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Abstract: Within aerospace and automotive manufacturing, the majority of quality assurance is

through inspection or tests at various steps during manufacturing and assembly. Such tests do not

tend to capture or make use of process data for in-process inspection and certification at the point of

manufacture. Inspection of the product during manufacturing can potentially detect defects, thus

allowing consistent product quality and reducing scrappage. However, a review of the literature

has revealed a lack of any significant research in the area of inspection during the manufacturing

of terminations. This work utilises infrared thermal imaging and machine learning techniques for

inspection of the enamel removal process on Litz wire, typically used for aerospace and automotive

applications. Infrared thermal imaging was utilised to inspect bundles of Litz wire containing those

with and without enamel. The temperature profiles of the wires with or without enamel were

recorded and then machine learning techniques were utilised for automated inspection of enamel

removal. The feasibility of various classifier models for identifying the remaining enamel on a set

of enamelled copper wires was evaluated. A comparison of the performance of classifier models in

terms of classification accuracy is presented. The best model for enamel classification accuracy was

the Gaussian Mixture Model with expectation maximisation; it achieved a training accuracy of 85%

and enamel classification accuracy of 100% with the fastest evaluation time of 1.05 s. The support

vector classification model achieved both the training and enamel classification accuracy of more

than 82%; however, it suffered the drawback of a higher evaluation time of 134 s.

Keywords: process inspection; terminations; infrared thermal imaging; machine learning

1. Introduction

In high-volume manufacturing for electrical machines such as for the automotive
sector, advanced manufacturing techniques supported by digital manufacturing tools have
been deployed. Some of these techniques are transferrable; however, there are still gaps
in activities and processes that require high degrees of human skill and cognition; typi-
cally undertaken within high-value, electrical machine manufacture; as found within the
aerospace industry. According to a recent industry survey [1], the process of terminations
or wire endings for Litz wire can often involve significant manual activities such as enamel
removal and soldering, resulting in variations in quality. While terminating the stator
windings in a connector or terminal box for onward connection to a drive or supply is a key
process and it determines the electrical and mechanical quality of the joint, it is challenging
to achieve precise process control due to the number and complexity of the influencing
factors. This is especially relevant for Litz wires, which comprise several individually
insulated and twisted thin wires. Litz wires have become a preferred choice for aerospace
and automotive applications due to the advantages they offer, such as the reduced skin
effect and proximity effect [2]. A review of the literature and discussions with the industry
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revealed that up to 10% of Litz wires have failed connections, due to incomplete stripping of
some strands inside the connector. The solution to this problem lies in process monitoring
and inspection of activities involved in the manufacturing of terminations. A review of
the literature [1] has revealed a lack of any significant research in this area. Nevertheless,
recent advancements in the field of sensing technologies and machine learning (ML) offer
the opportunity to provide real-time inspection during the manufacturing of terminations.

The process of making terminations (joining) involves connecting a bundle of enam-
elled copper wire, composed of multiple individual strands, to a cable shoe/lug or an
end sleeve. However, joining Litz wires is challenging due to the requirement of enamel
(wire insulation layer) removal from every individual thin strand, followed by making
an electrical connection between them. Recently, Seefried et al. [3] have compared and
reviewed the challenges in various joining techniques for insulated Litz wires. The joining
can be divided into two main process steps. The first step is stripping, which involves
the removal of enamel from each strand to enable electrical contact with other strands
and other components. The stripping process can be carried out by various methods, e.g.,
thermal, mechanical, or chemical stripping method [4]. The second step is joining, where
the stripped ends are joined electrically and mechanically for making a connection. There
are several processes for joining/contacting, such as soldering, ultrasonic welding, laser
welding, and resistance welding.

Although individual processes of stripping and joining increase the handling effort,
production times, and costs, they are inevitable in Litz wires that are required to operate
effectively at higher temperatures for aerospace applications. In recent years, technologies
that combine both the process steps of stripping and joining are being investigated due to
their cost-effectiveness and efficiency [4,5]. However, quality control in processes such as
stripping and soldering can be achieved by process monitoring and inspection at various
stages in the joining process. There have been studies utilising ML approaches for some
of the joining processes [6,7] and other electric machine manufacturing processes [8], but
very limited research was found on ML approaches for the inspection of enamel removal
and soldering. This research work investigates the use of infrared thermal imaging for the
inspection of enamel removal on a Litz wire. This is an important step to ensure that all
individual strands have had their enamel removed before they can be soldered for making
a connection. The temperature profiles of the wires with or without enamel were recorded
using infrared thermal imaging. Data were obtained during the heating and cooling profiles
of the wires and then machine learning techniques were utilised for automated inspection
of enamel removal on Litz wire bundles. The feasibility of several classifier models for
identifying the remaining enamel on a set of enamelled copper wires was evaluated.

2. Summary of Key Joining Techniques and Machine Learning Technologies for
Process Inspection

A summary of the main joining/crimping processes such as thermal crimping, ultra-
sonic crimping, welding, and soldering is provided in this section. The state-of-the-art in-
process inspection utilising machine learning techniques has also been discussed for every
joining technique. It was observed that very limited methods are available for inspection of
enamel removal processes in Litz wires. This highlights the importance of the proposed
non-destructive method for the inspection of enamel removal.

2.1. Thermal or Hot Crimping

Hot or thermal crimping is a widely adopted technology for terminating insulated
copper wires where a pair of electrodes heated at around 500 ◦C are pressed to form a
joint by evaporating the insulation layer of the copper wires [4]. A typical hot crimped
termination is shown in Figure 1. This process offers the advantage of a reduction in
production time by combining the process of stripping the insulation and connecting the
cable lug. However, using a pair of electrodes heated at high temperatures and pressing
against metals reduces their lifetime. The extreme forces and temperature to which the
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electrodes are exposed do not allow them to go beyond 5000 cycles [9]. To inspect the
quality of the joint, end-of-line inspection methods such as continuity tests, resistance
tests, pull-out force, and optical inspection are typically used by manufacturers [5]. To
achieve process monitoring of quality for a hot crimped termination, Fleischmann et al.
have proposed an artificial-neural-network (ANN)-based system for classification and
prediction, that determines wear on electrodes and predicts joint quality by analysing
process parameters such as variations in energy consumption and temperature [10]. Due
to challenges associated with the tool wear, a majority of research focused on varying
electrode geometries and materials [11], e.g., Keuhl et al. proposed a method where
inductive heating was utilised to strip the wires, and the crimping tools were made of a
nonconductive technical ceramic [4]. The National Aeronautics and Space Administration
published a report on ultrasonic measurement techniques for quantitative assessment of
wire crimp connections [12].
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Figure 1. Images showing a few examples of terminations made from various technologies (a) Hot 
crimped termination (b) A laser-welded joint (c) A dip-soldered termination.

2.2. Ultrasonic Crimping
The ultrasonic crimping process utilises ultrasonic oscillations to make a connection. 

The cable lug with the inserted Litz wire is placed between the sonotrode and the anvil, 
and ultrasonic oscillations are induced. The oscillation damping and related friction pro-
cesses cause heating in the contact zone, leading to the burning of the insulation and cold 
welding of the metallic parts. Ultrasonic crimping offers the advantage of higher tool life 
as compared to thermal crimping, but the disadvantage of this technique is that cables 
below 1 mm in diameter tend to dislocate from their initial position due to vibrations [13]. 
Inspection is typically conducted at the end of line using continuity tests, resistance tests, 
pull-out force, and optical inspection. Mayr et al. [14] proposed ML models that can pre-
dict the quality of a joint based on process parameters or its visual appearance. This work 
tested different regression models such as support vector machines (SVM), random forest, 
and AdaBoost, for estimating the withdrawal force of a crimped connection based on in-
put parameters. In [15], SVMs were used to classify the quality of connections based on 
visual features.

2.3. Welding
Welding technologies, both traditional and laser, require prior removal of insulation 

from the contact area [3]. During the resistance welding process, force and current are 
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2.2. Ultrasonic Crimping

The ultrasonic crimping process utilises ultrasonic oscillations to make a connection.
The cable lug with the inserted Litz wire is placed between the sonotrode and the anvil,
and ultrasonic oscillations are induced. The oscillation damping and related friction
processes cause heating in the contact zone, leading to the burning of the insulation and
cold welding of the metallic parts. Ultrasonic crimping offers the advantage of higher tool
life as compared to thermal crimping, but the disadvantage of this technique is that cables
below 1 mm in diameter tend to dislocate from their initial position due to vibrations [13].
Inspection is typically conducted at the end of line using continuity tests, resistance tests,
pull-out force, and optical inspection. Mayr et al. [14] proposed ML models that can predict
the quality of a joint based on process parameters or its visual appearance. This work
tested different regression models such as support vector machines (SVM), random forest,
and AdaBoost, for estimating the withdrawal force of a crimped connection based on
input parameters. In [15], SVMs were used to classify the quality of connections based on
visual features.

2.3. Welding

Welding technologies, both traditional and laser, require prior removal of insulation
from the contact area [3]. During the resistance welding process, force and current are
applied to the bundle of Litz wire to compact it into a solid that then gets welded to the
contact terminal placed on the lower electrode [3]. Tungsten Inert Gas welding is another
example of a welding process that requires strict standards such as ISO10042 [16] to ensure
the desired quality standards. This process is dependent on process parameters such
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as arc current/voltage, laser power [17], and welding speed. The process itself can be
automated or manual, but the monitoring during the process is dependent on human
supervision. Process monitoring using machine vision technologies presents limitations,
due to the lighting conditions and contrast created by the arc light that can obscure the
regions surrounding the weld. Previous work [18] compared real-time process monitoring
of Tungsten Inert Gas welding using: machine vision methods and deep neural network
(DNN) to monitor and perform defect classification of the welding process. It was found
that both methods achieved high levels of accuracy in tracking the defects. The DNN
solution was more adaptable, whereas the traditional method was more efficient. Other
approaches, e.g., by Mayr et al. presented a system architecture for analysing the welding
quality of joints for hairpin windings. The process parameters from the welding machine
and visual information from the cameras were utilised for developing a quality monitoring
system using convolutional neural networks (CNN) [19]. Sumesh et al. predicted the
welding quality based on acoustic signals during the process [20]. Two classification
algorithms, J48, and random forest, were utilised for the classification between good welds
and defects.

2.4. Soldering

The soldering of termination process requires prior removal of insulation from the Litz
wire. According to the British Standards BS EN 50390-2004 [21], soldering of terminations
is a process of joining metallic surfaces using solder without direct fusion of the base metals.
Previous work confirmed that the quality of the soldered joint is highly dependent on the
process parameters such as the temperature of the solder, immersion time in solder, and
angle of immersion, making it dependent on human supervision for monitoring during
the process. Currently, soldering is a highly manual process without much automation.
Typically, soldered terminations for electrical wires are optically inspected for cracks and
dimensions [21]. Although there is limited research in the inspection of the soldered joint
in Litz wires, some research has been published on defect detection in printed circuit
boards utilising deep learning algorithms [22], quality inspection of soldered joints in using
CNN [23], a cascaded CNN architecture to locate the defect in a soldered region and then
labelling it [24]. However, there is very limited research on automated inspection of the
soldering process involved in the manufacturing of terminations.

2.5. Lack of Process Inspection Methods for Enamel Removal Processes

As discussed in Section 2, many joining techniques such as soldering and welding
require prior removal of enamel from the Litz wires to enable them to make an electrical
connection. As mentioned by Seefried et al. [3], the key challenge in contacting insulated
Litz wires is the high number of single wires coated with thermally resistant primary
insulation. In addition, the single wires must not be mechanically damaged during the
enamel removal or joining process to maintain the conductive cross-section. A detailed
discussion on enamel removal processes, along with their advantages and disadvantages,
has been provided in [25]. One method is mechanical removal of enamel using rotating
brushes, where the copper wire is inserted between two rotating steel brushes that remove
the insulation that is then extracted by suction [25]. The insulation can be removed by
thermal methods where the insulation is melted and burnt off at high temperatures. Laser-
based enamel removal processes are also being used by the industry due to the high removal
rates. As discussed in previous sections, discussions with the industry revealed that up
to 10% of Litz wires have failed connections due to incomplete stripping of some strands
inside the connector. Currently, the majority of the techniques used on the shop floor are
destructive testing methods or post-analysis methods, such as computerised tomography
scanning or the fluorescence measurement method [25]; currently, no non-destructive
testing process for inspection of enamel removal has been published.
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3. Materials and Methods

This section provides further information on the methods of the proposed solution
and the experimental setup. It has been divided into two parts. First, a brief description
of the use of the infrared thermal imaging technique for inspection of enamel removal on
Litz wires is discussed. The second part describes the experimental setup; the process for
recording data and training the machine learning models is also discussed.

3.1. Infrared Thermal Imaging for Inspection of Enamel Removal

Active infrared thermography (IRT) is an effective tool for non-destructively inspecting
materials by irradiating the material with a heat source and analysing the resulting spread
of heat for any irregularities. Several investigations have been performed into methods
to heat the sample to inspect the defects. One of the methods is pulsed thermography
(PT), where the target sample is heated with a pulse of thermal energy for instantaneous
heating [26]. PT has been used to investigate the relationship between the coating thickness
uniformity error and surface temperature change [27], and the relationship between phase
angle and coating thickness [28]. Zhou et al. showed that PT can be used to inspect the
damage inside composite materials [29]. Compared to other thermography techniques, PT
offers the advantage of the availability of instruments to generate the heat pulse for heating
the material under inspection, e.g., flash lamps offer excellent control over the power and
duration of the heat pulse.

3.2. Experimental Setup and Process

An E6XT infrared camera from FLIR was used for experiments. It has a 43,200
(240 × 180) pixel infrared detector, −20 ◦C to 550 ◦C (−4 ◦F to 1022 ◦F) temperature
range, and some internal memory for storing recordings. It needed to be connected to
a computer for recording live data. The live data were recorded at a rate of 15 Hz and
returned images of size 240 × 160. FLIR’s Atlas 6 Software Development Kit (SDK) was
used to record live data from the IR camera. The SDK is written in C# and provides a series
of tools for interacting with FLIR cameras and requesting data from them.

A pair of heat lamps (500 Watts) was used as a sustained heat source, and was set
to achieve the required rise in surface temperature of the wires corresponding to a 2 KJ
(nominal) surface energy exposure. The heating time of the lamp was varied between
one and ten seconds to elicit a range of responses. The picture of the setup used for
experimentation is shown in Figure 2.

Figure 2. A picture of the setup used for experiments using the IR camera.

The bundle of Litz wire was held in place on a Perspex sheet 4 mm thick using mask-
ing tape. The IR camera was held at a height of approximately 15 cm from the wires and 
was connected to a laptop via a USB cable. Flir Report Studio (“FLIR Thermal Studio 
Suite”) was used to trigger the recording of infrared radiation emitted from the wires. The 
data were obtained under different environmental temperatures, different heating times, 
varying distances from the wire, varying amounts of enamel on the wires, and different 
numbers of wires under inspection. The values were saved to a compressed sequence file 
(CSQ) containing temperature data for the recording as well as metadata about the device. 
The temperature data were exported as a Comma Separated Values (CSV) file and the 
image data as an Audio Video Interleave (AVI) video file. The image data were generated 
by false colouring the temperature data using FLIR’s Iron colour palette, where the limits 
to build the colormap were set at the start of the recording. To save file space, the CSV file 
was converted to a compressed Numpy NPZ file. A flowchart depicting the process of 
recording and training the models is presented in Figure 3. Python 3.7.4 was the primary 
development environment used to analyse the data and develop the models. The sklearn 
package was the primary source of machine learning models except for OpenCV 4 [30]. It 
was used for its suite of image processing tools and implementation of the Gaussian Mix-
ture Model.

Figure 3. The flowchart depicts the process followed for recording and training models. The IR ra-
diation from the wires was recorded during the heating and cooling cycles. The data obtained were 
used to construct training masks and train the machine learning models for enamel classification.

4. Results and Discussion
A bundle of Litz wire with enamel coating of polyamide-imide had some wires with 

enamel, some wires partially removed, and some with enamel fully removed. The wire 
ends were exposed to a heat lamp for 10 s and then cooled. The infrared images of the 
wires during the heating and cooling cycle were recorded. The images obtained by the IR 
camera during the heating and cooling cycles are shown in Figure 4. The bright areas in 
the images represent higher temperatures. The wire labelled as 1 in the picture had its 
enamel completely removed and, therefore, had copper on the surface, the wire labelled 
as 2 had a coating of enamel on the surface, and wire 3 had its enamel coating partially 

Figure 2. A picture of the setup used for experiments using the IR camera.
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The bundle of Litz wire was held in place on a Perspex sheet 4 mm thick using masking
tape. The IR camera was held at a height of approximately 15 cm from the wires and was
connected to a laptop via a USB cable. Flir Report Studio (“FLIR Thermal Studio Suite”)
was used to trigger the recording of infrared radiation emitted from the wires. The data
were obtained under different environmental temperatures, different heating times, varying
distances from the wire, varying amounts of enamel on the wires, and different numbers
of wires under inspection. The values were saved to a compressed sequence file (CSQ)
containing temperature data for the recording as well as metadata about the device. The
temperature data were exported as a Comma Separated Values (CSV) file and the image
data as an Audio Video Interleave (AVI) video file. The image data were generated by
false colouring the temperature data using FLIR’s Iron colour palette, where the limits to
build the colormap were set at the start of the recording. To save file space, the CSV file
was converted to a compressed Numpy NPZ file. A flowchart depicting the process of
recording and training the models is presented in Figure 3. Python 3.7.4 was the primary
development environment used to analyse the data and develop the models. The sklearn
package was the primary source of machine learning models except for OpenCV 4 [30].
It was used for its suite of image processing tools and implementation of the Gaussian
Mixture Model.

Figure 2. A picture of the setup used for experiments using the IR camera.

The bundle of Litz wire was held in place on a Perspex sheet 4 mm thick using mask-
ing tape. The IR camera was held at a height of approximately 15 cm from the wires and 
was connected to a laptop via a USB cable. Flir Report Studio (“FLIR Thermal Studio 
Suite”) was used to trigger the recording of infrared radiation emitted from the wires. The 
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numbers of wires under inspection. The values were saved to a compressed sequence file 
(CSQ) containing temperature data for the recording as well as metadata about the device. 
The temperature data were exported as a Comma Separated Values (CSV) file and the 
image data as an Audio Video Interleave (AVI) video file. The image data were generated 
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to build the colormap were set at the start of the recording. To save file space, the CSV file 
was converted to a compressed Numpy NPZ file. A flowchart depicting the process of 
recording and training the models is presented in Figure 3. Python 3.7.4 was the primary 
development environment used to analyse the data and develop the models. The sklearn 
package was the primary source of machine learning models except for OpenCV 4 [30]. It 
was used for its suite of image processing tools and implementation of the Gaussian Mix-
ture Model.
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used to construct training masks and train the machine learning models for enamel classification.
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Figure 3. The flowchart depicts the process followed for recording and training models. The IR

radiation from the wires was recorded during the heating and cooling cycles. The data obtained were

used to construct training masks and train the machine learning models for enamel classification.

4. Results and Discussion

A bundle of Litz wire with enamel coating of polyamide-imide had some wires with
enamel, some wires partially removed, and some with enamel fully removed. The wire
ends were exposed to a heat lamp for 10 s and then cooled. The infrared images of the
wires during the heating and cooling cycle were recorded. The images obtained by the
IR camera during the heating and cooling cycles are shown in Figure 4. The bright areas
in the images represent higher temperatures. The wire labelled as 1 in the picture had its
enamel completely removed and, therefore, had copper on the surface, the wire labelled
as 2 had a coating of enamel on the surface, and wire 3 had its enamel coating partially
removed. It was observed that the thermal profile of the three wires was different during
the cooling cycle; wire 1, which did not have the enamel coating, cooled faster than wires
2 and 3, which had enamel on their surface. This is due to the difference in emissivity of
copper and enamel (polyamide-imide) as approx. 0.2 and 0.9, respectively.

After capturing the IR imaging data from the heating and cooling cycles, image
processing techniques were applied to distinguish the wires/areas with and without
enamel coating. The wires were successfully detected from the IR image using the Canny
edge detection algorithm, and then the generated mask of detected edges was dilated to
isolate the detected wires from the background image [31], as shown in Figure 5. The
simple linear iterative clustering algorithm groups pixels based on their physical proximity
and colour. This algorithm was investigated for segmenting the IR image into smaller
regions (superpixels) [31]. The image processing algorithms performed well when the data
were ideal and the enamel was visible; however, the performance was not consistent across
the range of data collected.
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copper and enamel (polyamide-imide) as approx. 0.2 and 0.9, respectively.

Figure 4. The infrared images of the three Litz wires (labelled 1, 2 and 3) from a bundle during 
heating and cooling. The wires labelled as 1 had their enamel completely removed, wire 2 had a 
coating of enamel on the surface, and wire 3 had its enamel coating partially removed.

After capturing the IR imaging data from the heating and cooling cycles, image pro-
cessing techniques were applied to distinguish the wires/areas with and without enamel 
coating. The wires were successfully detected from the IR image using the Canny edge 
detection algorithm, and then the generated mask of detected edges was dilated to isolate 
the detected wires from the background image [31], as shown in Figure 5. The simple 
linear iterative clustering algorithm groups pixels based on their physical proximity and 
colour. This algorithm was investigated for segmenting the IR image into smaller regions 
(superpixels) [31]. The image processing algorithms performed well when the data were 
ideal and the enamel was visible; however, the performance was not consistent across the 
range of data collected.

Figure 5. (left) An infrared image from heated wires, (centre) masked image using Canny edge de-
tection algorithm, (right) image obtained using simple linear iterative clustering.

4.1. Thermographic Signal Reconstruction (TSR)
A standard approach to processing IR imaging data is to apply thermographic signal 

reconstruction (TSR) whereby a log polynomial is fitted to the temperature history of each 
pixel in the thermogram [32]. The fitting reduces noise by not including it in the fitting 
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reconstruction (TSR) whereby a log polynomial is fitted to the temperature history of each 
pixel in the thermogram [32]. The fitting reduces noise by not including it in the fitting 
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Figure 5. (left) An infrared image from heated wires, (centre) masked image using Canny edge

detection algorithm, (right) image obtained using simple linear iterative clustering.

4.1. Thermographic Signal Reconstruction (TSR)

A standard approach to processing IR imaging data is to apply thermographic signal
reconstruction (TSR) whereby a log polynomial is fitted to the temperature history of each
pixel in the thermogram [32]. The fitting reduces noise by not including it in the fitting
and compresses the image, reducing file size and allowing faster analysis [33]. The result is
an N-channel matrix of model coefficients. The log polynomial fitting was applied to the
data obtained during the cooling cycle of the wires. As discussed in the previous section,
due to the difference in cooling rates of copper and enamel, the cooling rate of the samples
contains the information needed to differentiate between the different materials. Log and
standard polynomial models of 5th, 6th, and 7th order were fitted to the collected data with
the increasing order having little impact on the overall fitting. The plot in Figure 6 shows
the TSR fitting to recorded data using the 5th order polynomial and log polynomial.
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and compresses the image, reducing file size and allowing faster analysis [33]. The result 
is an N-channel matrix of model coefficients. The log polynomial fitting was applied to 
the data obtained during the cooling cycle of the wires. As discussed in the previous sec-
tion, due to the difference in cooling rates of copper and enamel, the cooling rate of the 
samples contains the information needed to differentiate between the different materials. 
Log and standard polynomial models of 5th, 6th, and 7th order were fitted to the collected 
data with the increasing order having little impact on the overall fitting. The plot in Figure 
6 shows the TSR fitting to recorded data using the 5th order polynomial and log polyno-
mial.

 

Figure 6. A plot showing TSR fitting to recorded data using 5th-order polynomial and log polyno-
mial. The blue line denotes the raw data.

One of the limitations of TSR is that it has to be fitted to the entire cooling period and 
each pixel, making the fitting time potentially very high. Iterating over each pixel of the 
thermal history would require a high computational load and processing time, making 
this approach unsuitable for a live system where it is expected to take only a few seconds 
for it to process new information. In addition to this, understanding the results from TSR 
would require special expertise not necessarily present in the shop-floor environment 
where the technology could be deployed. A fast, effective classifier model that assigns 
numerically simple labels would be better suited for a live system. The next approach was 
to train a classification model on the temperature history of the data.

4.2. Classification Models
Due to the difference in thermal conductivities of copper and enamel, analysis of the 

data recorded during the cooling period could aid in inferring/identifying the material 
occupying the pixel. For modelling purposes, data in the form of a feature set summaris-
ing the behaviour of the target period were required. It was found through investigation 
that the minimum, maximum, and average temperature over the cooling period varied 
more distinctly between different materials than other metrics. These metrics were ap-
plied to the recorded temperature values, their first derivative, and second derivative. The 
derivatives were investigated as, over the course of the recordings, the minimum and 
maximum temperature of the environment increased with each subsequent recording. 
The use of derivatives made the technique more robust to environmental changes caused 
by repeated heating of the wires. To train the models and to evaluate the results after-
wards, a series of masks was constructed for each material present in the recordings (cop-
per, enamel, background, and fixing tape), as shown in Figure 7. Sometimes the tape hold-
ing the wires down was included in the recording frames, so a mask for the tape was made 
as its thermal response was distinctive. This is likely to be due to the tape’s reflective sur-
face.

Figure 6. A plot showing TSR fitting to recorded data using 5th-order polynomial and log polynomial.

The blue line denotes the raw data.

One of the limitations of TSR is that it has to be fitted to the entire cooling period and
each pixel, making the fitting time potentially very high. Iterating over each pixel of the
thermal history would require a high computational load and processing time, making this
approach unsuitable for a live system where it is expected to take only a few seconds for it
to process new information. In addition to this, understanding the results from TSR would
require special expertise not necessarily present in the shop-floor environment where the
technology could be deployed. A fast, effective classifier model that assigns numerically
simple labels would be better suited for a live system. The next approach was to train a
classification model on the temperature history of the data.

4.2. Classification Models

Due to the difference in thermal conductivities of copper and enamel, analysis of the
data recorded during the cooling period could aid in inferring/identifying the material
occupying the pixel. For modelling purposes, data in the form of a feature set summarising
the behaviour of the target period were required. It was found through investigation
that the minimum, maximum, and average temperature over the cooling period varied
more distinctly between different materials than other metrics. These metrics were applied
to the recorded temperature values, their first derivative, and second derivative. The
derivatives were investigated as, over the course of the recordings, the minimum and
maximum temperature of the environment increased with each subsequent recording. The
use of derivatives made the technique more robust to environmental changes caused by
repeated heating of the wires. To train the models and to evaluate the results afterwards, a
series of masks was constructed for each material present in the recordings (copper, enamel,
background, and fixing tape), as shown in Figure 7. Sometimes the tape holding the wires
down was included in the recording frames, so a mask for the tape was made as its thermal
response was distinctive. This is likely to be due to the tape’s reflective surface.

Source Enamel Scraped Tape Background 

     

Figure 7. Example of material masks constructed and source image.

Three different classifier models: a k-means clustering algorithm, Gaussian Mixture 
Model with expectation maximisation (GMM-EM), and support vector machines (SVM) 
were trained in two different ways. The first was to identify the cooling periods by their 
respective material, as specified by the training masks shown earlier. A separate model 
was also trained to classify whether or not the pixel contained enamel. The two-class 
model consisted of classes as enamel and copper, whereas the four-class model would 
contain classes as copper, enamel, background, and fixing tape. A two-class model would 
be ideal for a live system as it would return a binary image which would be easier to 
process. Both models were tested to see which would perform better.

4.2.1. K-Means Clustering Algorithm
The first model tested was the popular k-means clustering algorithm. It is a common 

method for separating data into k-groups. The groups or clusters are defined by their cen-
tre and are iteratively adjusted as more data are introduced [34]. This well-defined algo-
rithm could be easily trained. The training accuracy in the following plots is on a scale of 
0 to 1, with 1 representing 100%. The training accuracy varied between approximately 20% 
and 90% for four classes (copper, enamel, background, and tape), Figure 8a. It also varied 
with different files which suggest the sensitivity of the model. The accuracy became more 
consistent for 2 classes when the 2nd derivative was used, achieving an accuracy of 
around 90% for 5 out of the 7 files in the plot, as shown in Figure 8b.

Figure 8. K-means training accuracy for each file using both the cooling period and derivatives of 
the cooling period. (a) The plot is showing results for four classes (copper, enamel, background, and 
tape), and (b) the plot is showing results for two classes (copper and enamel).

4.2.2. Gaussian Mixture Model with Expectation Maximisation (GMM-EM)
A Gaussian Mixture Model with expectation maximisation was tested next. As pro-

posed by Stauffer and Grimson [35] this method provides a means of classifying objects 

Figure 7. Example of material masks constructed and source image.
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Three different classifier models: a k-means clustering algorithm, Gaussian Mixture
Model with expectation maximisation (GMM-EM), and support vector machines (SVM)
were trained in two different ways. The first was to identify the cooling periods by their
respective material, as specified by the training masks shown earlier. A separate model was
also trained to classify whether or not the pixel contained enamel. The two-class model
consisted of classes as enamel and copper, whereas the four-class model would contain
classes as copper, enamel, background, and fixing tape. A two-class model would be ideal
for a live system as it would return a binary image which would be easier to process. Both
models were tested to see which would perform better.

4.2.1. K-Means Clustering Algorithm

The first model tested was the popular k-means clustering algorithm. It is a common
method for separating data into k-groups. The groups or clusters are defined by their centre
and are iteratively adjusted as more data are introduced [34]. This well-defined algorithm
could be easily trained. The training accuracy in the following plots is on a scale of 0 to
1, with 1 representing 100%. The training accuracy varied between approximately 20%
and 90% for four classes (copper, enamel, background, and tape), Figure 8a. It also varied
with different files which suggest the sensitivity of the model. The accuracy became more
consistent for 2 classes when the 2nd derivative was used, achieving an accuracy of around
90% for 5 out of the 7 files in the plot, as shown in Figure 8b.

Figure 7. Example of material masks constructed and source image.

Three different classifier models: a k-means clustering algorithm, Gaussian Mixture 
Model with expectation maximisation (GMM-EM), and support vector machines (SVM) 
were trained in two different ways. The first was to identify the cooling periods by their 
respective material, as specified by the training masks shown earlier. A separate model 
was also trained to classify whether or not the pixel contained enamel. The two-class 
model consisted of classes as enamel and copper, whereas the four-class model would 
contain classes as copper, enamel, background, and fixing tape. A two-class model would 
be ideal for a live system as it would return a binary image which would be easier to 
process. Both models were tested to see which would perform better.
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and 90% for four classes (copper, enamel, background, and tape), Figure 8a. It also varied 
with different files which suggest the sensitivity of the model. The accuracy became more 
consistent for 2 classes when the 2nd derivative was used, achieving an accuracy of 
around 90% for 5 out of the 7 files in the plot, as shown in Figure 8b.
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the cooling period. (a) The plot is showing results for four classes (copper, enamel, background, and

tape), and (b) the plot is showing results for two classes (copper and enamel).

4.2.2. Gaussian Mixture Model with Expectation Maximisation (GMM-EM)

A Gaussian Mixture Model with expectation maximisation was tested next. As pro-
posed by Stauffer and Grimson [35] this method provides a means of classifying objects
from the background of an active image. The model describes the image as a series of
weighted Gaussian distributions based on statistical features. New data are classified by
closest distribution. OpenCV’s implementation of the Gaussian Mixture Model was used,
which employs expectation maximisation (EM) to learn the mixture [36]. The algorithm at-
tempts to estimate the parameters of the distribution by finding those that would maximise
the likelihood of describing the data [37].

The training accuracy in the following plots is on a scale of 0 to 1, with 1 representing
100%. The training accuracy varies between 20% and 90% for the 4-class model, and from
40–90% for the 2-class model, as shown in Figure 9. Choosing to train with the 1st and 2nd
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derivatives led to higher accuracy in the majority of cases for both the 2-class and 4-class
scenarios. For the four-class model, the GMM training accuracy generally varied greatly
from one file to the other. The accuracy became consistently higher when the 1st derivative
was used for the 2-class model.

from the background of an active image. The model describes the image as a series of 
weighted Gaussian distributions based on statistical features. New data are classified by 
closest distribution. OpenCV’s implementation of the Gaussian Mixture Model was used, 
which employs expectation maximisation (EM) to learn the mixture [36]. The algorithm 
attempts to estimate the parameters of the distribution by finding those that would max-
imise the likelihood of describing the data [37].

The training accuracy in the following plots is on a scale of 0 to 1, with 1 representing 
100%. The training accuracy varies between 20% and 90% for the 4-class model, and from 
40–90% for the 2-class model, as shown in Figure 9. Choosing to train with the 1st and 2nd 
derivatives led to higher accuracy in the majority of cases for both the 2-class and 4-class 
scenarios. For the four-class model, the GMM training accuracy generally varied greatly 
from one file to the other. The accuracy became consistently higher when the 1st derivative 
was used for the 2-class model.
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Figure 9. Gaussian Mixture Model training accuracy for each file using both the cooling period and 
derivatives of the cooling period. (a) The plot shows results for two classes, and (b) the plot shows 
results for four classes.

4.2.3. Support Vector Machines (SVM)
Support vector machines (SVM) seek to find the hyperplane that separates multidi-

mensional data into clusters [38]. Three different implementations were tested: C-support 
vector classification (SVC), Nu-support Vector Classification (NuSVC), and support vector 
machine linear [30]. The hyperplane shape was set to radial basis function for SVC and 
NuSVC. However, NuSVC repeatedly failed to train, and so is omitted from the discus-
sion. The SVM consistently achieves an accuracy of above 80% across all files and only 
varies by, at most, 1.3%. As shown in Figure 10, the accuracy is consistent when trained 
with the whole, 1st, and 2nd derivatives of the data. Setting the number of classes to 2 
achieves a slightly higher training accuracy of around 86%, compared to approximately 
82% for 4 classes for both the 2-class and 4-class model types. The SVMs were also trained 
using a bagging classifier. A bagging classifier fits multiple classifiers to random subsets 
of the data and then combines the results of the individual predictions to arrive at a single 
conclusion [30] using an algorithm known as Pasting [39].

Figure 9. Gaussian Mixture Model training accuracy for each file using both the cooling period and

derivatives of the cooling period. (a) The plot shows results for two classes, and (b) the plot shows

results for four classes.

4.2.3. Support Vector Machines (SVM)

Support vector machines (SVM) seek to find the hyperplane that separates multidi-
mensional data into clusters [38]. Three different implementations were tested: C-support
vector classification (SVC), Nu-support Vector Classification (NuSVC), and support vector
machine linear [30]. The hyperplane shape was set to radial basis function for SVC and
NuSVC. However, NuSVC repeatedly failed to train, and so is omitted from the discussion.
The SVM consistently achieves an accuracy of above 80% across all files and only varies
by, at most, 1.3%. As shown in Figure 10, the accuracy is consistent when trained with the
whole, 1st, and 2nd derivatives of the data. Setting the number of classes to 2 achieves
a slightly higher training accuracy of around 86%, compared to approximately 82% for
4 classes for both the 2-class and 4-class model types. The SVMs were also trained using
a bagging classifier. A bagging classifier fits multiple classifiers to random subsets of
the data and then combines the results of the individual predictions to arrive at a single
conclusion [30] using an algorithm known as Pasting [39].

The SVC also achieves an accuracy of above 85% consistently across all files, except
SVC normal for 4 classes where the accuracy is close to 82%. The accuracy is consistent
when trained with the whole, 1st, and 2nd derivatives of the data, as depicted in Figure 11.
Setting the number of classes to 2 achieves a slightly higher training accuracy of around 86%,
compared to approximately 82% for 4 classes for both the 2-class and 4-class model types.
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Figure 10. Support vector machine training accuracy for each file. The training accuracy for SVM 
linear using a bagging classifier for two-class model (a), SVM linear using a bagging classifier for 
four-class model (b), SVM linear for two-class model (c), and SVM linear for four-class model (d) 
are shown.

The SVC also achieves an accuracy of above 85% consistently across all files, except 
SVC normal for 4 classes where the accuracy is close to 82%. The accuracy is consistent 
when trained with the whole, 1st, and 2nd derivatives of the data, as depicted in Figure 
11. Setting the number of classes to 2 achieves a slightly higher training accuracy of around 
86%, compared to approximately 82% for 4 classes for both the 2-class and 4-class model 
types.

Figure 10. Support vector machine training accuracy for each file. The training accuracy for SVM

linear using a bagging classifier for two-class model (a), SVM linear using a bagging classifier for

four-class model (b), SVM linear for two-class model (c), and SVM linear for four-class model

(d) are shown.

As promising as these training accuracy scores were, they were misleading due to the
size of the wires. Most of the space in the data recorded was the background, and the wires
took up a relatively small part of it. When the training accuracy appeared to be high, this
more likely meant that the background was correctly identified and did not necessarily
mean that the enamel, if any, was found. This is explained in further detail with the help
of three examples shown in Figure 12. The first image in Figure 12a has high accuracy
as the four wires are correctly identified in the picture, whereas in Figure 12b wires have
been identified but are included in the same class as the misidentified background, giving
it a false high accuracy. The majority of the image is background, and wires have been
misidentified as background in Figure 12c, again giving it a false high accuracy. For this
case, a better metric for training accuracy has been adopted based on the proportion of
the enamel correctly identified. For two classes, the locations of the non-zero pixels are
compared against the non-zero pixels in the training mask. The new accuracy metric is the
proportion of the locations which matches the training mask. For 4 classes, the location of
the pixels with a value of 1 is compared to the training mask.
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Figure 11. Support vector classification training accuracy for each file. The training accuracy for SVC 
using a bagging classifier for two class (a), SVC using a bagging classifier for four class (b), SVC 
normal for two class (c), and SVC normal for four class (d) are shown.
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sarily mean that the enamel, if any, was found. This is explained in further detail with the 
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as the four wires are correctly identified in the picture, whereas in Figure 12b wires have 
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Figure 12. Examples of evaluated results using the trained models. (a) the four wires are correctly 
identified in the picture, giving it a high accuracy (b) wires have been identified but are included in 
the same class as the misidentified background, giving it a false high accuracy (c) the wires have 
been misidentified as background but it gives a false high accuracy as the majority of the image is 
background.

The average enamel classification accuracy for each trained model type for the two-
class model is presented in Table 1, and for the four-class model is presented in Table 2. 
Another means of assessing the models is how long it takes to evaluate the data. The 
trained model should be able to process live data as fast as it can. The time is measured as 
how long it takes for the function to load the data file, clip to the cooling period, convert 
it to a feature set, evaluate it, and return the results. Each model was tested 10 times for 
each dataset to get a representative spread of data. The average time for a model to eval-
uate data is presented in Table 3. The best model for the two classes is potentially the 
GMM. When given the 2nd derivative of the cooling period, it achieves a training accuracy 
of 85% and an enamel classification accuracy of 100% for the 2-class model. It also has the 
fastest evaluation time of 1.05 s. For the 4-class model, the SVC with bagging classifier 
achieved training and enamel classification accuracies of more than 82% when the 2nd 
derivative of the cooling period was given. However, the evaluation time of 134 s makes 
it difficult to use for live systems. The two-class and four-class enamel accuracy of SVM 
linear decreases drastically when the derivative is given to it instead of the cooling period, 
suggesting that there is a high degree of overlap between the classes and that a linear 
kernel cannot reliably separate them.

Table 1. Average training and enamel classification accuracy for each trained model type for two 
classes.

Figure 12. Examples of evaluated results using the trained models. (a) the four wires are correctly

identified in the picture, giving it a high accuracy (b) wires have been identified but are included

in the same class as the misidentified background, giving it a false high accuracy (c) the wires have

been misidentified as background but it gives a false high accuracy as the majority of the image

is background.
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The average enamel classification accuracy for each trained model type for the two-
class model is presented in Table 1, and for the four-class model is presented in Table 2.
Another means of assessing the models is how long it takes to evaluate the data. The
trained model should be able to process live data as fast as it can. The time is measured as
how long it takes for the function to load the data file, clip to the cooling period, convert it
to a feature set, evaluate it, and return the results. Each model was tested 10 times for each
dataset to get a representative spread of data. The average time for a model to evaluate
data is presented in Table 3. The best model for the two classes is potentially the GMM.
When given the 2nd derivative of the cooling period, it achieves a training accuracy of 85%
and an enamel classification accuracy of 100% for the 2-class model. It also has the fastest
evaluation time of 1.05 s. For the 4-class model, the SVC with bagging classifier achieved
training and enamel classification accuracies of more than 82% when the 2nd derivative of
the cooling period was given. However, the evaluation time of 134 s makes it difficult to
use for live systems. The two-class and four-class enamel accuracy of SVM linear decreases
drastically when the derivative is given to it instead of the cooling period, suggesting that
there is a high degree of overlap between the classes and that a linear kernel cannot reliably
separate them.

Table 1. Average training and enamel classification accuracy for each trained model type for

two classes.

Two Classes

Class Whole 1st Derivative 2nd Derivative

Average
Training
Accuracy

Average
Enamel

Accuracy

Average
Training
Accuracy

Average
Enamel

Accuracy

Average
Training
Accuracy

Average
Enamel

Accuracy

GMM 0.52 0.32 0.71 0.86 0.85 1.0

K-Means 0.58 0.43 0.79 0.23 0.79 0.55

SVM Linear
(Bag)

0.86 0.22 0.86 0.52 0.86 0.37

SVM Linear
(Normal)

0.86 0.72 0.86 0.42 0.86 0.65

SVC (Bag) 0.86 0.36 0.86 0.44 0.86 0.51

SVC (Normal) 0.86 0.68 0.86 0.31 0.86 0.62

Table 2. Average training and enamel classification accuracy for each trained model type for

four classes.

Four Classes

Class Whole 1st Derivative 2nd Derivative

Average
Training
Accuracy

Average
Enamel

Accuracy

Average
Training
Accuracy

Average
Enamel

Accuracy

Average
Training
Accuracy

Average
Enamel

Accuracy

GMM 0.41 0.26 0.51 0.41 0.39 0.24

K-Means 0.47 0.22 0.52 0.24 0.52 0.64

SVM Linear
(Bag)

0.82 0.43 0.82 0.40 0.82 0.64

SVM Linear
(Normal)

0.82 0.42 0.82 0.40 0.82 0.63

SVC (Bag) 0.74 0.40 0.59 0.19 0.82 0.83

SVC (Normal) 0.82 0.25 0.82 0.17 0.82 0.47
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Table 3. Average time for a model to evaluate data. This average includes processing whole, 1st

derivative, and 2nd derivative datasets.

Average Model Evaluation Time (s)

K-Means 4.27

SVM Linear 3.71

SVM SVC 134.47

OpenCV GMM 1.05

5. Conclusions and Future Work

Within electric machine manufacturing for aerospace applications, the individual
processes of stripping and joining for making terminations increase the handling effort,
production times, and costs. However, they are inevitable in wires that are required to
operate effectively at higher temperatures for aerospace applications. A review of the
literature and discussions within the industry revealed a lack of any significant research in
the area of inspection during the manufacturing of terminations. This work attempts to
address this gap by utilising infrared thermal imaging and machine learning techniques for
inspection of the enamel removal process on Litz wire, commonly used for aerospace and
automotive applications. Infrared thermal imaging was utilised to inspect bundles of Litz
wires containing those with and without enamel, and temperature profiles of the wires were
recorded. After that, the feasibility of several classifier models (an SVM, a k-means, and a
GMM) for automated inspection of enamel removal was investigated. After comparing
the performance of the classifier models in terms of classification accuracy, the Gaussian
Mixture Model with expectation maximisation was found to be the best with a training
accuracy of 85% and enamel classification accuracy of 100%, and the fastest evaluation time
of 1.05 s. A future study would involve building a demonstrator prototype by utilising the
current finding and applying the Gaussian Mixture Model. The development of a graphical
interface for displaying the input and results will also be considered. The demonstrator
could be tested on the shop floor of an industrial setting and could serve as part of a
live system.
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