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Integrable and Superintegrable Extensions

of the Rational Calogero-Moser Model in 3 Dimensions

Allan P. Fordy∗ and Qing Huang†

March 12, 2022

Abstract

We consider a class of Hamiltonian systems in 3 degrees of freedom, with a particular type of quadratic
integral and which includes the rational Calogero-Moser system as a particular case. For the general class,
we introduce separation coordinates to find the general separable (and therefore Liouville integrable)
system, with two quadratic integrals. This gives a coupling of the Calogero-Moser system with a large
class of potentials, generalising the series of potentials which are separable in parabolic coordinates.
Particular cases are superintegrable, including Kepler and a resonant oscillator.

The initial calculations of the paper are concerned with the flat (Cartesian type) kinetic energy, but
in Section 5, we introduce a conformal factor ϕ to H and extend the two quadratic integrals to this
case. All the previous results are generalised to this case. We then introduce some 2 and 3 dimensional
symmetry algebras of the Kinetic energy (Killing vectors), which restrict the conformal factor. This
enables us to reduce our systems from 3 to 2 degrees of freedom, giving rise to many interesting systems,
including both Kepler type and Hénon-Heiles type potentials on a Darboux-Koenigs D2 background.

Keywords: Hamiltonian system, super-integrability, Poisson algebra, conformal algebra, Calogero-Moser
system, Kepler problem, Darboux-Koenigs metric, Hénon-Heiles system.

MSC: 17B63, 37J15, 37J35,70G45, 70G65, 70H06

1 Introduction

The Calogero-Moser system is the archetypal integrable, many-body problem, both classical and quantum
[3, 24] (see also [22] for the 3 body case), and is known to be maximally superintegrable [21, 29]. These
authors derive the first integrals from the Lax matrix, but here we wish to use methods which can be used,
regardless of whether or not a Lax matrix is known. In this paper we only consider the case of 3 degrees of
freedom.

The Calogero-Moser system in 3 degrees of freedom is

HCM =
1

2
(p21 + p22 + p23) + g2

(

1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)

, (1a)

which can be obtained from a Lax matrix L, as 1
2 trL

2 [24]. In the Lax approach, a full set of Poisson
commuting integrals (for general n degrees of freedom) can be written as 1

k
trLk. Extending this approach,

Wojciechowski [29] found more integrals, some of which are quadratic and related to the ones given below.
Whilst these Poisson commute with H, they generate a non-commutative Poisson algebra, as is necessarily
the case for superintegrable systems.
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In this paper we particularly focus on one particular quadratic integral, given in the construction of [29],
which can be written

XCM
1 = (p1 + p2 + p3)σ − 2(q1 + q2 + q3)H

CM , (1b)

where σ = q1p1 + q2p2 + q3p3 is an important conformal element (see also (60b) in the Appendix (Section
10.1)). In formula (1b), HCM just denotes (1a), but in Section 2 we consider generalisations H and X1, still
satisfying {H,X1} = 0.

Indeed, in Section 2 we classify the functions U , which allow such an integral X1, by reducing the system
to separation variables, (x, y, z), which are a 3-dimensional extension of the standard parabolic coordinates
of the plane (labelled here (x, y)). Hence these potentials (in the (x, y) components) are just the standard
sequence (see Chapter 2 of [25]), including the Kepler problem, the KdV case of integrable Hénon-Heiles
potential, and many more. The z component allows for the connection to the Calogero-Moser system (when
re-written in the original qi coordinates). Separation of variables gives a third quadratic function X2 and
the three functions H, X1, X2 play an important role throughout the paper.

To construct (x, y, z), we first introduce an intermediate Cartesian coordinate system Qi, in which many
of these potentials take their most natural form.

Whilst Section 2 discusses the general structure of Liouville integrability in the three coordinate systems,
(x, y, z), (Q1, Q2, Q3) and (q1, q2, q3), Section 3 is concerned with special potentials in the (Q1, Q2, Q3)
coordinates. Whilst the general system is simply Liouville integrable, many of these special cases have
additional integrals, making them superintegrable. It’s in these coordinates that such potentials as Kepler, a
resonant oscillator and Hénon-Heiles arise.

In Section 4 the Calogero-Moser system is specifically considered with both Kepler and oscillator coupling.
Up to this point the kinetic energy has been of the standard flat, Cartesian type, but in Section 5, we

introduce a conformal factor ϕ to the entire separable Hamiltonian H (in (x, y, z) coordinates), requiring it
to continue to be separable in these coordinates. This modifies the definition of X1 and X2, but these three
functions remain in involution. The remaining sections are concerned with this extension, mainly in terms
of the coordinates Qi.

Section 6 extends the cases of Section 3 to conformally flat metrics. Whilst the restriction of the potential
is allowed without any further constraints on the conformal factor ϕ, demanding additional first integrals,
as in the superintegrable cases, does force constraints on ϕ. In this section we see extensions of Kepler,
resonant oscillator and Hénon-Heiles potentials. In particular, one of the extensions to the previous resonant
oscillator is a superintegrable, 3D extension of the Darboux-Koenigs D1 kinetic energy with potential (see
Section 6.3.2).

In Section 7 we introduce some 2 and 3 dimensional symmetry algebras (linear functions of momenta,
which commute with the kinetic energy ofH), discussed in detail in [15, 16]. The existence of such symmetries
restricts the conformal factor ϕ. We can then restict the entire Hamiltonian with just one of these symmetries,
after which we can choose coordinates in which the Hamiltonian can be interpreted as a 2 dimensional
reduction.

Many interesting reduced systems arise in this way. For example the Hamiltonian (35a) is a Kepler prob-
lem on a Darboux-Koenigs D2 background. It is superintegrable, with two independent quadratic integrals.
Similarly, the Hamiltonian (36a) is of generalised Hénon-Heiles type on a Darboux-Koenigs D2 background.
It has one quadratic integral, so is Liouville integrable (but not superintegrable). The Hamiltonian (50c) is
interesting in the context of Darboux-Koenigs theory; it has a Darboux-Koenigs D3 kinetic energy, but the
given potential only allows one quadratic integral. However, there is an independent quartic integral, so the
system is maximally superintegrable and outside the class considered in [19] (see Sections 7.4.4 and 7.4.5).

In Section 8, we present the Kepler-Calogero-Moser system with a particular conformally flat metric.
Commonly used notations are defined in the Appendix (Section 10.1).
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2 The General Potential Compatible with X1: Flat Metric

We now consider the two functions

H =
1

2
(p21 + p22 + p23) + U(q1, q2, q3), X1 = (p1 + p2 + p3)σ − 2(q1 + q2 + q3)H + V1(q1, q2, q3), (2)

with H and X1 being extensions of (1a) and (1b). We seek conditions on the general U and V1 of (2), such
that {H,X1} = 0.

Since the leading parts of these functions are quadratic in momenta, we can use separation of variables,
which corresponds to simultaneous diagonalisation of the defining quadratic forms by a canonical transfor-
mation. We do this in two steps. The intermediate coordinate system is not only convenient, but of interest
in itself.

2.1 Intermediate Transformation to (Qi, Pi)

We first perform an orthogonal transformation, with Q1 the centre of mass coordinate (also called Jacobi
coordinates (see [27])), given by the canonical transformation:

S =
1√
3
(q1 + q2 + q3)P1 +

1√
2
(q1 − q2)P2 +

1√
6
(q1 + q2 − 2q3)P3, (3)

in which

p1 + p2 + p3 =
√
3P1, p21 + p22 + p23 = P 2

1 + P 2
2 + P 2

3 , σ = Q1P1 +Q2P2 +Q3P3.

Therefore (up to an overall factor of
√
3 dropped from X1), we obtain

H =
1

2
(P 2

1 + P 2
2 + P 2

3 ) + Ū(Q1, Q2, Q3), X1 = P1σ − 2Q1H + V̄1(Q1, Q2, Q3), (4)

where we see that X1 can be written in the same form as (2).

2.2 Separation of Variables

When written explicitly, the quadratic part of X1 is now simpler:

X0
1 = P1(Q2P2 +Q3P3)−Q1(P

2
2 + P 2

3 ). (5a)

The eigenvalues and eigenvectors of the matrix A1, of coefficients of the corresponding quadratic form X0
1 ,

are given by

λ1 = R−Q1, λ2 = −R−Q1, λ3 = −2Q1,
(5b)

vT
1 = (Q1 +R,Q2, Q3), vT

2 = (Q1 −R,Q2, Q3), vT
3 = (0,−Q3, Q2),

where here and hereafter R =
√

Q2
1 +Q2

2 +Q2
3.

Whilst building the usual matrix T from vi will certainly diagonalise the matrix A1, we need this to be
the Jacobian of a coordinate transformation, so need to find functions ai(Q1, Q2, Q3), such that

∇xi = ai(Q1, Q2, Q3)vi, for three functions xi(Q1, Q2, Q3), requiring ∇× (aivi) = 0.

For a1, these equations give (Q2∂3 − Q3∂2)a1 = 0, so a1(Q1, Q2, Q3) = ā1(Q1, r), where r =
√

Q2
2 +Q2

3.
This further leads to

(

∂Q1
− Q1 +R

r
∂r

)

ā1 =
ā1

R
, with characteristic R+Q1. (5c)
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This means that x1 is any function of this characteristic, x1(Q1, Q2, Q3) = b1(R+Q1), with a1 =
b′
1

R
.

Similar calculations lead to the other characteristics, which are used to write the canonical transformation

S =

(

√

Q2
1 +Q2

2 +Q2
3 +Q1

)

px +

(

√

Q2
1 +Q2

2 +Q2
3 −Q1

)

py +
Q3

Q2
pz, (6)

which reduces to the standard two dimensional parabolic coordinates when Q3 = 0. In these coordinates,
the kinetic energy H0 = 1

2 (P
2
1 + P 2

2 + P 2
3 ) takes the form

H0 =
2xp2x + 2yp2y

x+ y
+

(1 + z2)2p2z
2xy

, (7a)

with the pure x− y part being the standard 2D parabolic coordinates case.
We can then add the standard separable potentials to (7a):

H =
2xp2x + 2yp2y +A1(x) +A2(y)

x+ y
+

(1 + z2)2p2z + 2(1 + z2)B(z)

2xy
, (7b)

without destroying commutativity.

Remark 2.1 We could have defined z as arctan
(

Q3

Q2

)

to make the z part just
p2

z

2xy , but our main interest is

in the Qi and qi coordinates, so such refinements are unnecessary. The definition of B(z) incorporates the
factor (1 + z2) to simplify the expression in the Qi coordinates.

Separation of variables then leads to 3 quadratic commuting integrals:

H = E ⇒ 2xp2x +A1(x) +
γ

2x
− Ex+ 2yp2y +A2(y) +

γ

2y
− Ey = 0, (7c)

where γ is defined by
X2 = (1 + z2)2p2z + 2(1 + z2)B(z) = γ. (7d)

Defining α = 2xp2x +A1(x) +
γ
2x − Ex, we can eliminate E to obtain

α =
2xy(p2x − p2y) + yA1(x)− xA2(y)

x+ y
+
γ(y − x)

2xy
, (7e)

with γ given by (7d). Applying the transformation (6) to X1 of (4), we see that α = X1.

Remark 2.2 (Jacobi’s Theorem) As guaranteed by Jacobi’s Theorem, separability has led to a third
quadratic first integral X2, and that H, X1 and X2 are in involution (see p260 of [1]).

In summary, we have found that the three functions

H =
2xp2x + 2yp2y

x+ y
+

(1 + z2)2p2z
2xy

+
A1(x) +A2(y)

x+ y
+

(1 + z2)B(z)

xy
, (8a)

X1 =
2xy(p2x − p2y) + yA1(x)− xA2(y)

x+ y
+

((1 + z2)2p2z + 2(1 + z2)B(z))(y − x)

2xy
, (8b)

X2 = (1 + z2)2p2z + 2(1 + z2)B(z), (8c)

are in involution.
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2.3 Returning to (Qi, Pi) Coordinates

Returning to these coordinates, we have

H =
1

2
(P 2

1 + P 2
2 + P 2

3 ) +
A1 (x) +A2 (y)

2R
+
B
(

Q3

Q2

)

Q2
2

, (9a)

X1 = P1σ − 2Q1H +
xA1(x)− yA2(y)

2R
, (9b)

X2 = (Q2P3 −Q3P2)
2 + 2(Q2

2 +Q2
3)
B
(

Q3

Q2

)

Q2
2

, (9c)

where x = R+Q1, y = R−Q1, with R given after (5b).

2.4 Returning to (qi, pi) Coordinates

We can finally return to the original coordinates:

H =
1

2
(p21 + p22 + p23) +

A1(x) +A2(y)

2
√

q21 + q22 + q23
+
W
(

q2−q3
q1−q2

)

(q1 − q2)2
, (10a)

X1 = (p1 + p2 + p3)σ − 2(q1 + q2 + q3)H +
√
3
xA1(x)− yA2(y)

2R
, (10b)

X2 = (J1 + J2 + J3)
2 + 4(q21 + q22 + q23 − q1q2 − q2q3 − q3q1)

W
(

q2−q3
q1−q2

)

(q1 − q2)2
, (10c)

where

x =
√

q2
1
+ q2

2
+ q2

3
+

q1 + q2 + q3
√

3
, y =

√

q2
1
+ q2

2
+ q2

3
−

q1 + q2 + q3
√

3
, W

(

q2 − q3

q1 − q2

)

= 2B

(

q1 + q2 − 2q3
√

3(q1 − q2)

)

,

and Ji are given in (60a).

3 Some Specific Potentials in (Qi, Pi) Coordinates

Since the coordinates of (7b) are an extension of the 2 dimensional parabolic coordinates, the (x, y) part
of the potential contains several well known, important potentials, such as Kepler and one of the Hénon-
Heiles cases, which are now extended to 3 dimensions. To appreciate this, it is best to represent them in
the (Qi, Pi) coordinates. The z part of the potential (7b) adds further extensions to these known potentials
in the (Qi, Pi) coordinates, but is most interesting in the (qi, pi) coordinates, since here it includes the 3
component Calogero-Moser potential as a special case. All of these cases are completely integrable, but some
have additional integrals, making them superintegrable.

3.1 The Case Ai = 0

This is a well known case [2, 4, 18, 27] with 4 independent integrals for general B
(

Q3

Q2

)

. Special cases

of this (including the Calogero-Moser case) allow an algebra with rank 5 (which is maximal in 3 degrees of
freedom).
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As well as H,X1, X2, we also have P1 and Ω (an extension of J2, given in the Appendix):

H =
1

2
(P 2

1 + P 2
2 + P 2

3 ) +
B
(

Q3

Q2

)

Q2
2

, (11a)

X1 = P1σ − 2Q1H, (11b)

X2 = (Q2P3 −Q3P2)
2 + 2(Q2

2 +Q2
3)
B
(

Q3

Q2

)

Q2
2

, (11c)

Ω = (Q1P2 −Q2P1)
2 + (Q2P3 −Q3P2)

2 + (Q3P1 −Q1P3)
2 + 2(Q2

1 +Q2
2 +Q2

3)
B
(

Q3

Q2

)

Q2
2

.

= 2(Q2
1 +Q2

2 +Q2
3)H − (Q1P1 +Q2P2 +Q3P3)

2. (11d)

The non-zero Poisson brackets are

{P1, X1} = 2H − P 2
1 , {P1,Ω} = 2X1, {X1,Ω} = −2P1Ω, (11e)

and these 5 functions satisfy the constraint

X2
1 = 2(Ω−X2)H − P 2

1Ω. (11f)

3.2 The Kepler Case

Clearly, by setting A1(x) = A2(y) = −µ, the potential of (9a) includes a Kepler part. As well as
H,X1, X2, we also have Ω (an extension of (60c)):

H =
1

2
(P 2

1 + P 2
2 + P 2

3 )−
µ

√

Q2
1 +Q2

2 +Q2
3

+
B
(

Q3

Q2

)

Q2
2

, (12a)

X1 = P1σ − 2Q1H − µQ1
√

Q2
1 +Q2

2 +Q2
3

, (12b)

X2 = (Q2P3 −Q3P2)
2 + 2(Q2

2 +Q2
3)
B
(

Q3

Q2

)

Q2
2

, (12c)

Ω = (Q1P2 −Q2P1)
2 + (Q2P3 −Q3P2)

2 + (Q3P1 −Q1P3)
2 + 2(Q2

1 +Q2
2 +Q2

3)
B
(

Q3

Q2

)

Q2
2

= −(Q1P1 +Q2P2 +Q3P3)
2 + 2(Q2

1 +Q2
2 +Q2

3)H + 2µ
√

Q2
1 +Q2

2 +Q2
3. (12d)

As well as {X1, X2} = {X2,Ω} = 0, we have {X1,Ω} = −2X3, where

X3 = P1Ω+
µ

√

Q2
1 +Q2

2 +Q2
3

(Q2(Q1P2 −Q2P1) +Q3(Q1P3 −Q3P1)) , (12e)

with {Ω, X3} = −2X1Ω. We also have

{X1, X3} = 2(X2 − 2Ω)H +X2
1 − µ2, X2

3 = Ω(2ΩH − 2X2H −X2
1 ) + µ2(Ω−X2). (12f)

3.3 Polynomial Potentials

The “A” part of the potential in (9a) includes an infinite family of polynomial potentials, with A1(x) =
k xn+1 and A2(y) = (−1)n k yn+1, which directly generalise the well known 2 dimensional case (see, for
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example, Equation 2.2.41 in [25]):

Un = k

(

√

Q2
1 +Q2

2 +Q2
3 +Q1

)n+1

+ (−1)n
(

√

Q2
1 +Q2

2 +Q2
3 −Q1

)n+1

2
√

Q2
1 +Q2

2 +Q2
3

, (13a)

with

U1 = 2kQ1, U2 = k(4Q2
1 +Q2

2 +Q2
3), U3 = 4kQ1(2Q

2
1 +Q2

2 +Q2
3),

U4 = k(16Q4
1 + 12Q2

1(Q
2
2 +Q2

3) + (Q2
2 +Q2

3)
2). (13b)

Hamiltonian (9a), with U2 gives case 6 of Table II of [9]. Hamiltonian (9a), with a combination of U2 and

U3 gives a 3 dimensional version of the Hénon-Heiles system, with the addition of the
B
(

Q3

Q2

)

Q2

2

term, which

generalises the usual c
Q2

2

term, which appears in the 2 dimensional case. Hamiltonian (9a), with U4 gives a

generalisation of case 4 of Table 1 of [7].

3.4 The Oscillator Potential U2

We start with the 3 integrals related to the separation of variables:

H =
1

2
(P 2

1 + P 2
2 + P 2

3 ) +
1

2
ω2 (4Q2

1 +Q2
2 +Q2

3) +
B
(

Q3

Q2

)

Q2
2

, (14a)

X1 = P1σ − 2Q1H + 2ω2Q1(2Q
2
1 +Q2

2 +Q2
3), (14b)

X2 = (Q2P3 −Q3P2)
2 + 2(Q2

2 +Q2
3)
B
(

Q3

Q2

)

Q2
2

. (14c)

Since B is independent of Q1, we see that we have an additional integral:

F1 = P 2
1 + 4ω2Q2

1. (14d)

We can then define F2 by

{X1, F1} = −2F2 ⇒ F2 = P1(2H − P 2
1 ) + 2ω2(2Q1(Q2P2 +Q3P3)− P1(2Q

2
1 +Q2

2 +Q2
3)). (14e)

The remaining nonzero Poisson brackets are

{X1, F2} = (F1 − 2H)(2H − 3F1) + 4ω2X2, {F1, F2} = −8ω2X1. (14f)

These integrals have rank 4, satisfying

F 2
2 = F1(F1 − 2H)2 − 4ω2(F1X2 +X2

1 ). (14g)

3.4.1 Relation to Resonant Oscillators

When B = 0, this is just a 3 dimensional resonant oscillator, which can be thought of as a combination
of 2 component oscillators, with resonances (2, 1), (2, 1) and (1, 1).

The 2 dimensional oscillator with resonances (2, 1) has quadratic and cubic integrals. We can write X1

and F2 as the sum of integrals in the (Q1, Q2) and (Q1, Q3) spaces, together with an extra piece involving
B:

X1 = (−Q1P
2
2 +Q2P1P2 + ω2Q1Q

2
2) + (−Q1P

2
3 +Q3P1P3 + ω2Q1Q

2
3)− 2Q1

B
(

Q3

Q2

)

Q2
2

, (15a)

F2 = (P1P
2
2 − ω2Q2

2P1 + 4ω2Q1Q2P2) + (P1P
2
3 − ω2Q2

3P1 + 4ω2Q1Q3P3) + 2P1

B
(

Q3

Q2

)

Q2
2

, (15b)
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The integral X2 is itself related to the (1, 1) resonance, as is another quadratic integral:

F
(2)
3 = P 2

2 + ω2Q2
2 + V

(2)
3 (Q2), (15c)

where the additional term V
(2)
3 (Q2) is to be determined. The condition {H,F (2)

3 } = 0 leads to

B = Q2
2

(

b1

Q2
2

+
b2

Q2
3

)

, V
(2)
3 =

2b1
Q2

2

, (15d)

giving (14a) as the last case in Table I of [9]. We see that there is an additional integral

F
(3)
3 = P 2

3 + ω2Q2
3 +

2b2
Q2

3

. (15e)

We also have:

X1 = P1σ − 2Q1H + 2ω2Q1(2Q
2
1 +Q2

2 +Q2
3), X2 = (Q2P3 −Q3P2)

2 + 2(Q2
2 +Q2

3)

(

b1

Q2
2

+
b2

Q2
3

)

, (15f)

with F1, F
(2)
3 , F

(3)
3 , X1, X2 being rank 5. They generate a 10 dimensional Poisson algebra, with 5 polynomial

constraints, all of which can be derived as a restriction of the conformally flat case, discussed in Sections
6.3.2 and 10.2. This algebra is discussed in Section 10.3 of the Appendix.

Remark 3.1 (Poisson Algebras) In this paper our Poisson algebras are generated by quadratic integrals.
The general structure of such Poisson algebras, related to superintegrable systems in 2 and 3 degrees of
freedom, can be found in [5, 6]. These algebras generally have quadratic relations, with the linear relations of
the isotropic oscillator being exceptional. The algebras are finite dimensional, but can be complicated, even
for such simple potentials as (14a), with (15d) (see Sections 10.2 and 10.3).

3.5 The Generalised Hénon-Heiles Potential U3

We have the three functions in involution:

H =
1

2
(P 2

1 + P 2
2 + P 2

3 ) +
1

2
ω2 (4Q2

1 +Q2
2 +Q2

3) + 4kQ1(2Q
2
1 +Q2

2 +Q2
3) +

B
(

Q3

Q2

)

Q2
2

, (16a)

X1 = P1σ − 2Q1H + 2ω2Q1(2Q
2
1 +Q2

2 +Q2
3)

+k(16Q4
1 + 12Q2

1(Q
2
2 +Q2

3) + (Q2
2 +Q2

3)
2)

= P3J2 − P2J3 + ω2Q1(Q
2
2 +Q2

3) + k(Q2
2 +Q2

3)(4Q
2
1 +Q2

2 +Q2
3)− 2Q1

B
(

Q3

Q2

)

Q2
2

, (16b)

X2 = (Q2P3 −Q3P2)
2 + 2(Q2

2 +Q2
3)
B
(

Q3

Q2

)

Q2
2

, (16c)

so it is completely integrable. This is a 3 degrees of freedom generalisation of the standard “KdV case” of
integrable Hénon-Heiles models (see [10]). The B−term generalises the usual c

Q2

2

term.

4 The (qi, pi) Coordinates and the Calogero-Moser Potential

We now consider these systems in the original coordinates (qi, pi). Our main interest is the Calogero-
Moser Potential with B(z) (from (9a)) and W (ζ) (from (10a)) taking the specific forms

B(z) =
9g2(1 + z2)2

2(1− 3z2)2
, W (ζ) = g2

(

1 +
1

ζ2
+

1

(1 + ζ)2

)

. (17)
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4.1 Kepler-Calogero-Moser System

Rewriting the Kepler case of Section 3.2, we find the Kepler-Calogero-Moser System [17]:

H =
1

2
(p21 + p22 + p23) + g2

(

1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)

− µ
√

q21 + q22 + q23
, (18a)

X1 = (p1 + p2 + p3)σ − 2(q1 + q2 + q3)H − µ(q1 + q2 + q3)
√

q21 + q22 + q23
, (18b)

X2 = (J1 + J2 + J3)
2

+4g2(q21 + q22 + q23 − q1q2 − q2q3 − q3q1)

(

1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)

, (18c)

Ω = 2(q21 + q22 + q23)H − σ2 + 2µ
√

q21 + q22 + q23 . (18d)

As well as {H,Xi} = 0, we have a further cubic integral X3, defined by {X1,Ω} = −2X3, where

X3 = (p1 + p2 + p3)Ω− µ
√

q21 + q22 + q23
((q22 + q23 − q1(q2 + q3))p1

+(q23 + q21 − q2(q3 + q1))p2 + (q21 + q22 − q3(q1 + q2))p3). (18e)

The remaining nonzero Poisson relations are listed below

{X1, X3} = 2(X2 − 6Ω)H +X2
1 − 3µ2, {Ω, X3} = −2X1Ω. (18f)

The functions H,X1, X2,Ω, X3 have rank 4 and satisfy

X2
3 =

(

2(3Ω−X2)H −X2
1 + 3µ2

)

Ω− µ2X2. (18g)

4.2 A Calogero-Moser System Coupled with the Potential U2

Rewriting the case of Equation (14a), we obtain

H =
1

2
(p21 + p22 + p23) + g2

(

1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)

+ω2(q21 + q22 + q23 + q1q2 + q2q3 + q3q1), (19a)

X1 = (p1 + p2 + p3)σ − 2(q1 + q2 + q3)H

+
4

3
ω2(q1 + q2 + q3)(2q

2
1 + 2q22 + 2q23 + q1q2 + q2q3 + q3q1), (19b)

X2 = (J1 + J2 + J3)
2

+4g2 (q21 + q22 + q23 − q1q2 − q2q3 − q3q1)

(

1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)

, (19c)

F1 = (p1 + p2 + p3)
2 + 4ω2(q1 + q2 + q3)

2. (19d)

We then have {X1, F1} = −4F2, where

F2 = F
(1)
2 − 3F

(2)
2 + 3ω2(q1 + q2 + q3)(q1p1 + q2p2 + q3p3)

−3ω2
(

(q22 + q23 + q2q3)p1 + (q21 + q23 + q1q3)p2 + (q21 + q22 + q1q2)p3
)

, (20a)

with

F
(1)
2 = p31 + p32 + p33 + 3g2

(

p1 + p2

(q1 − q2)2
+

p1 + p3

(q1 − q3)2
+

p2 + p3

(q2 − q3)2

)

, (20b)

F
(2)
2 = p1p2p3 − g2

(

p3

(q1 − q2)2
+

p2

(q1 − q3)2
+

p1

(q2 − q3)2

)

. (20c)
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We write it like this because, when ω = 0, both F
(1)
2 and F

(2)
2 are first integrals.

The remaining nonzero brackets are

{F1, F2} = −36ω2X1, {X1, F2} = −3

2
(6H − F1)(2H − F1) + 6ω2X2. (20d)

This algebra has rank 4, since

F 2
2 =

1

4
F1(F1 − 6H)2 − 3ω2(F1X2 + 3X2

1 ). (20e)

Remark 4.1 Writing the oscillator term as

ω2(q21 + q22 + q23 + q1q2 + q2q3 + q3q1) = 2ω2(q21 + q22 + q23)−
1

2
ω2((q1 − q2)

2 + (q2 − q3)
2 + (q3 − q1)

2), (20f)

it can be interpreted as a modification of the “nearest neighbour interaction”, together with an external
isotropic oscillator.

5 The Conformally Flat Case

In this and the following sections, we extend our results to the conformally flat case. We start in the
separation coordinates, (x, y, z), adding a conformal factor to the entire separable Hamiltonian (7b), but
requiring that the resulting Hamiltonian is still separable in these coordinates. The functions X1, X2 are
thus extended to this case.

In Section 5.2, we transform these functions into the (Qi, Pi) coordinates of (3) and then (in Section 6)
extend the results of Section 3.

In Section 7 we consider restrictions of the conformal factor by imposing various 2 and 3 dimensional
symmetry algebras on the kinetic energy.

5.1 In the (x, y, z) Coordinates

We add a conformal factor to the entire separable Hamiltonian (7b)

H = ϕ(x, y, z)

(

2xp2x + 2yp2y +A1(x) +A2(y)

x+ y
+

(1 + z2)2p2z + 2(1 + z2)B(z)

2xy

)

, (21a)

demanding that H = E can still be separated. This gives that ϕ must have the form

ϕ =
xy(x+ y)

xy(ϕ1(x) + ϕ2(y)) + (x+ y)ϕ3(z)
, (21b)

and repeating the construction of X1 and X2, we see they are modified as follows:

X1 =
2(x2p2x − y2p2y)

x+ y
+
yϕ2(y)− xϕ1(x)

x+ y
H +

xA1(x)− yA2(y)

x+ y
, (21c)

X2 = (1 + z2)2p2z + 2(1 + z2)B(z)− 2ϕ3(z)H, (21d)

with H, X1 and X2 still in involution.
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5.2 In the (Qi, Pi) Coordinates

Rewriting this in the (Qi, Pi) coordinates, the system (21) takes the form

H = ϕ

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
A1(x) +A2(y)

2R
+

1

Q2
2

B

(

Q3

Q2

))

, (22a)

X1 = P1σ +
yϕ2(y)− xϕ1(x)

2R
H +

xA1(x)− yA2(y)

2R
, (22b)

X2 = (Q2P3 −Q3P2)
2 − 2ϕ3

(

Q3

Q2

)

H +
2(Q2

2 +Q2
3)

Q2
2

B

(

Q3

Q2

)

, (22c)

where

ϕ =
2(Q2

2 +Q2
3)R

(Q2
2 +Q2

3)(ϕ1(x) + ϕ2(y)) + 2Rϕ3

(

Q3

Q2

) , (22d)

with x = R+Q1, y = R−Q1 and R =
√

Q2
1 +Q2

2 +Q2
3.

When ϕ1(x) = x, ϕ2(y) = y, ϕ3

(

Q3

Q2

)

= 0, this system reduces to (9). In this way, we extend the

completely integrable system (9) to a conformally flat case.

6 Some Specific Potentials in the Conformally Flat Case

Here we extend the cases of Section 3 to conformally flat metrics. Whilst the restriction of the functions
Ai is allowed without any further constraints on the conformal factor ϕ, demanding additional first integrals
(such as Ω in the Kepler case) does force constraints on ϕ.

6.1 The Case Ai = 0

Setting Ai = 0 (as in Section 3.1) does not change the result that the functions (22) are in involution, so
is no constraint on the function ϕ. However, asking for an extension of the function (11d) to commute with
H does restrict ϕ. We omit the details, but requiring {H,Ω} = 0, where Ω has the form

Ω = −σ2 + ψ(Q1, Q2, Q3)H + V (Q1, Q2, Q3), (23a)

leads to

ϕ1 = k1x+
k2

x
, ϕ2 = k1y +

k3

y
+ k4, ψ = 2k1(Q

2
1 +Q2

2 +Q2
3) + k4

√

Q2
1 +Q2

2 +Q2
3, V = 0, (23b)

giving

ϕ =
2(Q2

2 +Q2
3)R

(

2k1(Q2
2 +Q2

3) + 2ϕ3

(

Q3

Q2

)

+ k2 + k3

)

R+ k4(Q2
2 +Q2

3) + (k3 − k2)Q1

. (23c)

Imposing the additional constraint {H,P1} = 0 leads to k3 − k2 = k4 = 0, giving

H =
Q2

2 +Q2
3

k1(Q2
2 +Q2

3) + ϕ3

(

Q3

Q2

)

+ k2

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
1

Q2
2

B

(

Q3

Q2

))

, (24a)

with similar modifications to X1, X2 and Ω, which now satisfy

{P1, X1} = 2k1H − P 2
1 , {P1,Ω} = 2X1, {X1,Ω} = −2P1Ω. (24b)
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These 5 functions have rank 4, satisfying the constraint

X2
1 = 4k1k2H

2 + 2k1H(Ω−X2)− P 2
1Ω, (24c)

generalising (11f).

Remark 6.1 (Further Symmetry Constraint) If we set ϕ3 = 0, in (24a), then the metric has an ad-
ditional rotational symmetry (with respect to J1) and coincides with that of (4a) in [15]. If we ask for the
whole Hamiltonian to commute with this rotation, then we obtain

H =
Q2

2 +Q2
3

k1(Q2
2 +Q2

3) + k2

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
k5

Q2
2 +Q2

3

)

,

which is a reduced form of (4.6a) in [16]. Such constraints are discussed further in Section 7.

6.2 The Kepler Case

Here we extend the integrals of Section 3.2. Imposing A1 = A2 = −µmakes no restriction, but demanding
that Ω (of the form (23a)) is an integral places the same restrictions on ϕ and ψ as in (23b), but, now,
V = 2µR. To summarise these results, we have:

H = ϕ

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

− µ

R
+

1

Q2
2

B

(

Q3

Q2

))

, (25a)

X1 = P1σ +

(

−2k1Q1 +
k4

2
− k4Q1 + k2 − k3

2R

)

H − µQ1

R
, (25b)

X2 = (Q2P3 −Q3P2)
2 − 2ϕ3

(

Q3

Q2

)

H +
2(Q2

2 +Q2
3)

Q2
2

B

(

Q3

Q2

)

, (25c)

Ω = −σ2 +
(

2k1R
2 + k4R

)

H + 2µR, (25d)

with

ϕ =
2(Q2

2 +Q2
3)R

(

2k1(Q2
2 +Q2

3) + 2ϕ3

(

Q3

Q2

)

+ k2 + k3

)

R+ k4(Q2
2 +Q2

3) + (k3 − k2)Q1

. (25e)

6.3 The Oscillator Potential U2

Again, specifying Ai to obtain U2 does not change the result that the functions (22) are in involution,
so is no constraint on the function ϕ. However, asking for an extension of either (14d) or (15c) does lead
to restrictions. Unlike the flat case, we cannot impose both of these simultaneously, without forcing ϕ to be
constant, thus returning to the flat case.

6.3.1 Extending (14d)

With F1 = P 2
1 + ψ(Q1, Q2, Q3)H + V (Q1, Q2, Q3), we find ϕ1(x) = k1x+ k2

x
, ϕ2(y) = k1y +

k2

y
, leading

to

H =
Q2

2 +Q2

3

k1(Q2

2
+Q2

3
) + k2 + ϕ3

(

Q3

Q2

)

(

1

2

(

P
2

1 + P
2

2 + P
2

3

)

+
ω2

2
(4Q2

1 +Q
2

2 +Q
2

3) +
1

Q2

2

B

(

Q3

Q2

))

, (26a)

X1 = P1σ − 2k1Q1H + 2ω2
Q1(2Q

2

1 +Q
2

2 +Q
2

3), (26b)

X2 = (Q2P3 −Q3P2)
2
− 2ϕ3

(

Q3

Q2

)

H +
2(Q2

2 +Q2

3)

Q2

2

B

(

Q3

Q2

)

, (26c)

F1 = P
2

1 + 4ω2
Q

2

1. (26d)
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These four functions generate the Poisson algebra:

{X1, F1} = −2F2, {X1, F2} = (3F1 − 2k1H)(2k1H − F1) + 4ω2(X2 − 2k2H), {F1, F2} = −8ω2X1, (26e)

where
F2 = P1(2k1H − P 2

1 ) + 2ω2(2Q1(Q2P2 +Q3P3)− (2Q2
1 +Q2

2 +Q2
3)P1). (26f)

These 5 functions have rank 4, satisfying

F 2
2 = F1(2k1H − F1)

2 − 4ω2(X2
1 +X2F1 − 2k2F1H). (26g)

6.3.2 Extending (15c)

With F
(2)
3 = P 2

2 + ω2Q2
2 + V

(2)
3 (Q2), we find

ϕ1(x) = k3x
2 + k1x− k5

x
, ϕ2(y) = −k3y2 + k1y −

k5

y
, ϕ3(z) =

k6

z2
+ k5 + k6,

B(z) =
k2

2
+

k4

2z2
, V

(2)
3 (Q2) =

k2

Q2
2

,

leading to

H =
Q2

3

(2k3Q1 + k1)Q2
3 + k6

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
ω2

2
(4Q2

1 +Q2
2 +Q2

3) +
k2

2Q2
2

+
k4

2Q2
3

)

.

Unlike the flat case, we must separately require the further integral

F
(3)
3 = P 2

3 + ω2Q2
3 + V

(3)
3 (Q3), which imposes k6 = 0, V

(3)
3 (Q2) =

k4

Q2
3

,

leading to a conformally flat version of the last case in Table 1 of [9]:

H =
1

2k3Q1 + k1

(

1

2

(

P
2

1 + P
2

2 + P
2

3

)

+
ω2

2
(4Q2

1 +Q
2

2 +Q
2

3) +
k2

2Q2

2

+
k4

2Q2

3

)

, (27a)

X1 = P1σ − (k3(4Q
2

1 +Q
2

2 +Q
2

3) + 2k1Q1)H + 2ω2
Q1(2Q

2

1 +Q
2

2 +Q
2

3), (27b)

X2 = (Q2P3 −Q3P2)
2 + (Q2

2 +Q
2

3)

(

k2

Q2

2

+
k4

Q2

3

)

, (27c)

X3 = P
2

2 + ω
2
Q

2

2 +
k2

Q2

2

, X4 = P
2

3 + ω
2
Q

2

3 +
k4

Q2

3

. (27d)

This Hamiltonian is clearly separable and this separability is directly related to the involutive triple
H,X3, X4. We also have the involutive triple H,X1, X2, which is related to separation in the x, y, z co-
ordinates.

We can add two more simple quadratic integrals:

X5 = P2J3 + k3Q
2
2H +Q1

(

k2

Q2
2

− ω2Q2
2

)

, X6 = −P3J2 + k3Q
2
3H +Q1

(

k4

Q2
3

− ω2Q2
3

)

, (28a)

which satisfy X1 +X5 +X6 = 0, so have essentially replaced X1 by two simpler integrals. These are related
to integrals of 2D resonant oscillators, as noted in (15a) for the flat case.

To build the Poisson algebra generated by these integrals, we need four additional cubic integrals:

X7 =
1

4
{X2, X3}, X8 =

1

2
{X2, X5}, X9 =

1

2
{X3, X5}, X10 =

1

2
{X4, X6}. (28b)
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The remaining Poisson brackets between the quadratic elements X2, . . . , X6 are given by

{X2, X3 +X4} = {X2, X5 +X6} = {X3, X4} = {X3, X6} = {X4, X5} = 0, {X5, X6} = X7. (28c)

The brackets with the cubic elements are more complicated, so given in the Appendix (Section 10.2).
The integrals H, X2, X3, X4 and X5 are functionally independent, so this system is maximally superin-

tegrable. The entire algebra, including H, is 10 dimensional, so subject to polynomial constraints, also given
in the Appendix.

Remark 6.2 (Darboux-Koenigs D1) On the level surface X4 = m4, the Hamiltonian (27a) reduces to

H =
1

2k3Q1 + k1

(

1

2

(

P 2
1 + P 2

2

)

+
ω2

2
(4Q2

1 +Q2
2) +

k2

2Q2
2

+
m4

2

)

,

which is the Darboux-Koenigs D1 kinetic energy with a Case 1 potential in the classification of [20]. Two
quadratic integrals which commute with X4 are X3 and X5, which are the ones listed in [20].

6.4 The Generalised Hénon-Heiles Potential U3

Choosing Ai to give the form of (16a), imposes no restrictions on ϕ. However, imposing {ϕ, P1} = 0
(Killing vector of the metric), leads to

ϕ1(x) = k1x+
k2

x
, ϕ2(y) = k1y +

k2

y
, so ϕ =

Q2
2 +Q2

3

k1(Q2
2 +Q2

3) + k2 + ϕ3

(

Q3

Q2

) . (29a)

Now requiring the entire Hamiltonian to commute with J1 = Q2P3−Q3P2, implies that ϕ3 = const (absorbed
into k2) and B(z) = k3

1+z2 , giving

H =
Q2

2 +Q2

3

k1(Q2

2
+Q2

3
) + k2

(

1

2

(

P
2

1 + P
2

2 + P
2

3

)

+
ω2

2
(4Q2

1 +Q
2

2 +Q
2

3) + 4kQ1(2Q
2

1 +Q
2

2 +Q
2

3) +
k3

Q2

2
+Q2

3

)

,

(29b)

X1 = P1σ − 2k1Q1H + 2ω2
Q1(2Q

2

1 +Q
2

2 +Q
2

3) + k
(

16Q4

1 + 12Q2

1(Q
2

2 +Q
2

3) + (Q2

2 +Q
2

3)
2
)

,

with X2 reducing to J2
1 + 2k3.

In the context of [15, 16], the corresponding metric has symmetry algebra 〈e1, h4〉 (where h4 = J1), so we
can adapt our “universal coordinates” to reduce this Hamiltonian to 2 degrees of freedom. This is discussed
in Section 7.1.

7 The Conformally Flat Case with Symmetries

In [15, 16] we made a systematic study of subalgebras of the full conformal algebra (in 3 dimensions).
For each subalgebra in the classification, we considered the restriction of the general conformal factor ϕ, in
order to be invariant under the action of the subalgebra.

Here we consider such restrictions of our conformal factor ϕ, given by (22d). Our aim is not to give
a full classification, but to focus on some of the more important examples. As explained in [16], for each
symmetry algebra, there exist universal coordinates, in which the kinetic energy is in separable form. In
[16], we then added separable potentials, but here we are given a potential by the construction. We can,
however, restrict this to be invariant with respect to one of the symmetries. The resulting Hamiltonian can
be written in terms of the corresponding universal coordinates, making one of the coordinates “ignorable”,
so the Hamiltonian can be interpreted as a 2 dimensional reduction. First integrals which commute with the
adapted symmetry can also be reduced to this 2 dimensional space.

The formula for Ji are given in (60), in terms of the coordinates qi, pi. Here, of course, we need the
equivalent formulae in terms of Qi, Pi.
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7.1 The 2D Algebra 〈P1, J1〉
This algebra is commutative and referred to as 〈e1, h4〉 in [15, 16].
It is simple to check that

{ϕ, P1} = {ϕ, J1} = 0 ⇒ ϕ =
Q2

2 +Q2
3

k1(Q2
2 +Q2

3) + k2
, (30)

with ϕ1(x) = k1x+ k2

x
, ϕ2(y) = k1y +

k2

y
, ϕ3(z) = 0.

We then consider the Hamiltonian (22a), with this particular ϕ.

7.1.1 The Case with {P1, H} = 0

If, in addition, we impose {P1, H} = 0, then (22a) reduces to

H =
Q2

2 +Q2
3

k1(Q2
2 +Q2

3) + k2

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
k4

Q2
2 +Q2

3

+ k3 +
1

Q2
2

B

(

Q3

Q2

))

, (31a)

with A1(x) = k3x+ k4

x
, A2(y) = k3y +

k4

y
.

The canonical transformation, with

S = Q1 pu +
1

2
log
(

Q2
2 +Q2

3

)

pv + arctan

(

Q2

Q3

)

pw, (31b)

gives P1 = pu and

H =
1

k1e2v + k2

(

1

2
(p2v + p2w) +

1

2
e2v(p2u + 2k3) + k4 +

B(cotw)

sin2 w

)

. (31c)

Considered as a 2 dimensional system on the level surface pu = const, this Hamiltonian is separable, so gives
a second quadratic integral

K1 = p2w +
2B(cotw)

sin2 w
. (31d)

Any integral of (31a), which commutes with P1, can be reduced to this space. For example K1 could be
derived from X2.

7.1.2 The Case with {J1, H} = 0

If, instead, we impose {J1, H} = 0, then (22a) reduces to

H =
Q2

2 +Q2
3

k1(Q2
2 +Q2

3) + k2

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
A1(x) +A2(y)

2R
+

k3

Q2
2 +Q2

3

)

, (32a)

with B(z) = k3

z2+1 . In this case X2 = J2
1 + 2k3, so we can replace X2 by J1 for Liouville integrability.

The canonical transformation, with

S = Q1 pu +
√

Q2
2 +Q2

3 pv + arctan

(

Q2

Q3

)

pw, (32b)

gives J1 = −pw and

H =
v2

k1v2 + k2

(

1

2
(p2u + p2v) +

p2w + 2k3
2v2

+
A1(x) +A2(y)

2
√
u2 + v2

)

, (32c)

where x =
√
u2 + v2 + u, y =

√
u2 + v2 − u.

Considered as a 2 dimensional system on the level surface pw = const, this Hamiltonian is not generally
separable, but can be for particular choices of Ai, in which case it would again give a second quadratic
integral.

Any integral of (32a), which commutes with J1, can be reduced to this space.
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7.1.3 The Kepler Case (25a) with (30) as ϕ

It can be seen that setting k2 = k3 = k4 = 0, ϕ3

(

Q3

Q2

)

= β and relabelling k1 = α, that the conformal

factor of (25a) reduces to the form (30), giving the Hamiltonian:

H =
Q2

2 +Q2
3

α(Q2
2 +Q2

3) + β

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

− µ

R
+

1

Q2
2

B

(

Q3

Q2

))

. (33a)

The remaining integrals of (25) can similarly be reduced:

X1 = P1σ − 2αQ1H − µQ1

R
, (33b)

X2 = (Q2P3 −Q3P2)
2 − 2βH +

2(Q2
2 +Q2

3)

Q2
2

B

(

Q3

Q2

)

, (33c)

Ω = −σ2 + 2αR2H + 2µR. (33d)

If we restrict the Hamiltonian (33a) further, by demanding that {J1, H} = 0 (as in (32a)), then we find that

H =
Q2

2 +Q2
3

α(Q2
2 +Q2

3) + β

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

− µ

R
+

γ

Q2
2 +Q2

3

)

, (34)

and similarly for X1 and Ω, since {J1, X1} = {J1,Ω} = 0. We find that X2 can be replaced by J1 itself.
If we now use the canonical transformation (32b), we obtain J1 = −pw and

H =
v2

αv2 + β

(

1

2
(p2u + p2v) +

p2w + 2γ

2v2
− µ√

u2 + v2

)

, (35a)

X1 = pu(upu + vpv)− 2αuH − µu√
u2 + v2

, (35b)

Ω = (upv − vpu)
2 − 2β(u2 + v2)

v2
H +

(2γ + p2w)(u
2 + v2)

v2

= −(upu + vpv)
2 + 2α(u2 + v2)H + 2µ

√

u2 + v2. (35c)

This pair of expressions for Ω should be compared with (12d).

Remark 7.1 (Kepler in D2 background) This Hamiltonian has a Darboux-Koernigs D2 kinetic energy,
with 2 independent quadratic integrals, but not separable in these coordinates. It is a superintegrable Kepler
system in a D2 geometry. This is a deformation of the Kepler problem in 2D, with X1 a Runge-Lenz integral,
whilst the first representation of Ω is a deformation of rotational invariance.

7.1.4 The Hamiltonian (32a) with the Generalised Hénon-Heiles Potential

Here we consider the Hamiltonian (29b), which is a particular case of (32a). The canonical transformation
(32b) gives

H =
v2

k1v2 + k2

(

1

2
(p2u + p2v) +

p2w + 2k3
2v2

+
ω2

2
(4u2 + v2) + 4ku(2u2 + v2)

)

, (36a)

X1 = pu(upu + vpv)− 2k1uH + 2ω2u(2u2 + v2) + k(16u4 + 12u2v2 + v4), (36b)

in which pw = −J1, a first integral. On each level surface pw = const, this represents an integrable system in
2 degrees of freedom. If k2 = 0, this reduces to the standard “KdV case” of integrable Hénon-Heiles models
(see [10]). When k1 = 0, this is an extension to a constant curvature space. For generic k1k2 6= 0, the metric
is of Darboux-Koenigs type D2. When k = 0 this potential is of “type A” in the classification of [19] and
the system is actually super-integrable, but the Hénon-Heiles case, with k 6= 0 is just integrable.
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7.1.5 The Hamiltonian (32a) with Potential U4

If we replace U3 in (29b) by U4, we obtain another interesting subcase of (32a).

Specifically, if we set A1(x) =
1
2ω

2x3 + kx5, A2(y) =
1
2ω

2y3 + ky5, then

H =
Q2

2 +Q2

3

k1(Q2

2
+Q2

3
) + k2

(

1

2

(

P
2

1 + P
2

2 + P
2

3

)

+
ω2

2
(4Q2

1 +Q
2

2 +Q
2

3)

+k(16Q4

1 + 12Q2

1(Q
2

2 +Q
2

3) + (Q2

2 +Q
2

3)
2) +

k3

Q2

2
+Q2

3

)

, (37a)

X1 = P1σ − 2k1Q1H + 2ω2
Q1(2Q

2

1 +Q
2

2 +Q
2

3)

+2kQ1

(

16Q4

1 + 16Q2

1(Q
2

2 +Q
2

3) + 3(Q2

2 +Q
2

3)
2
)

, (37b)

The canonical transformation (32b) gives

H =
v2

k1v2 + k2

(

1

2
(p2u + p2v) +

p2w + 2k3
2v2

+
ω2

2
(4u2 + v2) + k(16u4 + 12u2v2 + v4)

)

, (37c)

X1 = pu(upu + vpv)− 2k1uH + 2ω2u(2u2 + v2) + 2ku(16u4 + 16u2v2 + 3v4), (37d)

in which pw = −J1, a first integral.
Again, as a 2 dimensional sytem and for generic k1k2 6= 0, the metric is of Darboux-Koenigs type D2.

When k = 0 it is a “type A” potential in the classification of [19]. The only difference between (36a) and
(37c) is that the Hénon-Heiles part of the potential has been replaced by the quartic potential in the 2
dimensional “parabolic” series.

7.2 The 2D Algebra 〈σ, J1〉
This algebra is commutative and would be referred to as 〈h1, h4〉 in [15, 16], which, in that context, is

equivalent to 〈h1, h2〉 in our classification. However, it is clear from the formulae (22) that J1 (= h4) acts in
a special way, so this equivalence no longer holds.

Since σ acts conformally on H0 = 1
2 (P

2
1 + P 2

2 + P 2
3 ), we need to consider ϕH0 instead of ϕ:

{ϕH0, σ} = {ϕH0, J1} = 0 ⇒ ϕ =
(Q2

2 +Q2
3)R

k1R+ k2Q1
, (38)

where k1 = 1
2 (k̄1 + k̄2 + 2k̄3), k2 = 1

2 (k̄2 − k̄1) and ϕ1 = k̄1

x
, ϕ2 = k̄2

y
, ϕ3(z) = k̄3.

7.2.1 The Case with {σ,H} = 0

If, in addition, we impose {σ,H} = 0, then (22a) reduces to

H =
(Q2

2 +Q2
3)R

k1R+ k2Q1

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
k3 + k4

2(Q2
2 +Q2

3)
+

(k4 − k3)Q1

2(Q2
2 +Q2

3)R
+

1

Q2
2

B

(

Q3

Q2

))

, (39a)

with A1(x) =
k3

x
, A2(y) =

k4

y
.

The canonical transformation, with

S =
1

2
log
(

Q2
1 +Q2

2 +Q2
3

)

pu + log

(

Q1 +R
√

Q2
2 +Q2

3

)

pv + arctan

(

Q2

Q3

)

pw, (39b)

gives σ = pu and

H =
1

k1 + k2 tanh v

(

1

2
(p2v + p2w) +

p2u

2 cosh2 v
+

1

2
(k3 + k4) +

1

2
(k4 − k3) tanh v +

B(cotw)

sin2 w

)

. (39c)
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Considered as a 2 dimensional system on the level surface pu = const, this Hamiltonian is separable, so gives
a second quadratic integral

K1 = p2w +
2B(cotw)

sin2 w
. (39d)

Any integral of (39a), which commutes with S, can be reduced to this space. For example K1 could be
derived from X2.

7.2.2 The Case with {J1, H} = 0

If, instead, we impose {J1, H} = 0, then (22a) reduces to

H =
(Q2

2 +Q2
3)R

k1R+ k2Q1

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
A1(x) +A2(y)

2R
+

k3

Q2
2 +Q2

3

)

, (40a)

with B(z) = k3

z2+1 .

The canonical transformation, with

S =
1

2
log
(

Q2
1 +Q2

2 +Q2
3

)

pu + arctan

(

Q1
√

Q2
2 +Q2

3

)

pv + arctan

(

Q2

Q3

)

pw, (40b)

gives J1 = −pw and

H =
cos2 v

k1 + k2 sin v

(

1

2
(p2u + p2v) +

p2w + 2k3
2 cos2 v

+
1

2
eu(A1(x) +A2(y))

)

, (40c)

where x = eu(1 + sin v), y = eu(1− sin v)
Considered as a 2 dimensional system on the level surface pw = const, this Hamiltonian is not generally

separable, but can be for particular choices of Ai, in which case it would again give a second quadratic
integral.

Any integral of (40a), which commutes with J1, can be reduced to this space.

7.2.3 The Kepler Case (25a) with (38) as ϕ

It can be seen that setting k1 = k2+k3 = k4 = 0 and ϕ3

(

Q3

Q2

)

= α, k3 = β in the conformal factor (25e),

then (25a) reduces to the form of (38), giving the Hamiltonian:

H =
(Q2

2 +Q2
3)R

αR+ βQ1

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

− µ

R
+

1

Q2
2

B

(

Q3

Q2

))

. (41a)

The remaining integrals of (25) can similarly be reduced:

X1 = P1σ + β
H

R
− µQ1

R
, (41b)

X2 = (Q2P3 −Q3P2)
2 − 2αH +

2(Q2
2 +Q2

3)

Q2
2

B

(

Q3

Q2

)

, (41c)

Ω = −σ2 + 2µR, (41d)

If we restrict the Hamiltonian (41a) further, by demanding that {J1, H} = 0 (as in (40a)), then we find that

H =
(Q2

2 +Q2
3)R

αR+ βQ1

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

− µ

R
+

γ

Q2
2 +Q2

3

)

, (42)

and similarly for X1 and Ω. We find that X2 can be replaced by J1 itself.
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The canonical transformation (40b) gives the following system in 2 dimensions (for pw a constant)

H =
cos2 v

α+ β sin v

(

1

2
(p2u + p2v) +

p2w + 2γ

2 cos2 v
− µeu

)

, (43a)

X1 = e−u pu (pu sin v + pv cos v) + βe−uH − µ sin v, (43b)

Ω = −p2u + 2µ eu. (43c)

In these coordinate, the Hamiltonian is separable, so gives a second quadratic integral, which is just −Ω.
For generic α, β, the Hamiltonian (43a) has a Darboux-Koenigs type D4 kinetic energy, with a potential

of “type A” in the classification of [19]. It reduces to a constant curvature space, when β = 0.

Remark 7.2 (Other Potentials) In the Qi coordinates, any of the potentials considered in Section 7.1
can be written in the case of (40a). However, the canonical transformation (40b) is based on the symmetry
algebra of the kinetic energy, so only special potentials will be well adapted to these. In [16] we concentrated
on separable potentials, but as seen in (35a), there are other potentials which give simple and interesting
forms.

7.3 A Copy of the 3D Algebra sl(2)

Here we consider a particular realisation of sl(2), within the conformal algebra, which (in [15, 16]) we
label 〈e1, h1, f1〉:

e1 = P1, h1 = σ,

f1 = (Q2
1 +Q2

2 +Q2
3)P1 − 2Q1σ

}

⇒ {h1, e1} = e1, {h1, f1} = −f1, {e1, f1} = 2h1. (44)

It is simple to check that

{ϕH0, P1} = {ϕH0, σ} = 0 ⇒ ϕ =
Q2

2 +Q2
3

ϕ3

(

Q3

Q2

)

+ k1

, (45)

where ϕ1 = k1

x
, ϕ2 = k1

y
. It is then simple to check that {ϕH0, f1} = 0, without further constraint.

7.3.1 The Case with {P1, H} = 0

If, in addition, we impose {P1, H} = 0, then (22a) reduces to

H =
(Q2

2 +Q2
3)

ϕ3

(

Q3

Q2

)

+ k1

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
k3

Q2
2 +Q2

3

+ k2 +
1

Q2
2

B

(

Q3

Q2

))

, (46a)

with A1(x) = k2x+ k3

x
, A2(y) = k2y +

k3

y
.

The canonical transformation, with

S = Q1 pu + arctan

(

Q3

Q2

)

pv +
1

2
log(Q2

2 +Q2
3) pw, (46b)

gives P1 = pu and

H =
1

k1 + ϕ3(tan v)

(

1

2
(p2v + p2w) +

1

2
e2w(p2u + 2k2) + k3 +

B(tan v)

cos2 v

)

. (46c)

Considered as a 2 dimensional system on the level surface pu = const, this Hamiltonian is separable, so gives
a second quadratic integral

K1 = p2w + e2w(p2u + 2k2). (46d)

Any integral of (46a), which commutes with P1, can be reduced to this space. For example K1 could be
derived from 2k1H −X2 − 2k3.
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7.3.2 The Case with {σ,H} = 0

If, instead, we impose {σ,H} = 0, then (22a) reduces to

H =
(Q2

2 +Q2
3)

ϕ3

(

Q3

Q2

)

+ k1

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
k3 + k2

2(Q2
2 +Q2

3)
+

(k3 − k2)Q1

2(Q2
2 +Q2

3)R
+

1

Q2
2

B

(

Q3

Q2

))

, (47a)

with A1(x) =
k2

x
, A2(y) =

k3

y
.

The canonical transformation, with

S =
1

2
log

(

R+Q1

R−Q1

)

pu + arctan

(

Q3

Q2

)

pv +
1

2
log(Q2

1 +Q2
2 +Q2

3) pw, (47b)

gives σ = pw and

H =
1

k1 + ϕ3(tan v)

(

1

2
(p2u + p2v) +

p2w

2 cosh2 u
+

1

2
(k3 + k2) +

1

2
(k3 − k2) tanhu+

B(tan v)

cos2 v

)

. (47c)

Considered as a 2 dimensional system on the level surface pw = const, this Hamiltonian is separable, so gives
a second quadratic integral

K1 = p2u +
p2w

cosh2 u
+ (k3 − k2) tanhu. (47d)

Any integral of (47a), which commutes with σ, can be reduced to this space. For example K1 could be
derived from 2k1H −X2 − k2 − k3.

Remark 7.3 (Lie algebra involution) The case of {f1, H} = 0 looks more complicated, but is related to
the {P1, H} = 0 case through an involution of sl(2), realised by

(Q1, Q2, Q3) 7→
(

Q1

R2
,
Q2

R2
,
Q3

R2

)

⇒ e1 ↔ f1, h1 7→ −h1.

7.4 The 3D Algebra so(3)

Here we consider the rotational symmetries of H0 = 1
2 (P

2
1 + P 2

2 + P 2
3 ). In [15, 16] this algebra is called

〈h2, h3, h4〉.
It is simple to check that

{ϕ, J1} = {ϕ, J2} = {ϕ, J3} = 0 ⇒ ϕ =
R

k1R+ k2
, (48)

with ϕ1 = k1x+ k2, ϕ2 = k1y + k2, ϕ3 = 0.

7.4.1 The Case with {J1, H} = 0

If, in addition, we impose {J1, H} = 0, then (22a) reduces to

H =
R

k1R+ k2

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+
A1(x) +A2(y)

2R
+

k3

Q2
2 +Q2

3

)

, (49a)

with B(z) = k3

z2+1 . With these values of ϕi and Ai, the functions H,X1, X2 are still in involution. However,

since X2 = J2
1 + 2k3, we can just replace it by J1.

The canonical transformation, with

S = arctan

(

√

Q2
2 +Q2

3

Q1

)

pu +
1

2
log
(

Q2
1 +Q2

2 +Q2
3

)

pv + arctan

(

Q2

Q3

)

pw, (49b)
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adapted to J1, with pw = −J1, gives the Hamiltonian

H =
e−v

k1ev + k2

(

1

2
(p2u + p2v) +

p2w + 2k3

2 sin2 u
+

1

2
ev(A1(x) +A2(y))

)

, (49c)

where x = ev(1 + cosu), y = ev(1− cosu).
Considered as a 2 dimensional system on the level surface pw = const, this Hamiltonian is not generally

separable, but can be for particular choices of Ai, in which case it would again give a second quadratic
integral.

Any integral of (49a), which commutes with J1, can be reduced to this space.

7.4.2 The Case with {J2, H} = 0

If, instead, we impose {J2, H} = 0, then (22a) reduces to

H =
R

k1R+ k2

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+ k3 +
k4

2R
+
k5

Q2
2

)

, (50a)

with A1(x) = k3x, A2(y) = k3y + k4, B(z) = k5.

The canonical transformation, with

S = arctan

(

√

Q2
1 +Q2

3

Q2

)

pu +
1

2
log
(

Q2
1 +Q2

2 +Q2
3

)

pv + arctan

(

Q3

Q1

)

pw, (50b)

adapted to J2, with pw = −J2, gives a separable form of (50a):

H =
e−v

k1ev + k2

(

1

2
(p2u + p2v) +

p2w

2 sin2 u
+ k3e

2v +
1

2
k4e

v + k5 sec
2 u

)

, (50c)

which is equivalent (on the level surface pw = const) to the Darboux-Koenigs D3 kinetic energy, with a
potential. In this separable form, it can be seen that there is a quadratic integral

K1 = p2u +
p2w

sin2 u
+ 2k5 sec

2 u. (50d)

Any integral of (50a) that commutes with J2 can be reduced to this space. In particular, since p2u+
p2

w

sin2 u
= J2,

K1 is related to a deformation of the rotational Casimir, which is an additional integral in this case.

Remark 7.4 (The Case with {J3, H} = 0) Similarly, if we impose {J3, H} = 0, then (22a) reduces to

H =
R

k1R+ k2

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

+ k3 +
k4

2R
+
k5

Q2
3

)

,

with A1(x) = k3x, A2(y) = k3y + k4, B(z) = k5

z2 .

7.4.3 Separable Case of (49c)

For general A1(x) and A2(y), there will be no additional first integrals of (49a), but special choices can
render it superintegrable.

First, we consider separability of (49c), which requires

A1(x) +A2(y) = a(v) + e−vb(u), (51a)
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for some functions a(v), b(u). If we differentiate (51a) with respect to u and also with respect to v, we obtain
simultaneous equations for A′

i, giving (for A1(x))

2e2vA′
1(x) = eva′(v) + b(u) + tan

(u

2

)

b′(u) ⇒
(

2e2vA′
1(x)

)

uv
= 0. (51b)

This, together with a similar equation for A2(y), give

xA1xxx + 3A1xx = 0, yA2yyy + 3A2yy = 0 ⇒ A1 = a0 + a1x+
a2

x
, A2 = b0 + b1y +

b2

y
. (51c)

Substituting these back into (51a) requires one condition (b1 = a1) on these 6 parameters, giving

1

2
ev(A1(x) +A2(y)) =

1

2
(a0 + b0)e

v + a1e
2v +

a2

2(1 + cosu)
+

b2

2(1− cosu)
. (51d)

The e2v term can be absorbed into the ev term by noting that

a1e
2v =

a1

k1
k1e

2v and

(

e−v

k1ev + k2

)(

a1

k1

(

k1e
2v + k2e

v
)

)

=
a1

k1
,

so, without loss of generality, we can set a1 = 0 and

1

2
ev(A1(x) +A2(y)) =

1

2
(a0 + b0)e

v +
1

2
(b2 − a2)

cosu

sin2 u
+
a2 + b2

2 sin2 u
. (52a)

The last term can be absorbed into the k3

sin2 u
term of (49c), so, defining β and γ by

a0 + b0 = 2β, b2 − a2 = 2γ,

this leads to

H =
e−v

k1ev + k2

(

1

2
(p2u + p2v) +

p2w + 2k3

2 sin2 u
+ βev + γ

cosu

sin2 u

)

. (52b)

From separability, we see that

K1 = p2u +
p2w + 2k3

sin2 u
+ 2γ

cosu

sin2 u
(52c)

is a first integral. Since p2u +
p2

w

sin2 u
corresponds to the rotational Casimir J2, K1 is an additional integral.

We also have that {H,X1} = 0 (in Q1 coordinates), so X1 can be reduced to u− v coordinates:

X1 = e−vpv (pv cosu− pu sinu)− (2k1e
v + k2) cosuH + β cosu− γe−v. (52d)

The Hamiltonian (52b) is the Darboux-Koenigs D3 kinetic energy, with potential of ‘type B’ in the classifi-
cation of [19], so not just separable, but maximally superintegrable.

7.4.4 Superintegrability of (50a)

With the choice of ϕi, Ai and B for this case, we find (removing an additive constant from X1)

X1 = P1σ − Q1(k2 + 2k1R)

R
H +Q1

(

2k3 +
k4

2R

)

, (53a)

X2 = J2
1 +

2k5(Q
2
2 +Q2

3)

Q2
2

, (53b)
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with {X1, X2} = 0 and

X3 = {X1, J2} = P3σ −Q3

(

k2 + 2k1R

R

)

H +Q3

(

2k3 +
k4

2R

)

, (53c)

X4 =
1

2
{X2, J2} = J1J3 − 2k5

Q1Q3

Q2
2

. (53d)

It is easy to check that H,X1, X2, J2, together with either of the quantities {Xi, J2}, have rank 5, so this is
a maximally superintegrable system. It is a conformally flat extension of the second system in Table I of [9].

Whilst we do not present the full Poisson algebra, there are some further integrals, which are useful
below:

X5 = {X4, J2} = J2
3 − J2

1 + 2k5

(

Q2
1 −Q2

3

Q2
2

)

, (54a)

X6 = J2 + 2k6

(

Q2
1 +Q2

3

Q2
2

)

, (54b)

with {X6, J2} = 0. These also satisfy

{X3, J2} = −X1 ⇒ {F1, J2} = 0, where F1 = X2
1 +X2

3 , (54c)

{X5, J2} = −4X4 ⇒ {F2, J2} = 0, where F2 = 4X2
4 +X2

5 , (54d)

so F1 and F2 are quartic integrals which commute with J2.

2D Reduction

The canonical transformation (50b) transforms (50a) into the form (50c), with quadratic integral K1,
given by (50d). As previously said, any integral of (50a) that commutes with J2 can be reduced to this
space. In fact X6 = K1 − 2k5.

Whilst this potential is very similar to ‘type B’ in the classification of [19], it has significant differences
and it can be shown that there are no further quadratic integrals of (50c). However, we have the two quartic

integrals F1 and F2. In fact, F2 is related to K1, in that F2 = (K1 − p2w)
2 − 4k5(K1 + p2w − k5), where pw

is just a parameter in this context. However, H,K1, F1 are functionally independent, so this 2D system is
maximally superintegrable, but not in the class studied in [19].

7.4.5 The Kepler Case (25a) with (48) as ϕ

It can be seen that setting k2 = k3 = 0, ϕ3

(

Q3

Q2

)

= 0 and k1 = α, k4 = 2β in the conformal factor (25e),

then it reduces to the form (48), giving the Hamiltonian:

H =
R

αR+ β

(

1

2

(

P 2
1 + P 2

2 + P 2
3

)

− µ

R
+

1

Q2
2

B

(

Q3

Q2

))

. (55a)

The remaining integrals of (25) can similarly be reduced:

X1 = P1σ − Q1(2αR+ β)− βR

R
H − µQ1

R
, (55b)

X2 = (Q2P3 −Q3P2)
2 +

2(Q2
2 +Q2

3)

Q2
2

B

(

Q3

Q2

)

, (55c)

Ω = −σ2 + 2R(αR+ β)H + 2µR. (55d)
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For {J1, H} = 0 we have B
(

Q3

Q2

)

=
κQ2

2

Q2

2
+Q2

3

, reducing (55a) to a particular case of (49a), which reduces to

a particular example of the separable case, (52b), with a2 = γ = 0:

H =
e−v

αev + β

(

1

2
(p2u + p2v) +

p2w + 2κ

2 sin2 u
− µev

)

, (56)

with corresponding particular case ofK1 andX1. The functionK1 just corresponds to Ω in these coordinates.

For {J2, H} = 0 we have B
(

Q3

Q2

)

= κ, reducing (55a) to a particular case of (50a), and hence reduces to

a particular case of (50c):

H =
e−v

αev + β

(

1

2
(p2u + p2v) +

p2w

2 sin2 u
− µev + κ sec2 u

)

, (57)

with corresponding particular case of K1, which corresponds to Ω in these coordinates. As we found in
Section 7.4.4, X1 does not reduce to these coordinates and, indeed, that there are no further quadratic
integrals.

However, we do have the quartic integral F1 and, as previously remarked, H,K1, F1 are functionally
independent, so this 2D system is maximally superintegrable, but not in the class studied in [19].

8 A Conformally Flat Kepler-Calogero-Moser System

In Section 6.2 we presented the general conformally flat version of the Kepler case in (Qi, Pi) coordinates.

This involved the arbitrary function B
(

Q3

Q2

)

, which, in the particular Calogero-Moser case, should take the

form B(z) = 9g2(1+z2)2

2(1−3z2)2 , as already discussed in the flat case of Section 4.1. Here we just present the case

with a spherically symmetric kinetic energy, given in Section 7.4.5:

H =
r

αr + β

(

1

2

(

p21 + p22 + p23
)

+ g2
(

1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)

− µ

r

)

, (58a)

X1 = (p1 + p2 + p3)σ − 1

r
(q1 + q2 + q3)(2αr + β)H − µ(q1 + q2 + q3)

r
, (58b)

X2 = (J1 + J2 + J3)
2

+4g2(q21 + q22 + q23 − q1q2 − q2q3 − q1q3)

(

1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)

, (58c)

Ω = −σ2 + 2r (αr + β)H + 2µ r, (58d)

where r =
√

q21 + q22 + q23 .

Remark 8.1 The canonical transformation introduces an overall factor of 1√
3
to X1, along with an additive

multiple of H, both of which have been removed. An overall factor of 1
3 to X2 has also been removed.

As before, we need to add a cubic integral, {X1,Ω} = −2X3, to this list, given by:

X3 = (p1 + p2 + p3)Ω− µ+ βH
√

q21 + q22 + q23
((q22 + q23 − q1(q2 + q3))p1

+(q23 + q21 − q2(q3 + q1))p2 + (q21 + q22 − q3(q1 + q2))p3). (59a)

These functions satisfy the Poisson relations:

{X1, X3} = (2α(X2 − 6Ω)− 3β2H)H +X2
1 − 6µβH − 3µ2, {Ω, X3} = −2X1Ω, (59b)
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together with the constraint

X2
3 = (3β2H2 + 2α(3Ω−X2)H −X2

1 + 6µβH + 3µ2)Ω− (βH + µ)2X2. (59c)

In the reduction α = 1, β = 0, these integrals and relations just reduce to those of Section 4.1.

9 Conclusions

This paper has continued the work of [15, 16]. Here we derive the consequences of having one particular
quadratic first integral X1, which allows the Calogero-Moser model as a particular case. This led to the Li-
ouville integrable triple (9), in terms of three arbitrary functions A1, A2 and B. The functions Ai correspond
to a 3D generalisation of one of the standard 2D separable systems (in parabolic coordinates). The function
B allows for the connection to the Calogero-Moser system, corresponding to a particular choice of B. This
gives a coupling of the Calogero-Moser system with a potential depending on 2 arbitrary functions, which
includes (for special choices of Ai) the Kepler potential, a resonant harmonic oscillator, the (KdV related)
Hénon-Heiles potential and many more. All of these are at least Liouville integrable, but, in many cases,
superintegrable.

This whole class of system was extended to the “conformally flat” case, including the Kepler-Calogero-
Moser system with a spherically symmetric kinetic energy. However, the most interesting results came
through symmetry reduction, which mostly destroyed the connection with the Calogero-Moser system. For
example we presented a Kepler problem (35a) and a generalised Hénon-Heiles system (36a) on a Darboux-
Koenigs D2 background. Other systems reduced to a D1, D3 or D4 backgrounds.

Two and three dimensional systems have been studied a lot, so are quite well understood. Some particular
cases are known for general n, but these are rare, mainly associated with Lax pairs (such as the rational
Calogero-Moser system and its generalisations). However, it would be interesting to investigate how the
construction of this paper could be generalised to 4 and higher dimensions. In particular, the conformally
flat case should lead to interesting new features. As emphasised in [12, 14, 15], the conformal algebra plays
an important role in building both Liouville and superintegrable systems. It is particularly important in
the non-constant curvature case, where Killing tensors (the leading order coefficients in higher order first
integrals) cannot always be built from Killing vectors. Symmetry reductions (as in Section 7) should be
particularly interesting, allowing us to reduce from 4 to 3 to 2 dimensions in a variety of ways. Of course,
the hope is that those systems which exist for all n, will have a Lax pair. However, constructing this Lax
pair could be a difficult task.

The systems (in 3 degrees of freedom) considered in this paper possess 3 quadratic integrals in involution,
which are related to separability in the (x, y, z) coordinates. Superintegrable cases had additional quadratic
integrals and, as a result of taking Poisson brackets, cubic or higher order integrals. However, there exist
systems which need cubic and higher order integrals in order to be superintegrable (even Liouville integrable).
For example, the Kaup-Kupershmidt version of the integrable Hénon-Heiles system (see [10]) (in 2 degrees
of freedom) has only a quartic integral. The 2D resonant oscillators are separable, but are superintegrable
only with additional higher order integrals (except the simplest, isotropic case). The Drach potentials
were introduced as a class with only a cubic integral, but it was shown in [26] that most (but not all) of
these actually also have quadratic integrals. The reductions considered in Sections 7.4.4 and 7.4.5 of this
paper, required the introduction of quartic integrals to be superintegrable. More recently [23] a new class
of superintegrable geodesic equation (in 2 degrees of freedom) was discovered, with one linear and one cubic
integral. In [28] the author presents a generalisation of this, with one linear and two integrals of any degree,
generalising the Darboux-Koenigs systems. The generalisation of these systems to 3 or more degrees of
freedom would be very interesting, but would require a different approach that did not rely on separability.

Most superintegrable systems in classical mechanics have quantum counterparts, although some prob-
lems can occur with higher order integrals [8, 12]. Most of the emphasis is on deriving the spectrum and
solving for eigenfunctions through separation of variables [3, 17, 21]. However, as emphasised in [11, 13],
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superintegrability can be directly used for building eigenfunctions. For many of the systems discussed in this
paper, the analysis of the quantum version is an open problem.
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10 Appendix

10.1 Notation and Definitions

Here we collect some useful definitions and formulae, used throughout the paper.
We give a detailed analysis of the conformal algebra in 3D in [15], but here just emphasise a few important

elements. For our purposes it is more convenient to write all formulae in terms of Hamiltonian functions,
rather than as metric tensors and Killing vectors.

The symmetry algebra (a subalgebra of the conformal algebra) of the Kinetic energy H0 = 1
2 (p

2
1+p

2
2+p

2
3)

just consists of translations and rotations, represented by

p1, p2, p3, J1 = q2p3 − q3p2, J2 = q3p1 − q1p3, J3 = q1p2 − q2p1. (60a)

An important conformal element is
σ = q1p1 + q2p2 + q3p3, (60b)

satisfying {σ,H0} = 2H0.
The Casimir of the rotation algebra is

J2 = J2
1 + J2

2 + J2
3 = 2(q21 + q22 + q23)H

0 − σ2. (60c)

The second representation, in terms ofH0 and σ, is important when adding potentials, H = H0+U(q1, q2, q3).
Any first integral ofH0 can be built from the “Killing vectors” (60a). It is enough to consider homogeneous

polynomials in the elements of (60a), representing higher order Killing tensors. This is only true for flat and
constant curvature metrics. The second representation of J2 in (60c) is in terms of conformal Killing vectors
and tensors and can be used in the context of conformally flat metrics (see [12, 14]).

Integrals for H = H0 + U(q1, q2, q3) have these “Killing tensors” as leading order parts. A particularly
important quadratic “Killing tensor” in this paper is

X0
1 = (p1 − p2)J3 + (p2 − p3)J1 + (p3 − p1)J2 = σ(p1 + p2 + p3)− 2(q1 + q2 + q3)H

0. (60d)

Again, this second representation of X0
1 is important when extending to H = H0 + U(q1, q2, q3) and also

when considering conformally flat metrics.

Remark 10.1 (Coordinates (Qi, Pi)) Most of the calculations in this paper are performed within the
(Qi, Pi) coordinates. We use the same symbols J1 = Q2P3 − Q3P2, etc for the rotations in these coor-
dinates, but be warned that they are not invariant under the canonical transformation with (3). We also use
σ to mean

∑

iQiPi. In this case the form of σ is invariant under this transformation, as shown in Section
2.1.

10.2 Poisson Relations for Section 6.3.2

In Section 6.3.2 we considered the Poisson algebra associated with the Hamiltonian (27a). We found
that we could replace X1, using X1 = −X5 −X6, and that the 10 dimensional Poisson algebra consisted of
6 quadratic functions H,X2, . . . , X6 and 4 cubic ones X7, . . . , X10. The Poisson relations of the quadratic
elements are simple, so given in Section 6.3.2. Here we consider the remaining 24 Poisson relations between
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quadratic and cubic functions, as well as the 6 Poisson relations between cubic ones. This task is simplified
by utilising a discrete symmetry of the Hamiltonian, which is invariant under the involution ι23 (which
switches Q2 and Q3), if we extend this to act on 2 of the parameters: k2 ↔ k4. This enabled us to reflect
this symmetry in our choice of functions, which satisfy:

(H,X2, X3, X4, X5, X6, X7, X8, X9, X10, k2, k4) 7→ (H,X2, X4, X3, X6, X5,−X7,−X8, X10, X9, k4, k2).

As a result, if we have the formula for {X3, X9}, we can deduce the formula of {X4, X10} by applying ι23.
Introducing the notation Pij = {Xi, Xj}, this means that P39 and P410 are paired. On the other hand, since
P910 7→ −P910, we obtain nothing new. This is depicted in the list below:

(P23, P24), (P25, P26), P27, P28, (P29, P210), P34, (P35, P46), (P36, P45),

(P37, P47), (P38, P48), (P39, P410), (P310, P49), P56 (P57, P67), (P58, P68),

(P59, P610), (P510, P69), P78, (P79, P710), (P89, P810), P910.

The additional, independent entries in the Poisson matrix are

P27 = 2(X4 −X3)X2 + 2(k2 − k4)(X3 +X4), P28 = 4(X6 −X5)X2 − 4(k2 − k4)(X5 +X6),

P29 = 4(X3X6 −X4X5), P37 = −2X3X4 + 4ω2(X2 − k2 − k4), P38 = 4k3(X2 − k2 − k4)H − 4X4X5,

P39 = 4k3HX3 − 8ω2X5, P310 = 0, P57 = 2k3(X2 − k2 − k4)H − 2X3X6,

P58 = 4k1(k2 + k4 −X2)H + 3(X2 − k2 − k4)X3 + 2(X2 − 2k2 − k4)X4 − 4X5X6,

P59 = −4(k1X3 + k3X5)H + (3X3 + 2X4)X3 − 4k2ω
2, P510 = X3X4 − 2ω2(X2 − k2 − k4),

P78 = 4(X6 −X5)X7 + 2(X3 −X4)X8 + 4k2X10 + 4k4X9, P79 = 4k3HX7 + 2X4X9 − 4ω2X8,

P89 = −4(2k1X7 + k3X8)H + 2(3X3 + 2X4)X7 + 4X6X9, P910 = 4ω2X7.

The ten integrals of the Poisson algebra are of rank 5 and satisfy the following five constraints

2k3HX7 − 2ω2X8 −X10X3 +X4X9 = 0,

(2k1H −X3 −X4)X7 + k3HX8 +X10X5 −X6X9 = 0,

2(X5 −X6)X7 + (X4 −X3)X8 + (X2 − k2 − 3k4)X9 + (X2 − 3k2 − k4)X10 = 0,

(X2 − k2 − k4)(X10 −X9) + (X3 +X4)X8 − 2(X5 +X6)X7 − 2k4X9 + 2k2X10 = 0,

X2
7 −X2X3X4 + k4X

2
3 + k2X

2
4 + (k2 + k4)X3X4 + ω2

(

(X2 − k2 − k4)
2 − 4k2k4

)

= 0.

10.3 Poisson Relations for Section 3.4.1

The Hamiltonian (27a) reduces to its flat counterpart (14a), with condition (15d), when k1 = 1, k3 = 0,
along with the change of notation (b1, b2) =

(

1
2k2,

1
2k4
)

. Therefore, the Poisson algebra for the flat case is
obtained from that of (27a), by this simple parametric reduction.

The definitions of Xi and the Poisson relations, given in Section 6.3.2 are unchanged, but some of the
Pij , given above, are simplified. Furthermore, the above five constraints can be replaced by the (mainly)
simpler formulae:

X4X9 −X10X3 − 2ω2X8 = 0, (2H −X3 −X4)X7 +X10X5 −X6X9 = 0,

X2
7 −X2X3X4 + k4X

2
3 + k2X

2
4 + (k2 + k4)X3X4 + ω2

(

(X2 − k2 − k4)
2 − 4k2k4

)

= 0,

X2
9 + 4ω2X2

5 + (X3 +X4 − 2H)(X2
3 − 4ω2k2) = 0,

X2
10 + 4ω2X2

6 + (X3 +X4 − 2H)(X2
4 − 4ω2k4) = 0.
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