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1  |  INTRODUC TION

Among the greatest challenges facing humanity in the coming de-
cades is the need to reverse biodiversity losses that are driven by 
the detrimental effects of anthropogenic disturbances. Some of the 
most prominent threats to biodiversity include elevated levels of 
certain pollutants such as various air pollutants (Defra, 2019), arti-
ficial light (Hölker et al., 2010; Kyba, 2018), and noise (EEA, 2020). 

Sources of these pollutants are diverse and include transport, in-
dustry, energy generation, shipping, and agriculture (Defra,  2019; 
Hölker et al., 2010). In addition, light pollution, often seen as “sky 
glow,” is generated by lit buildings, streets, and security lights 
(Longcore & Rich, 2004). As more than 70% of land area is affected 
by road-induced air, light, and noise pollution (Phillips et al., 2021), 
aside from the most remote areas, the impacts of pollution will be 
felt across virtually all habitats and ecosystems.
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Abstract
In the face of biodiversity decline, understanding the impact of anthropogenic distur-
bances on ecosystem functions is critical for mitigation. Elevated levels of pollution 
are a major threat to biodiversity, yet there is no synthesis of their impact on many of 
the major ecosystem functions, including pollination. This ecosystem function is both 
particularly vulnerable as it depends on the fine-tuned interaction between plants 
and pollinators and hugely important as it underpins the flora of most habitats as well 
as food production. Here, we untangle the impact of air, light, and noise pollution on 
the pollination system by systematically evaluating and synthesizing the published 
evidence via a meta-analysis. We identified 58 peer-reviewed articles from three da-
tabases. Mixed-effects meta-regression models indicated that air pollution negatively 
impacts pollination. However, there was no effect of light pollution, despite previous 
studies that concentrated solely on pollinators suggesting a negative impact. Evidence 
for noise pollution was extremely limited. Unless action is taken to tackle air pollution, 
the capacity to support well-functioning diverse pollination systems will be compro-
mised, with negative consequences for habitat conservation and food security.
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The impacts of pollution on organisms are known to be wide-
ranging. For plants, air pollution can decrease the sugar and water 
content of flowers, modify phenology (Kumar Rai,  2016), increase 
forest carbon content (Paoletti et al.,  2010), and decrease over-
all diversity and abundances of herbaceous vegetation (Clark & 
Tilman, 2008). Light pollution impacts many organisms, for instance 
by changing the biological timings, including daily and seasonal ac-
tivity patterns, of birds and zooplankton (Gaston et al., 2017) or the 
hormone levels, daily activity patterns and reproductive success of 
rodents and birds (Sanders et al., 2021). Noise pollution is perhaps 
less studied, but can impact all taxonomic groups of animals (Kunc & 
Schmidt, 2019) through changes in reproductive fitness, community 
interactions (Shannon et al.,  2016) or modifications at the cellular 
and molecular level (Kight & Swaddle, 2011). The detrimental impact 
of noise on bird population densities and interference with commu-
nication is widely documented (Kociolek et al., 2011). Additionally, 
the hearing range of invertebrates overlaps with frequencies of 
common sources of anthropogenic noise (Morley et al., 2013), sug-
gesting that impacts may be underexplored.

A main goal of conservation is the maintenance of functioning 
ecosystems. One of the key ecosystem functions is pollination, 
which contributes to supporting the reproduction of vegetation 
thereby securing viable habitats and underpinning food production. 
Pollination itself is defined as “the transfer of pollen from an anther 
to a stigma[, occurring] within flowers of the same plant, between 
flowers of the same plant, or between flowers of different plants 
(or combinations thereof)” (IPBES et al., 2019, p. 487) and is essen-
tial for plant reproduction. It can be either wind, water or animal 
mediated. Its outcome is dependent on the physiological ability of 
plants to produce fruits with viable seeds and, for animal-pollinated 
plants, on both the status of the pollinator population and its ability 
to interact with the plant. Pollination as an ecosystem function is 
currently under threat, and declines in pollinators across all land-
scapes have been recorded (IPBES et al., 2019; Potts et al., 2010). 
This is critical as pollinators facilitate reproduction of 87.5% of wild 
plants (Ollerton et al., 2011) and three quarters of the world's food 
crops (Klein et al., 2007).

One identified driver of pollinator declines is sensitivity to vari-
ous types of environmental pollution (IPBES et al., 2019). However, 
most evidence on the subject is derived from agricultural land-
scapes, synthetic pesticides/fertilizers, and heavy metals (IPBES 
et al., 2019). Nevertheless, we might expect there to be considerable 
impacts of air, noise, and light pollution on pollinators.

Air pollution has been suspected to have a deadly impact on pol-
linators since the early 1900s (Doane, 1917). Typically, air pollution 
can diminish memory and learning capacities of pollinators (Leonard 
et al., 2019) or negatively affect their heart rates, immunity, and re-
sistance to stress (Thimmegowda et al., 2020). Additionally, air pol-
lution is known to impact plants, including lowering species richness 
of plant communities (Zvereva et al.,  2008), causing foliar injuries 
to herbaceous vegetation, reducing tree growth, or decreasing resil-
ience to other stress factors (Grulke & Heath, 2020). However, little 
work covers plant reproduction, despite the fact that we know that 

air pollution can degrade pollen through alterations to the chemi-
cal structure, physical form, and abundance (Choël & Visez, 2019). 
Similarly, how interactions between plants and pollinators are al-
tered by pollution is poorly known. Nevertheless, we might expect 
there to be negative impacts. Plant volatiles are known to be influ-
enced by air pollution (McFrederick et al., 2009). Specifically, air pol-
lution can alter and degrade the plant volatile compounds, thereby 
altering how plants interact with insects (Jamieson et al.,  2017), 
or induce a physiological stress which might reduce the ability of 
plants to produce volatiles (Jürgens & Bischoff, 2017). Additionally, 
anthropogenic volatiles that are characteristic of air pollution might 
impede the ability of insects to identify flower volatiles (Jürgens & 
Bischoff, 2017).

The light–dark cycle is now substantially modified compared with 
preindustrial patterns (Irwin, 2018). Associated impacts of light pollu-
tion on insect behavior have received some research attention. Light 
disturbance leads to (i) the modification of visual cues necessary for 
orientation and foraging of nocturnal insects (Grubisic et al.,  2018; 
Owens et al., 2020); (ii) attracts insects to lamp sources where they 
either become prey (Macgregor et al., 2015; Owens et al., 2020) or get 
killed by touching the warm lamps (Grubisic et al., 2018), or (iii) lowers 
reproduction due to suppressed oviposition (Macgregor et al., 2015). 
Work on pollinators has concentrated on moths (Grubisic et al., 2018; 
Macgregor et al., 2015; Owens et al., 2020). Findings tend to corrob-
orate what we know of the impact of light on other insects. Studies 
on the impact of light pollution on plants are scarce in general and 
tend to investigate physiological aspects such as leaf retention (Bennie 
et al.,  2016) or primary production (Singhal et al.,  2019). However, 
while air and noise pollution can be expected to have largely nega-
tive impacts, light pollution can benefit some organisms, for exam-
ple, by extending flowering time or enhancing plant growth (Bennie 
et al., 2016). Such differing impacts depending on the organisms could 
lead to knock-on effects in which the pollination function is disrupted. 
Additionally, the interactions between plants and pollinators are likely 
to be influenced by light pollution, such as when the foraging behavior 
of insects is disturbed by altered light patterns (Grubisic et al., 2018). 
Finally, should light pollution induce seasonal and/or daily shifts of ac-
tivity in pollinators (Owens et al., 2020) or phenological shifts in plant 
flowering time (Bennie et al.,  2016), resulting temporal mismatches 
might lead to a collapse of animal pollination.

Noise impacts on birds are well established (Kociolek et al., 2011), 
raising the possibility that the 900 species of bird that are known to 
contribute to pollination (Nabhan & Buchmann, 1997) may suffer ad-
verse effects. Despite the overlap between insect hearing and noise 
pollution frequencies, we remain almost entirely unsure of noise ef-
fects on invertebrates, the largest group of pollinators, as studies on 
noise pollution rarely focus on invertebrates (Kunc & Schmidt, 2019; 
Shannon et al., 2016), which encompass the largest group of pollina-
tors. Noise is also known to affect plants and can alter physiology, 
behavior, and gene expression (Bhandawat & Jayaswall, 2022), but 
whether impacts extend to plant reproduction is unknown.

The need for a better understanding of how air, light, and noise pol-
lution affects pollination is well established (Macgregor et al., 2015; 
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McFrederick et al.,  2009; Owens et al.,  2020). However, how 
pollution interferes with pollination is so understudied that, al-
though identified as a major threat (Balvanera et al.,  2019; IPBES 
et al., 2019), we still lack any quantitative review synthesizing the 
existing research across all three types of pollution and the whole 
pollination system. Here, we ask whether air, light, and noise pollu-
tion has an impact on the pollination system, as defined by its three 
sections, namely (1) plant reproductive success, (2) pollinators, and 
(3) interactions between plants and pollinators. We also ask whether 
such impacts differ according to (a) the pollutants themselves, (b) the 
section of the pollination system investigated, (c) the proxies used 
for pollination, (d) the organisms involved, (e) the habitats investi-
gated, or (f) the study designs.

2  |  METHODS

We carried out a review of the literature to map the extent of pub-
lished evidence from 1900 onwards to assess the impact of air, light, 
and noise pollution on pollination. We synthesized the available evi-
dence through a meta-analysis.

2.1  |  Literature review

We followed the Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis (PRISMA), for which we developed a review 
protocol (Appendix S1–S3) defining the eligibility criteria, the infor-
mation sources and search strategy, the study selection and data 
collection processes, the data items to extract, and the data analysis 
process (Moher et al., 2009; Page et al., 2021).

2.2  |  Eligibility criteria

To be included in the review, the articles had to report, in English, 
French, Spanish, or German, on original research published in a peer-
reviewed journal. Any gray literature, commentary, or articles that 
synthesized other research were excluded. We acknowledge that 
this might misrepresent the summary of the effect sizes by excluding 
literature more likely to contain statistically nonsignificant results 
(Konno & Pullin, 2020). We did not exclude studies based on simula-
tions as those are increasingly perceived as experimental systems in 
their own rights (MacPherson & Gras, 2016).

Studies needed to assess the impact of air, light, or noise pollu-
tion on the pollination system. We defined air pollution as the re-
lease of substances (pollutants) in the air with direct harmful impacts 
on health and the environment. We used the list of pollutants in-
cluded in Defra's Clean Air Strategy (Defra, 2019). This excludes soil 
contaminants, dusts, insecticides, and pesticides (Defra, 2019). Light 
pollution was defined as resulting from direct glare, consistently in-
creased illuminations, or fluctuation of the light intensity (Longcore & 
Rich, 2004). It can include light resulting from anything from lighted 

buildings to undersea research vessels and can include changes in 
illumination and spectral content, including ultraviolets (Longcore & 
Rich, 2004). Noise pollution was defined as any anthropogenic noise, 
arising as a result of, for example, transport, industrial activities, or 
urban areas (Sordello et al., 2019). The pollination system was de-
fined by its three sections, namely plant reproductive success, the 
pollinators, and the interactions between plants and pollinators. 
Plant reproductive success, measured through proxies such as seed 
and fruit set, constitutes the outcome of the pollination function. It 
can be measured whether the plant is wind- or animal-pollinated. 
Pollinators represent the vectors necessary, for animal-pollinated 
plants, for pollination to take place (IPBES et al., 2019). We included 
known pollinator taxa, based on Abrol (2012) and IPBES et al. (2019). 
Measures of pollinators can include community metrics (e.g., abun-
dance and diversity), behaviors (e.g., proboscis responses to olfac-
tory cues), physiological responses (e.g., resistance to heat stress), 
or morphological adaptations. The interaction between plants and 
pollinators includes both directly observable interactions such as 
pollinator visitation rates and indirect measurements such as the 
amount of pollen transferred or the extent to which pollinators are 
attracted by plant volatiles. Specific search terms and search strings 
can be found in Appendix S2 and S3.

2.3  |  Information sources

We included three electronic databases covering environmental and 
agricultural sciences, namely the Web of Science Core collection 
(from 1900), CAB Abstracts (from 1973), and Scopus (from 1966). 
Searching was carried out on July 5, 2022. Reference lists from re-
view articles extracted from the initial search were also screened 
and relevant articles included.

2.4  |  Selection process

A two-stage screening process, carried out independently by two 
researchers, was used to select the studies. The first stage consisted 
of screening the title and abstract of the complete database and ex-
cluding those not fitting the eligibility criteria. The second stage con-
sisted of screening the full text. Full texts were excluded when the 
subject did not align with the eligibility criteria or if the data were not 
available. Overall, the two researchers had a 93% degree of agree-
ment. In either step, articles classified differently by each researcher 
were discussed until consensus was reached. No assessment or scor-
ing of the robustness of each study was however carried out, which 
can have implications for the robustness of the synthesis.

2.5  |  Data extraction

We extracted background information from each article. Background 
information included the publication year, objectives, study design 
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(namely the “set of methods and procedures used to collect and 
analyse data on variables specified in a particular research problem” 
(Ranganathan & Aggarwal, 2018, p. 184), here either cross-sectional, 
longitudinal, experimental, or simulation modeling), type of pollution 
(air, light, and noise) and specific pollutants, section of the pollination 
system studied, pollination measures used for each experiment and/
or observation, country of study, target habitat, and organism(s).

For the meta-analysis, we extracted data from each study, be 
that an experiment or observation, reported in each article. Data 
extracted included either (i) sample sizes, means and standard devi-
ations of the two contrasting conditions (polluted and not); or (ii) the 
sample sizes and percentage change. Data were extracted from the 
text, tables, supplementary materials or, with WebPlotDigitizer v4.4 
(Rohatgi, 2020), from figures.

2.6  |  Synthesis

We used a meta-analysis to synthesize the impact of pollution on 
pollination. Meta-analyses provide estimates of the effects across 
subjects (Koricheva & Gurevitch, 2013), allow for the understanding 
of whether an effect varies between studies, and identify any fac-
tors influencing this variation.

We used the sample sizes, means, and standard deviations to 
calculate Hedges' g; a common metric to estimate the standard-
ized difference among means that is unaffected by different sam-
pling variances across group and corrects for small sample sizes 
(Rosenberg et al., 2013). When results were presented as a propor-
tion of change from the polluted to the nonpolluted state rather than 
with the mean and standard deviations, we used the sample sizes 
and proportion of change to calculate the log odds' ratio, which we 
then converted to Hedges' g (Borenstein et al., 2009). For articles 
containing multiple studies with different subgroups that were not 
relevant for the aims of our review, we combined the data for the dif-
ferent subgroups to compute an overall effect size and variance for 
the whole study by following the procedure described in Borenstein 
et al. (2009). We kept the data separate in cases where the experi-
ments and/or observations differed in regard to the pollutants, the 
section of the pollination system, the pollination measures, the study 
design, the habitat investigated, and/or the organisms (defined as 
wind- or animal-pollinated for plants and order level for pollinators).

We analyzed the data with two model selection processes, one 
for air and one for light pollution, and a random-effects model for 
noise pollution. For all models, we used Hedges' g as the response 
variable. For the model selection processes, we ran two mixed-
effects meta-regression models, one each for air and light pollution, 
with the following six explanatory variables, known as moderators 
in meta-analysis: the section of the pollination system investigated, 
the pollutants, the pollination measure, the study design, the habi-
tat investigated, and the organisms. As is normal practice for meta-
analyses, we weighted the studies by the inverse of their sampling 
variance. We used the Akaike Information Criteria with correction 
for small sample size (AICc) to compare models with all the potential 

combinations of the six moderators. Models with a ΔAICc ≤ 2 were 
selected (Burnham & Anderson,  2002). We then carried out sub-
group analysis for all variables selected within the best-fit models 
to investigate causes of heterogeneity. For the noise model, we de-
cided to not add moderators to the random-effects model, as noise 
pollution was only studied in three articles. We thus used a random-
effect model, with Hedges' g as response variable, but without any 
explanatory variables, and we weighted the studies by the inverse of 
their variance. We tested for publication bias by visually exploring 
funnel plots and carrying out Eggers' regression test to all best-fit 
models (Egger et al., 1997) and adjusted the analysis with a trim and 
fill correction for the best-fitting models on light and noise pollution, 
in which such bias was identified (Shi & Lin, 2019). All analyses were 
carried out in R v.4.1.2 (R Core Team, 2021), with the metafor pack-
age for effect size and model calculations (Viechtbauer, 2010) and 
the MuMIn package for model selection (Barton, 2020).

3  |  RESULTS

3.1  |  Extent of the knowledge

Of the 2192 articles that were initially extracted, 58 were relevant 
to the impact of pollution on the pollination system (Appendix S4; 
Figure 1a). Articles included up to 18 different studies (median = 1). 
Most articles (n = 33) focused on the impact of air pollution, followed 
by light (n = 22) and just four on noise pollution. Only one article inves-
tigated two types of pollution concomitantly, namely light and noise. 
Proxies for pollination were nearly equally spread out within the three 
sections of the pollinations systems, with 29 articles related to plant 
reproductive success, 21 related to pollinators, and 27 to the interac-
tion between plant and pollinators. Most articles included several ob-
servations, with 17 articles using multiple proxies relating to different 
sections of the pollination system: six focusing both on interactions 
between plants and pollinators and on plant reproductive success, 
seven focusing on both pollinators and the interaction between plants 
and pollinators and two focusing on both plant reproductive success 
and pollinators. Two articles used proxies pertaining to all three sec-
tions of the pollination system (Figure 1a, Appendix S4).

The distribution of studies across the different types of pollu-
tion and sections of the pollination system was uneven. Among the 
studies on the impact of air pollution, 16, 12, and 14 investigated 
how it affects plant reproductive success, pollinators and the in-
teraction between plants and pollinators, respectively (Figure  1a, 
Appendix  S4). There was less balance in terms of which sections 
of the pollination system were studied in relation to light pollution, 
with 13 studies investigating plant reproductive success, seven the 
pollinators and eleven the interactions between plants and pollina-
tors. The little we know about the impact of noise pollution on pol-
lination comes from four studies, one focusing on pollinators, one 
on the interaction between plants and pollinators and one on both 
plant reproductive success and the interaction between plants and 
pollinators.
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The number of published articles on the impact of pollution 
on pollination has been relatively consistent between the 1980s 
and the 2000s, with a sharp increase from the 2010s, and an even 
sharper increase in the 2020s (Figure  1b). Earlier articles focused 
solely on the impact of air pollution on plant reproductive success 
(Figure 1b), with most articles coming from the agricultural sciences. 
Articles focusing on the impact of pollution on the animal side of the 
pollination system, either through pollinators or through the inter-
action between plants and pollinators, started in the late 1990s and 
grew steadily (Figure 1b).

Studies were conducted in 17 countries, with 83% of all stud-
ies carried out in high-income countries (Figure 2). Most took place 
in temperate regions, with only three focusing on tropical regions 
(Figure 2).

3.2  |  Study designs

Four different study designs were used, with experimental (n = 46) 
being the most common, followed by cross-sectional (n = 9), 
simulations (n = 2) and longitudinal (n = 1) studies (Appendix  S5). 
Experimental studies were mainly carried out in laboratories and/
or greenhouses (n = 29) but also included 17 field experiments. 
Laboratory and field experiments about air pollution differed by the 
concentration of pollutants. For example, the difference in ozone 
concentrations between the controls and the treatments was of an 
average (±SE) of 173 ppb (±30.5) in laboratory experiments, as op-
posed to 38.75 ppb (±13.05) in field experiments. Such differences 
between laboratory and field experiments were less obvious for 
light pollution. UV-B averaged 7.35 kJ (±1.7) and 6.45 kJ (±2.2) for 
laboratory and field experiments, respectively. Outdoor habitats 

investigated, through either the 17 field experiments or the seven 
cross-sectional studies, included grasslands (n = 6), agricultural land-
scapes (n = 7), forests (n = 5), urban areas (n = 8), and deserts (n = 1) 
(Appendix S6).

3.3  |  Pollution

Within the 33 articles on air pollution, the impact of 10 different 
pollutants was investigated, with a median number of one per arti-
cle, though six articles investigated a mixture of two to six different 
pollutants (Figure 3; Appendix S7). The most commonly studied pol-
lutant was ozone (n = 19), followed by diesel exhaust (n = 6), nitro-
gen oxides (n = 5), and sulfur dioxide (n = 4) (Figure 3, Appendix S7). 
There were eight different light pollutants studied, with UV-B (n = 8) 
and LED lights (n = 8 each) being the most investigated, followed by 
high-pressure sodium street lamps (n = 3), colored lamps, and illumi-
nation (n = 2 each; Figure 3, Appendix S7). All but two studies inves-
tigated only one type of light pollutant, with the exceptions studying 
five and two types of light pollutant, respectively (Appendix  S7). 
One study on noise specifically investigated traffic noise, while the 
others did not differentiate between different types of noise.

3.4  |  Pollination

The measures of pollination were diverse across all the sections of 
the pollination system, and studies used up to six different proxies 
to measure pollination (median = 1, Appendix S8). Plant reproduc-
tive success was measured with up to four different proxies per 
article (median = 1; Appendix S8). These included the proportion 

F I G U R E  1 Scope of the studies investigated. (a) Number of studies on the impact of air, light, and noise pollution on sections of the 
pollination system (plant reproductive success; pollinators or interactions between plants and pollinators) and (b) number of studies 
over time.

(a) (b)
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6 of 12  |     GUENAT and DALLIMER

of flowers fruiting (n = 17), the number of seeds per fruit (n = 12), 
fruits per plant (n = 8), seeds per plant (n = 5), the mass of seeds per 
plant (n = 2), or the pollinators' contribution to crop production (dif-
ferences in seed number with exclusion cages, n = 1; Appendix S8). 
Up to three different proxies per article were used to assess the im-
pact of pollution on pollinators (median = 1, Appendix S8). Proxies 
were related to community indicators, such as abundance (n = 7) 

and species richness (n = 2), to behaviors, with the most common 
proxies linked to motility (n = 7) and to the proboscis responses to 
olfactory cues (n = 5), to physiological responses (n = 4) such as re-
sistance to heat stress or heart rates, or to morphological adapta-
tions (n = 2) such as wing symmetry. A maximum of two different 
methods (median = 1) were used to measure the interaction be-
tween plants and pollinators (Appendix S8). The measures included 
the number (n = 11) and length (n = 4) of pollinator visits, the num-
ber of flowers visited (n = 5), changes in feeding behavior (n = 3), 
various proxies for pollen transfer (n = 4), as well as changes in the 
quantity or attractiveness of plant volatiles (n = 3) and the percep-
tion of such volatiles (n = 7).

Across all articles, 52 plant species were investigated for the ef-
fect of pollution either on their reproductive success (n = 21), on the 
interaction between plants and pollinators (n = 24), on both plant re-
productive success and interactions between plants and pollinators 
(n = 6), or to study pollinators' behavioral responses to their scent 
(n = 1). Of the 52 plant species, two are solely wind-pollinated while 
the other 50 rely to some extent on animal pollination (Appendix S9). 
Studies investigated up to 20 different plant species (median = 1). 
The only plant species investigated in more than two articles were 
Brassica napus (rapeseed, n = 5) and B. nigra (black mustard, n = 4).

Individual pollinator species included in experiments were 
mostly bees (honeybees n = 11, bumblebee species n = 7, mason 
bees n = 1) and Lepidoptera (moths = 9, with seven different species, 

F I G U R E  3 Pollutants investigated by articles on (a) air pollution 
(n = 33) and (b) light pollution (n = 22). Bars indicate the proportion 
of studies investigating the specific pollutant out of all the studies 
focusing on either air or light pollution, and values indicate the 
number of articles. Articles in which pollutants were not specified 
were excluded (n = 1 for air, n = 0 for light).
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butterflies n = 2). Fly and beetle pollination was investigated in six 
and two articles, respectively, and birds were covered in a single ar-
ticle (Appendix S10).

3.5  |  Impact of pollution

Air pollution had a significant impact in decreasing pollina-
tion (μ = −1.23; 95% CI = −2.00, −0.46; p < .001; Figure  4a and 
Appendix S11 and S12). The two moderators selected as contribut-
ing to the single best-fit model were the section of the pollination 
system and the study design (Appendix S11 and S12), which had a 
significant impact on findings (QM test of moderators: QM = 49.66, 
p < .01). Submodels showed that studies with cross-sectional 
(μ = −0.74; 95% CI = −1.34, −0.14; p = .017; Figure  4a), experimen-
tal (μ = −0.34; 95% CI = −0.51, 0.17; p < .001; Figure 4a), simulations 
(μ = −3.57; 95% CI = −4.02, −3.12; p < .001; Figure  4a), or longitu-
dinal (μ = −1.12; 95% CI = −1.67, −0.58; p < .001; Figure 4a) designs 
were able to reveal a significant impact of air pollution (Figure 4a), 
while field experiments (μ = −0.22; 95% CI = −0.45, 0.02; p = .071; 
Figure 4a) did not show any impact of air pollution on pollination. Air 
pollution was shown to have an impact on the plant reproductive suc-
cess (μ = −0.50; 95% CI = −0.72. -0.28; p < .001; p = .172; Figure 4a) 
and the interaction between plants and pollinators (μ = −0.42; 95% 
CI = −0.62, −0.22; p < .001; Figure 4a), but not on pollinators them-
selves (μ = −0.32, 95% CI = −0.77, 0.14; Figure 4a). Light pollution had 
no significant impact on pollination (μ = 0.29; 95% CI = −0.31, 0.89; 
p = .346; Figure 4b; Appendix S13 and S14). No moderators were in-
cluded in the single best-fitting model. Noise pollution had no signifi-
cant impact on pollination (μ = 0.28; 95% CI = −0.05, 0.54; p = .106; 
Figure 4c; Appendix S15 and S16). It was not possible to investigate 
the effect of moderators due to the low number of studies.

4  |  DISCUSSION

We found mixed effects of air, light, and noise pollution on the polli-
nation system. While air pollution had an overall negative effect, the 
impact differed according to the section of the pollination system 
and study design. Impacts were otherwise apparent irrespective of 
the measures of pollination, and different organisms and habitats in-
vestigated. In contrast, our meta-analysis indicated that neither light 
nor noise pollution had any impact, although the impact of noise re-
mains uncertain due to the low number of studies. Further, we know 
almost nothing about the synergistic impacts of pollutants as only a 
single study investigated more than one concomitantly.

Air pollution is a major cause of deaths for humans (WHO, 2016) 
and severely disrupts many species (Krupa, 2003; Kumar Rai, 2016). 
Here, we showed that it also negatively affects pollination. However, 
study type was an important determinant. Experimental studies 
tended to reveal negative impacts, whereas cross-sectional studies 
and field experiments failed to reveal significant negative impacts. 
In part, this is likely to be due to the higher concentrations that 

are used in laboratory compared with field experiments or cross-
sectional studies. Additionally, there might be more context-related 
variables influencing the latter two than laboratory experiments 
that therefore impede the identification of single processes explain-
ing changes in pollination (Catford et al., 2022). The section of the 
pollination system was also important. Most evidence covered im-
pacts on plant reproductive success, where the significant negative 
impact was consistent with a previous synthesis focusing on ozone 

F I G U R E  4 Effect sizes and 95% confidence intervals of the 
overall models for air, light, and noise pollution, and for the 
subgroup models for each variable in the best-fit models. Diamonds 
represent the effect size, and bars represent the confidence 
intervals. Effects are considered significant when the confidence 
intervals do not cross the zero line.
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only (Leisner & Ainsworth, 2012). We also found the interaction be-
tween plants and pollinators was negatively affected, but there was 
no evidence of significant impacts on pollinators themselves, thus 
hinting that the disturbances in the interaction between plants and 
pollinators were mediated by the reaction of plants to pollution.

Air pollution studies were scattered across disciplines, with stud-
ies from agricultural sciences (Shannon & Mulchi,  1974), forestry 
(Paoletti et al., 2010), and plant physiology (Linskens et al., 1985). 
There was however a particular focus on agricultural settings (e.g., 
Drogoudi & Ashmore, 2000; Ryalls et al., 2022), reflecting the fact 
that current research on pollination centers on its importance for 
food production. However, air pollution is worse in towns and cit-
ies (WHO, 2016), except for ammonia (Defra, 2019) which was not 
investigated by any of the identified studies. Town and cities have 
the potential to play a role in pollinator conservation (Baldock 
et al., 2015; Wenzel et al., 2020), yet we identified only three stud-
ies carried out in urban areas (Chauhan et al., 2004; Thimmegowda 
et al., 2020; Tommasi et al., 2022). The fact that the impact of air pol-
lution was detected despite most studies focusing on less polluted 
landscapes suggests that the negative consequences for pollination 
may be more severe in the most polluted areas. Failure to tackle air 
pollution, especially in urban areas, would therefore likely contribute 
to the biodiversity crisis both by lowering plant reproductive success 
and hindering plant–pollinator interactions.

Our search of the literature also highlighted two substantial 
gaps in our knowledge. Both tropical regions and low- and middle-
income countries were understudied. These gaps are important 
because such regions and countries tend to experience higher lev-
els of air pollution (WHO, 2016). Pollination is also arguably more 
important in the low- and middle-income countries, given that, re-
spectively, 60% and 29% of their population rely on agriculture for 
their livelihoods, as opposed to 3% in high-income countries (World 
Bank, 2021). Further, pollination in the tropics is likely to be more 
susceptible than in temperate regions due to the higher proportions 
of plants requiring animal pollination (Ollerton et al.,  2011). Work 
on pollinators that has been carried out in the tropics also tends to 
reveal differences compared with temperate regions. Pollinator net-
works tend to be more diverse, and vertebrate pollinators are often 
integral to the pollination system (Vizentin-Bugoni et al.,  2018). 
When anthropogenic impacts have been investigated, steeper de-
clines in pollinator visitor rates from natural to agricultural land-
scapes (Ricketts et al., 2008) or variable impacts across taxa (Guenat 
et al., 2019) have been observed. We therefore cannot assume that 
trends from temperate regions will hold. While we do advocate for 
more research into the details, our review would support any efforts 
to reduce air pollution as this would ensure that negative impact 
on human health is not compounded by reductions in food security 
partly driven by declines in pollination.

Both light and noise pollution has been shown to impact some 
organisms by, for instance, disturbing reproduction (for moths; 
Macgregor et al., 2015) or altering community interactions (e.g., see 
Shannon et al., 2016 for a synthesis on terrestrial and marine wild-
life, with most evidence from birds and marine mammals). However, 

our meta-analysis of the existing evidence did not show impacts 
on pollination from light or noise pollution. For noise, this is likely 
to reflect a lack of studies, highlighting the need to further inves-
tigate the potential impacts of noise. For light, however, the lack 
of an effect is probably because our analyses addressed the entire 
pollination system, rather than individual sections. Indeed, light pol-
lution can have both positive and negative impacts depending on 
the organism, as was observed in our meta-analysis (negative ef-
fect for Altermatt and Ebert  (2016), Demchik and Day  (1996), Van 
Langevelde et al. (2017) and Wang et al. (2008); positive effect for 
and Collins et al. (1997) and Conner and Neumeier (2002)). Though 
this impedes the detection of any results in a meta-analysis, it could 
be a sign of potential mismatches with negative consequences for 
the functioning of pollination, which depends on the precise inter-
action of plants and their pollinators. Similar mismatches in which 
some part of the pollination system is disrupted are seen in the con-
text of urbanization, where the high proportion of exotic plant spe-
cies leads to the loss of specialist pollinators (Wenzel et al., 2020). 
Additionally, research on light pollution thus far tends to focus on 
different times of the day depending on the section of the pollina-
tion system investigated. Typically, articles on pollinators tended 
to focus on night-dwelling insects such as moths, studying how 
changes in nighttime light affected them, while those on plant repro-
ductive success and interactions focused on daytime changes in light 
intensity or exposure (Petropoulou et al., 2001; Wang et al., 2008). 
This temporal mismatch has been shown to lead to a positive impact 
of increased light intensity on plant reproductive success (Feldheim 
& Conner,  1996; Petropoulou et al.,  2001) confounding detrimen-
tal impacts of nighttime light pollution on moth populations (Boyes 
et al., 2021; Macgregor et al., 2015). Investigating the impact of light 
pollution during both day- and nighttime is thus critically needed. 
Indeed, the two studies that did so both resulted in novel insights. 
Plant reproductive success was decreased by light pollution but 
still depended on successful interactions with both nocturnal and 
diurnal pollinators (Knop et al., 2017), and nighttime illumination im-
pacted diurnal plant–pollinator interactions differently according to 
the species (Giavi et al., 2021).

Current evidence highlights a lack of knowledge about how 
the effects of light pollution can be important throughout the 
diurnal cycle. Nighttime pollination occurs in 30% of plant fam-
ilies (Borges et al., 2016), and meteorological conditions such as 
wind, humidity, and temperature at night are different from day-
time. Nocturnally pollinated plants and nocturnal pollinators tend 
to have specialized traits such as large floral displays, the ability 
to preheat flight muscles or particularly sensitive eyes (Borges 
et al., 2016). Nighttime light pollution may be the most prevalent 
type of light pollution (Longcore & Rich, 2004), but available evi-
dence indicates that changes in light intensity or exposure during 
daytime can also affect plant reproductive success (Feldheim & 
Conner,  1996; Petropoulou et al.,  2001). In parallel, flower pro-
duction, which can increase pollination, tends to be improved by 
increased light (Kuniga, 2020). Additionally, we know that ultravi-
olet wavelengths are key to color reception in pollinators (Chittka 
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et al.,  1994), and so we can expect daytime changes in UV-B to 
alter how pollinators interact with flowers. Consequently, draw-
ing conclusions solely from work on nocturnal pollination systems 
may not capture the full extent of the impact of light pollution.

The evidence on noise pollution is extremely limited. The four 
studies we identified highlight the need to consider the full diver-
sity of pollinator types and their associated life-cycle stages. One 
study investigated butterflies as caterpillars, showing that short-
term exposure to highway noise increased their heart rates (Davis 
et al.,  2018), thus indicating that potential developmental impacts 
could be ignored were only the adult stage studied. Despite the fact 
that we know birds are detrimentally impacted by noise (Kociolek 
et al., 2011), there was only one article covering birds as pollinators. 
This suggested that pollination actually increased with higher levels 
of noise pollution (Francis et al., 2012). Given the important role of 
birds as pollinators in the tropics (Sekercioglu, 2006), it will be im-
portant to determine how generalizable this finding is, and what the 
potential underlying mechanisms might be.

Many sources of anthropogenic pollution co-occur (Phillips 
et al.,  2021), and some can have co-occurring effects, such as 
ozone pollution changing the properties of light. The multiplica-
tive impact of more than one source of pollution is, therefore, both 
complex to study, and of potentially greater importance than one 
source of pollution alone. However, only one study (Dzul-Cauich & 
Munguía-Rosas, 2022) investigated both light and noise pollution. 
Further, pollination is known to be influenced by many different 
factors such as land-use change, climate change or the intro-
duction of non-native species and pathogens (Potts et al., 2010; 
Sánchez-Bayo & Wyckhuys, 2019). Landscape conversion through 
urbanization and road construction is also known to impact pol-
linators (Phillips et al.,  2021; Wenzel et al.,  2020). Though both 
are linked to high levels of pollution, studies rarely differentiate 
the impact of pollution of that of other pressures such as changes 
in land use. Although this review did not specifically examine the 
interactions between types of pollution and other anthropogenic 
changes, when discussed within the studies, the findings were 
complex. For instance, Reitmayer et al.  (2019) showed that die-
sel exhaust reduces honeybees resistance to heat stress, a result 
which could compound any implications for honeybees associated 
with increased temperatures due to climate change or urban heat 
island effects (Banaszak-Cibicka & Zmihorski,  2012). Similarly, 
nighttime light pollution could facilitate a temporal shift of ac-
tivity that could potentially allow diurnal pollinators to adapt to 
the warmer temperature associated with climate change (Levy 
et al., 2019). This could potentially disrupt plant–pollinator inter-
actions and reduce pollination success.

5  |  CONCLUSION

Biodiversity is subject to complex combinations of stressors, including 
multiple forms of pollution. However, as yet we do not fully understand 
the role of pollution in ecosystem functioning. Here, we synthesize the 

existing evidence on the impact of air, light, and noise pollution on 
one function, namely pollination. We highlight that air pollution nega-
tively affects the pollination system, decreasing plant reproductive 
success—the outcome of pollination—and harming plant–pollinator in-
teractions, while not affecting pollinators themselves. However, there 
are still substantial knowledge gaps. We have little evidence from 
tropical, low-, and middle-income countries, where air pollution levels 
and potential dependence of the human population on pollination-
supported food production are higher. There are also unanswered 
questions regarding the importance of light and noise pollution, with 
no detected impact by light pollution despite risks of mismatch be-
tween pollinators and plants. However, we are able to demonstrate 
the importance of addressing air pollution. In parallel with broadening 
the evidence base, our work highlights the need to lower air pollution 
levels if well-functioning pollination systems are to be retained.
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