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Abstract

Following the successful development of advanced driver assistance systems (ADAS), the
current research directions focus on highely automated vehicles aiming at reducing human
driving tasks, and extending the operational design domain, while maintaining a higher level
of safety. Currently, there are high research demands in academia and industry to predict
driver intention and understating driver readiness, e.g. in response to a “take-over request”
when a transition from automated driving mode to human mode is needed. A driver inten-
tion prediction system can assess the driver’s readiness for a safe takeover transition. In this
study, a novel deep neural network framework is developed by adopting and adapting the
DenseNet, long short-term memory, attention, FlowNet2, and RAFT models to anticipate
the diver maneuver intention. Using the public “Brain4Cars” dataset, the driver maneuver
intention will be predicted up to 4 s in advance, before the commencement of the driver’s
action. The driver intention prediction is assessed based on 1) in-cabin 2) out-cabin (road)
and 3) both in-out cabin video data. Utilizing K-fold cross-validation, the performance of
the model is evaluated using accuracy, precision, recall, and F1-score metrics. The experi-
ments show the proposed DIPNet model outperforms the state-of-the-art in the majority
of the driving scenarios.

1 INTRODUCTION

According to a recent report by the World Health Organiza-
tion (WHO), around 1.35 million people pass away annually in
road accidents, globally [1]. The statistics only include fatalities
of passengers due to car accidents [2]. Among the contribut-
ing factors, sudden maneuvers such as lane changes and turning
play important roles in road accidents [3]. To reduce the num-
ber of such fatal accidents, a mechanism that can understand
the driver’s intention before performing a dangerous maneu-
ver can be helpful as an ADAS in preventing such fatal actions.
Driver intention prediction can be also helpful in identifying the
driver’s readiness for a safe takeover transition in L3 automated
vehicles, based on the relevance of driver maneuver intention in
accordance with the current driving scenario [4].

Over the past decade, many industrial and academic research
studies have focused on developing autonomous vehicles (AVs).
The AV systems have not yet fully covered the SAE Level 3
(L3) standard. There are still critical aspects of the systems that
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need to be improved, such as developing more sophisticated
data analytics capabilities, scene understanding [5], better col-
laboration tools, security of users’ data stored in the systems, as
well as reducing computational costs for decision-making and
predictive functions. The prediction horizon and response time
required for L3 automated vehicles may vary from a few mil-
liseconds to a few seconds depending on the automated driving
function (ADF), the environment’s complexity, and driving sce-
narios. Short prediction horizons are used for lower-level tasks
such as obstacle avoidance and recognition of driver intent,
while longer horizons are needed for higher-level tasks such
as pedestrian crossing intent prediction, or route planning. By
proposing a model with a prediction horizon of up to 4 s in
advance and real-time processing we resolve one of the main
prerequisites of the L3 systems to a great extent.

Google and Tesla are among the leading industries that
have made significant progress in autonomous vehicles [6].
Similarly, researchers in academia have extensively studied semi-
autonomous assisted driving. As a result, the ADAS, SAE
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L3, and L4 vehicles, and cooperative automated driving via
cooperative adaptive cruise control (CACC) [7] have led to
promising perspectives to reduce traffic accidents, as well as
reducing greenhouse gas emissions, resilient mobility, and the
possibility of performing stress-free non-driving related tasks
(NDRT) in automated mode [6, 8]. These systems are designed
and equipped with sensory systems to understand information
about road and driving conditions, assess hazards and driving
warnings, and provide audio/visual requests to drivers [9]. Such
systems aim at higher safety either by taking the driving control
of the vehicle, by providing additional information to the human
driver, or by identifying the driver’s intention based on the char-
acteristics of the driver’s behavior and driving environment. It
has been proven that with the help of advanced deep-learning
techniques and computer vision, it is possible to predict the
driver’s intended maneuvers a few seconds in advance. Predict-
ing maneuvers can be gained with a high level of accuracy by
monitoring the driver’s behavior inside the car (e.g. head pose,
eye movement) and using the vehicle’s dynamic information
(e.g. speed, position) as well as environmental data (e.g. lanes
configuration, presence of intersections, and position of the
other road users) [3].

The majority of earlier studies in the field of driver maneu-
ver prediction have mostly focused on extracting information
from video frames of driver observations [2]. Numerous stud-
ies have demonstrated that driver behavior , particularly eye
movements, can be employed to assure safe takeover behavior
in conditionally automated vehicles [10] as well as for activity
recognition [11, 12]. Other information such as head postures
is also considered from video frames of driver observations in
some literature [3, 6, 13–18]. In some of these works, a mix-
ture of information such as road traffic information [19] or
car dynamics status is fed to the model as external data. Refs.
[6, 18] predict the driver’s intention using in-cabin videos only.
Ref. [6] uses head pose and eye movement features from driver
observation videos. In ref. [18], in addition to head pose and
eye movement features, the environment information is also
fed to the model, manually. While the out-cabin video can be
extremely informative (like traffic lights status, repairs on the
road, and accident situations on the road) and transmit infor-
mation that the interior video does not [2]. Some other works
like refs. [3, 13–17, 20–22] apply both in and out-cabin videos
and with the help of extra manual features predict the inten-
tion of the driver. However, adding extra information may not
necessarily improve the AV’s performance. In addition, manu-
ally extracted features are not applicable to practical use cases.
Manual features also require a heavy load of processing and
increase computational overload. Moreover, road traffic is too
complicated for hand-crafting explicit features. Deep learning
techniques have recently developed the domain, switching the
recognition paradigm from manual feature descriptor develop-
ment (e.g. body pose) to end-to-end learning of high-quality
representations straightly from visual input employing convo-
lutional neural networks (CNNs) [20]. Refs. [2] and [20] predict
the driver’s intention directly from both in and out-cabin videos
without considering handcrafted and extra features (e.g. head

pose). Although the reported results in these two works are
impressive, they can be improved more.

In this paper, we propose and design an end-to-end deep
learning architecture based on in-cabin and out-cabin data
to alleviate the aforementioned issues and challenges for the
sake of coming up with a relatively accurate system for driver
intention prediction. We also utilize both in-cabin and out–
cabin videos effectively without using handcrafted (manual)
features and detect the vehicle motion information from video
data using emerging computer vision techniques, to enhance
the results of driver’s intention prediction. Since the sys-
tem needs to be sufficiently fast to be applicable in such a
real-world application, the low complexity of the model will
be also prioritized, without sacrificing the model’s accuracy.
The proposed method is a data-driven approach and such
approaches are becoming increasingly popular in automated
driving as they do not require any prior knowledge of the
physics behind the underlying system and can be used to accu-
rately model highly-nonlinear behaviors. They also allow for
more generalizability, as they learn from large datasets rather
than being limited by assumptions associated with specific
types of vehicle models. Furthermore, data-driven approaches
are more flexible as they can easily incorporate new data
sources and deal with variable sensor inaccuracies or occlusions.
Finally, since data-driven models can generally train faster than
their model-based counterparts, they require significantly lower
computational resources.

The main contribution of this research can be summarized as
follows.

∙ We develop a four-stream deep convolutional and recur-
rent neural network-based model. Different from the existing
models for the intention prediction of the drivers, two
streams perform based on the DenseNet-long short-term
memory (LSTM) network to capture the features of the in-
out cabin videos more efficiently. This processes the spatial
and temporal features as a whole, which improves the predic-
tion performance. The other two streams are built based on
deep LSTM to extract the features of the optical flow by tak-
ing the in–out cabin video attributes into account since the
intention prediction of each driver depends on a wide range
of variables (e.g. traffic uncertainty). The proposed model has
the ability to exploit data with high diversity (e.g. different
weather conditions, and different types of roads in the city, or
outside of the city).

∙ We integrate a global attention mechanism with the
DenseNet-LSTM network to discriminate the importance
of features and improve the performance of the proposed
model.

∙ We apply an implicit semantic data augmentation algorithm
(ISDA) to augment the dataset with semantically transformed
samples and enhance prediction performance.

∙ We conduct experiments to validate the effectiveness of the
proposed model. Evaluation results on the public dataset
“Brain4Cars” (https://www.brain4cars.com, and the mirror
backup link) reveals that the proposed model achieves better
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performance compared to other common models for driver
intention prediction.

We provide further details in the next sections. The rest of the
paper is organized as follows: In Section 2, the existing literature
and state-of-the-art methods are concisely reviewed. The pro-
posed method is described in Section 3, including the relevant
datasets, details of the preprocessing, training procedures, and
evaluation metrics. In Section 4, the results are presented and
the proposed method is compared with related works. Eventu-
ally, the concluding remarks are listed in Section 5, along with
further suggestions for future research directions.

2 RELATED WORK

Multiple categories of related work in the driver maneuver inten-
tion prediction will be reviewed in two categories of data-based
or model-based approaches. All related works reported in this
section use Brain4Cars [14] dataset.

2.1 Data-based approaches

Gite et al. [6] developed a driver’s movement tacking (DMT)
algorithm using only inside videos of the Brain4Cars dataset.
A fusion of Spatio-temporal data points (STIPs) for DMT was
introduced to improve the action anticipation performance,
and a fast eye gaze algorithm to track eye movements were
employed. Applying the F-RNN-DMT architecture they gained
an accuracy of 96.21%, a precision rate of 94.11%, and a recall
rate of 97.56%.

In ref. [18], Moussaid et al. employed two processing
sections to predict the intended maneuver. The first sec-
tion focused on feature extraction using a CNN DenseNet121
[23] architecture, followed by obtaining a data frame with 256
attributes combined with the exterior features. The proposed
method was able to predict the turn/u-turn maneuver, 3.75 s in
advance, with an accuracy of 94.1%.

In another attempt by Brains4Cars, they offered a sensory-
fusion deep learning architecture based on recurrent neural
networks (RNNs) with LSTM units called F-RNN-UL and F-
RNN-EL to predict maneuvering on Brain4Cars dataset, using
video data from both in-cabin and out-cabin data including
facial landmarks, head pose, car speed, GPS information, and
lane configuration.

Their sensory fusion deep learning approach obtained a pre-
cision and recall rate of 84.5% and 77.1%, respectively. The
model is able to anticipate the maneuvers 3.5 s (on aver-
age) before they happen. Combining multiple sensory streams,
the precision and recall rate improved to 90.5% and 87.4%,
respectively [16].

In ref. [21], the proposed prediction system utilized a deep
bidirectional recurrent neural network (DBRNN). They used
both in/out data and evaluated the performance of the system
for braking, lane change, and turning anomaly action pre-
diction on their suggested data and Brain4Cars dataset. The

research reports an average accuracy of 80% within 3 s from
the braking event.

Rekabdar et al. [22] proposed a novel deep learning archi-
tecture and utilized sensory data sources such as GPS location,
car speed, and visual data from the camera installed inside and
outside the car, and other related car sensors presented on the
Brain4Cars dataset. The proposed method introduced a sensor-
fusion deep learning framework using a combination of dilated
CNN and CNN max-pooling pairs. The results of precision and
recall were reported as 91.8% and 92.5%, respectively.

Zhou et al. [15] presented a cognitive fusion recurrent neu-
ral networks (CF-RNN) model based on the cognition-driven
model and data-driven model. CF-RNN includes two LSTM
units that cognitively fuse in-cabin and out-cabin videos. The
outputs of the two LSTM units were adjusted by the human
cognition time process, which led to an F1-score improvement
from 88.9% to 92.1% on the Brain4Cars dataset.

Inspired by ref. [4], the authors of ref. [13] presented an archi-
tecture based on RNN and LSTM, using the Brain4Cars dataset
that combines both information from inside and outside the car
to predict the driver’s actions, which leads to achieving 92.12%,
87.95%, 95.95%, and 86.1% for accuracy, precision, recall, and
F1-score, respectively.

Zhou et al. [17] introduced a CF-LSTM model based on a
cognition-driven method and a data-driven method inspired by
ref. [16] for feature extraction. This model includes two LSTM
units for both interior and external currents of the car, which
describes the external features including speed, the lane configu-
ration, internal features, driver head movement, and driver’s face
landmark using the CLM or CLNF algorithm [14]. The authors
also introduce an architecture called the predictive-Bi-LSTM-
CRF model and a comprehensive evaluation metric that predicts
the maneuver with an accuracy of 94.83% and the F1-score of
93.6% on the Brain4Cars database.

Compared to the previous works, refs. [20] and [2] experi-
mentally validate that both in/outside videos contain comple-
mentary information and do not use manual information.

In ref. [20] the authors propose a model to anticipate the
driver maneuver intention directly from videos in an end-to-end
method. The proposed model consists of three components: a
FlowNet [24] architecture for optical flow extraction to obtain
the motion-based representations, a 3D residual network (3D
ResNet) for maneuver classification, and an LSTM unit for
handling temporal data of varying lengths. They fused driver
observation data from inside and outside the cabin and fine-
tuned the proposed model based on a pre-training on the
large-scale Kinetics dataset, resulting in an accuracy rate of
83.12% and an F1-score of 81.74% on the Brain4Cars dataset.

The architecture proposed in ref. [2] utilizes two data streams:
outside and inside frames of the car. First, using FlowNet 2.0
[25], the optical flow of images is generated from the main
out-cabin frames and fed to a ConvLSTM encoder part of
the model.

In another attempt, using a 3D ResNet-50 network, feature
extraction was performed from the in-cabin frames, resulting
in an accuracy of 83.98% and the F1-score of 84.3% on the
Brain4Cars dataset.
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TABLE 1 The summary of the performance of related works on driver intention prediction including single-data modality approaches (refs. [2] and [20]) and
multi-modal feature-fusion based approaches (refs. [6, 13]–[18, 21], and [22]).

References Data Source Method Accuracy Precision Recall F1-score PH (s)

Rong et al. [2] Inside ConvLSTM auto-encoder & ResNet50 77.4% – – 75.5% 0

Outside 60.9% – – 66.4%

In-out 84.0% – – 84.3%

Zhou et al. [17] In-out CF-LSTM and predictive-Bi-LSTM-CRF – 92.4% 94.7% 93.6% −4.10

Gite et al. [6] Inside F-RNN-DMT 96.2% 94.1% 97.6% – 0

Moussaid et al. [18] In-out CNN-LSTM 94.1% – – – −3.75

Gite et al. [13] In-out RNN-LSTM 92.1% 88.0% 96.0% – 0

Gebert et al. [20] Inside 3D ResNet & LSTM using FlowNet 2 83.1% – – 81.7% 0

Outside 53.2% – – 43.4%

In-out 75.5% – – 73.2%

Tonutti et al. [3] In-out DA-RNN & LSTM-GRU – 92.3% 90.8% 91.3% −4

Zhou et al. [15] In-out CF-RNN – 92% 92.3% 92.1% −3.30

Rekabdar et al. [22] In-out Dilated CNN – 91.8% 92.5% – −3.76

Olabiyi et al. [21] In-out DBRNN - breaking 80.0% – – – −2

DBRNN - change 80.0% – – –

DBRNN - turning 90.0% – – –

Jain et al. [16] In-out F-RNN-UL & F-RNN-EL – 90.5% 87.4% – −3.58

Jain et al. [14] In-out AIO-HMM – 77.4% 71.2% 80.0+% −3.5

Overall, the data-driven approaches are efficient and cost-
effective when it comes to modeling large datasets with high
prediction accuracy. Furthermore, they do not require man-
ual interventions or feature engineering efforts such as those
required in traditional AI models. On the other hand, these
approaches may not always be able to accurately explain
complex interactions between features and output or capture
changes in user preferences over time which require more
sophisticated modeling techniques.

2.2 Model-based approaches

Many works including refs. [3, 13–17, 21, 22] as articles that use
out-cabin videos in their framework in addition to driver obser-
vation videos. They also use additional auxiliary features (e.g.
head pose, eye movement, vehicles’ dynamic information, and
environment data) along with the in-cabin videos.

Refs. [6] and [18], are among the articles that only pay atten-
tion to the driver’s observation video (in-cabin video) and ignore
the outside of the cabin. The models try to predict the driver’s
intention, using visual features such as head pose, eye move-
ment, vehicles’ dynamic information (e.g. speed, position), as
well as online environmental data (e.g. lanes configuration and
the positions of intersections).

The Brain4Cars [14] research group was among the teams
in the field that published one of the first naturalistic driving
datasets. As one of the earliest research, Jian et al. [14] (from
the Brain4Cars team) proposed a model called auto-regressive
input–output HMM (AIO-HMM) by utilization of a mixture of

in/out cabin data such as driver’s heave movement tracking [26]
and car speed, which enabled the model to anticipate the next
maneuver 3.5 s prior it occurs, with an F1-score rate of over
80%.

Tonutti et al. [3] applied an LSTM-GRU model for fea-
ture extraction and maneuver prediction using the driver’s head
features, eye movement, and driving environment along with
domain-adversarial RNN (DA-RNN) model for domain adver-
sarial training to achieve domain adaptation. DA-RNN model
was evaluated on the Brain4Cars dataset as the source domain
and a proposed new dataset [27] which includes 113 videos as
the target domain.

Moreover, to optimize the extraction of domain-independent
features, a fine-tuning method was employed, which led to
precision, recall, and F1-score of 92.3%, 90.8%, and 91.3%,
respectively on the Brain4Cars dataset. Similar results of 89.4%,
92.2%, and 90.8%, were reported on the proposed dataset.

Model-based approaches provide a more rigorous approach
to understanding the complex dynamics of a vehicle’s behavior
by generating models that accurately simulate and predict driver
outcomes. While data-driven approaches are able to process
large amounts of data quickly and directly, creating predictive
models based on observed patterns in the data. Furthermore,
neural networks can be employed to further enhance the perfor-
mance of both methods. In conclusion, both model-based and
data-driven approaches for predicting driver intention on the
Brain4cars dataset offer unique advantages. Choosing an appli-
cable approach ultimately depends on the specific requirements
and scope of a given study, as well as the size and availability of
an appropriate dataset.
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FIGURE 1 Distribution of each class in Brain4Cars dataset.

Table 1 represents a summary of our literature on a diverse set
of 12 related works in the field and their performances. Some of
the reviewed works are based on single data modality (similar to
our approach) and some are implemented based on multi-modal
feature fusion strategies [28] (e.g. driver’s head pose features, eye
movement, vehicle’s lane, etc.) which are beyond the scope of
this research. The table summarizes the core methodology, the
performance of each model, and the prediction horizon (PH).
The PH represents the prediction of the driver’s intention, t s
in advance, prior to the driver’s actual maneuver taking place.
In this research, we only aim to improve the accuracy and speed
of single-modality-based approaches which in turn may help the
enhancement of multi-modal fusion-based approaches, as well.

3 METHODOLOGY

Most of the reviewed research work has neglected the limited
size and unbalanced labeling of the Brain4Cars datasets and
their effects on the training of their models. Figure 1 illustrates
the number of videos in each class of the Brain4Cars dataset.
Due to the relatively small size of the dataset, deep learning-
based models may face overfitting issues. Furthermore, as can
be noticed one of the other weaknesses of this dataset is the
unbalanced number of videos in each label (from 40 to 205)
which may prevent the generalizations of the model.

Spatial information, as well as temporal information, are
critical for predicting driver behavior. Inspired by Simonyan
et al.’s work [29] and employing temporal information, we pro-
pose a framework consisting of a convolutional neural network
and LSTM network to predict driver’s behavior and tackle the
above-mentioned challenges.

The network consists of three main parts: a spatial stream
including the DenseNet module, a temporal stream consist-
ing of two successive LSTMs, and a classification part that
is responsible for classifying extracted features, as shown in
Figure 2. We used transformer learning in the spatial part
by employing the DenseNet121 model pre-trained on the
ImageNet dataset followed by drop block, average pooling,
LSTM, and global attention block. As a result, spatial fea-
tures were obtained. The DenseNet architecture was utilized
to extract features. Compared to existing state-of-the-art alter-
natives, DenseNet has fewer parameters while still being deep

enough to capture efficient features, making them more suitable
for devising AVs.

They usually have 60 000 to 70 000 parameters, being con-
siderably smaller than the number of ResNet architectures
parameters containing about 25 to 26 million parameters. The
number of DenseNet parameters in the proposed architecture
is 10 000.

Motion analysis is also one of the most fundamental and chal-
lenging problems in machine vision that can be widely used
in various applications, such as automatic driving, performance
detection, scene perception, and robotics [30]. Recurrent all-
pairs field transforms (RAFT) [31] and FlowNet2 [25] models
are utilized in our model to extract the required optical flows
for the in-car and out-of-car videos, respectively. We utilized
these models as they are exclusively designed to produce optical
flow as spatial pyramid networks and to gain high efficiency and
accuracy, small model size, and low execution time in practical
applications [32].

In the temporal part in Figure 2, to extract the tempo-
ral feature, instead of using 3D ConvNet [33, 34] or 2D
ConvNets+LSTM [35, 36] methods having many parameters
which increase the probability of overfitting due to the small
number of data, two layer of LSTM were used.

In the spatio-temporal module, we used two LSTM layers
to extract temporal features, rather than using 3D ConvNet as
in refs. [33, 34] or 2D ConvNets+LSTM as in refs. [35, 36].
This will highly reduce our model parameters and consequently
decreases the likelihood of overfitting. The first LSTM layer
is responsible for extracting the general features such as ver-
tical or horizontal movements in each frame. The second one
extracts the desired temporal features, the most relevant and
informative features regarding the driver’s behavior anticipa-
tion, from the set of input frames. The classification module
consists of two fully connected layers and one dropout, which
classifies the driver behavior into five categories, after con-
catenation of the optical flow features and the spatio-temporal
features.

3.1 Dataset

In this study, The Brain4Cars [14] dataset was utilized for eval-
uating the proposed model. Brain4Cars dataset includes two
different views videos: (a) driver observation videos (1088 px
× 1920 px, 30 fps) and (b) out-cabin videos (480 px × 720 px,
30 fps) which are recorded simultaneously and synchronized [2].

There are five classes of maneuvers in the dataset: go straight,
left lane change, left turn, right lane change, and right turn.
According to the Brain4Cars dataset, all videos only include
the driver’s behavior before the actual maneuver occurs, i.e. no
maneuver is performed during the video.

This dataset has been collected from 10 drivers with a car
equipped with a camera, and the videos are annotated for 700
events in total, containing 274 lane changes, 131 turns, and 295
randomly sampled instances of driving straight [2].

In this study, 80% of the short videos are used for training
(70% for training the model parameters, and 10% for validation
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FIGURE 2 Schematic illustration of the proposed architecture. In the first scenario, the branches using an outside view are eliminated, and in the second
scenario, the branches using an inside view are ignored.

with the purpose of generalizability analysis) and 20% of the
short videos are used as the test set. Performance metrics are
calculated for the experiment from this set to test the final
performance of the DIPNet, with the length of 5 s, which are
the crucial and golden seconds for a decision-making system.
This can be also an important stage for transferring the vehi-
cle’s control from an automated mode to a human mode and
vice versa.

3.2 Model architecture

The proposed model in Figure 2 consists of 4 input sources: the
main input video frames from inside and outside of the cabin
as well as optical flow frames from inside and outside of the
cabin. For each of the input sources, we select one frame out
of 10 frames, so that each 5-s × 30 fps video would consist of
15 frames.

Regardless of the dataset and video length, the proposed
DIPNet model is specifically designed to handle complex data
inputs, so the model is capable of processing and analyzing var-
ious datasets with different spatio-temporal video lengths. The
DIPNet framework can increase the prediction time by more
than 4 s and can be also adapted to any dataset with a length

of longer than 4 s with no limitations. Although, the maximum
possible time also depends on the hardware specification.

3.2.1 Pre-processing and data augmentation

As the pre-processing step, all inputs are resized to 128 × 128
pixel. Then a data augmentation is applied to the raw images in
the first and second branches. Data augmentation is also applied
to the output of RAFT and FlowNet2, in the third and fourth
branches. (Figure 2). This includes translation, flip-left-to-right
(flipLR), cutout [37], and a technique called Augmix as in ref.
[38]. As part of the translation Augmentation, the raw and opti-
cal flow image was moved by 4 pixels in both directions. In
addition, flipLR, which flips the image vertically, is applied, and
due to its impact on its label, the label also changed. For exam-
ple, a turning left label will be changed to turning right after
applying a flipLR augmentation. Another augmentation tech-
nique named cutout is a regularization technique that randomly
masks out square regions. Augmix also is a data processing tech-
nique, which mixes randomly generated augmentations (auto
contrast, equalize, posterize, solarize). More details and infor-
mation are addressed in ref. [38]. Some samples of augmented
images have been depicted in Figure 3.
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BONYANI ET AL. 1775

FIGURE 3 Some samples of applied augmentations (augmix, cutout, translate). Each row illustrates a sample image, and the applied augmentation is shown on
top of each column.

FIGURE 4 LSTM cell with its internal structure [41].

3.2.2 Feature extraction

Following the augmentation phase, the in-cabin and out-cabin
images are fed to the DenseNet121 model [39] to extract the
features. The extracted features with the size of 1024 are then
passed through a Dropblock layer [40] with a block size of 5.
An AVGPooling layer is then added to the Dropblock output,
followed by an LSTM layer with 512 memory units and a Global
Attention layer. We utilized LSTM as it remembers the previous
information in time series data. As depicted in the schematic of
LSTM cell [41] (Figure 4), the LSTM consists of an input gate (i),
forget gate (f), output gate (o), and cell state (c). The function
of the input gate is storing and updating input information in
the current state and the forget gate’s mission is to decide either
to forget or to retain the previous data. The output gate is the
output of the network and the memory cell state (c) stores long-
term information.

The LSTM network is expressed as an artificial neural net-
work (ANN) where the input vector x = (x1, x2, x3, … , xt )
at timestamp t , maps to the output vector y = (y1, y2, … , yt ),

through the calculation of it , f t , and ot which represent input
gate, forget gate and output gate. We define the output of the
LSTM gate at timestamp t as follows:

it = 𝜎(W i .[ht−1, xt ] + bi ) (1)

where W , 𝜎, xt , and ht−1 are weight matrix, Sigmoid activation
function, input vector at time t , and output (or hidden state)
vector of the previous LSTM cell (at time t − 1), respectively. bi

is the Bias vector.
Similarly, the output of the forget gate and output gate can be

represented as follows:

f t = 𝜎(Wf .[ht−1, xt ] + b f ) (2)

ot = 𝜎(Wo.[ht−1, xt ] + bo) (3)

The cell state (ct ), candidate for cell state at timestamp t (c̃t ),
and the final output (ht ) are defined as follows:

ct = ft ∗ ct − 1 + it ∗ c̃t (4)

c̃t = tanh(Wc .[ht−1, xt ] + bc ) (5)

ht = ot ∗ tanh(ct ) (6)

To get the memory vector for the current timestamp (ct )
the candidate is calculated. Using the above equations, the cell
state knows what should be forgotten from the previous state
(i.e. ft ∗ ct−1) and what should be considered from the cur-
rent timestamp (i.e. it ∗ c̃t ). (note: * represents the element-wise
multiplication of the vectors.)
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1776 BONYANI ET AL.

FIGURE 5 Schematic architecture of global attention [42]. Blue and red
blocks are shown encoding and decoding phases, respectively.

Lastly, the cell state is filtered and passed through the acti-
vation function which predicts what portion should appear as
the output of the current LSTM unit at timestamp t . We can
pass this ht the output from the current LSTM cell through
the Softmax layer to get the predicted output(yt ) from the
current cell.

In the global attention module, generally, we can consider
three types of attention: 1) global and local attention (local-
m, local-p), 2) hard and soft attention, and 3) self-attention.
Unlike local attention, the global attention derives a context vec-
tor based on all hidden states of the LSTM, to the entire input
state space.

As can be seen from Figure 5, at the decoding phase, at each
time step t , the hidden state ht is taken as input at the top layer of
a stacking LSTM. By comparing the current target hidden state
ht with each source hidden state hs a variable-length alignment
vector at is derived, where its size equals the number of time
steps on the source side as follows [42]:

at (s) = align(ht , h⃗s ) =
exp(score(ht , h⃗s ))∑
ś
exp(score(ht , h⃗ś ))

(7)

where exp() refers to the exponential function, and the score is
referred to as a content-based function for which we consider
three different alternatives:

score
(

ht , hs
)
=

⎧⎪⎪⎨⎪⎪⎩

ht⊤hs dot

ht⊤W ah̄s general

va⊤ tanh
(

W a
[
ht ; hs

])
concat

Given the alignment vector as weights, the context vector
ct is computed as the weighted average over all the source
hidden states.

In order to predict the current target feature yt , a context vec-
tor ct that captures the relevant source-side information, should
be derived. Then a simple concatenation layer is employed
to incorporate the target hidden state ht and the source-side
context vector ct to produce an attentional hidden state as
follows:

h⃗t = tanh(Wc [ct ; ht ]) (8)

The attentional vector h⃗t is then fed through the Softmax
layer to produce the predictive distribution formulated as:

p(yt |y < t , x ) = softmax(W sh⃗t ) (9)

where Wc and Ws are weight matrices to be learned in the
alignment model.

Then the in-cabin and out-cabin optical flow frames which
are produced by recurrent all-pairs field transforms (RAFT) (in
the third branch) and FlowNet2 [25] (in the fourth branch) are
augmented by translation and FlipLR techniques. The produced
data is then resized to 128 × 384 and are fed into two successive
LSTM layers with 128 memory cells.

In the first scenario, when the only inside view is utilized,
the second and fourth branches of the model are eliminated.
Similarly, when we use the outside view in the second scenario,
the first and third branches are ignored.

3.2.3 Classification

In the second part of the model, the extracted features are
classified. Firstly, the extracted features from the four input
branches are concatenated and passed through a flattened layer.
Then the implicit semantic data augmentation algorithm (ISDA)
[43], a novel technique for augmentation, is applied, as seen in
Figure 6.

In the next step, the output of the semantic data augmenta-
tion module is passed through a dense layer with 512 neurons,
followed by a dropout layer with a rate of 0.45. Eventually, the
Softmax layer is employed, and the probability of the given
input is generated. ISDA is a novel algorithm that unlike pre-
vious augmentation algorithms changes the context of an image
semantically. More specifically, consider D = (xi , yi ) is a train-
ing set, where yi ∈ 1, ...,C is the label of the ith sample xi

over C classes and G and Θ are deep network and its weights,
respectively. ai = [ai1, ..., aiA]T = G (xi , Θ) as an A dimen-
sional vector shows the deep feature of xi , and ai j denote the
j th element of ai . a zero-mean multi-variate normal distribu-
tion N (0,

∑
yi ) is established to achieve semantic directions

to augment ai , where
∑

yi depicts the class-conditional covari-
ance matrix. The algorithm for the covariance matrices is as
follows:

𝜇
(t )
j =

n
(t−1)
j 𝜇

(t−1)
j + m

(t )
j 𝜇

′(t )
j

n
(t−1)
j + m

(t )
j

(10)
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BONYANI ET AL. 1777

FIGURE 6 The structure of the feature augmentation.

Σ
(t )
j =

n
(t−1)
j Σ

(t−1)
j + m

(t )
j Σ

′(t )
j

n
(t−1)
j + m

(t )
j

+
n

(t−1)
j m

(t )
j (𝜇

(t−1)
j − 𝜇

′(t )
j )(𝜇

(t−1)
j − 𝜇 j

′(t ) )T

(n
(t−1)
j + m

(t )
j )2

(11)

n
(t )
j
= n

(t−1)
j

+ m
(t )
j

(12)

The estimations of average values and covariance matrices of
the features of j th class at t th step are denoted by 𝜇

(t )
j and Σ

(t )
j .

𝜇
(t )
j 0 and Σ

(t )
j 0 are the average values and covariance matrices

of the features of j th class in t th mini-batch, respectively. The
number of training samples in j th class only in t th mini-batch
are denoted by m

(t )
j and the total number of training samples

which are in j th class in all t mini-batches are shown by n
(t )
j . To

read more details of ISDA refer to ref. [43].

3.2.4 Training

There is no official data split for training/validation/test parts
of the Brain4Cars dataset, and each article has taken a different
part randomly. However, in our fair comparison, we compared
our model with related works that have exactly used the same
data split proportions (i.e. 70%, 10%, 20%) for the training,
validation, and test, respectively. Also, same as the compared
works we used K-fold validation with K = 5 to show the inde-
pendence of our approach to the train/test splits. Based on the
5-fold validation results, the model shows a very good gener-
alization when we use different train/test parts of the same
size.

In our work, three different scenarios are defined to predict
the driver’s actions and assess the performance of the proposed
method. In the first scenario, the proposed model is trained with
only inside-view images (in-cabin). In the second scenario, the
proposed model is trained with only outside view images (out-
cabin), and in the third scenario, the proposed model is trained
with both inside and outside view images (in–out cabin).

The number of epochs was 320 with a batch size of 5 and
an Adam [44] optimizer. The initial learning rate of 0.0003 was
served, and the pattern of changing learning rate during train-
ing is depicted in Figure 7. The network was trained using the
categorical cross-entropy loss function, and the training pro-
cess was conducted on the Google Colab graphics processing
unit.

In our proposed model, the DenseNet architecture is used
for feature extraction, which has fewer parameters than other
models reviewed in the literature review. As a result, the pro-
posed method leads to lower computational costs and hardware
requirements in the training and testing phase. The training time
of the proposed model with a batch size 8, on a Google Colab
platform with an NVIDIA T4 GPU is 45 s per epoch. The
run time of the model in the test phase is however 180 ms
(0.18 s) only, which is fast enough for the intended real-time
application.

3.2.5 Performance evaluation

To evaluate the performance of the proposed network like ref.
[6], we used four standard performance metrics, described in
Equations (13)–(16): accuracy, precision, recall rate, F1-score,
as well as a confusion matrix. The elements to calculate the

FIGURE 7 Learning rate scheduler during the training of the model.
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1778 BONYANI ET AL.

TABLE 2 Performance of the model on the “inside view” dataset.

PH (s) Accuracy (%) Precision (%) Recall (%) F1-score (%)

0 s 89.01 89.13 89.01 88.89

−1 s 83.51 83.22 83.52 83.20

−2 s 75.82 75.41 75.82 75.42

−3 s 60.43 56.38 60.44 56.41

−4 s 46.15 45.83 46.15 45.20

TABLE 3 Performance comparison of the proposed model with two
other state-of-the-art models on the “inside view” video.

References

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%) PH (s)

Rong et al. [2] 77.40 N/A N/A 75.49 0

Gebert et al. [20] 83.1 N/A N/A 81.7 0

Ours 89.01 89.13 89.01 88.89 0

mentioned metrics are true positive (TP), true negative (TN),
false positive (FP), and false negative (FN), which are defined as
follows for the driver action prediction:

∙ True positive (TP) = correct action prediction.
∙ False positive (FP) = incorrect action prediction.
∙ True negative (TN) = predicting no action (i.e. driving

straight) and the driver also does not perform any action and
drives straight.

∙ False negative (FN) = predicting straight driving, but the
driver performs an action.

Precision =
TP

TP+FP
(13)

Recall =
TP

TP+FN
(14)

F 1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(15)

Accuracy =
TP+TN

TP+TN+FP+FN
(16)

4 RESULTS AND DISCUSSION

In this section, the performance of the proposed method is dis-
cussed for three different scenarios (in-cabin, out-cabin, and
both in/out-cabin). The results of early detection time capa-
bility are provided (in seconds) for each scenario and listed in
Tables 2, 5, and 8. The action is recognized t seconds before
a maneuver take place i.e. t ∈ (−4 s, −3 s, −2 s, −1 s, 0 s).
Furthermore, the obtained results are compared with the state-
of-the-art studies shown in Tables 3, 6, and 9. The 5-fold
cross-validation for all experiments is provided in Tables 4, 7,

and 10. It should be noted that all the provided results are
in percentage. Finally, the effect of the aforementioned aug-
mentations in the performance of the system using the in/out
cabin views as well as the confusion matrix for all scenarios are
depicted.

It is worth mentioning that the original motivation for using
K-fold cross-validation is to minimize the variance of the esti-
mated performance of a learning algorithm by reusing the
different subsets of the data for testing and training. K-fold
cross-validation introduces randomness into the model evalu-
ation process, and it forces a learning algorithm to train the
model multiple times on different subsets of the data. This ran-
domization reduces both the bias and variance of the estimated
performance of the learning algorithm as illustrated in Table 10.

4.1 In-cabin action recognition

As the first scenario, in this section, only the in-cabin images
are utilized to predict the driver actions listed in Figure 3, the
second row. Table 2 shows the accuracy, precision, recall, and
F1-score as our evaluation metrics. As can be seen, the perfor-
mance of the model increases from the t = −4 s towards the
t = 0 s before the real action, and eventually reaches 89.01%,
89.13%, 89.01%, and 88.89%, respectively. In Table 3, the
proposed work is compared with a couple of current studies
including Rong et al. [2] and Gebert et al. [20] which use the
same in-cabin data only. The results confirm our model out-
performs the other works. In addition, we employed 5-fold
cross-validation to guarantee that the distribution of training
and test data is logical. Table 4 provides the accuracy rate of
each step in the K fold cross-validation method in which K is
equal to 5. In the OTC method which stands for “original, trans-
late, and cutout”, the original image and the augmented image
(by translate and cutout) are given to the model separately, and
the best performance is selected as the final result. The mean
of all steps, as well as the standard deviation, is listed in the
last column. Similar to Table 2, the accuracy of the model in
time 0 s is the highest (88%) and it fluctuates to 46%, 60%,
75%, 83% for times −4, −3, −2, −1 s, respectively. Utilizing
OTC shows a performance improvement of 1–2% for each time
step.

4.2 Out-cabin action recognition

In the second scenario, the model was trained with only
outside-view images. Following the same pattern in Table 2, the
performance upsurges when approaching 0 s represented in
Table 5. In 4 s before real action, the accuracy precision, recall,
and F1-score were 42.86%, 44.18%, 42.86%, and 42.84%. In
each step, they soared and reached 82.41%, 82.28%, 82.42%,
and 82.24% in time = 0 s. Table 6 compared our model with
state-of-the-art models that used only outside-view images,
observing surpassing other works. Our model’s accuracy, pre-
cision, recall, and F1-score are 82.41%, 82.28%, 82.42%, and
82.24%, while the ref. [2] achieved an accuracy of 60.87% and
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BONYANI ET AL. 1779

TABLE 4 Accuracy results of K-fold method using “inside view”, K = 5.

PH (S) Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± std (%)

0 s Our 87.91 87.91 89.01 87.91 89.01 88.35 ± 0.6

0 s Our + OTC 87.91 87.91 89.01 89.01 89.01 88.57 ± 0.6

−1 s Our 80.21 83.51 83.51 81.31 83.51 82.41 ± 1.5

−1 s Our + OTC 83.51 83.51 83.51 81.31 83.51 83.07 ± 0.98

−2 s Our 75.82 74.72 73.62 74.72 75.82 74.94 ± 0.92

−2 s Our + OTC 75.82 74.72 74.72 75.82 75.82 75.38 ± 0.60

−3 s Our 59.34 60.43 58.24 59.34 60.43 59.56 ± 0.91

−3 s Our + OTC 60.43 61.53 60.43 59.34 60.43 60.43 ± 0.77

−4 s Our 43.95 45.05 45.05 43.95 46.15 44.83 ± 0.92

−4 s Our + OTC 48.35 45.05 46.15 46.15 46.15 46.37 ± 1.2

TABLE 5 Performance of the model on the “outside view” dataset.

PH (s) Accuracy (%) Precision (%) Recall (%) F1-score (%)

0 s 82.41 82.28 82.42 82.24

−1 s 76.92 76.65 76.92 76.64

−2 s 67.03 64.20 67.03 64.28

−3 s 56.04 51.04 56.04 51.50

−4 s 42.86 44.18 42.86 42.84

TABLE 6 Performance comparison of the proposed model with two
other state-of-the-art models on the “outside view” video.

References

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%) PH (s)

Rong et al.[2] 60.87 N/A N/A 66.38 0

Gebert et al.[20] 53.2 N/A N/A 43.4 0

Ours 82.41 82.28 82.42 82.24 0

F1-score of 66.38%, and [20] obtained an accuracy of 53.2%
and F1-score of 43.4%. Similarly, to calculate accuracy, the
K-fold cross-validation method is also applied, which is shown
in Table 7. The parameter K is equal to 5, and the OTC method
described in Section 4.1 was utilized. Using OTC, the accuracy
of 82.19% was obtained In time = 0 s, which is close to what
was achieved in Table 5, 82.24%. The obtained results used
only inside view in terms of precision, recall, F1-score, and
accuracy.

4.3 In-cabin and out-cabin action
recognition

In this scenario, we utilized in-cabin and out-cabin images for
training the model, resulting in the best performance compar-
ing the two previous scenarios (in-cabin and out-cabin). Table 8
shows the accuracy of 98.90%, the precision of 98.96%, recall
of 98.90%, and F1-score of 98.88% of this scenario in real-

time action. In Table 9, we compared our result with two other
rival works [2, 20], and it can be seen that these present stud-
ies use both inside and outside views without manual features
to enhance the performance as well. Our results were 98.90%,
98.96%, 98.90%, and 98.88% for accuracy, precision, recall, and
F1-score, outperforming other rival methods listed in Table 9.
Table 10 also provides a K-fold cross-validation method similar
to previous scenarios. In time = 0 s, we achieved an accuracy
of 98.46%, which is close to obtained result in Table 8. As
aforementioned, OTC is served to enhance the performance
result. Finally, Table 11 illustrates the recognition results of five
classes of maneuvers under different prediction horizons (−4,
−3, −2, −1, 0 s) when using both “inside view” and “outside
view” videos.

4.4 Effect of augmentation on performance

Different augmentation methods including flipLR, translate,
cutout, and augmix were applied. Figure 8a–d illustrates the
effect of the augmentation on the accuracy, precision, recall, and
F1-score, respectively. Plot A shows the model without employ-
ing any augmentation. In plot B, FlipLR is added to A. Adding a
cutout to configuration B, lead to plot C which surpassed the
previous ones (A and B). Similarly, plot D shows the results
of augmix augmentation added to C. Plot E, represents the
application of all augmentations (FlipLR, cutout, augmix, and
translate), which excels all other explained methods in terms of
the four metrics, as seen in Figure 8.

4.5 Confusion matrix

Moreover, to represent the performance of the proposed archi-
tecture, the confusion matrixes are depicted in Figure 9, where
the numbers in diagonal stand for the count of correctly recog-
nized samples from corresponding classes. It is observable that
the model error in the confusion matrix (c) shows the model
trained with both in-cabin and out-cabin views is less than the
other two matrixes (a) and (b) which represent the model trained
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1780 BONYANI ET AL.

TABLE 7 Accuracy results of K-fold method using only “outside” view dataset, K = 5.

PH (s) Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± std (%)

0 s Our 80.21 81.31 81.31 82.41 82.41 81.53 ± 0.92

0 s Our + OTC 82.41 82.41 81.31 82.41 82.41 82.19 ± 0.49

−1s Our 75.82 76.92 75.82 75.82 76.92 76.26 ± 0.60

−1 s Our + OTC 75.82 76.92 76.92 75.82 76.92 76.48 ± 0.60

−2 s Our 65.93 65.93 64.83 65.93 67.03 65.93 ± 0.77

−2 s Our + OTC 67.03 65.93 67.03 68.13 67.03 67.03 ± 0.77

−3 s Our 54.94 53.84 56.04 56.04 56.04 55.38 ± 0.98

−3 s Our + OTC 56.04 56.04 56.04 57.14 56.04 56.26 ± 0.49

−4 s Our 41.75 41.75 40.65 41.75 42.86 41.75 ± 0.78

−4 s Our + OTC 41.75 42.86 42.86 43.95 42.86 42.86 ± 0.77

FIGURE 8 The effect of using augmentation on (a) accuracy, (b) precision, (c) recall rate, and (d): F1-score. A = base, B = base + FlipLR, C = B + cutout, D
= C + augmix, E = D + smooth + translate.

FIGURE 9 Confusion matrix for a) inside view b) outside view c) inside and outside views.
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BONYANI ET AL. 1781

TABLE 8 Performance of the model using “inside view” and “outside
view” dataset.

PH (s) Accuracy (%) Precision (%) Recall (%) F1-score (%)

0 s 98.90 98.96 98.90 98.88

−1 s 93.40 93.58 93.41 93.39

−2 s 84.61 84.67 84.62 84.51

−3 s 71.42 70.24 71.43 70.22

−4 s 57.14 52.04 57.14 52.20

TABLE 9 Performance comparison of the proposed model with other
state-of-the-art models on both “inside view” and “outside view” videos.

References

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%) PH (s)

Rong et al. [2] 83.98 N/A N/A 84.3 0

Gebert et al. [20] 75.5 N/A N/A 73.2 0

Ours 98.90 98.96 98.90 98.88 0

TABLE 10 Accuracy results of K-fold method using both “inside view”
and “outside view” videos, K = 5.

PH (s) Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Mean ±std

(%)

0 s Our 96.70 97.80 97.80 96.70 98.90 97.58±0.92

0 s Our + OTC 97.80 97.80 98.90 98.90 98.90 98.46±0.60

−1 s Our 91.20 93.40 92.30 91.20 93.40 92.3±1.1

−1 s Our + OTC 92.30 93.40 92.30 92.30 94.50 92.96±0.98

−2 s Our 82.41 83.51 82.41 83.51 84.61 83.29±0.92

−2 s Our + OTC 83.51 82.41 82.41 84.61 85.71 83.73±1.43

−3 s Our 68.18 69.23 70.32 67.03 71.42 69.24±1.72

−3 s Our + OTC 69.23 71.42 70.32 67.03 71.42 69.88±1.83

−4 s Our 49.45 54.94 52.74 50.54 57.14 52.96±3.14

−4 s Our + OTC 50.54 54.94 52.74 51.64 58.24 53.62±3.05

with the inside or outside view, only. Also, they indicate that the
model’s error is not biased toward any of the specific classes but
is instead distributed to all of the classes.

TABLE 11 Accuracy results of five classes of maneuvers under different
prediction horizons using both “inside view” and “outside view” videos.

PH (s) End action Rchange Lturn Lchange Rturn

0 s 100 100 87.5 100 100

−1 s 97.7 91.7 75.0 94.4 90.0

−2 s 95.3 83.3 62.5 77.8 70.0

−3 s 88.4 66.7 39.5 44.4 60.2

−4 s 60.1 35.0 32.5 35.1 45.5

4.6 Discussion

Similar to any other research project, this study has some lim-
itations. However, our main motivation was to address the
limitations of existing approaches in terms of dealing with the
spatiotemporal complexity of driver intention prediction. DIP-
Net’s design allows us to model the system dynamics smoothly
and capture the complex interactions among features. While it
is true that other machine learning algorithms, such as LSTM,
can be applied to similar tasks, DIPNet has specific advantages
over those methods, especially in the context of the task we
focus on, where we are interested in an efficient light-weight
model, with real-time prediction, and time prediction adaptabil-
ity. There is no explicit or rigorous mathematical proof for deep
learning based models, due to their black box feature extraction
nature. However, our paper provides a diverse set of experimen-
tal results to validate the performance of our proposed method.
We used objective KPIs such as accuracy, F1-score, recall, and
precision to evaluate the effectiveness of our model for various
scenarios. We also conducted extensive experiments to prove
the efficiency of our approach and its ability to handle video
sequences to predict driver intention. Also, We analyzed the
contribution of different components of DIPNet to the overall
performance. These analyses and visualizations provide strong
evidence to support our claims for the effectiveness of DIPNet.

5 CONCLUSION

In this study, a new deep neural network model is proposed
to anticipate the driver maneuver intention a few seconds in
advance. We examined the model in three different scenarios:
considering the in-cabin context only (the driver), the out-cabin
context only (the road), and both in and out contexts and fusing
them to anticipate the driver’s intention or upcoming action.

In our proposed method, we used DenseNet121, LSTM, and
the global attention module to extract features. Also, RAFT and
FlowNet2 were employed to extract optical flow. In the first
scenario, to avoid overfitting and enhance the proposed frame-
work’s performance, different augmentation methods such as
FlipLR, translate, cutout, and augmix, were served. By Utilizing
the accuracy, precision, recall, and F1-score as our evaluation
metrics, the proposed framework outperformed the state-of-
the-art works for the “out-cabin” and “in/out cabin” datasets.
As a possible future work aiming at further improvements, we
may suggest the utilization of Swin transformer [45] as an effi-
cient encoder to extract image features at a fast speed, which is
an essential component in recognizing diver maneuvers in the
real world.
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