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Abstract

This paper studies the near-field (NF) parameter estimation problem for a

multiple-input multiple-output (MIMO) array system, which employs mul-

tiple pairs of orthogonal velocity sensors at both the transmitter and the

receiver. A trilinear decomposition method is proposed to estimate the four-

dimensional (4-D) parameters, including the direction of departure (DOD),

the range from transmitter to target (RFTT), the direction of arrival (DOA),

and the range from target to receiver (RFTR). Firstly, the output of the

matched filter at the receiver is formulated in a third-order parallel factor

(PARAFAC) model; secondly, the initial coarse estimates of DOD, RFT-

T, DOA and RFTR embedded in the velocity vector sensors are obtained

through trilinear decomposition, and then more accurate estimates of DOD,
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RFTT, DOA and RFTR are achieved from the steering vector. The pro-

posed method is search-free and has a close form, with automatically paired

results. Its performance is demonstrated via numerical examples.

Keywords: MIMO, velocity vector sensor, near-field, parallel factor.

1. Introduction

In the past few decades, many efforts have been devoted to acoustic vec-

tor sensor signal processing, which now has been widely used in underwater

communication, surveillance and other similar fields [1, 2]. Either a com-

plete (four-component) acoustic vector sensor including three orthogonal

velocity sensors plus an isotropic pressure sensor, or an incomplete (two-,

three-component) one can be employed for localization and tracking [3–5].

A representative localization method using a complete acoustic vector sensor

array is proposed in [6], along with the Cramer-Rao bound (CRB) derived as

a benchmark. For an incomplete one, a successive multiple signal classifica-

tion (MUSIC) method for a multi-input multi-output (MIMO) array system

with multiple pairs of velocity receive sensors is proposed in [7], which uses

the direction of arrival (DOA) information embedded in the velocity sensors

to perform two consecutive one-dimensional (1-D) MUSIC searches for direc-

tion of departure (DOD) and DOA in turn. Further, with the same MIMO

system, an improved dimensionality-reduction MUSIC algorithm is proposed

to estimate the DOD and DOA [8] , which only requires a local 1-D search

to obtain the DOA estimate, and then the least squares principle is adopted

to obtain the DOD estimates. In order to avoid spectral peak search, an ex-

tended unitary root MUSIC algorithm is proposed in [9] for a sparse nested
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MIMO radar system with velocity receiver sensors, which can obtain a larger

aperture and achieve better DOA estimation performance. However, none

of the above three methods considers velocity diversity in the transmitter,

which underutilizes the wealth of information on MIMO arrays and veloci-

ty arrays, and more importantly they cannot be applied to near-field (NF)

source localization directly.

Several NF source localization methods [10–12] have been presented based

on one acoustic vector sensor with a satisfactory performance achieved; how-

ever, they are only focused on the receiver side. In this paper, a four-

dimensional (4-D) parameter estimation method for a bistatic MIMO sys-

tem is proposed, where both the transmitter and the receiver are equipped

with velocity vector sensor arrays. Trilinear decomposition is performed to

obtain the initial coarse estimates of DOD, DOA, the range from transmitter

to target (RFTT) and the range from target to receiver (RFTR), based on

which, more accurate estimates of DOD, DOA, RFTT and RFTR are then

derived with the steering vector. The proposed method avoids spectral peak

search, and the associated 4-D parameters can be automatically paired. Note

that an ideal model is adopted in this work and more practical factors need

to be considered in the future. For example, the amplitude of the received

signal may vary from sensor to sensor and be inversely proportional to the

source-sensor distance, as pointed out in [13, 14]; the acoustic propagation

environment may include the effects of turbulence, medium convection, tem-

perature gradient, and pressure gradient, etc. Further work is needed for

more practical models.

Notations: (·)−1, (·)T , (·)† and (·)H represent inverse, transpose, pseudo-
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inverse, and conjugate transpose, respectively; Ip stands for the p×p identity

matrix; ⊗, ⊙ and ⊕ are the Kronecker product, Khatri-Rao product and

Hadamard product, respectively; 1p represents an all-one p×1 column vector;

∥·∥F is the Frobenius norm; Re{·} denotes taking real part operation; ∠
indicates the phase information; |·| represents the absolute value.

2. Signal Model
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Figure 1: Geometry of the considered MIMO velocity vector sensor arrays.

Consider a bistatic MIMO system equipped with a nonuniform linear

array (NULA) of 2M+1 and 2N+1 vector sensors at the transmitter and the

receiver, respectively, as shown in Fig. 1. Take the center of the transmitting

and receiving arrays as the reference point, respectively. Each array element

consists of a pair of velocity sensors, which are aligned with the y-axis and

the z -axis, respectively. Let dm,t and dn,r represent the range between the m-

th transmit sensor and the reference transmit sensor, the range between the
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n-th receiver sensor and the reference receive sensor. Assume that there are

K NF targets located on the yoz plane, parametrized by the DOD, DOA,

RFTT and RFTR and denoted as θtk, θrk, rtk and rrk, respectively, with

k = 1, · · · , K. The unit velocity vectors at the mth transmit and nth receive

sensors towards the kth NF target are respectively given by [6]

cm,tk = [sin θm,tk, cos θm,tk]
T (1)

cn,rk = [sin θn,rk, cos θn,rk]
T (2)

where θm,tk = cos−1

(
rtk cos θtk√

r2tk+d2m,t−2rtkdm,t sin θtk

)
and θn,rk =cos−1

(
rrk cos θrk√

r2rk+d2n,r+2rrkdn,r sin θrk

)
with θ0,tk = θtk, θ0,rk = θrk,m = −M, · · · , 0, · · · ,M and n = −N, · · · , 0, · · · , N .

Then, the output data of the receive velocity vector sensors at time t,

after matched filtering, can be expressed as

y(t) = (At ⊙Ar)s(t) + n(t) (3)

where s(t) denotes the reflected coefficient vector and n(t) is the complex

additive white Gaussian noise with zero mean and a variance of σ2
n. At =

[at1(θt1, rt1), · · · , atK(θtK , rtK)] andAr = [ar1(θr1, rr1), · · · , arK(θrK , rrK)] are

the steering vectors of the transmitting array and the receiving array, respec-

tively, with each column denoted as

atk(θtk, rtk) = [bT
−M,tk, · · · ,bT

0,tk, · · · ,bT
M,tk]

T (4)

ark(θrk, rrk) = [bT
−N,rk, · · · ,bT

0,rk, · · · ,bT
N,,rk]

T (5)

where bm,tk = cm,tke
jτm,tk and bn,rk = cn,rke

jτn,rk with the phase factor

τm,tk =
2π

λ
(rm,tk − rtk)

=
2π

λ

(√
r2tk + d2m,t − 2rtkdm,t sin θtk − rtk

) (6)
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τn,rk =
2π

λ
(rn,rk − rrk)

=
2π

λ

(√
r2rk + d2n,r − 2rrkdn,r sin θrk − rrk

) (7)

By collecting L snapshots, the observation of the receive array can be

expressed as

Y =


Y1

Y2

...

Y2(2N+1)

=



AtD1(Ar)

AtD2(Ar)
...
...

AtD2(2N+1)(Ar)


ST +Ny

= (At ⊙Ar)S
T +Ny

(8)

where Di(·) represents the diagonal matrix formed by taking the ith row of

a matrix, S = [s(1), s(2), · · · , s(L)] is the reflected coefficient matrix of size

K × L, Ny = [n(1),n(2), · · · ,n(L)] is the signal noise of L snapshots, and

Yi = AtDi(Ar)S
T + Nyi, i = 1, 2, · · · , 2(2N + 1), with Nyi being the ith

slice of noise.

Additionally, Yi can also be expressed in the following trilinear model

yi,p,j =
K∑
k=1

ai,tkap,rksj,k + ni,p,j (9)

where ai,tk and ap,rk are the (i, k) and (p, k) elements of At and Ar, respec-

tively, sj,k is the (j, k) element of S, and ni,p,j is the (p, j) element of Nxi.

According to the structural feature of the PARAFAC model, (8) can also be

represented in two other slice forms

X = (Ar ⊙ S)AT
t +Nx (10)

Z = (S⊙At)A
T
r +Nz. (11)
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3. Proposed Method

3.1. Trilinear Decomposition

According to (8), the least squares (LS) fit can be denoted as

min
At,Ar,S

∥ Y− (At ⊙Ar)S
T∥F . (12)

Then, the LS update of S is given by

ŜT = (ÂT
t ⊙ ÂT

r )
†Y (13)

where Ât and Âr are the corresponding estimates of At and Ar obtained

from the previous iteration.

Similarly, the LS fitting of (10) can be expressed as

min
At,Ar,S

∥ X− (Ar ⊙ S)AT
t ∥F . (14)

Then, the LS solution for At is updated as

ÂT
t = (Âr ⊙ Ŝ)†X (15)

where Âr and Ŝ are the estimates of Ar and S obtained from the previous

iteration.

From (11), the LS fitting can be obtained as

min
At,Ar,S

∥ Z− (S⊙At)A
T
r ∥F . (16)

Then, the LS solution for Ar is updated as

ÂT
r = (Ŝ⊙ Ât)

†Z (17)

where Ŝ and Ât are the estimates of Ar and S obtained from the previous

iteration.
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According to (13), (15) and (17), Ŝ, Ât and Âr are updated sequentially,

and the process is repeated until the predefined convergence criterion is sat-

isfied, and then estimates of the matrices S, At and Ar can be obtained. The

uniqueness of trilinear decomposition is supported by the following theorem

[15].

Theorem [15]: Consider a trilinear modelYi = AtDi(Ar)S
T , i = 1, 2, · · · ,

2(2N + 1), where At ∈ C2(2M+1)×K , Ar ∈ C2(2N+1)×K , and S ∈ CL×K . Pro-

vided that the ranks of the three matrices areKAt , KAr andKS, respectively,

which meet the following requirement

KAt +KAr +KS ≥ 2K + 2, (18)

At, Ar and S are unique for column transformation and scaling transforma-

tion.

3.2. Coarse Parameter Estimation

After normalizing Ât, and according to definitions of At and atk, the

estimate of bm,tk can be denoted as b̂m,tk = Ât(2m+2M+1 : 2m+2M+2, k),

m = −M, · · · , 0, · · · ,M , k = 1, · · · , K. Then, θm,tk can be estimated via

θ̂m,tk = tan−1

(
b̂m,tk(1)

b̂m,tk(2)

)
, (19)

Consequently, a coarse estimate of θtk is given by θ̂coatk = θ̂0,tk.

Thereafter, with the estimated θ̂m,tk and the geometric relationship in

conjunction with Fig. 1, the coarse estimate of rtk is given by

r̂coatk =

−1∑
m=−M

∣∣∣ dm,t cos θ̂m,tk

sin(θ̂coatk −θ̂m,tk)

∣∣∣+ M∑
m=1

∣∣∣ dm,t cos θ̂m,tk

sin(θ̂m,tk−θ̂coatk )

∣∣∣
2M

. (20)
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Similar to (19), θn,rk can be estimated via

θ̂n,rk = tan−1

(
b̂n,rk(1)

b̂n,rk(2)

)
, (21)

and thus, the coarse estimate of θrk is given by θ̂coark = θ̂0,rk, and the coarse

estimate of rrk is

r̂coark =

−1∑
n=−N

∣∣∣ dn,r cos θ̂n,rk

sin(θ̂coark −θ̂n,rk)

∣∣∣+ N∑
n=1

∣∣∣ dn,r cos θ̂n,rk

sin(θ̂n,rk−θ̂coark )

∣∣∣
2N

. (22)

3.3. Fine Parameter Estimation

Different from (19)-(22) for calculating the estimates of DOD, DOA,

RFTT and RFTR embedded in the velocity vector sensors, the 4-D pa-

rameters can be obtained from the spatial phase factor qm,tk
∆
= ejτm,tk and

qn,rk
∆
= ejτn,rk , respectively. Therefore, we first calculate the estimates of qm,tk

and qn,rk as follows

q̂m,tk =

 1,m= 0
ĉT0,tkb̂m,tk

ĉTm,tkb̂0,tk
,m ̸= 0

(23)

q̂n,rk =

 1, n= 0
ĉT0,rkb̂n,rk

ĉTn,rkb̂0,rk
,n ̸= 0

(24)

where ĉm,tk and ĉn,rk are the estimates of (1) and (2) obtained by exploiting

the results of (19) and (21), respectively.

Obviously, if the inter-element spacing is less than one-quarter wave-

length, the spatial phases of q̂m,tk and q̂n,rk are unambiguous. However, when

the inter-element spacing is more than one-quarter wavelength, the spatial

phase obtained directly from q̂m,tk and q̂n,rk will be ambiguous. In this case,

we first need to obtain the unambiguous spatial phase.
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According to earlier discussion, θcoatk , rcoatk , θcoark and rcoark are unambiguous

since they are estimated for the velocity vectors. With the coarse estimates of

the 4-D parameters, the coarse but unambiguous spatial phase factors τ coam,tk

and τ coan,rk can be constructed via

τ̂ coam,tk =
2π

λ

(
r̂coam,tk − r̂coatk

)
(25)

τ̂ coan,rk =
2π

λ

(
r̂coan,rk − r̂coark

)
. (26)

Using τ̂ coam,tk and τ̂ coan,rk as references, the unambiguous estimates for τm,tk

and τn,rk can be obtained via

τ̂ finm,tk = argmin
mt

∣∣τ coam,tk − ∠q̂m,tk − 2πmt

∣∣ (27)

τ̂ finn,rk = argmin
nr

∣∣τ coan,rk − ∠q̂n,rk − 2πnr

∣∣ . (28)

Then, by rearranging (6) and (7), two overdetermined linear equations

can be formed as follows

2

(
τ̂fin−M,tk

2π/λ

)
2d−M,t

...
...

2

(
τ̂fin−1,tk

2π/λ

)
2d−1,t

2

(
τ̂fin1,tk

2π/λ

)
2d1,t

...
...

2

(
τ̂finM,tk

2π/λ

)
2dM,t


︸ ︷︷ ︸

Ht,k

 rtk

rtk sin θtk


︸ ︷︷ ︸

Γt,k

=



(d−M,t)
2 −

(
τ̂fin−M,tk

2π/λ

)2

...

(d−1,t)
2 −

(
τ̂fin−1,tk

2π/λ

)2

(d1,t)
2 −

(
τ̂fin1,tk

2π/λ

)2

...

(dM,t)
2 −

(
τ̂finM,tk

2π/λ

)2


︸ ︷︷ ︸

Tt,k

(29)
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2

(
τ̂fin−N,rk

2π/λ

)
−2d−N,r

...
...

2

(
τ̂fin−1,rk

2π/λ

)
−2d−1,r

2

(
τ̂fin1,rk

2π/λ

)
−2d1,r

...
...

2

(
τ̂finN,rk

2π/λ

)
−2dN,r


︸ ︷︷ ︸

Hr,k

 rrk

rrk sin θrk


︸ ︷︷ ︸

Γr,k

=



(d−N,r)
2 −

(
τ̂fin−N,rk

2π/λ

)2

...

(d−1,r)
2 −

(
τ̂fin−1,rk

2π/λ

)2

(d1,r)
2 −

(
τ̂fin1,rk

2π/λ

)2

...

(dN,r)
2 −

(
τ̂finN,rk

2π/λ

)2


︸ ︷︷ ︸

Tr,k

. (30)

By exploiting the LS method, Γt,k and Γr,k can be solved as

Γ̂t,k =
(
HH

t,kHt,k

)−1
HH

t,kTt,k (31)

Γ̂r,k =
(
HH

r,kHr,k

)−1
HH

r,kTr,k. (32)

Therefore, the fine estimates of 4-D parameters can be calculated as rfintk = Γ̂t,k(1)

θ̂fintk = sin−1
(
Γ̂t,k(2)/Γ̂t,k(1)

) (33)

 rfinrk = Γ̂r,k(1)

θ̂finrk = sin−1
(
Γ̂r,k(2)/Γ̂r,k(1)

) . (34)

4. Algorithm Analysis

4.1. Algorithm Summary

The main steps of the proposed algorithm are summarized in Tab. 1.
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Table 1: Steps of the Proposed Algorithm.

Step Operation

Step 1 According to Eqs. (13), (15) and (17), the estimates of At, Ar and

S are updated iteratively until converge, and finally the estimates of Ât

and Âr are obtained.

Step 2 Obtain θ̂m,tk and θ̂n,rk via Eq. (19) and Eq. (21), respectively, and

further obtain θ̂coatk , θ̂coark , rcoatk and rcoark .

Step 3 Compute q̂m,tk and q̂n,rk via Eq. (23) and Eq. (24).

Step 4 Construct τ̂ coam,tk and τ̂ coan,rk according to Eq. (25) and Eq. (26), and then

obtain τ̂ finm,tk and τ̂ finn,rk.

Step 5 Employ the LS method to solve Eq. (29) and Eq. (30), and finally get

θ̂fintk , θ̂finrk , rfintk and rfinrk .
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4.2. Deterministic CRB

To derive the deterministic Cramr-Rao Bound (CRB) for the estimates

of DOD, RFTT, DOA and RFTR, first, define a real-valued vector of un-

known parameters asΘ = [θT
t ,θ

T
r , r

T
t , r

T
r ]

T with θt = [θt1, θt2, · · · , θtK ]T , θr =

[θr1, θr2, · · · , θrK ]T , rt = [rt1, rt2, · · · , rtK ]T , and rr = [rr1, rr2, · · · , rrK ]T .

Then, the (p, q)th entry of the 4K × 4K CRB matrix for the parameters

in Θ is given by [16–18]

[CRB−1(Θ)]p,q =
2L

σ2
n

Re

{
∂AH

∂Θp

P⊥
A

∂A

∂Θq

RS

}
(35)

where A = At ⊙Ar, P
⊥
A = I4(2M+1)(2N+1) −A(AHA)−1AH , RS = 1

L
SHS.

Define

Ã = [Aθt ,Aθr ,Art ,Arr ] (36)

with Aθt =
[

∂A
∂θt1

, · · · , ∂A
∂θtK

]
, Aθr =

[
∂A
∂θr1

, · · · , ∂A
∂θrK

]
, Art =

[
∂A
∂rt1

, · · · , ∂A
∂rtK

]
,

Arr =
[

∂A
∂rr1

, · · · , ∂A
∂rrK

]
, and after some simplification, the closed-form ex-

pression for the CRB is given by

CRB(Θ) =
σ2
n

2L

{
Re
[(

ÃHP⊥
AÃ
)
⊕
(
14 ⊗ 1T

4 ⊗RT
S

)]}−1

. (37)

4.3. Computational Complexity

The main computational complexity of the proposed method is reflect-

ed in step 1 (Trilinear Decomposition), and its complexity is denoted as

O(2(2M + 1)K2 + 2(2N + 1)K2 + LK2), while the computational costs for
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Figure 2: Estimation performance under different receive elements spacing.
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Figure 3: Estimation performance under different number of snapshots.
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steps. 2, 3, 4 and 5 are negligible compared with step 1.

5. Simulation Results

In this section, performance of the proposed algorithm is assessed through

a series of simulations. First, assume that the source signals are narrowband

and uncorrelated, and there are two targets in the NF space, with 4-D pa-

rameters (θtk, θrk, rtk, rrk) being (60◦, 45◦, 3.5λ, 5λ) and (45◦, 50◦, 2λ, 3λ), re-

spectively. Unless otherwise stated, assume that M = N = 3, L = 512 and

the inter-element spacings in the transmitting array and the receiving array

are λ/2.
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Figure 4: Estimation performance under different number of receive sensors.

The estimation performance is evaluated through the root-mean-square

error (RMSE) defined as RMSE =

√
1

500K

K∑
k=1

500∑
p=1

(ϑ̂p,k − ϑk)
2
, where ϑ̂p,k

denotes the estimate of the parameters θtk, rtk, θrk, rrk at the pth Monte-

Carlo trial, and ϑk represents the true value. In addition, CRB-d in the

legend refers to the average CRB of DOD and DOA, while CRB-r in the
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Figure 5: Estimation results of two targets with identical DOA; SNR=10dB,

L=200, and 200 independent trials are performed.

legend refers to the average CRB of RFTT and RFTR.

In the first simulation, the performance of the proposed algorithm is ex-

amined in terms of the coarse and fine estimates with signal-to-noise ratio

(SNR) varying from 0dB to 30dB under different array element spacings.

It can be seen from Fig. 2(a) that when the transmitting array element s-

pacing is the same, the angle RMSE obtained by fine estimation decreases

significantly with the increase of receiving array element spacing, while that

obtained by coarse estimation does not change significantly. This is because

the coarse estimates of DOA obtained by Eq. (21) are independent of array

element spacing, and thus, they are not sensitive to its change. As for the

range estimate in Fig. 2(b), the RMSE obtained by fine estimation is smaller

than that by coarse estimation. In addition, when the receiving array ele-

ment spacing is different, the RMSE of angle and range parameters obtained

by both decreases with the increase of the receiving array element spacing.
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The same conclusion can be drawn for the transmitting array, which is not

shown here to avoid unnecessary repetition

In the second simulation, the performance of the proposed algorithm is

studied under different number of snapshots (L), and the other parameters

are the same as before. Fig. 3 (a) and Fig. 3 (b) show the angle and range

estimation results, where it can be clearly observed that when the number

of snapshots is the same, the RMSE of both angle and range obtained by

the fine estimation is smaller than that obtained by the coarse estimation.

Moreover, when the number of snapshots is different, the RMSE of the coarse

estimation and the fine estimation decreases significantly with increase of the

number of snapshots, which in turn improves the time diversity gain.

Fig. 4 (a) and (b) present the performance with a varying number of

receiving sensors, and the other settings are the same as the first simulation.

It can be seen that when the number of transmitting sensors is the same, the

RMSE of angle estimate and range estimate obtained by coarse estimation

and fine estimation decreases significantly with the increase of the receiving

sensors. The same conclusion can be drawn for the number of transmitting

elements.

In the last simulation, ability of the proposed method to handle the angle

(for example, DOA) ambiguity [19, 20] problem is demonstrated with two

targets. As shown in Fig. 5, the proposed method can accurately estimate

the 4-D parameters of the two targets with identical DOAs. Actually, tar-

gets with 1-D ambiguity such as identical DODs, RFTT or RFTR can be

identified effectively without any pairing issue by the proposed method.
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6. Conclusions

In this paper, a 4-D parameter estimation method for a bistatic MIMO

system has been proposed, where both the transmitter and the receiver are

equipped with velocity vector sensor arrays. The 4-D parameters can be au-

tomatically paired and accurately estimated through trilinear decomposition,

avoiding the extra parameter pairing process and spectrum peak search. In

addition, the inter-element spacing does not need to be limited to a quarter

wavelength. As indicated by numerical simulations, the proposed method

has a good estimation performance, which is close to the derived CRB.
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