can be formulated to meet the time-varying

charging requirement in the traffic system. A key feature of this optimization

model is that it can incorporate the dynamic distribution of charging demand170

based on the traffic flow to better suit the convenience of EV drivers.

3. Optimization model for charging stations

The aim of this optimization approach is to design the specifics (such as the

quantity, capacity, and locations) of new charging stations in a given planning
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area subject to corresponding traffic and power network constraints. The objec-175

tive function has two parts: the construction costs and the users’ travel costs.

minC =

K
∑

k=1

(γ1C
1
k + γ2C

2
k) (12)

where C1
k denotes the annual investment cost of charging station k; C2

k represents

the travel cost when users go to charging station k; γ1 and γ2 are the weighted

parameters. The decision-makers can adjust the coefficients γ1 and γ2 to reflect180

the relationship between investment and drivers’ costs. In this article, γ1 and

γ2 are equal to 1, representing a balanced approach (Zhang et al., 2015; Huang

and Kockelman, 2020).

3.1. The annual investment cost

The investment cost C1
k contains the cost of construction, operation and185

maintenance, and loss of electricity each year:

C1
k = Cbuild + Cmtn + Closs (13)

(1) The construction cost Cbuild for the charging station k mainly includes

equipment purchase cost, land rent and civil construction cost:

Cbuild =
r0(1 + r0)

n0

(1 + r0)n0 − 1
(Nkccharg + Skctrans

+Akcfield +Akcroof + Lkcline + Ch)

(14)

where r0 denotes the rate of discount; n0 indicates the life span of the charging190

station; Nk is the number of available piles in station k; ccharg represents the

price per charging pile ($); Sk means the capacity of transformer in station k

(KW ); ctrans is the price of unite capacity for the transformer ($/KW ); Ak

is the area size of station k (m2); cfield and croof are the rent cost and shed

cost per unit area respectively ($/m2); Lk is the transmission line length from195

station k to the power distribution system (m); cline stands for the price of per

unite line ($/m); Chk is the cost of civil engineering for charging station k ($).
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(2) The operating and maintenance cost Cmtn for charging station k consists

of the labour cost and the maintenance cost of equipment:

Cmtn = γCbuild (15)

where γ is the proportion of labor and maintenance cost to the construction200

cost Cbuild for a charging station, which is usually set to be 9%.

(3) For the charging stations, the loss cost Closs mainly considers line loss,

charging loss and transformer loss. The line loss refers to the power loss on

the cable line from the charging pile to the electricity metering point, which is

related to the length, the cross-sectional area of the cable and the temperature.205

The charging loss means the power consumed by the charging pile when main-

taining the operation of components in the standby state. The transformer loss

includes open-circuit loss and load loss of the transformer.

Closs = (Pline + Pcharg + Ptrans)TcPc

= (pl · lcap + pc · ccap + pt · tcap)TcPc

(16)

where Pline, Pcharg, Ptrans are the line loss, charging loss and transformer loss

per year respectively (kw), which could be calculated based on the loss rates (pl,210

pc and pt) and capacities (lcap, ccap and tcap) of line transmission, charging piles

and transformers; Tc means the annual working time (h); Pc is the electricity

price ($/kwh).

3.2. The annual travel cost

Since the distances between current locations and different stations are time-215

varying, the arrangement of charging facilities in the planning area will have a

big influence on the travel cost of customers. In this section, the travel cost C2
k

can be split into the power cost and driving time from the current position to

charging station k, as well as the queuing time at station k.

C2
k = Ckp + Ckm (17)

220
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(1) The electrical energy cost for users Ckp is calculated by the distance from

intersection i to charging station k:

Ckp =
∑

t

∑

i

di,k ·N t
i

l0
· Pc (18)

(2) The time cost for users Ckm includes the traveling time from current

location to charging station k and queuing time at charging station k:

Ckm =

[

∑

t

∑

i

di,k ·N t
i

vti,k
+
∑

t

W t
k

]

· ctime (19)

where di,k denotes the driving distance from the intersection i to charging station225

k (km); N t
i indicates the number of EVs which need to be charged at traffic

intersection i; vti,k indicates the driving speed (km/h); l0 is the mileage per unit

electrical energy (km/kwh); ctime is the cost of time for drivers in the planning

area($/h); Pc is the electricity price($/kwh).

In this paper, we assume that there are two types of charging piles in the230

charging stations, namely fast charging piles and slow charging piles. We con-

sider the ’first come first serve’ policy for EV charging. Based on the Markov

transition process and dynamic M/M/C queuing model (Vahdani et al., 2012;

Moghaddam et al., 2018), the queuing time at time period t in charging station

k could be calculated as:235

W t
k = W t

k,f +W t
k,s (20)

where W t
k,f is the queuing time if users choose fast charging at charging station

k in the time period t:







W t
k,f =

P0,f

(Nk,f−1)! · (
λf,t

µf,t
)Nk,f ·

µf,t

Nk,fµf,t−λf,t

P0,f =
[

∑Nk,f−1
n=0

1
n! · (

λf,t

µf,t
)n + 1

Nk,f !
(
λf,t

µf,t
)Nk,f · (

Nk,fµf,t

Nk,fµf,t−λf,t
)
]

−1 (21)

and W t
k,s is the queuing time if users choose slow charging at charging station
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k in the time period t:







W t
k,s =

P0,s

(Nk,s−1)! · (
λs,t

µs,t
)Nk,s ·

µs,t

Nk,sµs,t−λs,t

P0,s =
[

∑Nk,s−1
n=0

1
n! · (

λs,t

µs,t
)n + 1

Nk,s!
(
λs,t

µs,t
)Nk,s · (

Nk,sµs,t

Nk,sµs,t−λs,t
)
]

−1 (22)

where λf,t = N t
k ·α and λs,t = N t

k ·(1−α) are the number of EVs for fast charging240

and slow charging at time period t respectively; α means the probability of an

EV choosing fast charging, which varies with time, bigger in the daytime and

smaller at night. Nk,f and Nk,s are the numbers of fast charging piles and

slow charging piles in station k respectively. The charging rates of fast and

slow charging piles at time period t are µf,t =
∑λf,t

i=1 (1 − SOCi) · TDf and245

µs,t =
∑λs,t

i=1 (1 − SOCi) · TDs respectively; TDf and TDs are the maximum

service time of fast charging and slow charging respectively if the SOC of an

EV is zero.

The flowchart of the proposed optimization algorithm is shown in Fig. (2).

3.3. Constraint conditions250

The design of charging stations should consider the constraints imposed by

customer demand, the structure of the road network, and the power network.

These limitations are imposed to ensure that 1) the queuing time for customers

does not exceed the threshold during peak hours; 2) the grid node capacity

does not exceed the limit when the charging station is connected; 3) the system255

safety criteria are met, etc.

3.3.1. Customer constraints

(1) Queuing time constraint for EV drivers

q(t) ≤ qmax (23)

where q(t) denotes the queuing time at time period t for drivers; qmax represents

the maximum allowable queuing time for EVs.260

(2) Distance constraint for EVs

min(lik) ≤ lmax (24)
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start

Calculate the traffic flow on the road with 

equation (2)

Calculate the number of EVs needing charged 

at intersection k via equation (10) 

Optimize the layout of charging stations with 

equation (12) 

Obtain the number, location and scale of 

charging stations in the planning area

end

Calculate the probability of charging for one 

EV with equation (4)-(9) 

Figure 2: The flowchart of the proposed algorithm

where lik indicates the distance from traffic intersection i to charging station k;

lmax is the maximum driving distance of EVs when they go to charge. According

to the relevant policy in Beijing, EVs could get charged within 5km in the sixth

ring.265

3.3.2. Charging station constraints

(3) Capacity constraint for charging stations

K
∑

k=1

skr,max ≤ Sr,max (25)

where K is the quantity of charging stations connected to the power grid node r;

For the power grid node r, skr,max means the maximal scale of charging station

k; Sr,max indicates the maximum allowable capacity added to the power grid270

node r, which mainly depends on the load rate and line transmission capacity.

13



(4) Distance constraint between charging stations

djk ≥ dmin (26)

If djk, which represents the distance between two charging stations j and k, is

too small, there would be a high vacancy rate for charging piles, resulting in

the waste of resources. Therefore, the distance between two charging stations is275

generally larger than the minimum distance dmin. At the end of the 14th Five

Year Plan in China, EVs could find public charging facilities within 1km in the

core area of Beijing.

3.3.3. Power system constraints

The charging stations would bring security and stability issues when they280

are connected to the power system (Yang et al., 2015). Thus, there are some

constraints which should be considered, such as capacity and voltage limitations.

In detail, the capacity of the grid node does not exceed the maximum power

supply and the voltage of each grid node should be within the safety range when

charging stations are connected to the power system.285

(5) Capacity constraint for power grid

N
∑

i=1

si,max + s0 ≤ (1− ε) · Smax (27)

where N denotes the number of charging stations in the planning area; si,max

is the maximal size of charging station i; s0 means the initial load capacity of

the power system before linked to the charging stations; ε represents the margin

of power system, which is normally 5%; Smax is the maximum power supply290

capacity of the power system in the planning area.

(6) Voltage constraint for power nodes

αlower · U0,r ≤ Ur ≤ αupper · U0,r (28)

where αlower and αupper are the lower and upper limit rates respectively; U0,r

is the rated voltage of grid node r; Ur is the voltage after the charging station

connected to power node r.295

14



3.4. Voronoi diagram

Once the charging stations have been planned, the corresponding service

boundary of each charging station can be obtained by Voronoi diagram, which

is also known as Tyson polygon graph (Aurenhammer, 1991; Boots et al., 2009).

The Voronoi diagram divides the planning area into N polygon regions centered300

on points pi(i = 1, 2, · · · , N). As shown in Fig. 3, the boundary line between

the polygon areas formed by two adjacent points is bisected and perpendicular

to the line between these two points. There is a proximity principle for the

points: the distance d(x, pj) from any point x(x ∈ R(pi)) to the center point

pj(j ̸= i) of other areas is bigger than the distance d(x, pi) from the point x to305

the center point pi of the current area. Therefore, each point in the Voronoi

diagram has a stronger relationship with the region to which it belongs. For

the points pi(i = 1, 2, · · · , N), the service boundary R(pi) can be determined as

follows:

R(pi) = {d(x, pi) < d(x, pj)} (i, j = 1, 2, · · · , N ; i ̸= j) (29)

where x is any point in the planned area.310

𝑝1𝑝3
𝑝2

𝑝4
𝑝5

𝑝6
Figure 3: The Voronoi diagram (N = 6)

4. Empirical analysis

4.1. Overview of the planning system
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The proposed algorithm is applied to the charging station planning for a new

developing town - Yizhuang in Beijing in reality. The total area of Yizhuang new

town is around 225 km2 (39◦69′N-39◦81′N, 116◦53′E-116◦63′E). As shown in315

Fig. (4), the highlighted lines are the main streets in this area, while the red line

is for the expressway and the blue line is for the major road. The intersections

of those expressways and major roads are indexed from 1 to 27 in this case

study. Four major functional zones are circumscribed and distributed in the

planning area: one commercial zone, two residential zones, and one industrial320

zone (PGBM, 2021). In Yizhuang, the two residential zones account for more

than 60% of the population.

As one of the major developing zones, Yizhuang has been planned as an in-

novative global industrial cluster, science and technology service hub. There will

be 870 thousand permanent residents and much more traffic would be expected325

between Yizhuang and the other regions of Beijing after 2035. As shown in Fig.

(4), the traffic flow of the intersections at the edge of the planning area (i.e. inter-

sections 1-4, 8, 10-14, 21-23 and 26-27) will be calculated using the equation (2)

considering the population mobility between Yizhuang and surrounding areas.

Currently, the Yizhuang new town has 11 regions, with approximately 200 thou-330

sand vehicles, and EVs share around 8%. According to the 14th five-year plan,

there will be 230 thousand vehicles in the new town, with an EV penetration

rate reaching roughly 18% (Wong, 2022). To meet the increasing EV charging

demand, the availability of public charging infrastructure is an especially im-

portant consideration for EV drivers in Beijing due to several limitations. First,335

many households lack access to dedicated parking spots near home; Even for

drivers with such dedicated parking spots, installing home chargers may take

several months and need to make an official request to the grid company, dis-

trict management department and the civil preparedness bureau (CGEP, 2019;

ICCT, 2019; Wu and Yang, 2020). Therefore, public charging stations would be340

the best option to satisfy future charging requirements given the aforementioned

limitations of installing home charging infrastructure in Beijing.
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Figure 4: The Yizhuang new town in Beijing

4.2. Data collection and scenario design

In this study, the relevant parameters and unit pricing information of various

equipment are from the Beijing traffic development annual report and Beijing345

statistical yearbook, and technical data is from government official publications,

published papers, and surveys (NationalData; BMCDR, 2016). For the gravity

model, the population size of main crossings is computed by mobile signaling

data, with a radius of 1km centered on each intersection. There are nine months

of actual data, based on which the left three months (April, May, and October)350

of data are simulated since the objective is to optimize the annual cost in the

experiment.

The service level grading of Beijing roads is shown in table (1). The service

level reflects the comfort level of drivers on the road under different traffic con-

ditions. Level 1 means that the driver feels very comfortable and convenient;355

while with the increase of traffic flow, the service level drops and traffic con-

gestion occurs; Level 4 indicates that the driver is seriously disturbed by other

vehicles or pedestrians. In other words, the service level of one road changes

with time. For example, during rush hours, the traffic flow is large and the road

service level is low; then at this time, the driving speed of vehicles on the road360
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will also be small. The speed of EVs at different time periods in equation (19)

is based on the table (1).

Table 1: The service level grading of different roads in Beijing

Grading standard Service level

Free flow velocity Index 1st 2nd 3rd 4th

Expressway

70km/h
Minimum velocity /km · h−1 64 57 47 33

Maximum load degree v/c 0.28 0.57 0.85 1.00

80km/h
Minimum velocity /km · h−1 73 65 54 40

Maximum load degree v/c 0.32 0.59 0.87 1.00

90km/h
Minimum velocity /km · h−1 81 73 59 45

Maximum load degree v/c 0.34 0.6 0.89 1.00

Major road

50km/h
Minimum velocity /km · h−1 40 35 28 20

Maximum load degree v/c 0.35 0.65 0.85 1.00

60km/h
Minimum velocity /km · h−1 50 44 30 22

Maximum load degree v/c 0.38 0.68 0.87 1.00

70km/h
Minimum velocity /km · h−1 60 52 38 25

Maximum load degree v/c 0.40 0.70 0.89 1.00

When planning charging stations, various assumptions (such as the maxi-

mum number of charging piles in each station, the maximum queuing time for

EVs, etc.) must be considered (Shahraki et al., 2015).365

1) There are two types of charging piles in each station, 120kw DC fast

charging pile and 7.7kw AC slow charging pile;

2) The number of charging piles for compact EVs at each station is limited

to 50 due to the space constraint;

3) The life span of each station is set to be 20 years.370

4) The queuing time for each EV is no more than 20 minutes;

5) The cost of time is set to be 10 $/h based on the local average wage.

For the sake of simplicity and generality, we assume that compact EVs are

unified as Biyadi yuan, which has a rated battery capacity of 50.1kwh, a power

consumption of 14 kwh per 100 kilometers, and a maximum range of 401 kilo-375

meters. For the traffic system, the transportation road network is simplified,

and only expressways and major roads are considered. The charging demand
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distribution and the locations of charging stations are calculated based on the

traffic flow at the intersections of these roads. Furthermore, the parameters

of the optimal model are identified according to the following table (2), where380

the charging efficiency is the conversion efficiency of the consumed energy per

ampere hour (AH); the cable and assembling contains the cost of labor, cable

(16 mm2) and PVC casing wiring; the material of car shed is mainly aluminum

alloy and poly-carbonate plate.

Table 2: The model parameters setting

Parameters Value Parameter Value

charging efficiency 0.95 electricity price (slow charge) 0.13 $/kwh

cable and assembling cost 8.6 $/m car shed cost 71.8 $/m2

tortuosity coefficient of power line 1.5 land rental 30 $/(m2 · year)

line loss rate 8% charging loss rate 10%

transformer loss rate (400 kw) 1.08% transformer loss rate (1250 kw) 0.96%

transformer loss rate (2000 kw) 0.73% electricity price (fast charge) 0.17 $/kwh

parking space area 12 m2 DC charging pile capacity 120 kw

DC charging pile cost 7033.5 $ AC chariging pile capacity 7.7 kw

AC charging pile cost 215 $ transformer cost (400 kw) 6330 $

transformer cost (1250 kw) 11336 $ transformer cost (2000 kw) 17651 $

maximum queue time qmax 20 min maximum drive distance lmax 5 km

maximum capacity of node r Sr,max 3 MW minimum distance of stations dmin 1 km

maximum power capacity Smax 60 MW lower limit rate αlower -3%

upper limit rate αupper +7% rated voltage U0 35 KV

5. Results and discussions385

In this section, the actual system will be used to assess the effectiveness

of the proposed strategy. According to the Yizhuang new town development

plan, about 40 thousand EVs are introduced in the system. Based on the traffic

flow in equation (2), a certain proportion of EVs is introduced to the traffic

system, including 24000 private cars, 10000 taxis, and 6000 other vehicles (Zou390

et al., 2016). For the percentage of mileage per hour to daily mileage and

its probability density curve, parameters in the mixed Gaussian function are

estimated as follows: π1 = 0.078, µ1 = 14.86, σ1 = 5.31;π2 = 0.051, µ2 =
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8.75, σ2 = 3.11. For the SOC of EVs when they get charged and its probability

density function, parameters in the Weibull distribution are estimated as a =395

6.31 and b = 1.67.

5.1. Charging demand distribution

Fig. (5) shows the number of different types of EVs at each traffic inter-

section in a day. It is evident that the distribution of EVs is uneven, which

is related to regional functionality. More than 1000 electric private cars are400

crossing the traffic intersections 9-20, which are located near residential and

business zones with high population mobility. According to the development

plan of the Yizhuang new town, there would still be some less developed areas

in 2025. Since these regions are sparsely populated, the traffic flow will be less

accordingly, such as the intersections 3, 4, 25 and 26. The electrical taxis have405

no fixed driving routes and thus the numbers of taxis at different intersections

vary slightly. Moreover, the number of taxis in remote places also decreases

significantly due to the passengers demand. Other types of vehicles are also

used in densely populated regions, like private cars and taxis.
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Figure 5: The number of EVs at each intersection

We could obtain the temporal distribution of charging demand in different410

functional zones, as shown in Fig. 6(a). The peak value of overall charging

demand occurs between 13:00 and 18:00. In the two residential zones, the

charging demand fluctuates throughout time, from low in the early morning to
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high between 17:00 and 21:00. This is due to the fact that EVs need to be

charged when drivers return home from work. For the commercial zone, there415

is a large demand for charging from 10:00 to 20:00 in order to meet people’s

shopping activities. Similarly, there is also little demand for night charging in

the business district. The charging demand in the industrial zone is extremely

high during working hours from 8:00 to 17:00, which indicates that most people

will charge their EVs during working hours before driving back home.420

As illustrated in Fig. 6(b), the geographical distribution of charging demand

is not even. Residential charging demand is higher than commercial charging

demand, whereas industrial charging demand is the lowest. The peak intensive

charging demand areas are primarily located around residential and commercial

zones, which indicates that the requirement for charging is correlated to the425

population density. There are mainly factories in the industrial district which is

sparsely populated, resulting in a low charging demand. While the population

density of residential and commercial zones is relatively large, hence the charging

demand is also high accordingly. This information could serve as the basis for

planning the charging stations.430
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Figure 6: The temporal and spatial distribution of charging demand

5.2. Optimal configuration of charging stations

Based on the temporal and spatial features of charging demand, the overall

arrangement of charging facilities in the planning area could be optimized. The

comparison of different optimal schemes is shown in table (3). The detailed
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deployment of different numbers of charging stations is shown in table (5) in435

Appendix. When the number of charging facilities increases, the cost of drivers

(sum cost of driving time and power, queuing time at charging stations) de-

creases accordingly, while the investment cost from the supply side (including

the construction, operation, maintenance and loss cost) increases. The total

cost decreases first and then increases with the number of charging stations,440

which can be explained as follows. When there are fewer charging facilities, less

construction and operation related cost is needed, leading to lower annual in-

vestment cost. However, the fewer charging facilities can not meet the charging

demand in the planning area, which implies a long driving distance when drivers

go to charge and a relatively long queuing time at charging stations, thus re-445

sulting in a high cost for EVs. When there are more charging facilities located

in the planning area, the driving distance and queuing time decrease, which

implies that the planning offers more convenience for drivers, thereby offsetting

the increased investment cost. At this stage, the total cost also decreases since

the ratio of drivers’ cost to overall cost is much higher. If the number of charg-450

ing stations reaches a certain value, the proportion of investment cost would

be bigger than the cost of EVs. Thus, the overall system cost would increase

with the continuous increase of the number of charging stations. When there

are more than 13 charging stations, the small cost of driving and queuing time

indicates that there are abundant charging facilities for EVs and drivers do not455

need to spend too much for charging. While on the other hand, the investment

cost is much higher which indicates a waste of resources. In summary, accord-

ing to the trend of the overall cost for the whole system, the optimal number of

public charging stations is determined to be 12.

The optimal planning of charging facilities covers location and scale for each460

station, as illustrated in table (4). From the latitude and longitude of the

planned stations, it is evident that these charging stations are widely scattered

across the planning area. The capacity of these charging stations varies hugely.

For instance, the 3rd station has the smallest capacity, with only 10 slow charg-

ing piles and 5 fast charging piles, followed by the 4th and 10th stations. The465
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Table 3: Comparison of optimal schemes (×103$)

The number of

charging stations
travel cost

travel and

queue time
construction cost

operation and

maintenance cost
loss cost total cost

9 78.37 256.63 228.26 46.92 74.94 685.12

10 60.50 240.06 238.81 48.91 81.57 669.85

11 56.06 191.43 268.87 57.22 88.32 661.89

12 36.57 182.51 287.86 60.14 92.55 659.63

13 37.03 177.83 306.80 70.48 98.38 690.53

14 36.61 170.09 325.58 75.09 101.32 708.70

15 35.55 160.54 333.82 78.61 105.48 714.00

Table 4: Configuration of optimal planning scheme

No. Longitude Latitude
Quantity of slow

charging piles

Quantity of fast

charging piles

1 116.673 39.694 19 10

2 116.489 39.795 26 14

3 116.441 39.746 10 5

4 116.443 39.783 12 7

5 116.541 39.772 17 11

6 116.572 39.798 23 13

7 116.511 39.811 35 15

8 116.494 39.813 31 15

9 116.501 39.757 25 12

10 116.509 39.733 11 7

11 116.539 39.810 29 14

12 116.574 39.719 21 10

7th station has the biggest capacity, with 35 slow charging piles and 15 fast

charging piles. It should be noted that the layout of these charging stations

is the optimal result of the planning model developed in this article, and it is

based on the local traffic flows and charging demand information. During the

implementation phase, factors such as the local construction requirements and470

historical conditions should also be taken into account.

Fig. 7 (a) illustrates the optimal planning layout of the charging stations.

It reveals that nine charging stations are distributed around areas with a high

population and high traffic flow, whereas only three stations are scattered in
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the regions with a relatively small population and few roadways. The 1st, 2nd475

and 8th charging stations are located in the commercial zone, and there are

70 slow charging piles and 39 fast charging piles in total, which could satisfy

the charging demand in this region. The next highly concentrated regions are

the two residential areas with the provision of the 5th. 6th, 10th and 12th

charging stations. Each of these four charging stations has around 30 charging480

piles except for the 10th station. The 10th charging station is located at the

edge of residential area I, indicating a lower level of charging demand than the

other three charging stations. There is one charging station numbered 9 near

the industrial zone, with more than 35 piles in total. Only a few charging

facilities are constructed in the other less populated areas, such as the 3rd and485

4th charging stations. There are less than 20 charging piles in these two charging

stations, which is related to the small population and traffic flow in these areas.
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Figure 7: The configuration and service area of charging stations

5.3. Service boundary of charging stations

Since the twelve charging stations have been placed in the planning area,

their appropriate service boundary Rk(k = 1, 2, · · · , 12) could be automatically490

divided by the Voronoi diagram. Based on the configuration, the optimized

service range of each charging station could be obtained, as shown in Fig. 7 (b).

The red points denote the charging stations and the black lines represent the

service boundaries for each charging station. The service areas of the 4th, 6th,
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and 9th stations are the top three, consistent with the small populations and495

low charging demand in these districts. The 7th and 8th stations have minor

service areas in the planning area, which is in line with the high population

density in the commercial districts. The residential neighborhoods are assigned

five stations, and the industrial zone is primarily served by charging station

number 9.500

According to the experimental results, the implementation of charging sta-

tions in the Yizhuang new town could fulfil the charging demand and provide

good service for EV drivers. At the same time, the optimized planning prevents

the waste of social resources due to disorganized charging infrastructure.

6. Impact of EVs’ charging demand505

In order to analyze the power load of each functional area, Fig. (8) shows

the power demand distribution of EVs and a basic load of these areas. For

residential zone I and II, the power demand appears as a ’dual peak’ pattern

since the charging load and the basic load are both primarily concentrated at

around 20:00 in the evening, which is consistent with the residents’ mobility510

patterns. For residential zone I, the charging peak value is about 31.04% of

the peak basic load and the ratio reaches 35.31% in residential zone II. As

for the commercial zone, the charging load is overlaid on the original basic

demand. Due to the long business time, the charging peak period stretches a

wide range, from 10:00 to 20:00. The charging load value is about 50.2% of515

the basic load at around 16:00. The charging demand of the industrial area is

mainly spread during working hours with the peak is about 45% of the basic load

occurring at 13:00. In conclusion, the charging demands of different functional

areas have different distribution features; the peak values of charging demand

may bring significant challenges to the power grid operation, and the results520

presented here could be used to guide the grid operation in these districts.

Furthermore, the characteristics of charging requirements in these regions are

in alignment with real-world conditions, demonstrating the effectiveness of the
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proposed algorithm.
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Figure 8: The power demand for different areas

To meet the needs of large-scale development of EVs in the next decades,525

Fig. (9) shows the charging power demand under different market penetration

rates of EVs in the whole planning area. As shown in fig. (9), taking the

basic load as a baseline, the charging demand continues to rise along with the

penetration rate of EVs. When the market share of EVs is 18%, the charging

demand of EVs is less than the basic load for a whole day (24 hours). While the530

charging demand is greater than the basic load at peak hours (18:00-20:00) when

the EVs’ penetration reaches 25%. The charging requirement will be 28.6%

greater than the basic load during the peak period when the penetration rate of

EVs reaches 40%. When this penetration rate reaches 50%, the peak value of

charging demand is 47.6% bigger than the basic load, which may jeopardize the535

power grid’s operation safety. In conclusion, with the continuous growth of EV

numbers, the increase of EV charging load will account for a higher proportion

in the power grid system. Therefore, the EV charging demand and charging

infrastructure should be properly analyzed and predicted, as this information

will be extremely important for power network planning and operation.540
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7. Conclusion

This study has proposed an optimization method for planning the charging

facilities considering the dynamic traffic system in a new developing metropo-

lis area. Different from existing optimization approaches, the proposed model

considers the spatio-temporal patterns of EV charging demand, providing a545

more comprehensive framework to examine relevant factors and ensuring the

optimization results fit reality.

The proposed model has been used for the charging station planning of

the Yizhuang new town in Beijing. Several conclusions that could be drawn

from this study: 1) the spatio-temporal features of the traffic flow and charg-550

ing demand could provide a useful baseline for charging facility planning. 2)

The number of EVs at each traffic intersection varies, which is consistent with

the population density and regional functionalities. 3) The planning of the opti-

mized charging stations in Yizhuang new town is provided, and the service areas

of these stations are determined using the Voronoi diagram. 4) The charging555

load would be 47.6% greater than the basic load during peak time when the EV

penetration rate reaches 50%, which may pose a risk to the power grid operation

27



safety.

It should be noted however that several assumptions are made in the model

formulation, which may lead to some limitations and could be addressed in560

future research: 1) The driving speeds of EVs at different time periods are es-

timated based on the minimum velocities under different road service levels. 2)

The road network is simplified in the study, only including expressways and

major roads. 3) The charging demand distribution is calculated from the traffic

flow at intersections. 4) In the practical implementation, the location of charg-565

ing stations should consider a few practical issues such as the site’s construction

conditions and the historical conditions. 5) EVs could be used as energy stor-

age in the distributed energy system, which would bring additional benefits to

different stakeholders.

8. Appendix570

Table 5: Results of optimal planning scheme

No. Longitude Latitude
Quantity of slow

charging piles

Quantity of fast

charging piles

1 116.505 39.782 30 14

2 116.468 39.786 28 10

3 116.465 39.751 25 11

4 116.521 39.811 27 15

5 116.557 39.731 25 11

6 116.549 39.776 21 13

7 116.603 39.766 19 9

8 116.496 39.813 22 10

9 116.523 39.757 18 9

1 116.501 39.782 31 16

2 116.503 39.81 28 15
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3 116.508 39.753 28 16

4 116.451 39.784 20 11

5 116.554 39.734 23 12

6 116.558 39.787 19 10

7 116.541 39.812 20 11

8 116.494 39.731 19 8

9 116.474 39.803 15 6

10 116.591 39.766 17 8

1 116.481 39.805 26 13

2 116.485 39.779 22 10

3 116.441 39.794 17 9

4 116.428 39.769 16 9

5 116.482 39.753 19 10

6 116.524 39.748 20 12

7 116.573 39.715 20 11

8 116.554 39.782 24 11

9 116.544 39.807 18 10

10 116.591 39.798 21 9

11 116.513 39.801 28 15

1 116.488 39.792 18 8

2 116.497 39.809 22 10

3 116.516 39.783 17 9

4 116.497 39.764 21 13

5 116.507 39.748 25 12

6 116.455 39.752 14 8

7 116.441 39.786 19 8

8 116.527 39.748 12 7

9 116.562 39.726 18 11

10 116.535 39.804 24 12

11 116.567 39.782 30 16
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12 116.555 39.801 28 12

13 116.606 39.767 8 4

1 116.484 39.797 18 11

2 116.495 39.781 24 10

3 116.503 39.809 14 8

4 116.529 39.796 26 12

5 116.538 39.814 9 4

6 116.553 37.783 17 9

7 116.513 39.761 20 10

8 116.492 39.749 19 9

9 116.451 39.752 14 6

10 116.452 39.783 27 12

11 116.591 39.794 30 14

12 116.569 39.758 10 5

13 116.562 39.721 20 13

14 116.519 39.779 18 11

1 116.486 39.805 20 11

2 116.481 39.787 15 7

3 116.506 39.799 17 9

4 116.514 39.816 18 10

5 116.571 39.798 21 12

6 116.521 39.776 13 6

7 116.497 39.764 14 8

8 116.504 39.746 17 9

9 116.463 39.756 23 10

10 116.447 39.783 19 7

11 116.553 39.803 28 15

12 116.594 39.768 21 10

13 116.575 39.718 18 6

14 116.511 39.76 13 7
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15 116.551 39.78 16 7
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