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Evolutionary dynamics in a varying environment: Continuous versus discrete noise
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Environmental variations can significantly influence how populations compete for resources, and hence shape
their evolution. Here, we study population dynamics subject to a fluctuating environment modeled by a varying
carrying capacity changing continuously in time according to either binary random switches, or by being driven
by a noise of continuous range. We focus on a prototypical example of two competing strains, one growing
slightly slower than the other. By systematically comparing the effect of a binary versus continuously varying
environment, we study how different noise statistics (mean, variance) influence the population size and fixation
properties. We show that the slow strain fixation probability can be greatly enhanced for a continuously varying
environment compared to binary switches, even when the first two moments of the carrying capacity coincide.
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Natural populations face endlessly varying environmen-
tal conditions, such as the abundance of nutrients or toxins,
temperature, light, and humidity, all of which influence their
interactions and evolution [1–3]. In the absence of detailed
knowledge of how external factors change, they are often
modeled as environmental noise (EN). This in turn shapes the
fluctuating environment where populations evolve, for which
several response mechanisms have been proposed [4–27].
Apart from EN, demographic noise (DN) is another source
of randomness: It can lead to fixation, when one species takes
over the population, and its effect is significant in small com-
munities, but negligible in large populations [28–31].

Importantly, the evolution of the size and composition of
a multispecies population are often interdependent [32–40].
This may result in a coupling between DN and EN, with
external factors affecting the population size, which in turn
modulates the DN intensity. The interplay between EN and
DN is crucial in microbial communities, which can experience
sudden, extreme environmental changes [41–48], as well as in
ecology [15–17]. In the context of antimicrobial resistance,
variations of population size and composition are key when
antibiotics reduce a large community to a very small size,
but fail to eradicate it. Surviving cells in the small popu-
lation, prone to fluctuations, may then replicate and restore
infections, with survivors likely to develop antibiotic resis-
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tance [27,43]. Interactions between microbial communities
and the environment can also lead to population bottlenecks,
where new colonies of few individuals result in cooperative
behavior [45–47]. In most theoretical studies involving mul-
tiple species, there is no explicit interdependence between
EN and DN. Growth rates are thus commonly assumed to
be subject to noise of continuous range [6,7,21–23,49], and
vary independently of the population size that is often con-
stant [11–14,18,19,22,23,25,50–57]. On the other hand, there
have been numerous laboratory-controlled experiments with
microbial communities of varying sizes evolving by switching
instantaneously between a discrete number of environmental
states (“discrete EN”), with a strong focus on the binary
case [11,40,42,46,48,57,58]. This has motivated the study
of population models with random binary switching of the
species growth rates [5,11,17,52,54,55], and more recently of
the carrying capacity (or resources) leading to the coupling of
DN and EN [32,33,59–61].

Nevertheless, in vivo exogenous factors often vary contin-
uously, in time and over a range of values [62,63], rather than
by instantaneous switches. For instance, the carrying capacity
of certain phytoplankton species and the growth rates of some
algae vary with fluctuating temperature [64–66]. It is thus im-
portant to understand how the coupling of DN and EN affects
the dynamics of communities in an environment varying along
a continuum of states (“continuous EN”), and to compare
its properties with those in binary fluctuating environments
commonly used in experiments [11,40,42,46,48,57,58] and
theory [5,17,32,33,52,54,55,60,61].

Here, we address these questions by systematically inves-
tigating the influence of coupled DN and EN on the evolution
of a simplified microbial community consisting of two com-
peting strains, one growing slightly slower than the other,
subject to a carrying capacity driven either by binary or con-
tinuous EN. For this simplified microbial model, we unveil
the similarities and differences of evolving under continuous
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FIG. 1. Typical realizations of N (black) and NS (red/gray) vs
time under symmetric EN of variance σ 2: binary D-noise in (a) and
(c), and continuous U-noise in (b) and (d). (a), (b) ν = 0.1, where
dashed lines show K (t ). (c), (d) ν = 1000, where solid horizontal
lines show (c) KD and (d) KU, given by Eq. (8), about which
N fluctuates under high ν (see text). In all panels (s, x0, K0, σ ) =
(0.02, 0.5, 250, 0.5), and N (0) = K0.

or binary EN, and reveal the drastic effect that EN may have
on the population size distribution and fixation properties. Re-
markably, we show that the slow species fixation probability
can be significantly enhanced under continuous noise over
its value under binary EN of same mean and variance. The
generalization to a scenario of cooperative behavior is briefly
discussed in the Supplemental Material (SM) [67].

We consider a well-mixed population consisting of NS

individuals of a slow-growing strain S and NF microbes of
the fast-growing strain F . At time t , this two-strain popula-
tion has a time-fluctuating size N (t ) = NS (t ) + NF (t ) and is
composed of a fraction x = NS/N of slow growers S. Per-
capita growth rates are (1 − s)/ f̄ for S and 1/ f̄ for F , where
f̄ = 1 − sx is the population average fitness, and 0 < s � 1
denotes the small growth advantage (selective bias) of F over
S [32,33,35,36,59]. Owing to limited and varying resources,
the strain’s growth is limited by a logistic death rate N/K�(t ),
where K�(t ) � 1 is the carrying capacity that here fluctuates
in time due to EN. This allows us to couple in a simple and
biologically relevant way DN and EN [32,33,59–61], which
yields the following birth-death process [33,68],

NS/F

T +
S/F−−→ NS/F + 1 and NS/F

T −
S/F−−→ NS/F − 1, (1)

with transition rates T +
S = (1 − s)NS/ f̄ , T +

F = NF / f̄ , and
T −

S/F = (N/K�)NS/F . We model EN by letting the carrying
capacity fluctuate in time as

K�(t ) = K0,�[1 + ξ�(t )], (2)

where ξ�(t ) denotes the stationary symmetric EN of type
� ∈ L ≡ {D, U, B}, with discrete or continuous range. For the
former, we focus on the symmetric dichotomous (� = D, or
telegraph) noise [69,70], and for the latter we consider EN
with uniform (� = U) and symmetric beta (� = B) stationary
probability density function (PDF) p∗(ξ�) of support S� [67].
It is convenient to denote the set of EN with continuous range
(continuous EN) as � ∈ L′ ≡ L \ D.

For � = D, the random process ξD → −ξD, where ξD ∈
{−σD, σD} (0 < σD < 1), occurs at a rate ν/2 and has a corre-
lation time 1/ν. Hence, K� switches between a high and low
value after an average time 2/ν (see Fig. 1).

For � ∈ L′, ξ� is a colored continuous EN with correlation
time 1/ν defined by the stochastic differential equation, in the
sense of Itô calculus [67,68],

dξ� = −νξ�dt +
√
B� dW, (3)

where W ∼ N (0, 1) is the normally distributed Wiener pro-
cess of zero mean and unit variance. The first term on the
right-hand side of (3) represents the linear drift, and the sec-
ond is the diffusion term. For concreteness and simplicity, we
focus on symmetric continuous EN: � = B (beta) and � = U
(uniform) as examples of EN for which K� has a zero and
finite lower bound, respectively. In the former, ξB is distributed
according to a single-parameter (β > 1) symmetric beta dis-
tribution on (−1, 1), with variance σ 2

B = 1/(2β + 1) < 1/3;
in the latter ξU is uniformly distributed on (−σU

√
3, σU

√
3)

with variance σ 2
U < 1/3 (see Fig. 1). The diffusive terms sat-

isfy [67]

BU = ν
(
3σ 2

U − ξ 2
U

)
, BB = ν

(
2σ 2

B

1 − σ 2
B

)(
1 − ξ 2

B

)
. (4)

Notably, the coupling of (1)–(3) generally yields a non-
Markovian process (when ν �= 0) (see Sec. A2 of SM [67]).

The PDF of K�, P (K�), can be obtained from p∗(ξ�) and
Eq. (2) [67]. Below we focus on the first two moments of
K� (skewness vanishes for symmetric EN). To meaningfully
compare the influence of discrete and continuous EN on pop-
ulation dynamics, we impose the same first two moments,
yielding K0,D = K0,� = K0 and σ 2 = σ 2

D = σ 2
� for � ∈ L′, as

long as σ 2
� < σ 2

max ≡ 1/3 [67]. Henceforth, as long as σ� <

σmax we denote σ� by σ for all forms of EN.
Ignoring fluctuations, in the limit of an infinite population

with constant carrying capacity K (t ) = K0 � 1, the result-
ing mean-field dynamics yields Ṅ = N (1 − N/K0) and ẋ ≈
−sx(1 − x) [32,33,35,59]. This indicates a timescale sepa-
ration between the typical relaxation time of N , t = O(1),
and that of x, t ∼ 1/s � 1. Accounting for DN, the above
timescales represent the convergence of the population size
distribution (PSD) to the long-lived metastable state centered
about K0, after t = O(1), and the fixation of one of the species
(and extinction of the other), at t ∼ 1/s [32,33,67,71].

Indeed, in a finite population, random birth/death events
lead to the fixation of one strain. The slow-grower fixation
probability in a population of constant size N , given an ini-
tial x0 = NS (0)/N (0), satisfies φ(N, s, x0) = (e−Nx0 ln(1−s) −
1)/(e−N ln(1−s) − 1) ≈ eN (1−x0 ) ln (1−s), where the approxima-
tion holds when −N ln(1 − s) � 1 [29,72], and when N
fluctuates about K0 � 1 [32,33,59]. However, the fixation
probability changes dramatically when K� varies according
to (2). Since EN varies either discretely or continuously, we
characterize the population dynamics by studying the joint
influence of EN and DN on the fixation properties and PSD
as function of ν and σ .

In the case of D-EN, the full PSD, P�(N, ν), can
be well approximated in all regimes by the PDF of a
piecewise-deterministic Markov process associated with (1)
and (2) [32,33,59–61,67,73]. Yet, there is no equivalent
method to approximate the PSD for all ν under contin-
uous EN, and P�(N, ν) is thus obtained numerically (see
Sec. A3 and Fig. S1 in SM [67]). As detailed below, analytical
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progress is however possible in the regime ν � s (long cor-
relation time), when K�(t ) ≈ K�(0) and P�(N, ν/s) ≈ P (K�),
and when ν � s (short correlation time). In the latter regime,
P�(N, ν/s) ≈ δ(N − K�) [see Eqs. (7) and (8) and Fig. S1(c)
in SM [67]]. Furthermore, when ν � s and σ � 1, P�(N, ν)
can be computed more accurately within a WKB approxi-
mation (see Sec. A2.3 in SM [67]). Once the PSD is found,
numerically or analytically, we can use the timescale separa-
tion to find the S-fixation probability under �-EN, φ�. In fact,
as the population settles in its long-lived PSD after t = O(1),
i.e., much earlier than fixation that occurs after t = O(1/s) �
1 (with a weak N dependence) [30,32,33], and given x0, φ�

can be found by averaging φ(N, s, x0) over P�(N, ν/s):

φ� 
∫ ∞

0
P�(N, ν/s)φ(N, s, x0)dN. (5)

Here, we have rescaled ν → ν/s corresponding to O(ν/s)
environmental switches that the population experiences prior
to fixation [32,33,59]. This result holds under weak selection,
1/K0 � s � 1. A similar approach allows us to obtain the
mean fixation time T� = O(1/s) (see Sec. A4 in SM [67]).
Before considering the general case using (5), we now study
the PSD and φ� in the regimes of long- and short-correlated
EN.

Low varying rate (long-correlated EN). When ν � s,
the environment barely changes prior to fixation of either
species (after t ∼ 1/s), and is assumed to be station-
ary as N rapidly equilibrates, with P�(N ) ≈ P (K�) (see
Sec. A2 in SM [67]). We thus approximate φ� by φ0

� =∫
P (K�)φ(K�, s, x0)dK� [67]. Here, the PSD is unimodal

(or flat) under continuous EN, in sharp contrast to the
bimodal PSD obtained for D-EN [32] [see Figs. S1(a)
and S1(b) in SM [67]]. When K0s � 1 and s � 1, we
have φ(N, s, x0) ≈ exp(−ηN ) with η ≡ −(1 − x0) ln(1 −
s)  s(1 − x0) > 0. By integrating over P (K�), we find

φ0
� =

⎧⎪⎪⎨
⎪⎪⎩

e−ηK0 cosh (ηK0σ ) (D),∫ 1
−1 e−ηK0(1+ξ ) (1+ξ )β−1(1−ξ )β−1

B(β,β )22β−1 dξ (B),
e−ηK0

ηK0σ
√

3
sinh(ηK0σ

√
3) (U),

(6)

where β ≡ (1 − σ 2)/(2σ 2) and B(β, β ) ≡ ∫ 1
0 tβ−1(1 −

t )(β−1)dt is the beta function. In Fig. 2(a) we show the
dependence of φ0

� on σ when K0 is kept fixed, which
agrees well with simulation results. We find that EN can
enhance the S-fixation probability by several orders of
magnitude with respect to φ(K0, s, x0), its static-environment
counterpart [32,33,67] (see Fig. S3 of SM [67]). Moreover,
φ0

�∈L′ under continuous EN is much larger than φ0
D. This stems

from P�∈L′ having a broad left tail enhancing φ0
� compared to

the contribution arising from the left peak of PD [see Eq. (5)
and Figs. S1(a) and S1(b) in SM [67]].

High varying rate (short-correlated EN). When ν � s and
K0 � 1 (with σ not too close to σmax), φ� is governed by
EN that dominates over DN [59,67]. In fact, under high ν,

FIG. 2. (a) φ0
� vs σ and (b) φ∞

� vs σ under symmetric �-EN.
(c) f 0

� vs σ and (d) f ∞
� vs σ , where f� is the standard-deviation

multiplier obtained by solving φ
(0,∞)
D ( f (0,∞)

� σ ) = φ
(0,∞)
�∈L′ (σ ) with K0

kept fixed (see text). Symbols in (a) and (b) are from simulations,
and in (c) and (d) are from a numerical evaluation of (5) using
simulation histograms for P�. Dashed lines are from Eqs. (6) in
(a) and (c) and (8) in (b) and (d), while solid lines in (a)–(c) are
from a numerical evaluation of (5) using analytical results for P� in
the low/high ν limit. In (a)–(d), blue/dark gray stands for � = D,
black for � = U, and red/gray for � = B. Simulation results for φ0

�

and φ∞
� were obtained for ν = 10−4 and ν = 3 × 103, respectively.

(e) Heat map of the multiplier fB vs σ and ν (see text). Dark
areas interspersed by lighter regions indicate where fB(σ ) is non-
monotonic (slow/intermediate ν regimes). In all panels (K0, s, x0 ) =
(750, 0.025, 0.5), and σ < σmax for proper comparison of the differ-
ent EN. A similar heat map is obtained for U-EN, with the main
qualitative difference being the absence of nonmonotonicity.

N obeys the logistic stochastic differential equation Ṅ =
N[1 − N/K (t )], with the environment varying so frequently
that EN self-averages, yielding Ṅ = N (1 − N/K�) [32,33,59],
where [67]

K� ≡ K0〈
1

1+ξ�

〉 ≡ K0

[∫
S�

p∗(ξ�)

1 + ξ�

dξ�

]−1

. (7)
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For symmetric �-EN, we explicitly find

KD

K0
= 1 − σ 2,

KB

K0
= 1 − σ 2

1 − 2σ 2
,

KU

K0
=

√
3σ

tanh−1(
√

3σ )
. (8)

This dependence yields KB < KU < KD for fixed σ [see
Fig. S2(a) of SM [67]]. P�(N, ν/s) is very narrow and centered
around K� when ν � s [see Fig. S1(c) of SM [67]]. Hence,
upon ignoring DN, Eq. (5) can be crudely approximated using
P�(N, ν/s) ≈ δ(N − K�), yielding φ� → φ∞

� ≈ exp(−ηK�):
When ν/s � 1, high environmental variability ensures self-
averaging prior to fixation, leading to φ� ≈ φ∞

� . According
to (8) the values of K� for � ∈ L′ are markedly lower than
KD, especially when σ approaches σmax. This implies φ∞

�∈L′ �
φ∞

D , as confirmed by Fig. 2(b), whose predictions agree well
with simulation data. Also, φ∞

� is generally significantly
larger than its static-environment counterpart (see Fig. S3 of
SM [67]).

Intermediate varying rate (general case). When ν ∼ s, we
compute φ� using (5). While an analytical approximation can
be obtained under D-EN [32,33,59,61], Eq. (5) is evaluated
numerically under continuous EN by integrating over the PSD
obtained from simulation data. We find that Eq. (5) provides
an accurate approximation of φ� over a broad range of ν/s
for all forms of �-EN (see Fig. S3 of SM [67]). This approx-
imation agrees well with φ0

� when ν/s � 1 and φ∞
� when

ν/s � 1 [67].
Most laboratory-controlled experiments on fluctuating

populations are carried out by probing a discrete set (often
binary) of environmental states [11,56–58,74]. Yet, many in
vivo exogenous factors can take a continuous range of values,
and little is known on the joint effects of continuously varying
environmental conditions and DN. We thus analyze the effects
of discrete and continuous EN on population dynamics, by
systematically comparing φD under D-noise with φB/U under
B/U-EN. Keeping K0 and σ fixed for every �-EN, we have
determined the multiplier f� by which the variance of the
D-noise needs to be enhanced (σ → f�σ ) for φD to match
φ�∈L′ , for given ν. In practice, we have generally used (5) to
determine f� by numerically solving φD( f�σ ) = φ�(σ ) over
σ ∈ (0, σmax) for � ∈ L′ and fixed ν (see Sec. A3 in SM [67]).
As shown in Figs. 2(c)–2(e), f� is a nontrivial function of ν

and σ , with f� � 1 reflecting the fact that a higher variance
of D-EN is necessary to achieve the same fixation proba-
bility as under B/U-EN. For long- and short-correlated EN
(ν/s � 1 and ν/s � 1, respectively) we have used (6) and (8)
to determine the multipliers f 0

� and f ∞
� analytically. These

predictions, shown in Figs. 2(c) and 2(d), agree well with
simulation results. For σ � 1, in the limit ν → 0, one has
f 0
U ≈ 1 + (ηK0σ )2/30, f 0

B ≈ 1 + (ηK0σ )2/12, while f ∞
U ≈

1 + (2/5)σ 2 and f ∞
B ≈ 1 + σ 2 when ν � s. Remarkably, fB

exhibits a nonmonotonic dependence on σ when ν/s � 1 and
ν/s ∼ 1 [see Figs. 2(c) and 2(e)]: The multiplier fB(σ ) at-
tains a maximum at σ f (0 < σ f < σmax), while the maximum
of fU occurs at σ f ≈ σmax. Hence, the leveling (stabilizing)
effect of B-EN on the competition compared to D-EN in
the slow/intermediate regimes is maximal for σ ≈ σ f . Con-

FIG. 3. Exponent α� of (9) vs σ�/σ�,max in the regime ν/s �
1. Here, σ�,max = 1/

√
3 for � ∈ L′ and σ�,max = 1 for D-EN. Red

squares, blue circles, and black triangles correspond to (B,D,U)-EN,
respectively, and the dashed line is a guide to the eye showing α� = 1.
Here, (K0, s, x0 ) = (900, 0.025, 0.5), and different values of ν � s,
with ν ∈ [12s, 4000s] [67].

versely, f� increases with σ when ν/s � 1 [see Figs. 2(d)
and 2(e)].

Having shown that continuous EN can drastically enhance
the fixation probability compared to binary EN, we have also
studied how φ∞

� is approached when ν/s � 1. As ν increases,
we find that φ� converges towards φ∞

� according to the follow-
ing scaling, illustrated in Fig. 3,

φ�(ν)  φ∞
� exp [A�(s/ν)α� ], (9)

where the parameter A� depends on K0, η and σ . In the
case of D-EN, we found αD ≈ 1 regardless of σ [59]. In the
case of continuous EN, α�∈L′ ≈ 1 for small σ (see Sec. A2.3
in SM [67]), yet α�∈L′ decreases as σ → σmax, indicating a
slower convergence to φ∞

� with B/U-EN than under D-EN.
As shown in Fig. 3, the convergence is particularly slow under
B-EN when σB ≈ σmax = 1/

√
3, while the effect is weaker

under U-EN. This stems from K� attaining low values with
nonzero probability under continuous EN, yielding a slower
convergence of the average value of N to K� than under D-EN
(see Sec. A.2.2 in SM [67]).

We have studied the competition for resources of two
strains subject to DN coupled to either binary or continuously
varying EN. Our findings suggest that population dynamics is
drastically affected by the form of EN: Continuous EN gener-
ally levels the field of competition and significantly increases
the fixation probability of the slower strain S. This finding is
rationalized by mapping results of continuous EN onto those
from binary EN (see Fig. 2). Furthermore, the analysis can
be generalized to describe the ecoevolutionary dynamics of
cooperative behavior [67]. Our results, demonstrating that dis-
crete and continuous EN, jointly with DN, can have markedly
different effects on how populations compete for resources,
pave the way to a better understanding of the influence of such
environmental conditions on the evolution of in vivo microbial
communities.
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Supplemental information, simulation source codes, and
data are electronically available [75].
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