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proposes a novel acceleration method via a 2D Entropy based-Adaptive Filter Search
(2EAFS). The importance of corresponding filters, measured by utilizing the amount of
information contained in feature maps, is employed as a theoretical guide to simplify
the complex exhaustive search process. Information entropy is then normalized layer
by layer and the resulting value is used to calculate a layer-wise importance score in a
single step. Additionally, a sparse constraint equation is constructed based on the
negative correlation between filter pruning rates and the importance of convolutional
layers. The Nelder-Mead search algorithm is then adopted to quickly and adaptively
determine the optimal pruning architecture. Finally, importance weights are inherited
using the pruning rate and 2D entropy and model performance are restored through
fine-tuning. Extensive experiments conducted with the CIFAR-10/100, ILSVRC-2012,
NWPU-RESISC45 and CUB-200-2011 datasets showed this approach achieved
considerable accuracy increases, with significant reductions in FLOPs and required
parameters that surpassed current state-of-the-art methods by a wide margin. For
example, 2EAFS achieved a 44.1% reduction in FLOPs over ResNet-50, with only a
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Abstract5

The success of CNNs for various vision tasks has been accompanied by a
significant increase in required FLOPs and parameter quantities, which has
impeded the deployment of CNNs on devices with limited computing re-
sources and power budgets. Network pruning, which compresses and accel-
erates CNN models, is an effective solution to this issue. Some studies have
considered pruning as a special case of neural network search (NAS) in re-
cent years. However, existing techniques are often computationally complex
or prone to sub-optimal pruning results. As such, this paper proposes a
novel acceleration method via a 2D Entropy based-Adaptive Filter Search
(2EAFS).The importance of corresponding filters, measured by utilizing the
amount of information contained in feature maps, is employed as a theoret-
ical guide to simplify the complex exhaustive search process. Information
entropy is then normalized layer by layer and the resulting value is used
to calculate a layer-wise importance score in a single step. Additionally, a
sparse constraint equation is constructed based on the negative correlation
between filter pruning rates and the importance of convolutional layers. The
Nelder-Mead search algorithm is then adopted to quickly and adaptively
determine the optimal pruning architecture. Finally, importance weights
are inherited using the pruning rate and 2D entropy and model perfor-
mance are restored through fine-tuning. Extensive experiments conducted
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with the CIFAR-10/100, ILSVRC-2012, NWPU-RESISC45 and CUB-200-
2011 datasets showed this approach achieved considerable accuracy increases,
with significant reductions in FLOPs and required parameters that surpassed
current state-of-the-art methods by a wide margin. For example, 2EAFS
achieved a 44.1% reduction in FLOPs over ResNet-50, with only a 0.53%
Top-5 accuracy decrease for ILSVRC-2012.

Keywords: CNN acceleration, Image recognition, Filter search, 2D1

information entropy2

1. Introduction3

In recent years, convolutional neural networks (CNNs) have achieved un-4

precedented results that have been widely applied in various computer vision5

tasks, such as autonomous driving [1, 2], industrial defect detection [3, 4],6

and intelligent security [5, 6]. However, as identification and detection per-7

formance continue to increase, so does network model capacity (i.e., width8

and depth). This in turn places higher requirements on the storage space,9

computing efficiency, and power consumption of computing devices. For in-10

stance, ResNet-50 [7] requires 25.26M parameters and 4.11B floating point11

operations (FLOPs) for forward inference with an image of size 224×224.12

Considering the cost and practical environment of industrial applications,13

we generally cannot provide devices with sufficient storage and computing14

power to meet the needs of developing CNNs, especially on mobile platforms15

such as phones, micro-robots, and drones.16

Various studies have been developed in recent years to address the prob-17

lem of reducing parameters and FLOPs, such as compact network design18

[8, 9], low-bit knowledge distillation (KD) [10, 11], and quantization [12, 13].19

For instance, ShuffleNetV1 [8] employs group convolutions and channel shuf-20

fling to enhance the performance of compact models. Hinton et al. [10]21

introduced knowledge distillation, which primarily transfers feature informa-22

tion from a complex teacher model to a lightweight student model. Rastegari23

et al. [12] quantized weights and activations to 1-bit, enabling the model to24

achieve real-time detection speed and a low resource footprint. However,25

these methods require specific acceleration frameworks (e.g., quantization)26

or specialized knowledge for manual design (i.e., compact network design27

and KD).28
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Figure 1: Feature maps generated by the first residual group in ResNet-50. The blue/red
boxes indicate high/low information.

Network pruning has achieved considerable success due to its simplic-1

ity of operation, implementation efficiency, reduced network complexity, and2

high resolution for over-fitting problems [14, 15, 16, 17, 18]. Differences in3

sparse structures can be used to divide pruning methods into unstructured4

and structured types. Unstructured pruning reduces the computational cost5

of CNNs by removing individual neurons in filters or connections that con-6

tribute less to fully-connected layers. This type of approach requires specific7

designs for hardware accelerators; otherwise, it is difficult to achieve signif-8

icant speed-ups. Structured pruning can also directly remove unimportant9

channels (filters) without changing the network structure, thus allowing ef-10

fective compression and acceleration using basic linear algebra subprograms11

(BLAS). The resulting pruned network can be further accelerated by quan-12

tization and knowledge distillation. In this paper, we focus on filter pruning,13

enabling the model to achieve compression and acceleration while preserving14

performance, providing an effective solution for devices with limited comput-15

ing power.16

Previous studies on structured pruning primarily rely on designed filters17

and channel importance criteria, without considering the influence of infor-18

mation entropy (contained in feature maps) on model accuracy, which limits19
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pruning effectiveness. However, rich feature information extracted from well-1

trained CNNs can provide a comprehensive understanding of an input image.2

For example, Fig. 1 shows a series of feature maps generated from an image3

by ResNet-50 during forward inference, in which there are obvious differ-4

ences in the resulting visualizations of each feature map. For example, some5

maps (blue boxes) contain more useful feature information (e.g., edges and6

contours), while others (red boxes) include less feature information. Infor-7

mation entropy can effectively provide quantitative measurements that can8

be used to represent the richness of information in an image. In this study,9

information entropy was applied to identify useful feature information and10

remove redundant features, producing a more efficient neural network com-11

pression model.12

This paper proposes a simple yet effective 2D Entropy based-Adaptive13

Filter Search (2EAFS) method for fast CNN acceleration, which is illustrated14

in Fig. 2. The importance of corresponding filters is first measured using the15

2D entropy of feature maps, which simplifies the complexity of model pruning16

without imposing additional sparsity constraints or retraining requirements.17

FLOPs constraints are then established based on the negative correlation18

between filter pruning rates and the importance of convolutional layers. The19

Nelder-Mead search algorithm [19] was used to rapidly and adaptively deter-20

mine a pruning architecture for each layer, producing a compact sub-network21

that meets budget constraints. Critical weights are then inherited based on22

the pruning rate and 2D entropy, while model performance is restored by23

fine-tuning. This approach can automatically obtain better pruning rates24

than empirical settings, dramatically simplifying the original structure. This25

filter weight inheritance based on 2D entropy correspondence was able to sig-26

nificantly outperform random weight inheritance. The contributions of this27

study can be summarized as follows:28

1. A novel network pruning method (i.e., 2EAFS) is proposed, adopting29

2D entropy feature evaluation and fast adaptive filter search. This end-30

to-end pruning framework simplifies complexity without retraining or31

hyperparameter tuning of the model.32

2. An efficient filter importance evaluation criterion is proposed. Specif-33

ically, only mini-batches of data are passed to the CNN model to ac-34

curately estimate the importance of filters based on the 2D entropy of35

the feature maps.36

3. A negative correlation between filter pruning rate and convolutional37
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Figure 2: The proposed 2EAFS framework. The importance of corresponding filters was
first evaluated using the two-dimensional entropy of the feature map. Constraint equations
were then constructed using the importance of convolutional layers, while the sub-network
structure was adaptively determined by the Nelder-Mead search algorithm. Finally, im-
portant weights were inherited based on the pruning rate and 2D entropy and model
performance was restored by fine-tuning.

layer importance is utilized to construct sparse constraint equations.1

An optimal pruning architecture for each layer is then quickly deter-2

mined using the Nelder-Mead search algorithm without human involve-3

ment.4

4. Extensive experiments were conducted with CNNs (e.g., VGG and5

ResNet) applied to datasets such as CIFAR-10/100, ILSVRC-2012,6

NWPU-RESISC45 and CUB-200-2011. Results demonstrated the ef-7

fectiveness and efficiency of 2EAFS in reducing FLOPs and parameter8

requirements.9
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The remainder of this paper is organized as follows. Related works on1

model pruning are discussed in Section II and our proposed 2EAFS frame-2

work is then introduced in Section III. Experimental results and correspond-3

ing analysis are provided in Section IV. Finally, the paper is concluded in4

Section V.5

2. Related Work6

Pruning is highly effective for model compression and can be divided into7

three categories: unstructured pruning, fine-grained structured sparse, and8

structured pruning techniques.9

2.1. Unstructured pruning10

Unstructured pruning reduces the computational costs of a CNN by re-11

moving individual neurons in a filter or connections that contribute less to the12

fully connected layer. The optimal brain damage (OBD) algorithm proposed13

by LeCun et al. [20], a seminal study in unstructured pruning, uses second-14

order derivatives to balance training loss and model complexity. A few years15

later, Srinivas and Babu [21] proposed a data-free technique for pruning fully16

connected layers to obtain a compact sub-network offering comparable per-17

formance. Liu et al. [22] used a 2D discrete cosine transform (DCT) to18

increase wight sparseness and remove spatial redundancy. Dong et al. [23]19

proposed a pruning algorithm called L-OBS, which pruned parameters using20

second-order derivative information from a hierarchical error function, allow-21

ing the model to prune large parameter quantities with little degradation22

in performance. Chen et al. [24] extended the model compression problem23

from the perspective of constrained Bayesian optimization and introduced24

a cooling (annealing) solution. However, unstructured pruning produces ir-25

regular sparse filters. In addition, a specific hardware acceleration library26

must be designed according to the required characteristics. Otherwise, it can27

be difficult to achieve theoretical acceleration effects. 2EFAS can retain the28

overall structure of the original model and facilitate integration with existing29

hardware and software structures.30

2.2. Fine-grained structured sparse31

Fine-grained Structured Sparse usually group weight elements into small32

dense regions and prune them at the granularity of groups. To achieve bet-33

ter acceleration performance and higher sparsity, researchers have proposed34
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various grouping methods. Ji et al. [25] proposed a method to rearrange ir-1

regular fine-grained sparsity into structured coarse-grained sparsity to bridge2

the gap between large sparse models and poorer actual acceleration. Lin et3

al. [26] proposed a novel pattern of 1×N for network pruning that achieves4

significant CPU acceleration while maintaining high-performance accuracy.5

Supported by the NVIDIA Ampere Core, N: M sparsity leads to attractive6

storage and computation efficiency and thus has been extensively studied re-7

cently. Zhou et al.[27] proposed the sparse-refined straight-through estimator8

(SR-STE) and sparse architecture divergence (SAD) to train N: M structured9

sparse networks, achieving significant acceleration. Zhang et al. [28] proved10

that N: M learning can be naturally formulated as a combinatorial optimiza-11

tion problem of finding the best combination candidates in a finite collection.12

Despite the fact that the aforementioned methods can achieve good speed13

and recognition accuracy on GPUs with Ampere architecture support, the14

inference speed on CPUs and ARM is still limited by hardware constraints.15

2.3. Structured pruning16

In contrast, structured pruning directly removes channels and correspond-17

ing filters, which is advantageous for forward inferences and can thus be18

readily deployed in embedded devices. Structured pruning can be roughly19

divided into three categories (based on the included compact CNN learning20

process): pretraining-dependency, regularization-retraining, and automatic21

subnet search pruning.22

2.3.1. Pretraining-dependency pruning23

This approach prunes a filter based on the intrinsic characteristics of24

a CNN. The performance of the pruned model can then be enhanced by25

fine-tuning. For example, Li et al. [14] used an L1-norm to prune filters26

with low feature information and inherit critical weights. NISP [29] applies27

feature ranking to measure the importance of each neuron in a final response28

layer (FRL), which considers the network pruning problem to be a binary29

integer optimization task. He et al. [30] analyzed the limitations of paradigm-30

based network pruning and proposed a geometric median-based filter pruning31

strategy. Lin et al. [31] preserved filter weights with high-rank feature map32

outputs. Other studies have also considered the effects of parameter pruning33

on the corresponding loss. For instance, Molchanov et al. [15] proposed34

evaluating filter importance by considering first-order gradients. Lee et al.35

[16] directly performed unstructured pruning of randomly initialized weights36

7



using derivatives. Filter pruning has also been implemented using feature1

reconstruction. He et al. [32] proposed an iterative two-step algorithm to2

efficiently prune convolutional layers using LASSO regression and linear least-3

squares. However, the model evaluation functions used in these methods4

must be specially designed. As a result, they offer low time complexity5

but exhibit limitations in performance and compression rates. Conversely,6

2EFAS utilizes image information entropy to represent the richness of feature7

maps, thereby solving the problem of insufficient representation of critical8

information.9

2.3.2. Regularization-retraining pruning10

Unlike pruning techniques based on the intrinsic properties of neural11

networks, regularization retraining models introduce sparse constraints and12

masking strategies to reduce model complexity during the training process.13

For example, Wen et al. [33] proposed a structured sparsity learning (SSL)14

method to regularize DNN structures (i.e., filters, channels, filter shapes, and15

layer depths), thereby achieving hardware-friendly structural sparsity. Liu16

et al. [34], and Zhao et al. [35] applied regularization to scale factors in17

batch normalization layers as part of a loss function and culled channels cor-18

responding to lower factors (based on the pruning rate). Huang and Wang19

[36], and Lin et al. [37] introduced a mask to learn sparse model struc-20

tures and remove filters corresponding to zero-scale factors. Similarly, SWP21

[38] is a filter pruning method that uses a pruning skeleton to learn optimal22

filter shapes effectively. Although these strategies are straightforward and23

eliminate reliance on pre-training models, the additional constraints require24

training from scratch, which reduces the generalizability and flexibility of25

training loss, 2EFAS does not necessitate any modification of the loss func-26

tion or retraining, but rather only entails fine-tuning, resulting in substantial27

savings in resources and computation time, making it more conducive for28

industrial application.29

2.3.3. Automatic subnet search30

Some recent studies have focused on searching for an optimal structure31

(i.e., the filter or channel number for each layer) rather than evaluating filter32

importance. MetaPruning [39] randomly samples each layer’s output channel33

number as input and train a PruningNet to generate high-quality weights for34

sub-networks of different architectures. An evolution algorithm is then used35

to search for optimal sub-networks that satisfy these constraints. AMC [40]36
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accepts the compression rate and accuracy as feedback and uses reinforce-1

ment learning to develop an intelligent agent yielding the pruning rate for2

each layer. However, reinforcement learning typically exhibits unstable con-3

vergence, which requires significant effort for parameter tuning. ABCPruner4

[41] uses an artificial bee colony algorithm to automatically search for ef-5

ficient network architectures and fine-tune the result to identify the most6

efficient sub-networks. However, it also requires retraining the subnetwork7

used for performance evaluations at high computational costs. DMCP [42]8

models channel pruning as a differentiable Markov process, thus, eliminating9

the burden of searching multiple architectures. Although this approach can10

reduce human intervention, it requires training the network from scratch with11

different parameter settings, which is time-consuming and requires excessive12

energy consumption, 2EFAS can directly obtain the optimal pruned network13

under sparse constraints. This also avoids the difficulty of restructuring the14

search when the constraint targets or datasets change, and the process is15

simple and intuitive.16

3. Proposed Method17

This section details the proposed approach illustrated in Fig. 2. The filter18

pruning problem is first revisited, and the proposed filter importance evalu-19

ation criteria are then introduced. This metric is based on 2D information20

entropy in feature maps and allows for fast determination of the optimal filter21

pruning rate. The pruning framework and implementation details are also22

introduced. Pruning strategies based on multi-branch networks (i.e., ResNet23

[7]) are then discussed.24

3.1. Preliminary25

The primary notations used in this paper are summarized in Table 1, and26

the associated neural network pruning problem can be described as follows.27

Given a training set Xtrain and testing set Ttest , we attempt to determine the28

optimal pruning rate pk and weights w′

k for each layer, achieving the highest29

accuracy while satisfying a set of sparse constraints. To this end, the pruning30

problem can be expressed as:31

(F ′)
∗

= argmax
F ′

Acc (Mp (F
′,W′;Xtrain ) ;Xtest )

s.t. F (Np (C
′,W′;Xtrain )) < C

(1)
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Table 1: NOTATIONS AND THEIR ASSOCIATED MEANINGS.
Notation Meaning

M(·) andMp(·) Pretrained and pruned network model

Xtrain and Ttest Training set and testing set

W = {wk}
K

k=1
∈ R

fk×fk−1×hk×wk wk are the filters
in the kth layer

W′ = {w′

k}
K

k=1
∈ R

f ′

k
×f ′

k−1
×hk×wk w′

k are the filters of
the kth layer after pruning

pk The pruning rate for the kth layer
fk and f ′

k The number of filters in the
kth layer before and after pruning

hk and wk The height and width of
filters in the kth layer

F = {f1, f2, · · · , fK} and CNN network
F ′ = {f ′

1
, f ′

2
, · · · , f ′

K} structure before and after pruning

O = {ok}
K

k=1
∈ R

fk×mk×nk The feature map generated after convolution
operations: batch normalization, and activation.

mk and nk The height and width of the output
feature map in the kth layer.

where Acc(·) denotes the accuracy of Ttest applied toMp(·) with a structure1

F ′. It should be noted the parameters of the pruned network can provide a2

weight inheritance for the original network or random initialization parame-3

ters. F(·) is the set of sparse constraint limits, such as FLOPs, parameters,4

power, and latency, which require identifying an optimal trade-off between5

accuracy and constraints.6

3.2. Information measurement based on 2D entropy7

Previous studies [43] have used feature map sparsity to remove filters.8

However, this data-driven approach depends heavily on the distribution of9

input images. It also requires large sample quantities to make reasonable10

predictions, which involves a complex and time-consuming training process.11

Image entropy can be used for quantitative information measurements and12

can also represent the richness of feature maps. The distribution of entropy is13

also robust across the entire data set, which has been demonstrated through14

extensive empirical validation. Among the requirements discussed above,15

10



quantization of the output feature map oi
k in the ith filter of the kth layer can1

be defined as follows:2

õi
k = round

(

σ
(

oi
k

)

· 255
)

(2)

where σ(·) is the sigmoid activation function used to normalize a feature map3

and round(·) is a rounding function used to generate 8-bit grayscale feature4

maps.5

Calculations based on Shannon’s entropy theory can only represent en-6

tropy values for a whole image. As such, they cannot represent the spatial7

characteristics of image pixel distributions, which affect the accuracy of in-8

formation evaluation [44]. 2D information entropy is introduced to represent9

spatial distribution characteristics in the feature maps to address this issue.10

Specifically, we selected grey values adjacent to the image mean to describe11

spatial feature quantities for grey distributions and form a feature binary12

with image pixels. These grey values can be denoted as (i, j), where i repre-13

sents a grey pixel value (0 ≤ i ≤ 255), and j is the neighborhood grey mean.14

The term qij = f(i, j)/S2 denotes the comprehensive characteristics of grey15

values at individual pixel positions and grey distributions for surrounding16

pixels. The term f(i, j) is the occurrence frequency for the feature binary17

(i, j) and S is the image scale. The discrete 2D image entropy can then be18

expressed as:19

H = −
255
∑

i,j=0

qij log2 qij (3)

Experiments have shown the average 2D entropy distribution for feature20

maps generated from a few samples in the same filter remains mostly un-21

changed compared to those of larger data quantities. As such, only small22

sub-batches of data must be passed to the CNN model to accurately esti-23

mate the importance of filters based on the 2D entropy of feature maps, thus24

saving significant forward inference overhead. Based on this approach, the25

expected 2D image entropy in each feature map can be defined as:26

H̄ i
k =

∑G

g=1
H i

k(g)

G
(4)

where G is the number of image samples and H i
k(g) is the 2D feature map27

entropy for the ith filter at the kth layer in the forward inference. However,28

11



since the range of entropy values is closely related to the size of feature maps,1

entropy values in different convolutional layers vary significantly. To this end,2

we propose a max-min normalization to normalize the 2D entropy of each3

layer to [0, 1] as follows:4

H̄a
k ≤ H̃ i

k =
H̄ i

k − H̄a
k

H̄b
k − H̄a

k

≤ H̄b
k, a, b ∈ [1, fk] and a ̸= b (5)

where H̄a
k and H̄b

k are the maximum and minimum values of the feature map5

entropy in the kth layer, respectively, and a and b are the corresponding filter6

indices. Thus, we can establish filter importance evaluation criteria based7

on the 2D information entropy in a feature map, pruning the model at the8

given pruning rate as follows:9

Indk = sortpk

(

imp
(

H̃ i
k

))

(6)

where imp(·), used to measure the importance of corresponding filters in a10

feature map, is positively related to the magnitude of the entropy values.11

The term sortpk(·) is a descending order function that returns the index Indk12

of a filter to be retained, based on the pruning rate pk. However, it can be13

difficult to quickly determine the optimal rate for each layer while satisfying14

the given constraints, as discussed in the following section.15

3.3. Adaptive Filter Search16

Several recent studies [39, 41, 42] have modeled neural network pruning17

as an optimal structure search problem, used to determine the pruning rate18

in each layer with various intelligent algorithms. However, these techniques19

exhibit several problems, including the following. (1) The introduction of the20

pruning rate step size vector reduces the search space, which often results in21

sub-optimal performance. (2) The structured search must be repeated when22

budget requirements and datasets are modified, which requires significant23

computational resources and runtime. (3) The minimum pruning rate in24

each layer is set based on subjective experience and is not universal. (4)25

The use of hyper-parameters often leads to issues with tuning optimization,26

which further increases the complexity of the problem.27

The last layer of a CNN tends to provide the best discrimination informa-28

tion and is commonly used for various application tasks. However, interme-29

diate convolutional layers contain far more critical information in practice.30

12



Thus, by analyzing the correlation between layers, a more appropriate prun-1

ing method can be developed to achieve higher recognition accuracy while2

reducing the number of required computations. In this study, we automati-3

cally determined the pruning rate for each layer using the importance Ik of4

individual convolutional layers [45]:5

Ik =
Mk

∑K

k=1
Mk

(7)

where Mk =
1

fk

∑fk
i=1

H̃ i
k. After obtaining the importance assessment metrics6

for each block, we must determine how to map this importance to the actual7

pruning rates in each convolutional layer. As in previous studies [46], we8

assumed the filter pruning rate in each layer is negatively correlated with9

the importance. A pruning rate evaluation function can then be constructed10

from this assumption:11

pk = 1−
(

αIk + βI2k
)

k = 1, 2, 3, . . . , K (8)

where α is used to describe the slope of the first-order linearity and β is12

the bias correction term introduced to identify the optimal filter distribution13

while satisfying sparse constraints (FLOPs) used to analyze speedup perfor-14

mance. Eq. (1) converts the generic pruning problem into an attempt to15

solve for α and β as follows:16

|F (Np ((αIk + βI2k) ∗ F,W
′;Xtrain ))− C| < T

s.t. 0 < αIk + βI2k ≤ 1 k = 1, 2, 3, . . . , K
(9)

where 0 < αIk+βI2k ≤ 1 and T and C are the tolerance and target computa-17

tion, respectively. Since pk ∈ (0, 1], a range constraint is also involved. The18

linearity of this relationship allows the problem to be transformed as follows:19

|F
(

Np

((

αIk + βI2k
)

∗ F,W′;Xtrain

))

− C| < T

s.t. max
(

αIk + βI2k
)

≤ 1

min
(

αIk + βI2k
)

> 0 k = 1, 2, 3, . . . , K

(10)

Since the FLOPs constraint is closely related to the number of filters in the20

front-end and back-end layers, it can be difficult to solve for the values of α21

and β directly. The Nelder-Mead search algorithm [19] can be used to search22

the minimum of a multivariate function and does not require a derivable23

13



expression. It also converges to a minimum relatively quickly, saving signif-1

icant runtime compared to pruning algorithms such as ABCPruner [41]. As2

such, this paper applied the encapsulated Nelder-Mead search algorithm in3

scikit-learn under a fixed search domain. Fast determination of the optimal4

pruning rate for each model layer was achieved as a result. It is worth noting5

that, although previous studies have demonstrated pruned sub-networks can6

achieve comparable performance without inheriting original network weights7

(random initialization), a recent study [47] proved the inheritance of impor-8

tant weights in a pruned network could help a sub-network converge to higher9

accuracy without investing more training resources.10

3.4. Pruning Implementation and Multi-Branch Network Processing11

The proposed pruning process (2EAFS), based on the above analysis, is12

shown in Algorithm 1. The 2D entropy of the output feature map for the13

layer to be pruned was first calculated using Eq. (3). The corresponding14

entropy value was then restricted to [0,1] using max-min normalization. The15

importance of each convolutional layer was then determined using Eq. (7)16

and a function based on the FLOPs constraint was constructed to adaptively17

and rapidly determine the ideal pruning rate for each layer. Critical weights18

were then inherited based on high or low 2D information entropy. Finally,19

the pruned model was fine-tuned to maintain comparable performance with20

the pre-trained model.21

Common CNN models include efficient plain networks, multi-branch net-22

work structures offering higher recognition accuracy, and associated varia-23

tions. For example, VGG is a typical front-end representation of this struc-24

ture type [43]. Other network structures have also been developed recently,25

including ResNet[7]. Due to the singular structure of the VGG network, crit-26

ical weights can be directly obtained from a 2D entropy evaluation and the27

Nelder-Mead search algorithm, as shown in Fig. 3(a). In the case of ResNet,28

this approach involves some limitations due to the introduction of residual29

connections. For instance, suppose a residual block must be used to complete30

a sum operation. In this case, it is necessary to ensure the number of input31

and output channels are consistent, making it difficult to directly prune the32

last convolutional layer in each residual block. For example, ResNet-56/11033

(shown in Fig. 3(b)) includes two 1×1 convolutional layers per residual block.34

However, the parameters and convolution computations are primarily con-35

centrated in the first layer. In contrast, each residual block in ResNet-5036

(shown in Fig. 3(c)) includes two 1×1 and one 3×3 convolutional layer. As37

14



such, most of the calculations are performed in the first two layers and only1

the last layer is reserved for each residual block of the ResNet, while other2

layers are pruned.3

Algorithm 1 The pruning algorithm based on 2EAFS

Input: The pre-trained model weight is given by {wk}
K
k=1

, the number of fine-
tuned iterations is N , and the target FLOPs quantity is C.

Output: The pruned model Mp(·) and the weight parameters {w′

k}
K

k=1
after

fine-tuning.
1: for all 1 → K do

2: 2D entropy H ← Eq.(3)
3: H̃ i

k ← Eq.(4) and Eq.(5)
4: end for

5: Ik ← Eq.(7)
6: Construct a C constrained Eq.(8) and Eq.(9)
7: pk ← Eq.(10) by the Nelder-Mead algorithm
8: {Indk}

K
k=1
← Eq.(6)

9: Inherit important weights {w′

k}
K

k=1
by {Indk}

K
k=1

10: while 1 → N do

11: Fine-tune the pruned modelMp(·)
12: end while

4. Experiments4

In this section, we demonstrate the compression performance of the pro-5

posed method applied to the CIFAR10/100 and ILSVRC2012 datasets using6

different network architectures. Implementation details for these experiments7

are first explained and comparisons are then provided with some popular8

techniques. Finally, the causes of this improved performance displayed by9

the pruned model are discussed.10

4.1. Experimental Details11

4.1.1. Benchmark Datasets and Models12

Five benchmark datasets, CIFAR-10 [48], CIFAR-100 [48], ILSVRC-201213

[49], NWPU-RESISC45[50] and CUB-200-2011[51] were used to conduct a14

series of validation experiments. To facilitate a comparison with other meth-15

ods, the performance of the proposed pruning technique was investigated16

using mainstream CNN models, including plain networks (i.e., VGG-16 [52])17

15
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Figure 3: Pruning strategies for the (a) regular structure, (b) residual block1, and (c)
residual block2 in the proposed 2EAFS. The online model represents the unpruned struc-
ture, while offline denotes the pruned structure.

and multi-branch networks (i.e., ResNet). CIFIR-10 and CIFIR-100 are im-1

age datasets with sample sizes of 32x32, for which 50k images were used for2

training and 10k were used for testing. The primary difference is the former3

includes only 10 categories while the latter spans 100. ILSVRC-2012 is a4

large-scale dataset containing 1.28 million training images and 50k valida-5

tion images from 1,000 categories. NWPU-RESISC45 dataset is a publicly6

available benchmark for remote sensing image scene classification which con-7

tains 31,500 images, covering 45 scene classes with 700 images in each class,8

we are divided into training sets and test sets according to the 7: 3 ratio.9

The CUB-200–2011 is the most widely used benchmark for fine-grained im-10

age classification. The dataset covers 200 species of birds, including 5,99411

16



training images and 5,794 test images. Specifically, VGG-16, ResNet-56, and1

ResNet-110, were pruned using CIFAR-10/100, ResNet-50 was pruned on2

ILSVRC-2012 and NWPU-RESISC45, while VGG-16 (input image size is3

224×224) was pruned on CUB-200-2011.4

4.1.2. Training Settings5

All experiments were optimized using a stochastic gradient descent algo-6

rithm (SGD) with a momentum of 0.9. To alleviate overfitting and speed7

up convergence, CIFAR-10 used a weight decay of 0.005, CIFAR-100 used8

weight decay values of 0.005 and 0.0005 for VGG-16 and ResNet-56/110,9

respectively, and ResNet-50 with ILSVRC-2012 and NWPU-RESISC45 used10

a weight decay of 0.0001. VGG-16, ResNet-56/110, and ResNet-50 included11

batch sizes of 256, training epochs of 150, 300, and 90 (NWPU-RESISC4512

is 30), and initial learning rates of 0.01, 0.01, and 0.1(NWPU-RESISC45 is13

0.01), respectively. The learning rates for all CIFAR-10/100 networks were14

divided by 10 at the 150th and 225th epochs, excluding VGG-16, which di-15

vided the learning rate by 10 at the 50th and 100th epochs. In the case16

of ILSVRC-2012, the learning rate was divided by 10 in the 30th and 60th17

epochs, and the learning rate for the first 5 epochs was gradually increased18

to speed up convergence. The training parameters utilized for VGG-16 on19

CUB-200-2011 were identical to those for CIFAR-10/100. A total of 2,00020

images were randomly sampled from each of the benchmarks and architec-21

tures to estimate the average 2D entropy of each feature map.22

All models were implemented and trained on an NVIDIA Tesla V100 GPU23

using Pytorch. Random cropping and horizontal flipping were applied in all24

experiments to augment input images. No other processing steps (e.g., label25

smoothing, image augmentation, architecture modification, or cosine/linear26

decay learning rates) were included, since these experiments are specifically27

intended to demonstrate the performance of the pruning algorithm.28

4.1.3. Performance Metrics29

Parameter quantities and FLOPs were used to evaluate pruning model30

memory footprints and acceleration effects, which are mainstream evaluation31

criteria used in model compression. Corresponding pruning rates (PR) are32

reported below. Specifically, the Top-1 accuracy is reported for CIFAR-33

10/100 and both Top-1 and Top-5 accuracies are reported for ILSVRC-2012.34

Accuracy correction is another vital evaluation metric for fair comparisons,35

as discussed below.36
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4.2. Experiments on CIFAR-101

VGG-16. The performance of our proposed filter pruning method was2

compared with several conventional algorithms, including those based on3

the intrinsic properties of neural networks, such as L1-Normal [14], Hrank4

[30], CPMC [53], SSIM-QSFM [54], several regularization-retraining pruning5

methods such as SSS [36], Hinge [55], VCNNP [35], SWP [38] and GAL [37],6

and weight sharing method (i,e, SCWC[56]), as shown in Table 2. Compared7

with state-of-the-art methods (i.e., Hrank [30], CPMC [53], and QSFM-SSIM8

[54]), the proposed model exhibited lower performance degradation (0.38%9

vs 1.62% by Hrank [30], 0.28% by CPMC [53], and 1.79% by QSFM-SSIM10

[54]), larger parameter reductions (74.9% vs. 65.3% by Hrank, 66.0% by11

CPMC, and 75.0% by QSFM-SSIM), and larger FLOPs reductions (86.1%12

vs. 82.1% by Hrank, 92.9% by CPMC, and 75.0% by QSFM-SSIM), all13

representing significant decreases. Both Hrank and 2EAFS failed to achieve14

better experimental results in highly compressed cases, which we attribute15

to manually set pruning rates. 2EAFS also produced better experimental16

results at different pruning rates in the case of regularization-retraining. For17

example, SSS [37], Hinge [55], VCNNP [35], and GAL-0.05 [37] produced18

varying degrees of performance degradation (0.69%/0.94% by SSS [37], 0.43%19

by Hinge [55], 0.07% by VCNNP [35], and 0.19% by GAL-0.05 [37]) when the20

number of FLOPs was reduced by less than 50% and the parameters were21

reduced by no more than 80%. In contrast, the proposed method achieved a22

65.0% reduction in FLOPs and an 80.3% reduction in parameters, with only23

a 0.07% performance decrease. Finally, compared with the weight sharing24

method SCWC, 2EAFS has better performance with similar FLOPs. These25

results suggest our proposed pruning method offers excellent performance26

with a simple model structure.27

ResNet-56. Pruning results for ResNet-56 applied to CIFAR-10 are28

shown in Table 3, where it is evident that 2EAFS offers superior perfor-29

mance (-0.54%/1.59% vs. -0.26%/2.54% by Hrank [30] and -0.39%/2.06%30

by FilterSketch [57] in Top-1 accuracy reduction), with similar FLOP quan-31

tities (30.4%/74.7% vs. 29.3%/74.4% by Hrank and 30.4%/74.4% by Fil-32

terSketch). 2EAFS was also compared with two property importance-based33

methods: L1 Normal [14] and NISP [29]. Notable performance improvements34

(-0.13% vs. -0.02% by L1 Normal and 0.03% by NISP) were also achieved35

in the case of more significant reductions in FLOPs and parameters. This36

demonstrates that 2EAFS is adequate for tasks with high compression rates,37

enabling deployment on resource-constrained devices. Similar observations38

18



Table 2: Performance comparisons for VGG-16 applied to CIFAR-10.

Method FLOPs↓ Parameters↓ Top-1% ±Acc(%)
L1-Normal[14] 34.3% 64.0% 93.25→93.40 +0.15

SSS[36] 36.3% 66.7% 93.96→93.27 -0.69
Hinge[55] 39.1% 80.1% 94.20→93.59 -0.43

VCNNP[35] 39.1% 73.3% 93.25→93.18 -0.07
GAL-0.05[37] 39.6% 77.6% 93.96→93.77 -0.19

SSS[36] 41.6% 64.0% 93.96→93.02 -0.94
SCWC[56] 41.9% 39.5% N/A +0.07
2EAFS 50.0% 71.4% 93.55→93.92 +0.37
Hrank[30] 53.5% 82.9% 93.96→93.43 -0.53
2EAFS 65.0% 80.3% 93.55→93.62 +0.07
Hrank[30] 65.3% 82.1% 93.96→92.34 -1.62
CPMC[53] 66.0% 92.9% 93.68→93.40 -0.28
SCWC[56] 70.3% 69.4% N/A -0.67
SWP[38] 71.2% 92.7% 93.25→92.85 -0.40

QSFM-SSIM[54] 75.0% 75.0% 93.39→91.60 -1.79
2EAFS 74.9% 86.1% 93.55→93.17 -0.38

of the adaptive importance-based methods (GAL-0.6 [37] and SCP [58]) sug-1

gested that 2EAFS achieved better parameter compression (53.7% vs. 11.8%2

for GAL-0.6 and 48.4% for SCP) without performance degradation (-0.13%3

vs. 0.28% by GAL-0.6 and 0.46% by SCP).4

ResNet-110. The performance of ResNet-110 applied to CIFAR-10 was5

also analyzed, as shown in Table 4. Similar to the results produced by6

ResNet-56, 2EAFS achieved better accuracy (94.40% vs. 93.61%) compared7

to the baseline model, with a 43.1% reduction in FLOPs and a 43.0%8

reduction in parameters. Compared with FilterSketch [57] and Hrank [30],9

2EAFS again achieved lower performance degradation (0.02% vs. 0.06% and10

0.85%, respectively), with a slight reduction in complexity. This model also11

outperformed NISP [29] and GAL-0.5 [37], achieving better recognition per-12

formance (93.59% vs. 93.38% and 92.55%, respectively). 2EAFS further13

accelerated the required calculations (70.6% vs. 43.8% and 48.5%) and re-14

duced the overload (71.1% vs. 43.3% and 44.8%), indicating the proposed15

technique to be highly simple and efficient for multi-branch networks, espe-16

cially residual networks. Fig. 4 shows the resulting performance degradation17

of the proposed pruning method applied to ResNet-56 and ResNet-110 under18
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Table 3: Performance comparisons for Resnet-56 applied to CIFAR-10.

Method FLOPs↓ Parameters↓ Top-1% ±Acc(%)
DeepPruningES[59] 21.3% N/A 93.37→91.89 -1.48

L1-Normal[14] 27.6% 14.1% 93.06→93.04 -0.02
Hrank[30] 29.3% 16.8% 93.26→93.52 +0.26

FilterSketch[57] 30.4% 20.6% 93.26→93.65 +0.39
2EAFS 30.4% 34.1% 93.26→93.80 +0.54
SCWC[56] 32.6% 33.2% N/A +0.10
GAL-0.6[37] 37.6% 11.8% 92.98→93.26 -0.28

FilterSketch[57] 41.5% 41.2% 93.26→93.19 -0.07
SCWC[56] 41.8% 43.0% N/A -0.04
NIPS[29] 43.6% 43.6% 93.06→93.01 -0.03
CP[32] 50.0% N/A 92.80→91.80 -1.00
AMC[40] 50.0% N/A 91.80→91.90 -0.90
DCP[60] 50.0% N/A 93.80→93.59 -0.21
DMC[61] 50.0% N/A 93.62→93.69 +0.07
2EAFS 50.7% 53.7% 93.26→93.39 +0.13
SCP[58] 51.5% 48.4% 93.69→93.23 -0.46
SFP[62] 52.6% N/A 93.59→93.35 -0.24
LFPC[63] 52.9% N/A 93.59→93.34 -0.25

Aakash et al.[64] 53.9% 51.3% 94.11→93.37 -0.74
Hrank[30] 74.4% 68.1% 93.26→90.72 -2.54

FilterSketch[57] 74.4% 71.8% 93.26→91.20 -2.06
2EAFS 74.7% 76.7% 93.26→91.67 -1.59

different FLOPs conditions. Several state-of-the-art methods were compared1

to demonstrate the advantages of 2EAFS. It is evident from the figure that2

model recognition effects decreased at varying rates as the pruning rate in-3

creased. However, 2EAFS consistently achieved better Top-1 accuracy com-4

pared to other pruning models with similar computational effort, indicating5

the proposed method can achieve maximum compression and acceleration6

while maintaining accuracy.7

4.3. Experiments on CIFAR-1008

Experiments were also conducted using three networks applied to the9

more complex CIFAR-100 dataset. Seven model compression methods were10

compared, including VCNNP [35], CPGMI [58], CPMC [53], G-pruning [68],11

20



Figure 4: Comparisons of performance degradation for existing methods and 2EAFS under
varying FLOPs quantities. Experiments were performed using the CIFAR-10 dataset.

MIL [69], BNP [70], and SFP [62], as shown in Table 5. Specifically, in the1

case of the simple VGG-16 model structure, the proposed method achieved2

better time and spatial complexity than VCNNP [35] and CPGMI [58] with3

comparable performance (73.64% vs. 73.33% and 73.53%). In addition,4

2EAFS achieved outstanding performance in terms of accuracy degradation5
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Table 4: Performance comparisons for ResNet-110 applied to CIFAR-10.

Method FLOPs↓ Parameters↓ Top-1% ±Acc(%)
SFP[62] 14.6% N/A 93.68→93.83 +0.15

L1-Normal[14] 15.9% 2.3 93.53→93.55 +0.02
Liu et al.[65] 15.9% 2.3 93.14→93.22 +0.08
L1-Normal[14] 38.6% 32.4% 93.53→93.30 -0.23

SFP[62] 40.8% N/A 93.68→93.86 +0.18
CNN-FCF[66] 43.1% 43.2% 93.58→93.67 +0.09
Hrank[30] 41.2% 44.8% 93.50→94.23 +0.73
2EAFS 43.1% 43.0% 93.61→94.40 +0.79
NISP[29] 43.8% 43.3% 93.53→93.38 -0.15

GAL-0.5[37] 48.5% 44.8% 93.50→92.55 -0.95
Hrank[30] 58.2% 59.2% 93.50→93.36 -0.14
2EAFS 58.8% 58.6% 93.61→93.90 +0.29

FilterSketch[57] 63.3% 59.9% 93.50→93.44 -0.06
Hrank[30] 68.6% 68.7% 93.50→92.65 -0.85

DeepPruningES[59] 64.8% N/A 93.80→91.34 -2.46
2EAFS 70.6% 71.1% 93.61→93.59 -0.02

CNN-FCF[66] 70.8% 69.5% 93.58→92.96 -0.62
Nima et.al[67] N/A 78.0% 94.27→93.00 -1.27

when compressing ResNet-56. For example, our approach produced lower1

performance degradation under the condition of halving model computations2

(1.87% vs. 2.86% for BNP and 2.61% for SFP). To further demonstrate the3

effectiveness of our algorithm, acceleration effects (37.3%, 45.1%, and 53.0%)4

and the performance (72.85%, 72.30%, and 71.89%) of ResNet-110 under dif-5

ferent parameter compression ratios (44.1%, 51.2%, and 58.2%) are reported6

in Table 5. The results of these experiments demonstrate the proposed data-7

driven methodology, 2EAFS, can achieve better acceleration effects in high8

compression states.9

4.4. Experiments on ILSVRC-201210

To further demonstrate the effectiveness of our approach for more com-11

plex datasets, we compared 2EAFS with several advanced algorithms, in-12

cluding those based on the intrinsic properties of neural networks i.e.,CP [32],13

Hrank [30], [71] and [74] ,automatic subnet search such as ABCpruner [41]14

and PSO[73], and some regularization-retraining pruning methods (i.e., SSS15
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Table 5: Performance comparisons for VGG-16 and ResNet-56/110 applied to CIFAR-100.
PR is used to express the reduction rate for parameters or FLOPs.

Model Method FLOPs PR Parameters PR Top-1% ±Acc(%)
VCNNP[35] 256.00M 18.1% 9.14M 37.9% 73.26→73.33 +0.07
CPGMI[58] 198.20M 37.1% 4.99M 37.1% 73.26→73.53 +0.27

VGG-16 2EAFS 173.16M 44.9% 4.35M 70.6% 73.83→73.64 -0.19
CPMC[53] 162.00M 48.4% 4.80M 67.5% 73.80→73.01 -0.49
2EAFS 152.65M 51.4% 3.73M 74.8% 73.83→73.15 -0.68

G-pruning[68] 87.10M 32.9% N/A 30% 71.48→70.81 -0.67
2EAFS 80.00M 36.8% 0.47M 45.4% 71.52→70.60 -0.92
MIL[69] 76.30M 39.3% N/A N/A 71.33→68.37 -2.96

ResNet-56 BNP[70] 67.20M 51.1% N/A N/A 72.93→70.07 -2.86
SFP[62] 59.40M 52.6% N/A N/A 71.40→68.79 -2.61
2EAFS 61.00M 51.8% 0.36M 58.5% 71.52→69.65 -1.87
2EAFS 159.98M 37.3% 0.97M 44.1% 73.62→72.85 -0.77

ResNet-110 2EAFS 140.02M 45.1% 0.85M 51.2% 73.62→72.30 -0.78
2EAFS 119.86M 53.0% 0.73M 58.2% 73.62→71.89 -1.73

Table 6: Pruning results of ResNet-50 on ILSVRC-2012. PR is used to express the reduc-
tion rate of FLOPs.

Model FLOPs PR Top-1% ±Acc% Top-5% ±Acc(%)
SSS-26 2.82B 31.9% 76.15→74.18 -1.97 92.96→91.91 -1.05
CP[32] 2.73B 34.1% 76.15→72.30 -3.85 92.96→90.80 -2.16
SFP[62] 2.39B 41.8% 76.15→74.61 -1.54 92.87→92.06 -0.81

SSS-32[36] 2.33B 43.9% 76.12→71.82 -4.30 92.86→90.79 -2.07
2EAFS 2.30B 44.1% 76.15→74.75 -1.40 92.87→92.34 -0.53

White Box [71] 2.22B 45.6% 76.15→75.32 -0.83 92.96→92.43 -0.53
RRBP[72] 1.86B 54.5% 76.15→73.00 -3.15 92.96→91.00 -1.96
GAL[37] 1.84B 55.6% 76.15→71.80 -4.35 92.96→90.82 -2.14

ABCPruner[41] 1.79B 56.6% 76.01→73.52 -2.49 92.96→91.51 -1.45
PSO[73] 1.71B 58.1% 76.15→71.93 -4.22 92.87→91.26 -1.61
2EAFS 1.60B 61.1% 76.15→73.46 -2.98 92.87→91.51 -1.30
Hrank[22] 1.55B 62.6% 76.15→71.98 -4.17 92.96→91.01 -1.95

CLR-RNF-0.44[74] 1.23B 70.1% 76.01→72.67 -3.34 92.96→91.09 -1.87
Hrank[22] 0.98B 76.0% 76.15→69.10 -7.05 92.96→89.58 -3.38
2EAFS 1.00B 75.7% 76.15→70.53 -6.05 92.87→89.85 -3.28
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[37], SFP [62], GAL [37], and RRBP [72]). These comparative experiments1

were conducted using ResNet-50 applied to ILSVRC-2012. Unlike in previ-2

ous experiments, we report the Top-1 and Top-5 accuracy and performance3

degradation for 2EAFS under different acceleration conditions, as shown4

in Table 6. Compared with other advanced methods, 2EAFS consistently5

achieved better recognition results. Specifically, it reduced model FLOPs to6

2.30B while achieving 74.75% Top-1 accuracy and 92.34% Top-5 accuracy.7

Compared to Hrank [30], a recent state-of-the-art method, 2EAFS achieved8

better performance (73.46% vs. 71.98% and 70.10% vs. 69.10%) under sim-9

ilar acceleration conditions (62.4% vs. 62.6% and 75.7% vs. 76.0%). Under10

larger acceleration conditions, performance (2.69% vs. 3.15% by RRBP [72]11

and 4.35% by [37] in Top-1 accuracy) comparable to RRBP and GAL was12

still achieved. Compared with the automatic search method, in the case of13

reducing more FLOPs, 2EAFS can achieve lower accuracy drop on Top-5.14

The above experimental results demonstrate that our proposed method offers15

significant advantages in pruning ResNet-50 applied to large-scale datasets.16

Fig. 5 shows the number of filters in the first two convolutional layers for17

each residual block of Resnet-50 under different FLOPs constraints. Each18

time there is a down-sampling operation, the first two residual blocks in the19

same stage retain more filters. We suggest that when down-sampling is per-20

formed with a convolution of stride 2, more filters must be used to compensate21

for a loss of information caused by the reduced resolution of feature maps. In22

addition, it is evident this adaptive pruning algorithm is relatively balanced,23

avoiding poor information transmission caused by excessive pruning of some24

layers.25

Grad-CAM (Gradient-weighted Class Activation Mapping) is a visual-26

ization technique that can help evaluate the network’s performance [75].The27

Grad-CAM for ResNet-50 with 2EAFS is shown in Fig. 6, in which the red28

regions correspond to a high score for a class and the blue regions repre-29

sent that the feature is suppressed. All Grad-CAMs support the white crane30

category, in which the head and belly of the white crane are hot and other31

objects (e.g., vegetation) are cool. According to the Grad-CAM results, the32

ResNet-50 model optimized by 2EAFS can more effectively suppress vege-33

tation than the original ResNet-50 while still retaining high scores for the34

white crane class.35
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Figure 5: The number of filters in the first two convolutional layers for each residual block
of Resnet-50 under different FLOPs constraints.

（a） （b） （c） （d）

Figure 6: Gradient-weighted Class Activation Mapping for Resnet50 with 2EAFS: (a)
Original image; (b)Pre-training model; (c) 2EAFS(44.1% reduction in FLOPs); (d) 61.1%
reduction in FLOPs.

4.5. Experiments on NWPU-RESISC45 and CUB-200-20111

In order to demonstrate that 2EAFS is also effective in specific scenarios2

or types of data, we chose typical remote sensing scene and image fine-grained3

classification tasks for verification, with ResnNet-50 and VGG-16 as bench-4

mark networks, respectively. The experimental results are shown Table 7,5
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Table 7: The performance of 2EAFS for remote sensing scene recognition and fine-grained
image classification

Dataset Model Parameters↓ FLOPs↓ Acc(%) ±Acc(%)
0.00% 0.00% 91.53 0.00

NWPU-RESISC45 ResNet-50 32.19% 30.05% 92.61 +1.08
51.85% 50.04% 92.06 +0.53
61.54% 60.02% 91.33 -0.20
0.00% 0.00% 72.32 0.00

CUB-200-2011 VGG-16 39.92% 32.58% 70.75 -1.57
43.98% 40.82% 70.06 -2.26

such as: on the remote sensing scene recognition dataset NWPU-RESISC45,1

with a 50% reduction in FLOPs, a performance improvement of 0.53% is still2

achieved; for the fine-grained classification dataset CUB-200-2011, with a re-3

duction of about 40% in FLOPs, a loss of 1.57% in accuracy occurs. This is4

because fine-grained classification tasks require more detailed features than5

coarse image classification, and compressing the original network model will6

to some extent lose some of the ability to extract fine-grained features, lead-7

ing to a certain degree of reduction in the accuracy of fine-grained image8

classification. However, the accuracy loss is still tolerable.9

4.6. Inference speed10

To further explore the model performance obtained by 2EAFS pruning,11

we evaluated the inference speed for four models under different FLOPs.12

PyTorch implements these tests in CPU(Intel(R) Xeon(R) Silver 4214R CPU13

@ 2.40GHz) and GPU(GeForce RTX 2080 Ti). In Table 8, we can observe14

that the pruning procedure can significantly increase the inference speed of15

the model.16

4.7. Discussion17

The above comparative experiments demonstrate that 2EAFS can main-18

tain better recognition accuracy while reducing the number of required cal-19

culations. We suggest its performance efficacy is primarily derived from20

adaptive filter search and the inheritance of weight importance.21

Adaptive Filter Search. Conventional neural network pruning meth-22

ods based on pretraining-dependency [14, 15, 16] and regularization-retraining23

[40, 39, 41, 42] require a fixed pruning structure or a series of hyper-parameter24
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Table 8: FPS of models with different pruning rates on GPU and CPU.

Image size Model FLOPs↓ FPS(CPU) FPS(GPU)
0.00% 395.39 203.08

32×32 VGG-16 50.0% 411.00 289.34
74.9% 477.67 364.52
0.00% 110.83 119.13

32×32 ResNet-56 30.4% 125.77 125.57
74.7% 131.13 135.42
0.00% 56.87 59.18

32×32 ResNet-110 43.1% 65.89 66.52
70.6% 67.85 69.67
0.00% 130.05 23.73

224×224 ResNet-50 43.1% 135.04 28.46
58.8% 137.28 33.25

tuning processes, which often produces sub-optimal results. Although auto-1

matic subnet searches [40, 39, 41, 42] based on a self-heuristic can provide a2

better network structure model, higher computational costs are involved that3

often produce suboptimal search results. The hierarchical pruning structures4

of VGG-16 with imposed FLOPs constraints are shown in Fig. 7 for different5

datasets (CIFAR-10 and CIFAR-100). It is evident the pruning rate varies6

between layers and the parameter pruning ratio is positively correlated with7

the depth of the convolutional layer. In other words, as the depth increases,8

more filters tend to be culled. 2EAFS self-adapts to derive a deterministic9

optimal pruned architecture without human involvement by introducing a10

measure of convolutional layer importance.11

Importance Weight Inheritance. Recent work [65] has demonstrated12

the essence of filter pruning lies in identifying an optimal pruned architecture13

rather than selecting the most important filter weights, as done in previous14

studies [30, 14]. In this subsection, we demonstrate that weights inherited15

by 2EAFS are sufficiently important using the results of an ablation study.16

High 2D entropy, low 2D entropy, and random weight inheritance based on17

pruned networks were extracted using VGG-16 and ResNet-56/110 applied to18

CIFAR-10. To provide a fair comparison, the other parameters were set to the19

same values as in previous experiments. It is apparent from the experimental20

results shown in Table 9 that better performance can be achieved when fil-21

ters corresponding to high information entropy feature maps undergo weight22
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Figure 7: The pruning rate of each layer for VGG-16 applied to (a) CIFAR-10 and (b)
CIFAR-100.

inheritance. Random inheritance also produces a certain degree of perfor-1

mance improvement relative to low information entropy. This indicates the2

pre-trained network model has ”distilled” some critical information through3
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Table 9: The effects of different weight inheritance methods on the accuracy of pruned
networks.

Method FLOPs High 2D entropy Random Low 2D entropy
VGG-16-P 78.90M 93.17 92.93 92.71
ResNet-56-P 62.45M 93.39 93.11 92.96
ResNet-110-P 74.88M 93.59 93.22 92.83

high 2D entropy, reaffirming the importance of inheriting weight information1

for recognition accuracy.2

5. Conclusion3

Existing deep neural networks offer good performance but at high infer-4

ence and storage costs. As such, this paper proposed an efficient acceleration5

method of CNNs, 2EAFS, in which information entropy in the feature map6

(measured by 2D entropy) was used as a theoretical guide to evaluate cor-7

responding filters and compress more compact CNN models. A constraint8

equation was then constructed based on the negative correlation between9

filter pruning rates and the importance of convolutional layers. The Nelder-10

Mead search algorithm was applied to quickly determine the optimal pruning11

rate in each layer. Finally, the weights of filters were inherited based on the12

pruning rate and information entropy, and model performance was restored13

by -tuning. Extensive experiments demonstrated the superiority of 2EAFS14

compared to other structural pruning algorithms.15
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To Reviewer 1:

Q1.1. What is the theoretical foundation behind the 2D Entropy based-Adaptive Filter
Search (2EAFS) method? How does it differ from other methods that have been
proposed for CNN pruning?

A1.1:2EAFS is a novel pruning method for convolutional neural networks (CNNs).
Compared to traditional pruning methods, 2EAFS employs the concept of 2D image
entropy to measure the importance of feature maps corresponding to convolution
kernels. Additionally, adaptive filters are utilized to enhance the efficiency and
accuracy of pruning. Next, we will provide a detailed explanation of the theoretical
foundation of the 2EAFS method and its differences from other CNN pruning
methods.

A:Theoretical foundation

(1) 2D entropy of feature map. Traditional CNN pruning methods usually use L1 or
L2 regularization. However, this method can only explain the importance of filters
based on the weight values and cannot measure their contribution to image
information. The concept of image entropy addresses the quantification of information
and can be used to measure the richness of information in feature maps. But the
premise is that the image entropy distribution is robust on the entire data set.
Fortunately, through many experiments and observations, it is found that the image
entropy distribution meets the above requirements. Calculations based on Shannon’s
entropy theory can only represent entropy values for a whole image. As such, they
cannot represent the spatial characteristics of image pixel distributions, which affects
the accuracy of information evaluation[1]. To address this issue, 2D information
entropy is introduced to represent spatial distribution characteristics in the feature
maps, thus more accurately assessing the contribution of each filter to image
information.

(2) Global pruning. Our inspiration comes from network slimming[2], where the
authors use the scaling factor of the batch normalization layer to achieve model
compression. However, the original method has a problem in that during global
pruning, inconsistent data distributions may result in some layers having zero
channels, which leads to the failure of the pruning method. Therefore, in subsequent
studies, researchers often normalize the data. Similarly, since the range of entropy
values is closely related to the size of feature maps, entropy values in different
convolutional layers vary significantly. To this end, we propose a max-min
normalization to normalize the 2D entropy of each layer to [0, 1].

(3) Adaptive Filter Search. The last layer of a CNN tends to provide the best
discrimination information and is commonly used for various application tasks.
However, intermediate convolutional layers contain far more critical information in
practice. Thus, by analyzing the correlation between layers, a more appropriate



pruning method can be developed to achieve higher recognition accuracy while
reducing the required computations [3]. Therefore, 2EAFS automatically determines
the pruning rate of each layer from the perspective of the importance of the
convolution layer. After obtaining the importance evaluation index of each
convolution layer, we construct the evaluation function through the negative
correlation between the pruning rate and the importance and determine the final
pruning rate through Nelder-Mead.

B:Differences with other CNN pruning methods.

(1)Pruning strategy. 2EFAS uses an adaptive filter search based on 2D information
entropy to determine the importance of each filter. In contrast, traditional CNN
pruning methods usually use L1 or L2 regularization or measure importance using
filter weight statistics such as mean and standard deviation.

(2)Determination of pruning rate. Several recent studies [4,5] have modeled neural
network pruning as an optimal structure search problem, using various intelligent
algorithms to determine the pruning rate in each layer. However, the structured
search must be repeated when budget requirements and datasets are modified, which
requires significant computational resources and runtime. 2EFAS constructs a
sparsity constraint equation based on the negative correlation between the filter
pruning rate and the importance of the convolutional layer. The Nelder-Mead search
algorithm is then adopted to quickly and adaptively determine the optimal pruning
architect.

(3)Pruning effect. Compared to traditional CNN pruning methods, 2EAFS can
significantly reduce the number of model parameters and computational complexity
while maintaining model accuracy. The 2EAFS method achieved better results in
experiments than other mainstream pruning methods. Meantime, we also chose
typical remote sensing scenarios and image fine-grained type recognition tasks to
verify that 2EAFS is still effective in specific scenarios or types of data

[1] Liu, G., & Zheng, X. (2021). Fabric defect detection based on information
entropy and frequency domain saliency. The Visual Computer, 37(3), 515-528.
Springer.

[2] Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning
efficient convolutional networks through network slimming. In Proceedings of the
IEEE international conference on computer vision (pp. 2736-2744).

[3] Chen, S., & Zhao, Q. (2018). Shallowing deep networks: Layer-wise pruning
based on feature representations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 41(12), 3048-3056. IEEE.

[4] Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K. -T., & Sun, J. (2019).
Metapruning: Meta learning for automatic neural network channel pruning. In



Proceedings of the IEEE/CVF international conference on computer vision (pp.
3296-3305).

[5] Lin, M., Ji, R., Zhang, Y., Zhang, B., Wu, Y., & Tian, Y. (2020). Channel pruning
via automatic structure search. arXiv preprint arXiv:2001.08565.

Q1.2:How exactly is the importance of a filter measured using the amount of
information contained in feature maps?

A1.2:Thank you very much for the questions raised by the reviewer. In structured
pruning, when a filter is removed, the output feature map of that filter is also removed,
which indicates the correlation between the filters and feature maps in neural
networks. Previous studies[1] have used feature map sparsity to remove filters.
However, this data-driven approach depends heavily on the distribution of input
images. It also requires large sample quantities to make reasonable predictions,
which involves a complex and time-consuming training process. Image entropy can be
used for quantitative information measurements and represent the richness of feature
maps. Entropy distribution is also robust across the entire data set, which has been
demonstrated through extensive empirical validation. Therefore, this paper uses the
expected value of the 2D entropy of each feature map to determine the importance of
the corresponding filter.

In addition, we also carried out some ablation experiments to prove the
importance of the filter weight obtained by two-dimensional entropy. High 2D entropy,
low 2D entropy, and random weight inheritance based on pruned networks were
extracted using VGG-16 and ResNet-56/110 applied to CIFAR-10. To provide a fair
comparison, the other parameters were set to the same values as in previous
experiments. It is apparent from the experimental results shown in Table1 that better
performance can be achieved when filters corresponding to high information entropy
feature maps undergo weight inheritance. Random inheritance also produces a
certain degree of performance improvement relative to low information entropy. This
indicates the pre-trained network model has "distilled" some critical information
through high 2D entropy, reaffirming the importance of inheriting weight information
for recognition accuracy.

Table1: The effects of different weight inheritance methods on the accuracy of pruned
networks

Method FLOPs High 2D entropy Random Low 2D entropy
VGG-16 78.90 93.17 92.93 92.71

Resnet-56-P 62.45 93.39 93.11 92.96
Resnet-110-P 74.88 93.59 93.22 92.83

[1]Hu H, Peng R, Tai Y W, et al. Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures[J]. arXiv preprint arXiv:1607.03250,
2016.



Q1.3:Can the proposed 2EAFS method be applied to other types of neural networks
beyond CNNs? If so, how would the method need to be adapted?

A1.3:Thank you very much for the question raised by the reviewer. Currently, as one
of the most important algorithms in deep learning, CNNs (CNNs) have achieved great
success in computer vision, classification, and other fields. However, there are still
major problems that need to be solved, such as high complexity, a large number of
parameters, and difficult deployment. Therefore, this paper focuses on proposing an
efficient, intuitive, and advanced model compression algorithm specifically for CNNs.

Since other types of neural networks, such as recurrent neural networks and fully
connected neural networks, have significant differences in structure and parameter
composition compared to CNNs, it is difficult to apply the 2EAFS method to other
neural networks directly. However, its ideas can provide inspiration and reference for
optimizing other neural networks. For example, one can try to design pruning
algorithms specific to the particular structure of different neural networks or achieve
better model optimization effects by combining pruning with other model compression
methods.

Q1.4: Are there any limitations to the 2EAFS method that the authors did not address? Are there
any specific scenarios or types of data for which the method might not be effective?

Q1.4:Thank you very much for the valuable suggestions provided by the author. The
2EAFS method can be effectively applied to model compression tasks of any CNN. In
the experimental comparison of this paper, we chose the ILSVRC-2012 dataset, which
is the most typical, complex, and has the most categories, to demonstrate that the
proposed method still has good compression performance on large-scale datasets. In
order to demonstrate that 2EAFS is also effective in specific scenarios or types of
data, we chose typical remote sensing scene and image fine-grained classification
tasks for verification, with ResnNet-50 and VGG-16 as benchmark networks,
respectively. The experimental results are shown Table2, such as: on the remote
sensing scene recognition dataset NWPU-RESISC45, with a 50% reduction in FLOPs,
a performance improvement of 0.53% is still achieved; for the fine-grained
classification dataset CUB-200-2011, with a reduction of about 40% in FLOPs, a loss
of 1.57% in accuracy occurs. This is because fine-grained classification tasks require
more detailed features than coarse image classification, and compressing the original
network model will to some extent lose some of the ability to extract fine-grained
features, leading to a certain degree of reduction in the accuracy of fine-grained
image classification. However, the accuracy loss is still tolerable.

Revision location: Abstract, page 5, lines 5 to 7; Lines 16 to 11 on page; Page 17,
lines 1 to 4; Page 25, lines 2 to 5; Page 26, lines 2-9; Table 7.

Table 2: The performance of 2EAFS for remote sensing scene recognition and
fine-grained image classification



Dataset Model Parameters↓ FLOPs↓ Acc(%) ±Acc(%)

NWPU-RESISC45 ResNet-50

0.00% 0.00% 91.53 0.00

32.19% 30.05% 92.61 +1.08

51.85% 50.04% 92.06 +0.53

61.54% 60.02% 91.33 -0.20

CUB-200-2011 VGG-16

0.00% 0.00% 72.32 0.00

39.92% 32.58% 70.75 -1.57

43.98% 40.82% 70.06 -2.26

Q1.5: How does the performance of the 2EAFS-pruned models compare to other
methods of model compression, such as quantization or low-rank decomposition?

A1.5:Thank you for the valuable feedback. The performance of 2EAFS pruned models
depends on specific tasks, training epochs, and deployment complexity, making it
difficult to directly compare with model compression methods such as quantization or
low-rank decomposition. We will analyze the unique characteristics of these three
methods to highlight the advantages of 2EAFS.

The 2EAFS pruning algorithm has advantages such as simple operation,
significant performance improvement, and easy deployment, and it is suitable for all
types of CNNs (including 1×1 convolutional kernels). In addition, the pruned models
can be further optimized through parameter quantization or low-rank approximation
to improve numerical accuracy and reduce computational complexity while
maintaining the required accuracy and computational constraints. This approach is
versatile and can be combined with other model compression algorithms.

Quantization cannot eliminate the redundant filters inherent in the network
structure, and reducing the bit-width of parameters can lead to precision loss. In
addition, when quantizing specific bit widths, many existing training methods and
hardware platforms are no longer applicable, and dedicated system architectures
need to be designed, resulting in limited flexibility.

Low-rank decomposition has problems such as the high cost of matrix
decomposition operations, layer-by-layer decomposition not conducive to global
parameter compression, and requiring a large amount of retraining to achieve
convergence. In addition, recent years have seen more and more new networks using
1×1 convolutions, which are unsuitable for using low-rank decomposition methods
and make it challenging to achieve network compression and acceleration.

Q1.6: What are the specific advantages and disadvantages of the proposed 2EAFS
method in comparison to other approaches of network pruning?



A1.6:Thank you very much for your valuable suggestions. We summarize the
advantages and disadvantages of the proposed method as follows:

(1) Compared with the unstructured pruning method, 2EFAS has the advantages
of good portability, high applicability, simple operation and easy deployment while
obtaining better accuracy and compression ratio. Besides that，2EFAS can retain the
overall structure of the original model and facilitate integration with existing
hardware and software structures.

(2) Compared with the classical pruning methods that use L1 or L2
regularization to measure filter importance, 2EFAS utilizes image information entropy
to represent the richness of feature maps, thereby solving the problem of insufficient
representation of critical information.

(3) Compared to sparsity-constrained pruning methods, 2EFAS does not
necessitate any modification of the loss function or retraining but only entails
fine-tuning, resulting in substantial savings in resources and computation time,
making it more conducive for industrial application.

(4) Compared to model compression algorithms that utilize intelligent
optimization algorithms to determine pruning rates for each layer, 2EFAS can directly
obtain the optimal pruned network under sparse constraints. This also avoids the
difficulty of restructuring the search when the constraint targets or datasets change,
and the process is simple and intuitive.

Similarly, there is significant room for improvement in this method, such as how
to combine it with other pruning methods to propose a hybrid pruning model and how
to further compress the model by pruning fully connected layers.

Revision location: Page 6, lines 28 to 30; Page 8, lines 5 to 9; Page 8, lines 26 to 29;
Page 9, lines 13 to 16.

Q1.7:What is the impact of the proposed 2EAFS method on the interpretability of the
model?

A1.7: Thank you very much for your question. We will use Grad-CAM and ablation
experiments to demonstrate the interpretability of 2EAFS.

(1) Grad-CAM (Gradient-weighted Class Activation Mapping) is a visualization
technique that can help evaluate the network's performance[1].The Grad-CAM for
ResNet-50 with 2EAFS is shown in Fig.1, in which the red regions correspond to a
high score for a class and the blue regions represent that the feature is suppressed. All
Grad-CAMs support the white crane category, in which the head and belly of the
white crane are hot and other objects (e.g., vegetation) are cool. According to the
Grad-CAM results, the ResNet-50 model optimized by 2EAFS can more effectively
suppress vegetation than the original ResNet-50 while still retaining high scores for



the white crane class.

Fig. 1: Gradient-weighted Class Activation Mapping for Resnet50 with 2EAFS: (a)

Original image; (b)Pre-training model; (c) 2EAFS(44.1\% reduction in FLOPs); (d)

61.1\% reduction in FLOPs.
(2)We interpret that weights inherited by 2EAFS are sufficiently important using

the results of an ablation study. High 2D entropy, low 2D entropy, and random weight
inheritance based on pruned networks were extracted using VGG-16, and
ResNet-56/110 applied to CIFAR-10. The other parameters were set to the same
values as in previous experiments to provide a fair comparison. It is apparent from the
experimental results shown in Table3 that better performance can be achieved when
filters corresponding to high information entropy feature maps undergo weight
inheritance. Unexpected inheritance also produces a certain degree of performance
improvement relative to low information entropy. This indicates the pre-trained
network model has "distilled" some critical information through high 2D entropy,
reaffirming the importance of inheriting weight information for recognition accuracy.

Revision location: lines 3 to 12 on page 25; Figure 6

Table 3:The effects of different weight inheritance methods on the accuracy of pruned
networks

Method FLOPs High 2D entropy Random Low 2D entropy
VGG-16 78.90 93.17 92.93 92.71

Resnet-56-P 62.45 93.39 93.11 92.96
Resnet-110-P 74.88 93.59 93.22 92.83

[1] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D.
(2017). Grad-cam: Visual explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international conference on computer
vision (pp. 618-626).

Q1.8:Can the proposed 2EAFS method be used in real-time systems?

A1.8: Thank you very much for your questions. Whether it can be applied to real-time
systems depends on the model capacity and the specific application scenarios and
requirements. Based on normal video playback standard 24FPS, we measured the
FPS of the model with the different FLOPs on two chips: CPU (Intel (R) Xeon (R)



Silver 4214CPU @ 2.40 GHz) and GPU (GeForce RTX 2080 Ti). The results are
presented in Table 4. As shown, with the increase in pruning rate, the inference speed
of the model is significantly improved on both GPU and CPU, surpassing 24FPS and
meeting the real-time requirements.

Revision location: Page 26, lines 11 to 16; Table 8.
Table 4. FPS of models with different pruning rates on GPU and CPU.

Image size Model FLOPs↓ FPS(GPU) FPS(CPU)

32×32

VggNet16

0.00% 395.39 203.08

50.0% 411.00 289.34

65.0% 442.56 329.76

74.9% 477.67 364.52

ResNet56

0.00% 110.83 119.13

30.4% 125.77 125.57

50.7% 127.49 128.57

74.7% 131.13 135.42

VggNet110

0.00% 56.87 59.18

43.1% 65.89 66.52

58.85 66.46 67.66

70.6% 67.85 69.67

224×224 ResNet50

0.00% 130.05 23.73

43.1% 135.04 28.46

58.8% 137.28 33.25

Q1.9: How does the proposed 2EAFS method compare to other methods that use

pruning in combination with other techniques such as distillation, quantization and

weight sharing?

Q1.9:Thank you very much for your valuable suggestions. In the experimental part,
we added some empirical comparisons of pruning methods combined with distillation
[1,2] or weight sharing [3]. It can be seen from the Table 5 that on the CIFAR-10 and
CIFAR-100 datasets, 2EAFS can achieve a better recognition effect under the
condition of similar compression. Quantization is to reduce parameter storage and
memory occupation by reducing numerical bit width from the point of view of
hardware deployment. However, pruning, distillation, and parameter sharing are used
to eliminate redundant filters in the network structure from the perspective of software.



Considering the difference in principle, this paper does not compare with the
quantization method. After that, we will try to quantify the network after 2EAFS
pruning and finally realize the deployment of FPGA devices. Thank you again for
your valuable suggestions.

Revision location: Table 2, Table 3, and Table 4.

Table 5: Performance comparison of 2EFAS and pruning methods combined

with distillation or weight Sharing

[1] Li, G., Zhang, M., Wang, J., Weng, D., & Corporaal, H. (2022). SCWC: S
tructured channel weight sharing to compress convolutional neural networks.
Information Sciences, 587, 82-96. Elsevier.

[2] Aghli, N., & Ribeiro, E. (2021). Combining weight pruning and knowledge
distillation for CNN compression. In Proceedings of the IEEE/CVF confer
ence on computer vision and pattern recognition (pp. 3191-3198).

[3] Hu, Y., Sun, S., Li, J., Wang, X., & Gu, Q. (2018). A novel channel pruni
ng method for deep neural network compression. arXiv preprint arXiv:1805.
11394.

To Reviewer 2:

Q2.1:The discussion part of related work could be improved. Sec. 2 misses dis
cussion with middle-level pruning granularity like the Nvidia N:M sparsity [1,
2], block sparsity [3,4], which are also an important branch in network prunin
g.

Dataset Model Method Parameters ↓ Flops↓ ±Acc(%)

Cifar-10

VggNet16

Scwc(s=0.5)[1] 39.5% 41.9% +0.07
2EAFS 50.0% 71.4% +0.37

Scwc(s=0.2)[1] 69.4% 70.3% -0.67

2EAFS 86.1% 74.9% -0.38

Resnet56

Scwc(s=0.1)[1] 33.2% 32.6% +0.10

2EAFS 34.1% 30.4% +0.54

Scwc-0.05[1] 43.0% 41.8% -0.04

2EAFS 50.7% 53.7% +0.13

Resnet110
Nima et.al[2] 78% N/A -1.27

2EAFS 71% 70.6% -0.02

Cifar-10
0 VggNet16 Hu et.al[3] N/A 40% -0.61

2EAFS 74.8% 51.4% -0.23



A2,1:Thank you very much for the valuable suggestions of the reviewer. Indeed,
middle-level pruning is an important research direction, and we have added a
discussion about this in the related work section. As follows:

Fine-grained Structured Sparse usually group weight elements into small dense
regions and prune them at the granularity of groups. Researchers have proposed
various grouping methods to achieve better acceleration performance and higher
sparsity. Ji et al. [1]proposed a method to rearrange irregular fine-grained sparsity
into structured coarse-grained sparsity to bridge the gap between large sparse models
and poorer actual acceleration. Lin et al. [2] proposed a novel pattern of 1×N for
network pruning that achieves significant CPU acceleration while maintaining
high-performance accuracy. Supported by the NVIDIA Ampere Core, N: M sparsity
leads to attractive storage and computation efficiency and thus has been extensively
studied recently. Zhou et al. [3] proposed the sparse-refined straight-through
estimator (SR-STE) and sparse architecture divergence (SAD) to train N: M
structured sparse networks, achieving significant acceleration. Zhang et al. [4]
proved that N: M learning can be naturally formulated as a combinatorial
optimization problem of finding the best combination candidates in a finite collection.
Even though the aforementioned methods can achieve good speed and recognition
accuracy on GPUs with Ampere architecture support, the inference speed on CPUs
and ARM is still limited by hardware constraints.

Revision location: lines 2 to 9 on page 6; Page 6, lines 32 to 34; Page 7, lines 1 to 15.

[1] Ji, Y., Liang, L., Deng, L., Zhang, Y., Zhang, Y., & Xie, Y. (2018). TETRIS:
TilE-matching the TRemendous Irregular Sparsity. In S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in
Neural Information Processing Systems (Vol. 31). Curran Associates, Inc.

[2] Lin, M., Zhang, Y., Li, Y., Chen, B., Chao, F., Wang, M., Li, S., Tian, Y., & Ji, R.
(2023). 1xN Pattern for Pruning Convolutional Neural Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(4), 3999-4008.
doi: 10.1109/TPAMI.2022.3195774.

[3] Zhou, A., Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K., Sun, W., & Li, H. (2021).
Learning N: M fine-grained structured sparse neural networks from scratch.
arXiv preprint arXiv:2102.04010.

[4] Zhang, Y., Lin, M., Lin, Z., Luo, Y., Li, K., Chao, F., Wu, Y., & Ji, R. (2022).
Learning Best Combination for Efficient N: M Sparsity. arXiv preprint
arXiv:2206.06662.

Q2.2:The authors stated that their method does not require retraining. However,
there is actually a following fine-tuning phase after pruning (Lines 11, Algorit



hm1). This is self-contradicted and I recommend the authors organize a differe
nt claim.

A2.2:Thank you very much for raising this issue. We apologize for not providing a

clear description, which may have caused some confusion for the reviewer. In the

Introduction, page 4, lines 25-26, we intended to convey that 2EAFS does not need to

be retrained from scratch and only requires fine-tuning the model after inheriting the

weights. We have made the necessary revisions on page 4, lines 25-26, and deleted

this statement, and thank the reviewers for reminding us to pay attention to this point.

Q2.3:The compared methods for ImageNet are outdated. I recommend the authors

show comparisons with more advanced methods to make their claim more convincing.

Please refer to:

A2.3:Thank you very much for raising this issue. Following your suggestion, w
e have added more state-of-the-art methods for comparison on ImageNet to ev
aluate the effectiveness of 2EFAS.

Revision location: lines 11 to 15 on page 23; 24 pages, lines 13 to 14; Table
6

Q2.4:There are some typos in the current manuscript. Please fix them. I list so
me examples here.
1)In sec 3.3, there are some bugs in the format of references ("Several recent
studies [? 35, 37, 38] have ….").
2)In page 13, "figure" is missing in "shown in 3(b)".

A2.4:Thank you for pointing out the errors. We have made the necessary revisions in

the new version.

Revision location: Page 12, lines 17 to 18; Page 14, lines 33 to 34



Cover letter
Dear Editor,

We want to submit the manuscript entitled "An accelerating convolutional neural networks
via a 2D entropy based-adaptive filter search method for image recognition", which we wish to be
considered for publication on Applied Soft Computer.

The success of CNNs for various vision tasks has been accompanied by a significant increase
in required FLOPs and parameter quantities, which has impeded the deployment of CNNs on
devices with limited computing resources and power budgets. Therefore, it is necessary to
compress the CNN model. Applied soft computer is committed to publishing papers on CNN
model research [1，2]. However, previous studies on structured pruning primarily rely on designed
filters and channel importance criteria, without considering the influence of information entropy
(contained in feature maps) on model accuracy, which limits pruning effectiveness.

As such, This paper proposes a simple yet effective 2D Entropy based-Adaptive Filter Search
(2EAFS) method for fast CNN acceleration. Specifically, the importance of corresponding filters,
measured by utilizing the amount of information contained in feature maps, is employed as a
theoretical guide to simplify the complex exhaustive search process. Information entropy is then
normalized layer by layer and the resulting value is used to calculate a layer-wise importance
score in a single step. Additionally, a sparse constraint equation is constructed based on the
negative correlation between filter pruning rates and the importance of convolutional layers. The
Nelder-Mead search algorithm is then adopted to quickly and adaptively determine the optimal
pruning architecture. Finally, importance weights are inherited using the pruning rate and 2D
entropy and model performance are restored through fine-tuning. We selected several datasets and
carried out extensive experiments to prove the effectiveness of the proposed method. We would be
very happy if the submitted manuscript could be reviewed and considered for publication on
Applied Soft Computer.

We are looking forward to hearing from you.
Sincerely yours

Chunlei Li, Ph.D., Prof.

School of Electrical and Information Engineering, Zhongyuan University of Technology,

Zhengzhou, 450007, Henan, China

E-mail:lichunlei1979@zut.edu.cn;
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Highlights

1. This paper proposes a simple yet effective 2D Entropy based-Adaptive Filter
Search (2EAFS) method for fast CNN acceleration, which is illustrated in Fig.1.

2. A novel network pruning method (i.e., 2EAFS) is proposed, adopting 2-D entropy
feature evaluation and fast adaptive filter search. This end-to-end pruning
framework simplifies complexity without retraining or hyperparameter tuning of
the model.

3. An efficient filter importance evaluation criterion is proposed. Specifically, only
mini-batches of data are passed to the CNN model to accurately estimate the
importance of filters based on the 2-D entropy of the feature maps.

4. A negative correlation between filter pruning rate and convolutional layer
importance is utilized to construct sparse constraint equations. An optimal
pruning architecture for each layer is then quickly determined using the
Nelder-Mead search algorithm without human involvement.

5. Extensive experiments were conducted with CNNs (e.g., VGG and ResNet)
applied to datasets such as CIFAR-10/100, ILSVRC-2012, NWPU-RESISC45
and CUB-200-2011. Results demonstrated the effectiveness and efficiency of
2EAFS in reducing FLOPs and parameter requirements..

Fig1: The proposed 2EAFS framework. The importance of corresponding filters was first evaluated
using the two-dimensional entropy of the feature map. Constraint equations were then constructed
using the importance of convolutional layers, while the sub-network structure was adaptively
determined by the Nelder-Mead search algorithm. Finally, important weights were inherited based on
the pruning rate and 2D entropy and model performance was restored by fine-tuning.
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