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Abstract Wetland ecosystems play key roles in 
global biogeochemical cycling, but their spatial extent 
and connectivity is often not well known. Here, we 
detect the spatial coverage and type of wetlands at 
10  m resolution across southern Nigeria (total area: 
147,094  km2), thought to be one of the most wetland-
rich areas of Africa. We use Sentinel-1 and Sentinel-2 
imagery supported by 1500 control points for algo-
rithm training and validation. We estimate that the 
swamps, marshes, mangroves, and shallow water wet-
lands of southern Nigeria cover 29,924  km2 with 2% 
uncertainty of 460  km2. We found larger mangrove 
and smaller marsh extent than suggested by earlier, 
coarser spatial resolution studies. Average continu-
ous wetland patch areas were 120, 11, 55 and 13 
 km2 for mangrove, marsh, swamp, and shallow water 
respectively. Our final map with 10 m pixels captures 

small patches of wetland which may not have been 
observed in earlier mapping exercises, with 20% of 
wetland patches being < 1  km2

; these were clustered 
around urban centres, suggesting anthropogenic wet-
land fragmentation. Our approach fills a knowledge 
gap between very local (< 400  km2) studies reliant 
on field studies and aerial photos, and low resolution 
(> 250  m pixel dimensions) global wetland datasets 
and provides data critical for both improving land-
surface climate models and for wetland conservation.

Keywords Swamp · Marsh · Mangrove · Optical 
indices · SAR polarimetric indices · Random forest · 
Uncertainty

Introduction

Wetlands are one of the world’s most important and 
productive ecosystem types, playing a vital role in cli-
mate change mitigation (Hassan et  al. 2014), hydro-
logical and biogeochemical cycles (Junk et al. 2013) 
and maintaining livelihoods (Hu et  al. 2017; Wilen 
& Bates 1995). The southern part of Nigeria contains 
many wetlands which are thought to consist mainly of 
marshes, mangroves and freshwater swamps (Ayan-
lade & Proske 2016; Olalekan et al. 2014). However, 
great environmental pressure has been exerted on 
these ecosystems as result of land reclamation for 
agriculture and industrialization (e.g., Niger delta; 
Chidumeje et  al. 2015), urbanization (e.g., Lekki 
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lagoon of Lagos; Obiefuna et al. 2013) and contami-
nation from pollution (e.g., oil spills; Igu & March-
ant 2017; Ohimain 1996). The regional extent of 
existing wetlands that need protecting, and the extent 
of wetland loss and degradation, has thus far only 
been quantified at coarse resolution. Although there 
are some global wetland maps, such as Global Land 
Cover GLC250-2010 (250 m pixels) and the Global 
Lakes and Wetlands Database (GLWD-3, 1 km pix-
els), studies by Gumbricht et  al. (2017), Hu et  al. 
(2017) and Xu et  al. (2018) show inconsistencies 
between them due to differences in methods, data 
sources, and validation. Many global wetland maps 
rely on data that can be decades old and, particularly 
in developing countries, with very limited ground 
truth data. It is therefore important to improve maps 
of these ecosystems, using a range of techniques, to 
get a complete picture of wetland area and to estab-
lish the range and extent of different wetland types 
and their fragmentation. Comprehensive wetland 
maps and an understanding of the nature of their frag-
mentation are needed to build economic assessments 
of wetland ecosystem service provision and to sup-
port decision-making by regional and international 
bodies seeking to protect wetland systems as well as 
for inclusion in coupled land-surface—climatic mod-
els (e.g., JULES/QUEST: Clark et  al. 2011; Dadson 

et  al. 2010). The latter is crucial since wetlands are 
important for land–atmosphere carbon dynamics, 
greenhouse gas exchange, and the water cycle.

Southern Nigeria is a low-lying region cover-
ing ~ 147,094  km2 (between 4° 00′ and 7° 00′N, and 
3° 00′ and 9° 00′E, Fig. 1) and is thought to have the 
most extensive wetlands in west Africa (Gumbricht 
et al. 2017; Uloacha & Okeke 2004, 2004). However, 
this area is undergoing huge population expansion and 
development and so the wetlands may be at risk. The 
only wetland maps that currently span all of south-
ern Nigeria are from global projects (e.g., GLWD-3) 
and have relatively low resolution (1 km). However, 
there are some small-scale studies that have mapped 
a few small areas of wetland in the region using satel-
lite imagery (e.g., Ayanlade & Proske 2016; Obiefuna 
et  al. 2013; Taiwo & Areola 2009; locations shown 
in Fig.  1). The accuracy of these small-scale stud-
ies has yet to be assessed due to absence of suitable 
ground truthing data. Furthermore, the techniques 
used in these studies are not suitable for larger region 
or country-scale wetland mapping.

Satellite images have been used successfully to 
identify and map different wetland types around 
the world (Fei et  al. 2011; Guo et  al. 2017; Kle-
mas 2011; Kuenzer et  al. 2011; Mahdianpari et  al. 
2018). Interpretation of multi-temporal imagery in 

Fig. 1  The study region: 
a Location of the study 
area using the standard 
government classification 
of southern Nigeria, and the 
locations used in previous 
studies referred to in the 
main text: Lagos lagoon 
(Taiwo & Areola 2009), 
Olague forest, Apoi creek 
and Oguta lake (Ayanlade 
& Proske 2016)
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particular can aid classification of dynamic wet-
lands and their separation from other ecosystems 
(Mahdianpari et  al. 2018; Ozesmi & Bauer 2002). 
Many wetlands have seasonal characteristics based 
on changes in water level and vegetation that can 
assist their detection using remote sensing. For 
example, marshes experience drying of vegetation 
and a decrease in water level during the dry season 
or low tide periods (Murray-Hudson et  al. 2006). 
This can be observed using optical images from a 
decrease in the reflectivity in the near infrared and a 
slight increase in reflectivity to the red band due to 
suspended particles settling out at low water levels 
(Murray-Hudson et al. 2015).

The increasing availability of open access sat-
ellite data, and the growth of advanced machine 
learning tools integrated with robust cloud com-
puting resources has recently made multi-temporal 
datasets more accessible (Mahdianpari et  al. 2018). 
The majority of previous studies have used multi-
temporal Landsat imagery to classify wetlands both 
with unsupervised classification algorithms (e.g., 
K-means and ISODATA; Mwita et  al. 2012; Ram-
sey & Laine 1997) and with supervised classification 
schemes (Bwangoy et  al. 2010; Wright & Gallant 
2007), However, it is now possible to supplement this 
with Synthetic Aperture Radar (SAR) C-band multi 
polarization radar to discriminate between wetland 
types (Baghdadi et al. 2001), with cross polarization 
(HV, VH) providing better discrimination between 
some wetland classes. Combining multiple optical 
and SAR indices to classify different wetland types 
has great potential for wetland classification (Kaplan 
et al. 2019; Mahdavi et al. 2018; Salehi et al. 2019), 
however, such approaches have not yet been applied 
to the wetlands of southern Nigeria. As the only wet-
land maps that currently span this entire globally 
important region have pixel sizes of 250 m and 1 km 
(Gumbricht et  al. 2017; Lehner & Döll 2004), there 
is a need for updated datasets that can be met by the 
combination of optical and radar satellite data. There 
are limited attempts to map wetlands using remote 
sensing across certain parts of Africa. Amongst the 
few studies we include that of Landmann et al. (2010) 
were wetlands in western Burkina Faso and southern 
Mali (in West Africa) were mapped using spectral 
indices from MODIS and topographic features from 
SRTM. Mwita et al. (2012) map small scale wetlands 
in Tanzania and Kenya (in East Africa) using both 

optical and microwave data employing the decision 
tree classification techniques.

Here, we map for the first time, the extent of wet-
lands and categorize the different wetland types for 
the whole of southern Nigeria (147,094  km2) at a 
10 m resolution, leveraging the open access SAR and 
optical images acquired from Sentinel-1 and Senti-
nel-2 and exploiting cloud computing through Google 
Earth Engine (GEE). Our primary aim is to provide 
knowledge of wetland extent and character that is 
needed to support both conservation efforts and land 
surface climate models. We anticipated that higher 
resolution wetland mapping would capture smaller 
patches of wetland than previously documented in 
regional or global datasets and that this would be 
dominantly associated with areas near major cities,

Materials and methods

Our approach to mapping the wetlands of southern 
Nigeria involves the integration of indices from both 
optical and radar imagery (Fig. 2), and classification 
of imagery using the implementation of the Random 
Forest (RF) algorithm in Google Earth Engine (Gore-
lick et al. 2017). We use seasonal composite images in 
order to (a) maximise the number of cloud-free pixels 
and (b) incorporate the seasonal variations in wetland 
characteristics into our classification (Sects.  "Data 
selection"). We selected the most effective variables 
for classification in southern Nigeria using an esti-
mation of relative importance (Sect. "Random Forest 
classification and feature selection"). This required 
the compilation of a new dataset of 1500 wetland and 
non-wetland control points for training and validation 
(Sect.  "Compilation of control point data", Supple-
mentary Information).

Class definitions

Wetlands can be classified on the basis of hydrol-
ogy, soil type and vegetation. They include marshes 
(freshwater or saline waterlogged land areas that 
are periodically flooded, dominated by herbaceous 
plants), swamps (mineral soil wetlands dominated 
by trees with seasonal flooding), bogs (rain-fed peat-
lands, which can be with or without trees) and fens 
(groundwater-fed peatlands, which can be with or 
without trees) (Mitsch & Gosselink, 2015). In this 
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study, we consider swamps, marshes, shallow water 
(including human-made wetlands and lakes) and the 
swamp subtype of mangroves (coastal, characterised 
by salt-tolerant trees and shrubs), and attempt to dis-
tinguish between these categories in our mapping. 
The presence of peatlands (fens) across the southern 
region of Nigeria has been suggested by other map-
ping studies (e.g., Center for International Forestry 
Research (CIFOR), 2016). The Nigerian government, 
however, suggested that the areas mapped by CIFOR 
as peatland are more likely to be mangrove/swamps 
(FREL, 2019). One potential source of confusion is 
that tropical ‘peat swamps’ are often referred to in 
the literature as there is a lack of an agreed tropical 
peatland classification system. Some swamps can 
have organic peat deposits while others may have a 
mineral substrate. To avoid confusion, we strictly 
classify swamps for our control points as tree-domi-
nated mineral soil wetland systems which may have 
minimal peat cover. Given this definition, peatland 
and swamp may in some cases still have similar Earth 
Observation signatures but would not be confused if 
ground-truthed.

Data selection

As the characteristics of wetland remote sensing sig-
nature varies between seasons, we use composite 

image for both optical and radar imagery. The south-
ern part of Nigeria experiences a tropical climate 
with a well-defined wet and dry season. Southern 
Nigeria is covered by dense cloud during rainy sea-
sons, so we use an initial selection criterion of cloud 
fraction < 20% for each of 345 Sentinel-2 images 
from 2018 and apply a cloud mask to remove cloud 
and cirrus-cover (using the quality assurance bands 
available through GEE) before formation of a com-
posite images (Fig. 2). These are constructed from the 
median value for each pixel in 345 Sentinel-2 images 
acquired between January and November 2018 and 
are dominated by dry season (January to March) 
values. We use blue (0.496  µm, band 2), green 
(0.560 µm band 3), red (0.665 µm, band 4), and near 
infrared (NIR, 0.835 µm, band 8), shortwave infrared 
1 (SWIR1 1.613 µm, band 11) and short-wave infra-
red 2 (SWIR2 2.202  µm, band 12) bands to derive 
optical indices used for classification: Normalized 
Differential Vegetation Index (NDVI, Chatziantoniou 
et al. 2017; Dong et al. 2014; Kaplan & Avdan 2017; 
Xing et  al. 2018;Mahdianpari et  al. 2018), Normal-
ized Differential Water Index (NDWI, Chatzianto-
niou et al. 2017; Kaplan & Avdan 2017; Mahdianpari 
et  al. 2018; Xing et  al. 2018), Modified Normal-
ized Differential Water Indices (MNDWI, Ashraf & 
Nawaz 2015; Chen et  al. 2013; Ogilvie et  al. 2015) 

Fig. 2  Methodological 
approach for mapping and 
characterization of southern 
Nigerian wetlands. The 
technique used a seasonal 
composite from Sentinel-2 
optical imagery and Senti-
nel-1 radar for 2018
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and Tasseled Cap Wetness Index (TCWI, Tana et al. 
2013; Xing et al. 2018) (Fig. 3b–e).

Since SAR backscatter is unaffected by cloud 
cover, we are able to incorporate information from 
dry (January–March) and wet seasons (April–July 
and September–November) into our classification 
scheme. Differences between flooded and unflooded 
periods are particularly strong since radar reflected by 
a water layer and backscattered by a double-bounce 
from ground and tree trunk creates contrast between 
the flooded and non-flooded terrain (Bwangoy et  al. 
2010; Moser et al. 2016). We constructed dry and wet 
season composites that select the median backscatter 

value for each pixel, shown in Fig. 4b and c as RGB 
images where dry season (January–March), wet sea-
son (April–July) and end of the wet season (Septem-
ber–November) are the red, blue and green channels, 
respectively.

We use the Ground Range Detected interferomet-
ric wide-swath Sentinel-1 images in ascending orbit 
from 2018 available through GEE, which are pro-
jected onto a regular 10 m grid. Dual VV/VH polar-
isation imagery was available at an average acquisi-
tion interval of 12 days over southern Nigeria. VV 
polarization (vertically transmitted, vertically 

Fig. 3  The Sentinel 2 com-
posite and derived indices 
for Jan-Dec 2018 used for 
wetland classification in this 
study: a RGB composite 
images, red (band 11), blue 
(band 8), green (band 2), b 
MNDWI, c TCWI, d NDVI, 
e NDWI. The green shade 
in the RGB image results 
from reflection of vegeta-
tion, the dark blue shade 
represent reflection from 
water bodies, while urban 
settlement surfaces are 
shown in purple shade, and 
the lighter brown shade rep-
resents cultivated surfaces. 
For the indices (b–e) lighter 
gray shade indicates higher 
moisture and or vegetation 
value while a darker shade 
indicates lower values
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received backscatter) is sensitive to surface rough-
ness and soil moisture and can discriminate flooded 
from non-flooded vegetation (Mahdianpari et  al. 
2018). It also produces distinctive returns for herba-
ceous wetlands with low or sparsely vegetated areas 
especially in the early growth stages before canopy 
closure (Baghdadi et al. 2001). VH (vertically trans-
mitted, horizontally received backscatter) known as 
cross polarization produces signals affected by vol-
ume scattering within the vegetation canopy and it 
is very sensitive to vegetation structures (Steele-
Dunne et  al. 2017). We corrected for incidence 
angle (Hird et  al. 2017) and reduced radar speckle 
using an adaptive sigma Lee filter on the GEE plat-
form. We calculated the normalized difference and 
ratio features for each image as: Ndiff = VH−VV

VH+VV
 and 

Nratio = VV
VH

 , where VH is a vertically transmitted, 
horizontally received SAR backscatter σ0 from the 
Sentinel-1 sensor, while VV is vertically 

transmitted and received SAR backscatter signal 
(Hird et al. 2017).

Compilation of control point data

We compiled information about the location and 
characteristics of wetlands in southern Nigeria from 
multiple sources. Our reference data were obtained 
from the Food and Agriculture Organization (FAO) 
global dryland assessment (Bastin et al. 2017), Ram-
sar Sites database (1971), other organization reports, 
journals, and academic theses (both PhD and MSc) 
(see Supplementary Information). The FAO reference 
points were compared with control sites from Ramsar 
and other studies, then verified by visual interpreta-
tion of Digital Globe very high spatial resolution 
images (< 1 m pixels) made available for visualization 
through Google Earth. Our database comprises a total 
of 1500 sample points for wetland and non-wetland 
locations. The reference data were grouped into four 

Fig. 4  Extracted features 
from Sentinel 1 composite: 
a annual composite of VV 
and VH polarization; b sea-
sonal composite images for 
Jan–Dec 2018 producing 
a ratio polarized image; c 
seasonal composite images 
for Jan–Dec 2018 produc-
ing a normalized polarized 
ratio image. The dry season 
(January–March), wet 
season (April–July) and end 
of wet season (Septem-
ber–November) composites 
were inserted into the red, 
green and blue channels 
respectively. The bright 
yellow shade in (b) and 
bright white in (c) shows 
high backscatter from urban 
areas in the red and green 
channels. The dark blue and 
black shade are the result 
of low backscatter from 
cultivated areas and water 
features
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wetland types which include swamp (205 points), 
mangrove (214 points), marsh (121 points), shal-
low water (184 points) and four non-wetland types 
grouped into deep water (194 points), urban/bareland 
(206 points), cultivated land (180 points), and forest 
(196 points) categories. The photo-interpreted data-
base consists of both wetland and non-wetland cover 
classes with many subtypes, while only wetland con-
trol points were acquired from other studies.

Random Forest classification and feature selection

RF is a non-parametric classifier (i.e., it does not 
make strong assumptions about the form of the map-
ping function), comprised of a collection of tree clas-
sifiers, and can handle high dimensional remote sens-
ing data (Belgiu & Dra 2016). RF classification 
involves assigning a label to each pixel based on the 
majority vote of ‘trees’. The ‘trees’ are grown a node 
which is spilt using a random selection of the subset 
input variables, which reduces overfitting and yields a 
more robust classification than other classifiers (Brei-
man 2001). In the RF algorithm, we need to specify 
the parameters in order to produce the forest trees: the 
number of decision trees to be generated (Ntree); and 
the number of variables to be selected and tested for 
the best split when growing the trees (Mtry). The 
parameter Ntree was assessed for the values of 100 
– 600: a value of 500 was selected as error rates for 
all classification models were constant beyond this 
point. We tested the importance of sixteen variables 
(Band 2, Band 3, Band 4, Band 6, Band 7, Band 8, 
Band 11, Band 12, NDWI, NDVI, MNDWI, TCWI,  
VH−VV

VH+VV
 , VV

VH
 (wet and dry)), as input channels for the 

RF classification. We then selected six input variables 
that were most important for classification accuracy 
(see Sect.  "Random Forest classification and feature 
selection"). A total of 900 training points spanning 
different landcover classes were used to train the RF 
classifier on the GEE platform. All classifications 
were based on the same training data. The remaining 
600 control points were held back for validation (e.g., 
Liu et  al. 2018). We divided the control points 
between training and validation data to ensure a 
spread between landcover classes, and otherwise to 
make their spatial distribution as even as possible 
across southern Nigeria. The classification was car-
ried out with each index separately, before selecting 
the best combination to produce a final wetland map. 

We classified eight different landcover classes: man-
grove, swamp, marsh, shallow water, forest, culti-
vated land, deep water, built-up/bare land. When 
selecting input variables used for our final RF classifi-
cation, we assessed each of the optical and SAR indi-
ces for (1) the predictive power of each individual 
variable (Fig.  5) and (2) the ability to distinguish 
between wetland classes.

We examine the significance of each input variable 
by calculating variable importance after training the 
RF classifier. The importance of a variable in this RF 
model is assessed using the total decrease in impurity 
across all trees in the forest for a specific choice of 
variable to split a node, where impurity refers to the 
probability of a classification being wrong if it were 
assigned according only to the distribution of classes 
in the data. The numerical values for importance 
assigned to each variable is the sum of the reduction 
in error of the splitting variable accumulated over the 
entire tree. Higher variable importance means that the 
variable played a significant role in the classification, 
while a low importance means only limited added 
value by that variable. Figure  5 illustrates the input 
variables and their corresponding importance for dis-
criminating wetland classes.

As shown above, all the extracted variables from 
the Sentinel-1 seasonal composite appear to have 
higher predictive power than the optical indices 
except for the MNDWI and TCWI. With regards to 
variables extracted from the Sentinel-2 composite, 
the optical indices tend to possess higher significance 
when compared with the individual bands. Among 
the indices, MNDWI and TCWI have more informa-
tion available for wetland cover prediction. The most 
important variables   (MNDWI, TCWI, (VH−VV/
VH+VV, VV/VH (wet and dry)) from Sentinel-1 and 
Sentinel-2 were selected for our final classification. 
However, each variable may have different strength 
in identifying a particular landcover class regardless 
of their relative importance. We further perform clas-
sifiction on individual variable to optimize our selec-
tion of combined model for the final classification 
map.

Wetland patch analysis

We calculate the number of patches and their indi-
vidual sizes for each wetland class. The average 
continuous patch size for each wetland class was 
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also calculated using the total count of connected 
pixels for continuous patches, which we define as 
pixels that share face boundaries. Here, we con-
sider patches where the number of pixels is greater 
than 1000 (patch size > 1000 pixel) as continuous 
patches. The area of each individual patch was 
calculated by multiplying each patch size with the 
pixel area (10  m2). The patch size is equivalent to 
the total number pixels in a patch while the patch 
area is the patch size x pixel area  (10m2). We use:

where  Pchavg is the average continuous patch for each 
wetland class in a particular climate zone,  Pchcont is 
the sum of the pixels of continuous patches (for patch 

Pchavg =
∑n

j

Pchcont

Pchn

size > 1000 pixel) in each class, whereas  Pchn is the 
total number of continuous patches for each wetland 
class.

Results

Our final map (Fig. 6) has a pixel size of 10 m and 
shows how wetlands are distributed in southern 
Nigeria, broadly consistent with global datasets at 
low resolution, but quite different when studied in 
detail at high resolution. We capture wetlands of < 1 
 km2 that were omitted from global datasets and 
therefore provide much needed additional data on 
wetland coverage. The result of our classification 
shows high accuracy with 2% uncertainty. We have 

Fig. 5  The importance of 
each extracted Sentinel-1 
and Sentinel-2 features 
using the training dataset 
for Random forest clas-
sification. The importance 
of the variable is the sum of 
decrease impurity each time 
the variable is selected to 
be split at the node for the 
entire trees in the forest and 
is unitless. The blue bars 
illustrate the importance 
of the optical bands, the 
light yellow shows optical 
indices and SAR polarimet-
ric indices is represented by 
red bars



337Wetlands Ecol Manage (2023) 31:329–345 

1 3
Vol.: (0123456789)

most confidence in our classification of swamp and 
shallow water, relative to mangrove or marsh.

Classification validation

The results of RF classifications for each index and 
for our preferred combination of indices   (MNDWI, 
TCWI, (VH−VV/VH+VV, VV/VH (wet and 

Fig. 6  Final land cover 
map of southern Nigeria 
for 2018 obtained from RF 
classification of indices 
derived from Sentinel-2 
optical data and Sentinel-1 
SAR data (a), with inset 
(b) showing Oguta Lake 
and inset (c) showing 
Upper Orashi forest, both 
being examples of Ramsar 
wetlands while (d) displays 
the spatial distribution of 
uncertainty where the value 
1 in white shade shows 
matching landcover class 
and the value 0 in black 
shade indicates a mismatch 
class from the comparison 
of a map produced using the 
entire control point dataset 
with a map produced from 
a randomly selected subset 
(70%) of control points
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dry)) were evaluated using one third (600) of the total 
control points spatially selected from each class on 
a random basis. The overall accuracy describes the 
effectiveness of the overall classification, which can 
be determined by dividing the sum of correctly classi-
fied sample by the total referenced sample (Table 1). 
The producer’s accuracy shows how well the refer-
enced sample is represented in the classified map, 
while the user′s accuracy indicates the chances that 
a classified pixel of an individual landcover actually 
represent the same category on ground (Table 2). The 
agreement, beyond chance, of a classification and the 
real land cover can be described by the Kappa coef-
ficient (e.g., Ayanlade & Proske 2016). The Kappa 
coefficient is more useful than the overall accuracy as 

it provides a measure of how the classification per-
forms in comparison to the probability of randomly 
assigning pixels to their correct categories. With 
the exception of NDVI, the classification results 
using spectral indices from optical imagery were 
more accurate than those from SAR imagery alone 
(Table 1). However, the integration of the SAR nor-
malized difference and ratio images with MNDWI 
and TCWI yield the highest accuracy. We attribute 
this to the improvement in accuracy of the identifica-
tion of marsh, swamp and mangrove classes due to 
the information about vegetation structure captured 
by SAR imagery (Fig. 4b and c).

For all landcover classes, classification using a 
combination of optical and radar data resulted in 
a higher accuracy than using any of the individual 
indices in isolation. Our preferred classification 
(MNDWI + TCWI + VH−VV/VH+VV + VV/VH in 
Tables 1) performs as well as any other index in its 
classification of mangroves (214 control sites) and 
swamps (205 control sites), and better than any other 
index for classification of marsh (121 control sites). 
All classes have higher producer′s and user′s accu-
racies except the marsh with lower users accuracy, 
which was often misidentified as shallow water or 
swamp (Table  2). Overall, the classification of wet-
land classes was less accurate than for non-wetland 
classes.

The combined use of optical indices (MNDWI and 
TCWI) and SAR features (VH−VV/VH+VV, VV/
VH (wet and dry) resulted in greater accuracy for all 
the wetland classes than the use of either Sentinel-1 

Table 1  Overall accuracies and Kappa coefficients obtained 
from classification of wetland versus non-wetland in this study

Perfect classification of control points would yield a Kappa 
value of 1. S1 + S2 represents our preferred combination of 
MNDWI and TCWI with the SAR polarimetric indices

Indices Overall accu-
racy (%)

Kappa 
coeffi-
cient

NDVI 73.10 0.68
NDWI 77.16 0.72
MNDWI 83.78 0.82
TCWI 83.74 0.79
VH−VV

VH+VV
(wet and dry) 85.14 0.83

VV

VH
(wet and dry) 74.30 0.72

MNDWI + TCWI+VH−VV

VH+VV
  + VV

VH

88.40 0.85

Table 2  Confusion matrix using the set aside validation data (40% of control points)

The rows are the classification results and the columns are the true class.
MNG Mangrove, SWP Swamp, FRST Forest, SHW Shallow Water, BTU Built-up, DPW Deep water, CTL Cultivated land

CLASS MNG SWP FRST MSH SHW BTU DPW CTL Total User Accuracy

MNG 75 8 1 1 0 0 0 1 86 0.87
SWP 9 69 2 1 0 0 0 1 82 0.84
FRST 1 2 61 2 2 0 0 10 78 0.78
MSH 4 1 0 34 4 0 0 5 48 0.70
SHW 0 0 0 2 67 0 5 0 74 0.90
BTU 0 0 0 0 0 78 0 4 82 0.95
DPW 0 0 0 0 2 0 76 0 78 0.97
CTL 0 0 0 2 0 1 0 69 72 0.95
Total 89 80 64 42 75 79 81 90 600
Producer Accuracy 0.84 0.86 0.95 0.80 0.89 0.98 0.93 0.76 0.88
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or Sentinel-2 imagery in isolation, and so this com-
bination was used to produce our final wetland map.

Our final wetland cover map (Fig.  6a) shows the 
distribution of all land-cover classes, at 10 m resolu-
tion, across the extensive area of southern Nigeria. 
Both the wetland and non-wetland cover are well 
delineated with an estimated mapping accuracy of 
88%. The detailed inset in Fig. 6b and c shows how 
shallow water (e.g., Oguta lake, Fig. 6b) and swamp 
(e.g., Upper Orashi swamp forest) are correctly dis-
tinguished from other landcover classes at two Ram-
sar wetland locations. We make an assessment of the 
spatial distribution of uncertainty in our wetland map 
by comparing it to a map produced from a randomly 
selected subset (70%) of control points with the 
map produced using the entire dataset (Fig.  6d). On 
Fig. 6d we show locations where land cover classifi-
cations agree for the two maps a value of 1 (white), 
and those that disagree a value of zero (black). We 
found that mismatches mostly lie on swamp and 
marsh landcover classes (Fig.  6d), with fewer found 
to lie on mangrove and shallow water.

Wetland spatial extent

We estimate that the wetlands of southern Nige-
ria cover a total area of 29,924  km2 which is over 
one fifth of the area of the whole region. The domi-
nant wetland type is swamp which made up 44% of 
the total wetland area followed by mangrove (31%), 
marsh (20%) and shallow lakes (5%) (Fig. 7). The vast 
majority of these wetlands are located in the coastal 
region of the Niger delta and Lagos. Our estimate of 
total wetland cover is less than the estimate by Center 
for International Forestry Research (CIFOR) (31,829 
 km2) but larger than GLWD (24,408  km2) (Fig.  7), 
mainly resulting from our larger mapped area of man-
grove and our identification of fewer marsh wetlands. 
While the maps look similar when viewed at low res-
olution, they are quite different in detail (Fig. 7).

Fig. 7  A comparison of 
wetland map products for 
southern Nigeria: a areas 
of different wetland classes 
in southern Nigeria—error 
bars show misclassifica-
tion levels based accuracy 
achieved for each wetland 
type in our study; b map of 
southern Nigeria covered 
by wetlands identified in 
our study showing only 
the wetland classes; c the 
Global Lakes and Wetlands 
Database (GLWD) by Leh-
ner and Döll (2004) and d 
the global wetland database 
by the Center for Interna-
tional Forestry Research 
(CIFOR)
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Discussion

Wetland extent and fragmentation

We calculated the average continuous patch size 
for each wetland class using the total pixel count 
of connected pixels for continuous patches, which 
we define as pixels that share face boundaries. We 
found mean continuous wetland patches of 120, 11, 
55 and 13  km2 for mangrove, marsh, swamp, and 
shallow water respectively. The maximum patch 
size was 2740, 1530, 160 and 50  km2 with a stand-
ard deviation of 660, 765, 25 and 26  km2 for these 
wetland types respectively. Larger patches of wetland 
are found along the coastal areas while smaller frag-
ments are mostly located around urban areas sug-
gesting a role for anthropogenic fragmentation of 
wetlands. Mangroves tended to be located in zones 
with lower population density. There were a large 
number of small wetland fragments, mostly of single 
pixel patches, especially for the marsh class (Fig. 8). 
These smaller patches were distributed across the 
map but had higher uncertainty relative to larger 

patches. Understanding wetland fragmentation and its 
impacts on biodiversity and ecosystem services, and 
the role of both larger and smaller wetland patches in 
landscapes requires further work, but our dataset pro-
vides a starting point for enhanced modelling of such 
effects.

The extent of wetland in southern Nigeria was 
found to be larger in our study when compared to 
some previous studies but was smaller than the esti-
mate by CIFOR (Fig.  7a). This discrepancy could 
be due to a combination of factors including differ-
ences in wetland land cover class definitions (e.g., in 
CIFOR’s global wetland database https:// www. cifor. 
org/ global- wetla nds/ swamps and bogs are classed as 
one type of wetland, while many floodplain wetlands 
appear to be swamps in our wetland map), classifica-
tion methodology, timeframe (e.g., wetland loss or 
creation between different studies), data resolution 
and time of acquisition. For example, more conserva-
tive methods used by previous studies based on com-
bining existing maps with other data sources may 
have resulted in exclusion of a large proportion of the 
swamp and mangrove that we identify here. Another 

Fig. 8  Distribution of patch 
size for different wetland 
classes: a shallow water; 
b mangrove; c swamp; d 
marsh. The patch size is 
defined as the number of 
pixels within a patch, the 
count is the frequency of 
patches with number of 
pixels in each category

https://www.cifor.org/global-wetlands/
https://www.cifor.org/global-wetlands/
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major difference is our use of satellite imagery with 
higher resolution (10 m pixel size, relative to 1 km for 
GLWD) which improves our ability to identify small-
scale wetlands (see Fig. 9) and aids in discriminating 
wetland and non-wetland features. Some areas where 
wetlands have not previously been reported (e.g., 
around Akampka in Cross Rivers) have been mapped 
in our study. Some studies have suggested that the 
GLWD may underestimate wetland extent because of 
low resolution input data (Gumbricht et al. 2017), so 
wetlands much smaller than 1  km2 are missed. About 
20% of the wetlands that we identify in our new map 
have spatial extents of < 1  km2 (100 pixels). A series 
of small wetlands may be very important at a land-
scape scale in terms of water, nutrient and carbon 
cycling dynamics (Blackwell and Pilgrim, 2011) and 
so our work indicates how higher resolution wetland 
mapping may be important for improving regional 
and global environmental models.

Sources of uncertainty

The most important sources of uncertainty in this 
study come from (1) the subtlety of the differences 
in remote sensing signals between some wetland 
classes, and (2) the distribution and characteristics 
of the control sites used as the reference for different 
land-cover types. Specifically, we expect uncertainties 
to be introduced by both a lower number of control 
sites for marshes and similarities in the remote sens-
ing expression of marshes vs. mangroves, especially 
at 1610 and 2190 nm. We assess our uncertainties by 
comparing classifications made using the entire con-
trol point dataset with those produced using only a 
subset of control points selected at random for each 
wetland class (see Fig.  6d). The mismatched pixels 
from each class were multiplied with the pixel area 
to obtain the mismatched area for each class. Swamp, 
with a total area of 13,000  km2 had the highest uncer-
tainty of 250  km2 followed by marsh (area of 6000 
 km2) with uncertainty of 123  km2. Lower uncertainty 

Fig. 9  Comparison, for the 
same geographical area, 
between delineated wetland 
cover in two example loca-
tions (first location shown 
in top row a–c, second 
location shown as bottom 
row d–e): a and d this study 
using high resolution Sen-
tinel data (full map shown 
in Fig. 6a), b and e GLWD 
from a combination of low-
resolution data, c and f the 
global wetland database by 
the Center for International 
Forestry Research (CIFOR)
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was estimated for mangrove (9000  km2) at 72  km2 
and shallow water (1616  km2) with 14  km2. While 
this approach gives some indication of the uncertain-
ties associated with our classification accuracy and 
limitations in the number of control points, it does not 
include systematic uncertainties associated with our 
choice of landcover classes. However, more than 98% 
of the control points accurately matched the classi-
fied land-cover class. Based on control point accuracy 
values for each wetland type (Table  2) there was a 
higher error with marshes due to their misinterpreta-
tion as mangroves and bare land / settlement features. 
A higher uncertainty occurred in areas around Ovia 
(south-west Edo state), northern parts of Ogun state 
and around Ndokwa in eastern Delta state due to the 
number of smaller patches of marsh. There were no 
control points for fen peatlands. However, our analy-
sis suggests that areas mapped by other studies as 
peatlands (e.g., around Apoi creek forest) (refer to 
Fig.  1a) in southern Nigeria are swamps (with total 
of 149 control points), for which we had a high confi-
dence in their classification.

Data limitations

Despite the high accuracy obtained from the classifi-
cation model, there are some limitations in the data-
set that may lead to bias in the model. Using training 
data from existing wetland locations is affected by 
ambiguity in definitions of wetland class and varia-
tion in the landscape. The basic assumption that train-
ing data represent a particular class may not always 
be absolutely correct as individual training points 
may belong to other wetland classes. To address this, 
we characterize the training data based on the class 
composition and internal variability. We then iden-
tify the possible outliers from the distribution of each 
wetland class and filter them out from the training 
data. Training data for ephemeral forested wetlands 
and peatlands such as bogs, fens are missing from our 
dataset which would have improved our classification.

The imbalance in the size of our training data for 
the wetland classes may bias classification accuracy, 
because the model is sensitive to wetland class with 
larger numbers of training points (in our case [man-
grove]). This results in higher accuracy than for wet-
land classes with small amounts of training data (e.g., 
marsh).

Users of our wetland map should also consider (1) 
the limitations of the class definitions appropriate for 
use with satellite imagery and (2) the differences in 
accuracy of classification for different classes due to 
different numbers and spatial distribution of training 
points. For example, our EO-based classification of 
[swamps] comprises wetland with a range of charac-
terisitics in terms of vegetation type, water depth and 
soil composition.

Applicability to different settings

Our novel study adds to a small number of locations 
around the world where wetlands have been mapped 
using combined SAR and optical Sentinel 1 and 2 
data (e.g., Hird et al. 2017; Mahdianpari et al. 2018; 
Slagter et al. 2020). However, here we have covered 
a much larger area at high resolution. The wetlands 
of southern Nigeria are thought to represent about 
19% of West African wetland and 3% of the total 
wetlands in sub Saharan Africa (Rebelo et al. 2010). 
Nigerian wetland ecosystems are similar to those in 
the rest of West Africa, so we expect that similar clas-
sification approaches could be adopted for this region. 
Our methodological approach could be expanded to 
explore wetland areas across the wider African con-
tinent as well as globally. Furthermore, our technique 
can be used to globally detect changes and connectiv-
ity/fragmentation of wetland ecosystem in response 
to human action such as urbanization. Using data 
from different seasons is important for mapping and 
distinguishing between different types of wetland 
extents. For example, seasonal data has played an 
important role in identification of shallow water and 
marshes (Fig. 6a). Seasonal data will be essential for 
mapping the wetlands in the arid regions of Africa, 
where wetlands exhibit dramatic seasonal cycles 
(e.g., the Sebkhel el Kelbia of Tunisia). Challenges of 
producing high-resolution datasets over large spatial 
areas can be minimized by employing the SAR pola-
rimetric feature and optical indices which help to dis-
tinguish between types of vegetation. Wetland types 
such as peatlands which were not covered in this 
study should be mapped using suitable control points 
to aid classification. There is also a need to incorpo-
rate elevation/topographic data and a diverse range of 
multi-temporal datasets in order to improve the iden-
tification of wetlands across different terrain, such as 
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valley bottom wetlands. This will help to capture the 
hydrogeomorphological properties of the wetlands.

Conclusions

Our study combined optical indices and SAR polari-
metric features to map four wetland types at 10 m res-
olution across southern Nigeria, filling a gap between 
existing low spatial resolution global maps and a few 
very local studies at higher resolution. Using freely 
available global satellite datasets (Sentinel-1 and 2), 
we achieve a mapping accuracy of 88% by integrating 
optical indices and SAR polarimetric features from 
different seasons using Random Forest classification. 
We estimate that in 2018 southern Nigeria contained 
29,924  km2 of wetlands with an uncertainty of 460 
 km2, covering 20% of the region. We found a large 
number of small wetland patches, particularly around 
urban areas, consistent with human action enhancing 
wetland fragmentation in Southern Nigeria. Given the 
rapid expansion of population in Nigeria, it is now 
critical that wetland protection organizations under-
take more adequate change detection at high resolu-
tion and take action, while modellers can utilise our 
high resolution land surface data.
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