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A Framework for Simulation of Magnetic Soft

Robots using the Material Point Method
Joshua Davy, Peter Lloyd, James H. Chandler Member, IEEE and Pietro Valdastri Fellow, IEEE

Abstract—Simulation represents a key aspect in the develop-
ment of robot systems. The ability to simulate behavior of real-
world robots provides an environment where robot designs can
be developed and control systems optimized. Due to the use of
external magnetic fields for actuation, magnetic soft robots can
be wirelessly controlled and are easily miniaturized. However, the
relationship between magnetic soft materials and external sources
of magnetic fields present significant complexities in modelling
due to the relationship between material elasticity and magnetic
wrench (forces and torques). In this work, we present a simulation
framework for magnetic soft robots using the Material Point
Method (MPM) which integrates hyper-elastic material models
with the magnetic wrench induced under external fields. Com-
pared to existing Finite Element Methods (FEM), the presented
MPM based framework inherently models self-collision between
areas of the model and can capture the effect of forces in non-
homogeneous magnetic fields. We demonstrate the ability of the
MPM framework to model the influence of magnetic wrench
on magnetic soft robots, capture dynamic behavior of robots
under time-varying magnetic fields, and provide an accurate
representation of deformation when colliding with obstacles.
We show the versatility of MPM framework by comparing
simulations to a range of real-world magnetic soft robot designs
previously presented in the literature.

Index Terms—Modeling, Control, and Learning for Soft
Robots; Soft Robot Materials and Design; Simulation and Ani-
mation

I. INTRODUCTION

MAGNETIC soft robots (MSRs) are of interest due

to the potential for miniaturization afforded by off-

board actuation [1][2][3][4][5]. By manipulating this magnetic

field, the resultant wrench (forces and torques) on magnetic

segments of the robot can be precisely controlled. This makes

MSRs well suited to applications in surgery where the soft
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structure of the robot and small scale can enable them to reach

areas of the anatomy unachievable by conventional tooling

[6][7]. MSRs can be formed by embedding permanent magnets

or magnetic microparticles into soft elastomeric materials

[8][9]. The latter case is appealing due to the ability to retain

an entirely soft structure. However, this scenario presents a

challenging system to model with standard approaches due

to material geometry, direction of magnetization, external

magnetic field and external forces all influencing the resultant

deformation.

Finite element methods (FEM) have been used to model

MSRs and represent a high accuracy approach capable of

modeling hyper-elastic deformation under external fields while

representing complex geometries [10][11]. MSRs, make use

of hard magnetic materials which are defined by their rem-

nant magnetization once an external magnetizing field is

removed. In order to simplify the FEM modeling of MSRs,

the assumption of discrete hard magnetic elements embedded

within the soft material can be made [12][13]. However,

this assumption is only valid on MSRs formed with discrete

magnetic sections, and loses accuracy as the deformation

of these sections increases [14]. Zhao et al. [11] addressed

this significant problem by deriving a stress relationship for

magnetically hard, mechanically soft materials and integrated

it into FEM software (ABAQUS, Dassault Systèmes, France)

allowing continuous, deformable magnetic profiles within the

material [11]. By the combination of hyper-elastic models with

the magnetic contribution of stress in the material, they demon-

strate the accurate prediction of equilibrium deformation under

constant fields. Nonlinear FEM analysis comes at significant

computational cost due to the numerical iterative minimization

process. Furthermore, under large hyper-elastic deformation

the mesh representation utilized in FEM can become distorted,

leading to erroneous results and poor convergence [15]. Ye

et al. presented Magttice, a FEM-based lattice model by

integrating the magnetic potential energy derived by Zhao et

al. into a lattice mesh model [10]. They proceed to study the

interaction between MSRs with fluids in time varying fields,

noting the importance of considering gravity into the model

to provide accurate deformation results.

As an alternative approach to FEM, the Material Point

Method (MPM) is a hybrid Lagrangian, Eulerian model for

continuum mechanics [16][17]. Unlike FEM, there is no under-

lying deforming mesh in the model. Instead MPM is a cyclical

process which moves between a particle based representation

and a fixed grid. The particle representation is utilized for

internal material stress and the grid provides a structure to

apply external forces. The lack of deforming mesh prevents
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the issue of mesh collapse under high deformation experienced

in FEM. Unlike FEM, the use of discrete material points can

implicitly handle self-collision and model fracturing and has

found application in crack propagation of beams and the study

of tissue-needle interaction [18][19]. The nature of this method

suits the mass parallelization of processing across multiple

processors, as individual updates of particle and grid nodes

can be considered independently and the effects summated.

Further, due to the continuous nature of MPM, derivatives of

the current state with respect to the initial model parameters

can be obtained and utilized to guide optimization to achieve

desired behaviour [17].

In this work, we extend the MPM to cover magnetically

hard, mechanically soft materials. Using this approach, we

demonstrate the ability to model large deformations in MSRs

under varying fields. Our system is capable of representing

dynamic behavior and collisions in the environment, as well

as the final equilibrium state in static fields. Additionally, as

the MPM representation associates each particle with its own

magnetization vector, MSRs can be modeled with varied and

near continuous magnetization profiles. Thus, our methodol-

ogy and simulation environment is capable of representing

complex MSR scenarios and capturing their resultant behavior.

In an extension to previously presented FEM modeling,

we showcase the ability to model not just torques but also

magnetic forces present caused by non-homogeneous magnetic

fields. Unlike FEM approaches, self collision between model

parts is implicit in the MPM allowing the physical interaction

between segments of the robot to be studied. We further show

how the MPM methodology means external forces can be

easily integrated into the model providing realistic interactions

with surfaces and obstacles.

We validate these models on fabricated MSRs and show

agreement with the derived MPM model. We further showcase

robot designs from the literature in the simulation framework

and replicate behaviours as observed in reality. Open source

examples of 3D implementation of the framework are available

at http://github.com/joshdavy1/magneticMPM.

II. A REVIEW OF THE MATERIAL POINT METHOD.

MPM is an Eulerian-Lagrangian numerical method for con-

tinuum mechanics consisting of two material representations.

The first, the Lagrangian representation consists of individual

particles of a fixed mass and volume that represent discretized

elements of the material. These elements are initially dis-

tributed evenly to represent the geometry of the material. The

second is the grid representation, which can be considered as

an undeformable Eulerian mesh, which is fixed in reference

frame. This grid consists of regular node points, surrounding

the material. The grid nodes are static in position and regularly

spaced but represent a transfer of particle properties from one

time-step to the next.

Transfers between representations are named Particle-to-

Grid (P2G) (Fig. 1a) and Grid-to-Particle (G2P) (Fig. 1c),

respectively. Our work extends the Moving Least Squares -

Material Point Method (MLS-MPM) algorithm in order to

represent the actuation experienced in magnetic materials [20].

Particle
(Lagrangian)

Representation

Particle to
Grid (P2G)

Grid (Eulerian)
RepresentationGrid to Particle (G2P)

A) B)

D) C)

Fig. 1: The cyclical method followed by MPM. a) Internal forces
and magnetic stress are computed in the particle domain. b) Particle
properties are transferred to grid representation. c) External interac-
tion and forces due to magnetic gradients are computed in the grid
domain. d) Particle properties are reconstructed from the grid.

The following gives an overview of the MLS-MPM; readers

are referred to the works of [20] and [21] for an extensive

overview and full derivations.

A. Particle (Lagrangian) Representation

Particles are initialized in order to represent the geometry of

the soft robot and their position at time t is notated as xtp ∈ R
3.

vtp ∈ R
3 represents the particle velocity vector and Ct

p ∈ R
3×3

represents the affine velocity matrix [22]. A final variable Ft
p ∈

R
3×3 represents the particle deformation gradient initialized to

the identity matrix F0
p = I.

B. Particle to Grid (P2G)

In order to transfer the particle representation of the material

to the grid, we must distribute the properties of the particle to

the surrounding nodes (see Fig. 1b). To do this, a weighting

function is utilized to specify the relative distribution of

the particle property to the neighborhood nodes. Here, the

properties are distributed using a quadratic B-spline kernel

distributed to a 3x3x3 neighborhood of grid nodes given as

W (∆r) = w(∆x)w(∆y)w(∆z) (1)

where

w(α) =





0.75− |α/δx|2 0 ≤ |α/δx| < 0.5
0.5(1.5− |α/δx|)2 0.5 ≤ |α/δx| < 1.5

0 1.5 ≤ |α/δx|
(2)
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Fig. 2: 2D illustration of the distribution of particle (blue) properties
in the P2G step to the node i, j (red) utilising the Quadratic B-spline
kernel [21].

[21]. Where ∆r = [∆x,∆y,∆z]T is the relative displacement

between particle and the node at i, j, k as shown in Fig. 2. δx
is the grid node spacing (See Fig. 2). α ∈ {∆x,∆y,∆z}.

As such grid mass is distributed as

mt
i,j,k =

∑

p

W (∆r)mp, (3)

where mp is the particle mass equal to ρvp where ρ is the

material density and vp is the particle volume. Grid momentum

is calculated as

pt
i,j,k =

∑

p

W (∆r)(mpvt
p − (

4

δx2
vpPt

p(F
t
p)

T+

mpCn
p )∆r). (4)

where Pt
p is the first Piola–Kirchhoff stress tensor [21].

C. Grid (Eulerian) Representation

After transfer to the grid representation, the effect of exter-

nal forces are imposed (Fig. 1c). These external forces and the

grid momentum can be integrated to form the grid velocity.

vti,j,k =
1

mt
i,j,k

(pt
i,j,k + fti,j,k∆t), (5)

where ∆t is the simulation time stepping and fti,j,k is the

external force on the node. For all nodes where mt
i,j,k ̸= 0.

D. Grid to Particle (G2P)

After the velocities in the grid frame have been calculated,

particle velocity and affine velocity can then be reconstructed

utilizing the same weighting kernel specified in Section II-B

(Fig. 1d).

vt+1
p =

∑

i

∑

j

∑

k

W (∆r)vti,j,k, (6)

Ct+1
p =

4

δx2

∑

i

∑

j

∑

k

W (∆r)vt
i,j,k∆r. (7)

The deformation gradient of the particle and particle posi-

tions are updated, representing the overall change in deforma-

tion and pose of material in the time-step.

Ft+1
p = (I+ Ct+1

p ∆t)Ft
p (8)

xt+1
p = xtp + vt+1

p ∆t (9)

III. MODELLING OF MAGNETICALLY HARD,

MECHANICALLY SOFT MATERIALS.

We consider the modeling of elastomers embedded with

magnetic elements, common in soft robotics. Typically, this

consists of a silicone prepolymer mixed with hard magnetic

microparticles (commonly NdFeB due to its high remnant

magnetization). This mixture is then cast into molds of the

desired form of the magnetic robot and set [23]. The cast is

then subjected to a saturating magnetizing field in order to set

the direction of magnetization. After being removed from the

field, the material retains a remnant magnetization.

In this work we consider this material as an ideal hard-

magnetic soft material [11]. The self-interaction between the

magnetic elements of the MSR is neglected. This has shown to

be a valid assumption for modelling deformation of the MSR

due to the relative weakness of this interaction compared to

the interaction with larger external magnetic fields [10][23].

A. Elastomeric Properties

For modelling the elastic properties of the material the

Neo-Hookean elastic model is adopted which has been shown

to accurately model the stress-strain relationship of magnetic

soft materials in the strain ranges experienced in soft robotic

applications [24]. The Neo-Hookean model is given as

Pt
pelastic = GJ−2/3(Ft

p −
I1
3

F−T ) +KJ(J − 1)F−T . (10)

where Pt
pelastic is the elastic contribution of the first Piola-

Kirchoff stress tensor, G is the shear modulus of the material

and K is the bulk modulus. J = determinant(Ft
p) and I1

= trace(FtT

p Ft
p). In order to satisfy the assumption of near

incompressibility of the utilized silicone polymers we chose

the bulk modulus to be a sufficiently high value. In this case

we set K = 20G. At the strain/scale ranges relevant to our

MSRs, the actual value of the bulk modulus does not largely

affect the final deformation [10][11].

B. Magnetic Properties

A magnetic agent under external magnetic fields will expe-

rience an aligning torque between the magnetic moment and

the external field.

τ = m × B (11)

where B is the external magnetic field and m is the magnetic

moment vector equal to BrV
µo

where V is the volume of the
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agent. µ0 is the vacuum permeability equal to 4π×10−7 Hm−1

and Br is the remnant magnetization vector.

Further, in the case of a non-homogeneous magnetic field,

the agent will experience a force,

f = ∇(B · m). (12)

This force is proportional to the spatial gradient of the

magnetic field and is at maximum with alignment of the

magnetic moment and external field.

In the FEM approach outlined by Zhao et al. [11] the

effect of aligning torque under homogeneous magnetic fields

is integrated into the elastic model via an additional stress. We

utilise this stress along with the Neo-hookean model into the

P2G step of the MPM cycle. This, in the first Piola-Kirchoff

form is

Pt
pmagnetic = −

1

µ0

B ⊗ Brp , (13)

where ⊗ is the dyadic product and Brp is the remnant magnetic

flux density associated with the particle. Leading to an overall

material stress as

Pt
p = Pt

pelastic + Pt
pmagnetic. (14)

By incorporating the magnetic stress effect into the P2G,

step, the effect of the realigning torque can be incorpo-

rated into the MPM. However, the forces induced in non-

homogeneous magnetic fields are not covered. Therefore the

magnetic force is incorporated as an external force in the grid

velocity calculation. To calculate the force at the grid node,

we calculate the equivalent magnetic moment of the node as

a product of the volume of magnetic particles using the same

weightings as described in the P2G Section II-B.

mt
i,j,k =

vp
µ0

∑

p

W (∆r)B̃rp . (15)

where B̃rp is the remnant magnetic flux density rotated into

the current reference frame equal to 1

J Ft
pBrp .

The external magnetic force can then be derived as

fmagnetic = ∇Bi,j,k
T · mt

i,j,k, (16)

where ∇Bi,j,k is the spatial gradient of the magnetic field

at the node.

C. Material Damping

Damping is the energy dissipation of the material and

represents numerous complex phenomena (viscosity, air re-

sistance, heat exchange etc.). To capture these properties of

magnetic soft materials, we model damping by adding a force

proportional to the current grid momentum,

fdamping = −cpt
i,j,k (17)

where c is the damping constant. This external force will lead

the material to a final equilibrium pose given a static applied

field.

Therefore the full set of external forces introduced to the

grid operations step is

fti,j,k = fmagnetic + fdamping + fgravity (18)

fti,j,k = ∇Bi,j,k
T · mt

i,j,k − cpt
i,j,k +mt

i,j,kg (19)

where g is the acceleration due to gravity.

It is worth noting that the proposed extension of MPM

to model magnetic soft materials requires three readily ob-

tained material parameters. These are the material density, the

magnetic remanence, and the shear modulus of the material.

However, the damping constant is more difficult to obtain. In

magnetics, the interest is often in the final equilibrium state

of the robot, and therefore a damping parameter leading to a

fast settle time of the system is most appropriate. This can be

obtained through iterative experimentation. In the case where

accurate representation of dynamics is required a methodology

such as followed by Shariati et al. may be utilized [25].

IV. EXPERIMENTAL VERIFICATION

A. Implementation

The above stated magnetic MPM algorithm was imple-

mented in the Taichi programming language [26]. Taichi was

selected due to supporting GPU parallelization and Python-

esque syntax. All examples were run on an NVIDIA Quadro

RTX 4000 GPU.

The choice of time-step significantly affects the speed of

simulation and a maximum time-stepping should be chosen

that retains model stability. As derived in [27], the maximum

time stepping for MPM is

∆tmax = Cδx

√
ρ

3G
(20)

where C is a constant close to one. It is evident that the time-

stepping can be increased by utilising large grid node spacing.

However, this limits the fidelity in which external forces can

be incorporated. A balance must be found between grid node

spacing and simulation speed. It can also be observed from

(20) that the stiffer, less dense materials lead to a lower

maximum time-stepping. The number of particles N , further

effects the simulation performance. Low particle numbers fail

to fully represent the deformation of the robot, while high

numbers will add significant computation time. The generation

of the initial pose of the particles is performed by uniformally

distributing particles in the geometry of the structure. This

is performed via sampling 3D models of the robot. We first

validate our methodology empirically on planar models; ver-

ifying agreement with real world behaviour. We then present

a full 3D implementation of the magnetic MPM framework

and showcase simulations of MSRs from the literature. All

material parameters were obtained following the methodology

of [24].

B. Magnetic Beam Deformation

To validate the approach, we recreate the high deformation

beam bending experiment presented by Zhao et al. [11]. A

magnetically hard materially soft beam (G = 303 kPa, |Br| =

0.258 T) manufactured from PDMS (Sylgard 184) is placed

in a external magnetic field. The direction of applied field is
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(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

G−1µ−1
0 |Br| |Bapplied| ×10−2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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a
x
/
L

FEM (Zhao et al.)

Experimental (Zhao et al.)
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(b)
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(c)

Fig. 3: High deformation magnetic soft beam experiment as presented by Zhao et al [11]. (a) The applied field Bapplied is in the opposite
direction to the remnant magnetization Br of the soft material leading to high deflection. (L = 17.2 mm, C = 0.84 mm, W = 5 mm). (b)
Magnetic MPM methodology compared with experimental results and FEM analysis [11] G−1µ−1

0
|Br| is a constant which leads these results

to be independent of material parameters. (c) Mean Absolute Percentage Error (MAPE) converges with increased particle density.

parallel yet opposite to the remnant magnetization vector of

the beam (See Fig. 3a); causing a deflection under increasing

field strength. We recreate this scenario in our framework

with a varying particle density to represent the beam (δx =

0.3 mm, ∆t = 6 × 10−6 s). We then compare the resultant

deflection δmax/L with the experimental data and FEM results

provided by the authors (See Fig. 3b). Fig. 3c shows how the

results converge with particle density leading to a 6.1% Mean

Absolute Percentage Error (MAPE) with a particle density of

576 mm−2. This data informed choices on particle density in

the following experiments.

C. Deformation under Non-homogeneous Magnetic Fields.

To verify the ability of the MPM framework to model forces

experienced due to magnetic field gradients the interaction

between a permanent magnet and a MSR is studied. The robot

was magnetized along its main axis and placed vertically above

a 100 mm x 100 mm cylindrical neodymium magnet with a

remanence of 1.44 T (See Fig. 4). The MSR is fabricated

from Ecoflex-30 silicone polymer (Smooth-On, Inc., U.S.A.)

Fig. 4: Experimental setup for measuring the deformation of the MSR
due to gradient forces. A linear stage moves the robot closer to the
permanent magnet where gradient forces are stronger. This causes an
extension of length in the MSR.

mixed with NdFeB microparticles in a 1:1 mass ratio (G = 33
kPa, |Br| = 0.101 T, ρ = 1840 kgm−3). In this configuration,

no magnetic torques are present due to the alignment of

the robot’s magnetization with the permanent magnet. The

design of the MSR has periodic thickness in order to give an

exaggerated deformation compared to a simple beam. Thicker

sections increase the overall magnetic moment whilst thinner

sections give larger strain due to lower elastic forces. The

MSR is mounted to a linear stage allowing the introduction of

the robot towards the magnet. As the robot is moved towards

the magnet, larger magnetic fields gradients are present which

causes an extension of robot length. This strain is compared to

the same experimental setup in simulation (δx = 2 mm, ∆t =

1×10−6 s, N = 15, 359). A model of the magnetic field from

a cylindrical permanent magnet is provided by Magpylib [28]

and finite differences are used to obtain the spatial gradient of

the magnetic field.

Fig. 5 shows the results from simulation and experimental

setup. Due to the alignment of the magnetic field and magne-

tization of the robot, the gradient effect can be independently

observed. The results are in strong agreement and the error at

lower distances to the magnet can be attributed to limitations in

magnetic field modelling and accuracy of hyper-elastic model

rather then an inherent fault in methodology.

175 205 235 265 295

d (mm)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

δL
/L

Simulation

Experimental

Fig. 5: Comparison of simulation and experimental results for the
deformation of the robot as described in Section IV-C due to
increasing field gradient forces as its introduced towards the magnet.
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Fig. 6: Experimental setup measuring deformation when interacting
with external obstacles. Red and blue outlines represent the resultant
deformation under the applied magnetic field, considering and not
considering the interaction with the obstacle respectively. |Bapplied|
= 10 mT.

D. Interaction with External Bodies.

The MPM implicitly handles self-collision between material

points. This is a significant advantage over FEM methods

which require additional interpolation between mesh vertices

to handle this self collision. In the MPM framework, external

forces can be integrated into the model in the grid represen-

tation. To demonstrate the ability to model interaction with

external entities we consider the deformation of an axially

magnetized MSR under contact with a rigid obstacle. This is

represented in the grid representation stage by setting the grid

velocity to zero at the obstacle boundary on collision with the

obstacle,

vout =

{
0 if vin∥

≥ 0,
vin otherwise.

(21)

where vin is the incoming velocity calculated in Equation

(5) and vout is the velocity used in particle property recon-

struction in section II-D. ∥ represents the parallel component

of the velocity vector between the obstacle and the MSR.

A MSR of dimensions 60x3x3 mm is fabricated from

Dragonskin-10 silicone polymer (Smooth-On, Inc., U.S.A.)

mixed with NdFeB microparticles in a 1:1 mass ratio, (G =

120 kPa, |Br| = 0.125 T, ρ = 1882 kgm−3) [24]. The MSR

is axially magnetized and deflected via an applied magnetic

field from a resting state under gravity to collide with a plastic

obstacle (See Fig. 6). Fig. 7 shows normalized maximum

deflection δmax/L with increasing applied magnetic field,

when considering the external object in the MPM framework.

At large deflection, a larger difference in tip position can be

noted. This can be attributed to the accuracy of the underlying

hyper-elastic model (Equation (10) at high deformation.

E. Magnetic Soft Robots from the Literature.

MSRs vary from the sub-millimeter to larger centimeter-

scale [2][6][23][29]. In this section, we showcase the utility

of our MPM-framework by replicating designs of MSRs as

presented in the literature.

1) Continuum MSR (Pittiglio et al [23]): We first consider

the continuum MSR presented by Pittiglio et al. [23]. These

robots are formed of alternating magnetic and non-magnetic

0 2 4 6 8 10

Bapplied (T )
×10−3

0.0

0.2

0.4

0.6

0.8

δ m
a
x
/L

With External Forces

Without External Forces

Experimental

Fig. 7: Comparison of maximum normalized deflection δmax/L
of the MSR with experimental results when external interaction is
considered. (δx = 2 mm, ∆t = 5× 10

−5 s, N = 11, 520)

sections. The direction of the magnetization vector of each

section is decided by an optimization algorithm to give a

desired shape under a given magnetic field. We reproduce the

continuum MSR in simulation and applied the same magnetic

profile as presented (δx = 1 mm, ∆t = 2 × 10−5 s, c = 200
s−1, N = 118, 271) with two magnetization profiles (a and

b). Material parameters were obtained from the work, and a

damping parameter was chosen to provide fast equilibrium of

the system. In Fig. 8a it can be observed that under the same

magnetic field with matching profiles, the simulation and real

robot produce deformations closely matching the real world

behaviour. (See Supplementary Video).

2) Small scale soft robot (Hu et al. [29]): We reproduce

the MSR designed by Hu et al. [29] in our framework and

make use of the collision model of Equation (21) to represent

a floor with which the robot can interact (δx = 0.1 mm, ∆t =

7 × 10−7 s, c = 180 s−1, N = 10,260). The robot presented

by the authors is formed of a continuous magnetic profile

along its length; we represent this as a series of nine sections

with a matching magnetic profile (See Fig. 8b). By applying

a rotating external magnetic field of varying magnitude, the

’walking’ behavior observed by the authors is recreated. The

ability to replicate this complex behaviour in simulation shows

the potential of the MPM framework to iteratively design

and test MSRs when compared to complex fabrication and

experimental setups in reality. (See Supplementary Video).

3) Six armed untethered gripper (Xu et. al. [13]): The final

example taken from the literature is the six-armed untethered

gripper robot presented by Xu et al. [13]. This robot consists

of 13 magnetic sections each with it’s own magnetization

vector. On the application of a magnetic field perpendicular

to the undeformed robot, the robot folds up and is capable of

grasping small objects. The direction of magnetic field can

be rotated and the robot will then roll in the direction of

rotating field of angular frequency ω = 10 Hz. This behavior

is recreated in Fig. 8c and shown in the Supplementary Video.

(δx = 0.1 mm, ∆t = 5× 10−7 s, c = 20 s−1, N = 103, 430).

The grasping behaviour of the robot is a product of the self-

collision between the robot’s arms. This behavior is inherent

in the MPM algorithm unlike FEM approaches which require
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(a) Simulation of continuum MSR developed by Pittiglio et al. [23]. i) MSR under no external field. ii) Deformation under field in simulation with magnetization
profile a (left), deformation under field in experimental setup with fabricated MSR (center) and transient behaviour under magnetic field sweep (right). Mean
tip positional error across sweep = 0.38 mm. iii) Deformation under field in simulation with magnetization profile b (left) and deformation under field in
experimental setup with fabricated MSR. (center) and transient behaviour under magnetic field sweep (right). Mean tip positional error across sweep = 6.97

mm. MSR length = 80 mm.

(b) The small scale soft robot presented by Hu et al. [29], in the presented simulation framework, demonstrating the ’walking’ behaviour discussed in the
author’s work as the magnetic field is rotated. i) Magnetization profile |Bmax| = 8 mT.

(c) The six arm untethered gripper presented by Xu et al. [13]. Applying a magnetic field perpendicular to the robot causes it to grasp shut. Once shut, rotating
the magnetic field causes the robot to roll. The self-collision between model parts is inherent in our methodology. i) Magnetization profile. |B| = 15 mT, ω
= 10 Hz.

Fig. 8: MSRs from the literature represented in the MPM framework.

additional computation to interpolate meshes and calculate

these interaction forces. (See Supplementary Video).

V. CONCLUSION

In this work, we have presented a novel methodology for

simulating MSRs. The Material Point Method (MPM) is ca-

pable of accurately representing the deformation experienced

in magnetic soft materials at high deformation in the presence

of external magnetic fields. Unlike FEM approaches, MPM

implicitly represents self-collisions in the material, allowing

MSRs that rely on self-interaction to be represented. Further,

our methodology has extended what was capable with existing

systems by integrating the magnetic forces experienced in non-

homogeneous magnetic fields. We have validated the method-

ology and show strong agreement (6.1% MAPE, Fig 3c) with

real-world deformation at large strains. Further, comparison

with MSRs from the literature showcases the ability of the

presented methodology to replicate the complex behaviour

seen in the real robots in simulation.

Existing simulation frameworks for MSRs have often relied

on proprietary, closed-source or unreleased implementations.

We have made implementation examples of our magnetic

MPM framework available in order to allow others to utilize

our methodology. Robots can be generated from 3D CAD

models with specification of the magnetic profile of each

section. The ability to test ideas quickly in simulation (when

compared to fabrication and experimental setups), allows the

fast iterative design of MSRs. When paired with the ability to

model external forces and obstacles, designs can be explored

and modified, and complex behaviors can be tested. By releas-
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ing our implementation, we hope others developing simulation

frameworks can provide direct comparisons with our work.

Our framework is well suited to use as an environment

for optimization or training machine learning systems, which

can then be applied in reality. For example, the continuum

MSRs of Pittiglio et. al. [23] were optimized using simplified

rigid-link models. Utilising more accurate modelling would

allow these designs to closer match the desired objective or

incorporate dynamic behaviour under the influence of transient

magnetic fields. The mass parrelization of our implementation,

leads to efficient run-times by utilising GPU processing.

Unlike FEM, the MPM is a continuous function of the

initial variable values. This fact was exploited by Hu et al.

[17], to develop a fully differentiable physics simulation to

reduce the number of iterations for convergence of design

optimization. This could be replicated with our methodology to

optimize parameters such as magnetic profile, robot geometry

and applied field efficiently.

The presented methodology only considers the interaction

between the material’s magnetic field and the externally ap-

plied actuating field. This neglects any self-interaction be-

tween discrete magnetic robot segments. This assumption is

suitable for the cases in our experimental verification but,

for other MSR designs that may rely on this interaction,

their behaviour may not be accurately. An example of this

could be the interactive forces between multiple MSRs in

the same workspace [27]. Future work could consider the

field generated by individual magnetic segments in order to

better represent this characteristic. This would, of course, add

significant algorithmic and computational complexity to the

simulation.

The inherent ability to represent collision between particles

in MPM could be utilized to consider the interaction between

MSRs and external soft bodies. This is of particular interest

due to the clinical applications of MSRs, in order to study the

interaction between robots and soft tissues.
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