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Feasibility and stability in large Lotka Volterra systems with interaction structure
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Complex system stability can be studied via linear stability analysis using random matrix theory (RMT)

or via feasibility (requiring positive equilibrium abundances). Both approaches highlight the importance of

interaction structure. Here we show, analytically and numerically, how RMT and feasibility approaches can

be complementary. In generalized Lotka-Volterra (GLV) models with random interaction matrices, feasibility

increases when predator-prey interactions increase; increasing competition/mutualism has the opposite effect.

These changes have crucial impact on the stability of the GLV model.

DOI: 10.1103/PhysRevE.107.054301

I. INTRODUCTION

In the 1950s, ecologists such as Odum and MacArthur

argued [1,2] that ecosystems with a larger number of species

tend to be more stable than less biodiverse systems. This idea

was famously mathematized by May in 1972, who applied

random matrix theory (RMT) to the problem [3]. May consid-

ered perturbations in n species abundances ζ, linearised about

a hypothetical fixed point, with near-equlibrium dynamics

described by

dζ

dt
= Aζ, (1)

where he suggested parameterising A according to

Aii = −1, Ai j = σcai j, (2)

with Aii representing the species self-regulation at equilibrium

and ai j ∼ N (0, 1) and c ∼ B(1,C). Here Ai j represents ran-

dom species interactions that are nonzero with probability C

(referred to as connectance) and when present have standard

deviation σ (referred to as interaction strength). Since the

asymptotic stability of Eq. (1) is governed solely by its eigen-

values, system-level stability is determined by characterising

the eigenvalues of random matrix A.

The eigenvalue distribution of A is uniform across a circle

in the complex plane, centered on (−1, 0) and with radius

σ
√

nC as n → ∞ [3–5].

Thus the stability criterion for Eq. (1) is σ
√

nC < 1 [see

Fig. 1(a)]. This suggests that more diverse ecosystems with

more interspecific interactions are less likely to be stable for a

given variance in interaction strength.

Allesina and Tang [6] added ecologically-motivated struc-

ture to May’s approach, choosing elements of A pairwise by
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imposing a correlation ρ between Ai j and A ji for j �= i,

(Ai j, A ji ) = σc(ai j, a ji ) where
(3)

(ai j, a ji ) ∼ N (0, �) with � = [(1, ρ), (ρ, 1)],

where again c ∼ B(1,C). Ecologically, ρ < 0 implies more

predator-prey interactions in the ecosystem (Ai j and A ji

are more likely to have opposite signs), while ρ > 0 implies

more mutualistic and competitive interactions (Ai j and A ji are

more likely to have the same sign). Utilizing another RMT

result [7,8] they generalized May’s stability criterion to

σ
√

nC(1 + ρ) < 1. (4)

Thus, increasing the proportion of predator-prey interac-

tions increases stability, whilst increasing the proportion of

competitive and mutualistic interactions reduces stability in

Eq. (1) [see Fig. 1(a)]. Equation (4) implies that in the extreme

limit ρ → −1, ecosystems are stable as long as there is self-

regulation.

These analytic results are independent of the underlying

nonlinear model from which they are hypothetically derived.

However, this apparent generality conceals an implicit as-

sumption that the fixed point about which the nonlinear

system is linearized [to arrive at Eq. (1)] exists and is biolog-

ically meaningful. Such biologically meaningful fixed points,

where every species is present at a positive abundance, are

termed feasible equilibria [9].

We use the generalized Lotka-Volterra model (GLV)

dx

dt
= x ⊙ (r + Ax) (5)

to explore the links between the parametrizations of the in-

teraction matrix A in Eqs. (2)–(3) and feasibility. Here xi is

the abundance of species i, ri is its intrinsic growth rate, A

the interaction matrix, and ⊙ the Hadamard product. Equa-

tion (5) has a single nonzero fixed point x
∗, with a Jacobian J ,

such that

x
∗ = −A−1

r, J = diag(x∗)A. (6)

2470-0045/2023/107(5)/054301(7) 054301-1 Published by the American Physical Society
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FIG. 1. Panel (a): Eigenvalue distributions of interaction matrix

A parameterized according to Eq. (2) (red, ρ = 0, see Ref. [3])

and Eq. (3) (blue and green, ρ �= 0, see Ref. [6]), used to infer

the stability of the linear model proposed in Eq. (1). Parameter

values are σ = 0.01, n = 1000, C = 1, and |ρ| = 0.6. Panel (b):

Feasibility probability Pfeas, for an ensemble of random fixed points

from the nonlinear GLV model, Eq. (5), with interaction matrices

parameterized according to Eq. (2) (ρ = 0, see Ref. [13]). Pfeas is

plotted as a function of May’s complexity parameter γ = σ
√

nC,

for community sizes ranging from n = 14 to n = 100. In this panel

C = 1. Curves are analytical predictions and markers are numerical

simulations, obtained by sampling 104 random interaction matrices

A parameterized according to Eq. (2) and calculating the proportion

of those that give rise to a feasible equilibrium solution of the GLV

model (see Supplemental Material IV [14]).

Note that if the elements of A are drawn from a random

distribution, then x
∗ is also a random variable (see, for in-

stance, Fig. 2). We denote the multivariate distribution of x
∗

as P(x∗). In particular, there is nothing intrinsic about the

structure of x
∗ in Eq. (6) that guarantees that it is feasible (i.e.,

that x∗
i > 0 ∀ i). Instead, for any given randomly sampled A,

there is a probability that the fixed point is feasible, which we

denote Pf eas. The relationships between feasibility, stability,

and different system constraints such as interaction structure

is a central theme in theoretical ecology [10].

Early analytic insight into the feasibility of x
∗ in Eq. (6) as-

sumed that A had interaction coefficients with fixed strengths,

or with randomly generated signs [9,11,12]. Stone [13] linked

this to May’s approach by considering the probability that x
∗

is feasible given an ensemble of random interaction matrices

parameterized according to Eq. (2). Under the condition that

ri = 1 ∀ i ∈ [i, n], Stone assumed that such a parametrization

of interaction matrices gives rise to a normally distributed x∗
i

(see Fig. 2 and Supplemental Material, Sec. VIII [14]).

Stone showed that for a fully connected system C = 1, the

probability of feasibility is

Pfeas = 2−n

⎛

⎜

⎝
1 + erf

⎛

⎜

⎝

1

γS

√

(

1 + γ 2
S + γ 4

S

)

⎞

⎟

⎠

⎞

⎟

⎠

n

, (7)

where γS = σ
√

n is known as the disturbance in Stone’s

analysis, which is equivalent to May’s definition of com-

plexity for the case C = 1. We see that Pfeas drops sharply

at a critical value of γS , and also has an additional depen-

dence on system size n [see Fig. 1(b)]. By working in the

limit n → ∞, Refs. [15,16] determined a threshold interaction

strength above which feasibility is lost in GLV models with

interaction matrices parameterized according to Eq. (2). An

analytical prediction for the relationship between Pfeas and the

complexity γ = σ
√

nC which accounts for C was obtained by

Dougoud et al. [17]. Akjouj et al. [18] investigated the feasi-

bility of sparse ecosystems with interaction matrices that are

block structured and d-regular (where each species interacts

with d other species). Together these results suggest that feasi-

bility is the more critical measure of complex system stability;

compared to linear stability, feasibility is lost at smaller values

of complexity.

Here we seek to strengthen the links between RMT [3,19]

and feasibility analyses by calculating how the feasibility of

an ecosystem changes with complexity [13,17,18,20] when

additional species interaction structure is accounted for [6,19].

It was shown by Bunin [10] that feasible systems lose sta-

bility above a certain interaction strength by transitioning to

a phase with multiple attractors. The interaction strength of

this phase transition increases as predator-prey interactions

increase. Numerical results by Clenet et al. [15] also show

that systems biased towards predator-prey interactions lose

feasibility at larger interaction strengths than systems without

interaction structure, and those biased towards competition

and mutualism lose feasibility at smaller interaction strengths

than systems without interaction structure. They also obtained

FIG. 2. Plots showing the joint distribution of x∗
1 and x∗

2 for the GLV model Eq. (5) with n = 2, σ = 0.01, and C = 1. Blue markers

represent 104 numerical solutions of the GLV model, obtained as described in Supplemental Material IV [14]. Contours are analytical

predictions for the joint distribution of x∗
1 and x∗

2 calculated using Eqs. (12)–(14).

054301-2



FEASIBILITY AND STABILITY IN LARGE LOTKA … PHYSICAL REVIEW E 107, 054301 (2023)

an analytical result for the interaction strength above which

feasibility is lost, in the limit of large n. In this limit the effect

of the correlation parameter ρ, the parameter that governs

the proportion of predator-prey or competition/mutualistic

interactions, disappears [15]. In this paper, we instead work

in the large but finite n limit in order to explore the effect of ρ

on the probability of feasibility Pfeas. In order to calculate Pfeas,

we must also obtain an approximation for the distribution of

fixed points. This approximation opens up the possibility of

leveraging recent results [21,22] to determine the probability

of stability of the GLV model with interaction structure.

II. ANALYSIS

Following Stone [23], we obtain an analytical approxima-

tion of Pfeas(γ ) via the distribution of equilibrium species

abundances P(x∗). In particular, Stone [13] applied the Cen-

tral limit theorem to x
∗ in Eq. (9) to argue that P(x∗) is normal

as n → ∞, and this normality remains a good approxima-

tion when n is large but finite (see Supplemental Material,

Sec. VIII [14]). The task of calculating the feasibility prob-

ability is then equivalent to calculating

Pfeas =
∫ ∞

x∗=0

P(x∗)dx
∗ ≈

∫ ∞

x∗=0

N (µx∗�x∗ )dx
∗ , (8)

where µx∗ and �x∗ are respectively the mean and covari-

ance matrix of the species abundances at equilibrium. Note

that by symmetry, we can see that for interaction matrices

randomly generated according to Eq. (3), µx∗ and �x∗ are

themselves highly symmetric, with [µx∗ ]i = [µx∗ ] j , [�x∗ ]ii =
[�x∗ ] j j , and [�x∗ ]i j = [�x∗ ] ji for all i, j ∈ [1, n] (i.e., µ∗

x
is

a constant vector and the variance-covariance matrix �x∗ is a

double constant matrix [24]).

We now calculate approximations for µx∗ and �x∗ . For

simplicity we focus on the case ri = 1 ∀ i in Eq. (5). Recall

that following Ref. [19], the elements of the interaction matrix

Ai j and A ji have correlation ρ. Writing A = σE − I, our fixed

point in Eq. (6) can be expressed as a Neumann series [25] for

||σE || < 1:

x
∗ = (I − σE )−1r ≡

( ∞
∑

j=0

(σE ) j

)

r. (9)

This enables us, in principle, to calculate x∗
i up to an arbitrary

order in σ . In our work, we approximate E (x∗
i ), Var(x∗

i ), and

Cov(x∗
i , x∗

j ) taking into account ρ and C. Using Eq. (9), we

approximate E (x∗
i ) and Var(x∗

i ) up to and including order σ 6.

Using the fact that the product of an odd number of normal

random variables with zero mean have zero expectation, we

know that all terms of E (x∗
i ) at odd orders of σ vanish. From

Eq. (9), we find that the expression for x∗
i at this given order is

E (x∗
i ) = E

⎛

⎜

⎜

⎝

1 + σ 2

n
∑

j=1
j �=i

n
∑

k=1
k �= j

κai ja jk

⎞

⎟

⎟

⎠

+ e4σ
4 + e6σ

6, (10)

where e4 and e6 are coefficients of σ 4 and σ 6, respectively, in

the expectation of x∗
i , and

κ =
{

C if i = k,

C2 if i �= k,
(11)

since i = k corresponds to the case where a jk = a ji, which

corresponds to the case where Ai j and A ji are both nonzero

with probability C ( see Eq. (3) and Allesina and Tang [19] ) .

We use Eq. (10) to illustrate how we obtain our approximation

of E (x∗
i ). Since E (ai ja ji ) = ρ, E (ai j ) = 0, and E (ai ja jk ) = 0

if k �= i, Eq. (10) is equal to

E (x∗
i ) = 1 + (n − 1)ρCσ 2 + e4σ

4 + e6σ
6, (12)

where through direct calculation, it can be shown that e4 =
(n − 1)(C + ρ2(2C + 2C2(n − 2))), given by Eq. (S12). Sim-

ilarly we can calculate e6, which is given by Eq. (S53) of the

Supplemental Material [14].

An analogous approach can be used to obtain an ap-

proximation for Var(x∗
i ) and Cov(x∗

i , x∗
j ) (see Supplemental

Material, Sec. I), with Var(x∗
i ) given by

Var(x∗
i ) = (n − 1)Cσ 2 + v4σ

4 + v6σ
6 + O(σ 8), (13)

where v4 and v6 are the coefficients of σ 4 and σ 6, respectively,

which depend on n, ρ, and C. Specifically, v4 is the coeffi-

cient of σ 4 in Eq. (S20) and v6 is given by Eq. (S60) in the

Supplemental Material [14]. The formulas for v4 and v6 are

too lengthy to produce here, however of particular note is the

fact that they, along with coefficients e4 and e6, are nontrivial

polynomials that do not preserve the simple dependence on

the complexity parameter γ observed in Refs. [3] or [6].

Cov(x∗
i , x∗

j ) is given by

Cov(x∗
i , x∗

j ) = ρCσ 2 + c4σ
4 + O(σ 6), (14)

where c4 = (3 + (6 + C(5n − 11))ρ2). While we could ex-

tend this approximation to order σ 6, we note that this makes

little quantitative difference to the approximation. In the ex-

pression for Cov(x∗
i , x∗

j ), the coefficient of each order of σ

is a factor of n smaller than the corresponding coefficients

in the expression for E (x∗
i ) and Var(x∗

i ) (see Supplemental

Material, Sec. VII [14]). This implies that for a fixed value of

large but finite n, Cov(x∗
i , x∗

j ) increases more slowly with σ

than E (x∗
i ) and Var(x∗

i ), and thus Cov(x∗
i , x∗

j ) plays a smaller

role in governing how P(x∗), and similarly Pfeas, varies with

σ . It is therefore possible to approximate Cov(x∗
i , x∗

j ) to order

σ 4 without sacrificing the accuracy of the analytical prediction

of Pfeas. The slower increase in Cov(x∗
i , x∗

j ) with σ is verified

numerically in Fig. S7. Since an analytical approximation of

Cov(x∗
i , x∗

j ) to order σ 6 requires considerably more algebra

(see Supplemental Material, Sec. ID5 [14]) without conferring

significant improvements to the accuracy of Pfeas, we restrict

our analysis to the order σ 4 approximation given in Eq. (14).

Equations (12)–(14) are then used to construct µx∗ and �x∗

in Eq. (8). Note that we expect our approximation to hold

when n is large [such that P(x∗) is approximately normal,

see Eq. (8)] and when σ is small [such that the expansions

in Eqs. (12)–(14) remain sufficient]. When these conditions

are not met, the approximations given in Eqs. (12)–(14) break

down at lower values of |ρ|. For instance in a 25 species

(n = 25) system, the analytical approximation of Var(x∗
i ) in

Eq. (13) loses accuracy when |ρ| > 0.25, while for a 100

species system Var(x∗
i ) remains accurate up to |ρ| = 0.5 (see

Supplemental Material, Sec. II [14]).

The fact that our normal distributions feature such a high

degree of symmetry, with µx∗ a constant vector and �x∗

054301-3
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a double constant matrix, allows us to further simplify the

calculation of Pfeas. This provides ease of computation for

large systems. Using the results of Ref. [26], which expresses

integrals over the cubic region of the variable space, Eq. (8)

can be reduced to an expression involving a single integral,

given by

Pfeas =
∫ ∞

−∞

{

n
∏

i=1

�

(

yi − biu

(1 − b2
i )1/2

)

}

φ(u)du, (15)

where φ(u) is the density function of a standard normal ran-

dom variable u and �(v) denotes the cumulative distribution

function of a standard normal random variable v. In our an-

alytical prediction of Pfeas, we have that yi = E (x∗
i )√

Var(x∗
i )

and

bi =
√

Cov(x∗
i ,x∗

j )

Var(x∗
i )

(see Supplemental Material, Sec. III [14]). In

other words, Pfeas is the expression obtained by substituting

these expressions for yi and bi into Eq. (15). (see Supplemen-

tal Material, Sec. III). Interestingly, note that in the results of

Refs. [3,19], C appears as a compound parameter with σ 2,

but in Eqs. (12)–(14), C appears in a complicated polyno-

mial form. The analytical prediction of Pfeas(γ ) is shown in

Figs. 3 (a)–(b). Moreover, the fact that Cov(x∗
i , x∗

j ) is a factor

of n smaller than Var(x∗
i ) partly explains the observation of

Clenet [15] that as n → ∞, the effect of ρ on Pfeas completely

disappears.

III. RESULTS

A. Predator-prey interactions increase the feasibility

of random ecosystems

The qualitative difference in how Pfeas changes with the

complexity γ as the correlation ρ is varied is shown analyt-

ically in Fig. 3. For a given value of n, when ρ is positive

(blue), feasibility is lost at a smaller complexity compared

to the case where ρ = 0 (red). However when ρ is negative

(green), we observe the opposite effect whereby feasibility is

lost at a larger complexity than the case ρ = 0.

It can be seen in Fig. 3 that the magnitude of the difference

between Pfeas(γ , ρ) and Pfeas(γ , 0) also varies with γ . For

instance when γ is sufficiently small, there is no difference

between Pfeas(γ , ρ) and Pfeas(γ , 0), since Pfeas is 1 regardless

of ρ. The bottom panels of Fig. 3 below plot this difference,

demonstrating how it varies with γ . The difference between

Pfeas(γ , ρ) and Pfeas(γ , 0) is the greatest for intermediate

values of complexity γ , where the system is transitioning

rapidly away from feasibility. For a given system size n, the

magnitude of this difference (|Pfeas(γ , ρ) − Pfeas(γ , 0)|) also

increases with the magnitude of ρ.

In Supplemental Material IE [14], we see that for all values

of ρ, the loss of feasibility in the GLV model with Allesina

and Tang type interaction matrices occurs at a smaller com-

plexity than the loss of stability in the corresponding linear

model. As an extreme example, in linear systems comprising

all predator-prey interactions (ρ = −1) stability is guaranteed

regardless of ecosystem complexity [see Eq. (4)]; conversely,

feasibility is still lost above a critical value of the complexity

parameter γ (see Fig. S2 of Supplemental Material [14]).

Figure 3 demonstrates that the analytical results in Eqs. (12)–

(14) can be used to accurately predict Pfeas as a function

(a) (b)

(c) (d)

ρ=0
ρ>0

ρ<0

FIG. 3. Panels (a) and (b) plot the feasibility probability

Pfeas as a function of complexity γ for systems with ecologi-

cally motivated interaction structure: Blue (ρ > 0) biased toward

competitive/mutualistic interactions; red (ρ = 0) unbiased inter-

actions; green (ρ < 0) biased towards predator-prey interactions.

Panels (c) and (d) plot the difference between Pfeas in systems with

ρ �= 0 and Pfeas in systems where ρ = 0 [Pfeas(γ , ρ ) − Pfeas(γ , 0)] as

a function of γ , with lines the prediction derived from Eq. (15) and

markers the results of numerical simulation. In panel (c), n = 25 and

hollow circles show the results of numerical simulations for the case

|ρ| = 0.25. In panel (d), where n = 100 (and our approximations

are valid for larger values of ρ) hollow circles again represent the

case |ρ| = 0.25, while asterisks are numerical simulations for the

case |ρ| = 0.5. Numerical simulations are obtained by sampling 104

random interaction matrices A parameterized according to Eq. (2)

and calculating the proportion of those that give rise to a feasible

equilibrium solution of the GLV model Eq. (5) (see Supplemental

Material, Sec. IV [14]).

of γ in the case where C = 1. Furthermore, Supplemental

Material, Sec. V [14] shows that the same analytical results

remain highly accurate for predicting Pfeas as a function of

γ in the case where C = 0.3. By comparing the feasibility

probabilities of such a system with that of a fully connected

system, we see that a sparsely connected system of n = 100

shows an almost identical feasibility-complexity relation as a

fully connected system.

Most importantly, in Eqs. (12)–(14) we have analytically

approximated the distributions of x∗
i for nonlinear GLV mod-

els Eq. (5) where the underlying interaction matrix A is

constructed according to Eq. (3). This opens up the possibility

to extend these results to predict the stability of GLV mod-

els with ecologically motivated interaction structures. Such a

stability analysis is beyond the scope of this work, but would

be attainable through detailed analysis of the GLV Jacobian.

In the next section we investigate how this might be achieved

within the scope of existing methods.

054301-4
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FIG. 4. Top row: Orange ellipses are eigenvalue distributions of A where A is parameterized according to Eqs. (2)–(3). Yellow boundaries

are predicted by Allesina and Tang. Black markers represent 50 realisations of the eigenvalue distribution of the GLV Jacobian J = x
∗A where

the exact x
∗ corresponding to each given A is used. Bottom row: 50 realisations of the eigenvalue distribution of J = x

∗A where elements of

x
∗ are sampled independently of A, from the multivariate normal distribution characterized by Eqs. (12)–(14). Parameter values are σ = 0.01,

n = 500, and C = 1. Given these parameters, Eqs. (12)–(14) predict that in the left panel Pfeas = 0.993, middle panel Pfeas = 0.997, and right

panel Pfeas = 1.000.

B. Comparing RMT predictions with GLV Jacobian matrices

Gibbs et al. [21] studied the eigenvalue distribution of a

matrix that is assumed to be of the same structure as the GLV

Jacobian [Eq. (6), right], where J is decomposed into a prod-

uct of an interaction matrix A and fixed points x
∗. However,

for simplicity, they assume that the distribution from which x
∗

is drawn is independent of A, whereas this is clearly not the

case [ Eq. (6), left].

Gibbs’ assumption of independence between the random

elements of A and x
∗ means that cross-correlations between

them need not be considered, thereby simplifying the analysis.

We test whether this assumption holds, in order to determine

whether Gibbs’ method may be applicable to calculating the

eigenvalue distribution of the GLV Jacobian [Eq. (6)]. To

do so, we first calculate the eigenvalue distribution of J =
x

∗A where the elements of x
∗ are sampled independently to

those of A. The distribution from which we sample the ele-

ments of x
∗ is a normal distribution with E (x∗

i ), Var(x∗
i ), and

Cov(x∗
i , x∗

j ) given by Eqs. (12)–(14), which we approximated.

A is constructed according to Eq. (3). We then compare this

eigenvalue distribution (shown in Fig. 4, bottom panels) to

that of the GLV Jacobian where the exact x
∗ corresponding

to each given A is used (shown in black markers of Fig. 4, top

panels).

By comparing the black markers on the top panels with

those of the bottom panels of Fig. 4, we see that our method

of sampling x
∗ independently of A from our distribution of

x
∗ works well in predicting the eigenvalue distribution of

the GLV Jacobian. This comparison is conducted in a region

where feasibility is almost surely guaranteed. From the top

panels, we see that when the correlation parameter is negative,

i.e., ρ < 0, the bulk eigenvalue distribution of J gets stretched

in the Im(λ) plane, and when ρ > 0 in the Re(λ) plane. This

qualitative effect is consistent with the result of Allesina and

Tang [19]. It is shown numerically in Supplemental Material,

Sec. VI [14] that increasing ρ decreases the average resilience

of the GLV model.

The average maximum outlier eigenvalue (averaged over

multiple realizations of the interaction matrix A) is also cor-

rectly predicted by our theory, which relies on the assumption

of statistical independence between A and our calculated dis-

tribution of x
∗ [see Eqs. (12)–(14)], as illustrated in Fig. S6(a).

However, our theory does not correctly predict the maximum

outlier eigenvalue of individual realizations of the GLV Jaco-

bian. This suggests that cross-correlations between the entries

of A and x
∗ may be quantitatively important in calculating

the stability of individual realizations of the GLV model. As

the stability of a system is governed solely by the eigenvalue

with the largest real part, a stability analysis of the GLV

model must be preceded via calculating such an eigenvalue.

Below, we provide an insight into some possible techniques

for calculating the stability of the GLV model with Allesina

and Tang type interaction matrices.

Stone [20] showed that, provided that ||σE || is sufficiently

small, the eigenvalue with the largest real part (outlier eigen-

value of J) is approximately equal to minus the abundance

of the least abundant species, i.e., λmax ≈ −mini∈{1,n}x
∗
i ; in
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which case we have the weak condition whereby feasibil-

ity corresponds to the local asymptotic stability of the GLV

model. In the case where ρ = 0 or |ρ| is small, −mini∈{1,n}x
∗
i

is an accurate estimate of the outlier eigenvalue of J , however

this accuracy breaks down as we increase |ρ| (see Supplemen-

tal Material, Sec. VI [14]).

Relying on Gibbs’ assumption allows us to accurately cap-

ture the bulk eigenvalue distribution of J and the effect that

the correlation parameter ρ has on the average resilience over

a large number of realisations [see Fig. S6(a)], although it fails

to accurately calculate the outlier eigenvalue of J correspond-

ing to a specific realization of A.

IV. DISCUSSION

We have obtained an analytical prediction of the feasibil-

ity probability as a function of complexity γ = σ
√

nC for

random GLV models with interaction matrices of Allesina

and Tang type [19]. By extending the analytical result of

Ref. [15] to the case of large but finite n, we have shown

that a positive value of ρ reduces the feasibility probability

for a given complexity, while a negative value of ρ increases

the corresponding feasibility probability, an effect not quan-

tifiable in the infinite n limit. We have also accounted for the

connectance C. Since natural ecological systems are sparsely

connected [27], both these generalizations mentioned above

add biological realism to the result of Stone (2016) [23]. Re-

lationships between complexity and feasibility have also been

studied by Ref. [28], where they characterized feasibility by

how freely one could choose the intrinsic growth rate vectors

to allow the system to remain feasible. As a whole, these

results strengthen connections between feasibility and RMT

systems, whilst also adding biological realism.

Along the way, we managed to analytically approximate

the distribution of x
∗ as a function of the system parameters n,

C, σ , and ρ. In doing so, we emphasize how the small covari-

ance between the abundances of species can partly explain the

observation of Ref. [15] that the effect of interaction structure

on feasibility completely disappears as n → ∞. Most impor-

tantly, our approximation of the distribution of x
∗ has allowed

us to check the utility of Gibbs’ assumption of independence

between x
∗ and A in predicting the eigenvalue distribution

of the GLV Jacobian for systems with Allesina and Tang

type interaction matrices [20,21]. Figure 4 shows that Gibbs’

assumption can be used to accurately predict the effect of

interaction structure [19] on the eigenvalue distribution of

feasible random GLV models. However, relying on this as-

sumption does not allow us to accurately calculate the outlier

eigenvalue of the GLV Jacobian for a particular realization.

It is of note that our method for calculating the feasibility

probability relies on several assumptions on the parameter

values to ensure accuracy (see Supplemental Material, Secs. I

E and II [14]). We also assumed that x∗
i is normally dis-

tributed. Since the Neumann series approximation for x∗
i is

normal in the limit n → ∞, and is convergent if and only if

σ
√

nC < 1, our method is accurate for large n and small σ

(see Supplemental Material, Sec. VIII). Since the Neumann

series expansion is precise, it is straightforward to extend our

analysis to arbitrary orders of precision by working to higher

orders in σ [see Eq. (9)].

The concept of feasibility has been associated with the ex-

tinction probability. It was summarized by Stone (1988) [13]

that a higher feasibility probability is linked to the reduction

in the probability of extinction following structural distur-

bances, which are changes in interaction strengths caused

by environmental change. Our results imply that increasing

predator-prey interactions reduces the chance of extinction

following structural disturbances.

We have used the assumption of May (1972) that all species

are self-regulating [3]. This is representative of natural ecosys-

tems since they require 50 percent of species to self-regulate

to allow for stability [29]. However, the assumption that ri = 1

∀i ∈ [1, n] may not be biologically realistic, as natural ecosys-

tems contain consumer species which do not grow in isolation.

This is an interesting area for future investigation, however it

was suggested by Song et al. [30] that this assumption gives

the parameter region where feasible systems are likely to be

present.

Having generalized the distribution of x
∗ to account for

arbitrary ρ, we have opened up the possibility for extending

the results of Gibbs et al. [21] to analytically predict the

boundary of the eigenvalue distribution of the GLV Jacobian

of such systems. This would enable us to calculate the stability

of such GLV models. One potential method to perform this

calculation is by applying the cavity method as detailed in

Ref. [21]. It may also be possible to calculate the expected

value of −mini∈{1,n}x
∗
i by applying order statistics as detailed

in Ref. [31], and thus the expected resilience of a GLV model

with a given value of ρ, although this is only applicable to

systems where |ρ| is small. We note, also, that the analytical

approaches central to this study lead to predictions of normal

distributions of steady-state species abundances. Empirical

evidence is typically scale dependent and points to a range of

more complex possible species-abundance distributions [32]

and the development of scale-dependent theory to bridge this

gap with models may be a fruitful line of further enquiry.

Overall, our analyses, combined with Refs. [15,19,31],

show that increasing the proportion of predator-prey inter-

actions not only increases feasibility, but also the resilience

of feasible GLV models. This provides greater support

to Allesina and Tang’s [19] conclusion that predator-prey

interactions are stabilizing whilst competitive/mutualistic in-

teractions are destabilizing.
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