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Model predictive control (MPC) is a control strategy that
optimizes control actions in a finite horizon according to
an objective function (Maciejowski, 2002). The ability to
handle constraints, uncertainties, and multi-variable sys-
tems has turned MPC into a successful control strategy,
leading to its implementation in distributed multi-agent
systems (Maestre and Negenborn, 2014). Distributed MPC
techniques involve partitioning the system into subsystems
that are managed by local MPC controllers, giving rise
to the so-called agents. According to a communication
control network, agents share information to improve its
local cost while contributing to the global objective. A
dynamic control topology that allows enabling and dis-
abling communication links in real-time is the basis for
coalitional MPC methods (Fele et al., 2017). Specifically,
coalitional control allows local controllers form coalitions
to find a balance between performance and communication
effort. Depending on the way coalitions are selected, coali-
tional schemes can be classified into: i) top-down architec-
tures, where a supervisory layer decides the cooperation
topology, and ii) bottom-up structures, in which coalitions
are formed at the agent level without global knowledge
(Baldivieso-Monasterios and Trodden, 2021). The current
work follows a top-down coalitional setting of model pre-
dictive controllers.

‹ This paper was supported by the European Research Coun-
cil under programme Horizon 2020 for project OCONTSOLAR
(ref. 789051), by MCIN/AEI/ 10.13039/501100011033 for the project
C3PO-R2D2 (Grant PID2020-119476RB-I00), and by the Spanish
Ministry of Science and Innovation for University Staff Training
(Grant FPU18/04476).

1. INTRODUCTION One of the main challenges in coalitional control and
other distributed settings is dealing with disturbances
caused by the dynamic coupling between subsystems. In
this regard, robust control techniques are employed when
designing controllers. An approach is to consider couplings
as bounded additive uncertainties to ensure stability and
suitable global performance (Richards and How, 2007).
The most conservative fashion for modeling the presence
of uncertainties is min-max MPC (Scokaert and Mayne,
1998), which minimizes the control input over the worst-
case of the disturbances. The idea of tubes proposed
in (Langson et al., 2004) has also become popular for
ensuring robust stability for constrained linear systems
(Mayne et al., 2005; Trodden and Richards, 2010). Nev-
ertheless, a significant downside is incurred by tightening
local constraint sets by margins that can conservatively go
beyond the disturbances that subsystems will experience.
To reduce conservatism, further tube-based methods have
been explored. Raković et al. (2012) focus on optimizing
the diameters of the state and control tubes online, Riverso
and Ferrari-Trecate (2012) propose to apply tube-based
control twice to exploit the region of attraction of the
subsystem for the planned state trajectories of neighbors,
Lucia et al. (2015) develop a contract-based scheme in
which subsystems share to their neighbors a sequence of
the coupling variables that will hold in the future, and
Trodden and Maestre (2017) propose to reject dynamic
couplings via optimized tubes to outer-bound their distur-
bance sets more accurately. A similar idea to the latter is
here followed, but upgraded to a coalitional setting.

Many control approaches are limited in their ability to
adapt to physical changes in a system. However, plug-and-
play (PnP) control describes the control system’s ability to
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Abstract: This paper presents a distributed setting of model predictive control (MPC)
to manage linear multi-agent systems consisting of coupled subsystems. Specifically, local
controllers can work in coalitions to improve performance and handle plug-and-play events. This
study provides insight into a coalitional MPC strategy based on optimized tubes that handles
plug-in and plug-out subsystems. Moreover, we explore an inherent robustness gap to absorb
disturbances not covered by the tubes without having to group local controllers. A comparison of
our approach with centralized and decentralized MPC is reported using an illustrative example.
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Fig. 1. Proposed scheme with plug-and-play features for
coupled subsystems, where there is a set of coalitions
(c1, c2, . . . , cC) of local controllers.

automatically reconfigure when a new component is added
to or removed from the system (Stoustrup, 2009). Multiple
interpretations arise around the term plug-and-play. In
fault-tolerant control, it is used for automatic recovery
of the control objective after a failure (Bodenburg et al.,
2014). In micro-grids applications, PnP operations are
allowed to adapt control actions in real-time according to
varying network conditions (Dörfler et al., 2014), and are
more related to the concept of neutral interactions among
the distributed generation units Riverso et al. (2014b),
rather than on robustness against subsystem couplings.
In this latter context, which is more relevant to the topic
of this work, Riverso et al. (2014a) and Lucia et al.
(2015) propose control strategies capable of handling PnP
subsystems offline, provided that feasibility and stability is
not compromised. Otherwise, PnP operations are rejected
to ensure overall system’s recursive feasibility and stability.

This work presents a tube-based coalitional model predic-
tive control scheme with PnP features for linear multi-
agent systems (see Fig. 1). We consider that subsystems
can join or leave the system in real time, and switching
dynamics may be introduced. The formation of coalitions
allows for automatic reconfiguration of the control system
and avoids the rejection of PnP operations, unlike the
studies mentioned above. The set of coalitions is selected
in real time to accommodate disturbances and find a
trade-off between performance and cooperation burden.
Similarly to (Trodden and Maestre, 2017), agents can scale
down their constraint sets and share their scaling factors
among neighbors to reconfigure the disturbance sets. Our
approach goes a step further in exploring an inherent
robustness gap to cover disturbances not considered by
tubes (e.g., PnP events) and avoid regrouping agents. The
robustness gap is created by having each agent employ two
different scaling factors: a public one that is implemented
and broadcast to the neighborhood, and a private one that
contains confidential information. Finally, a case study
demonstrates the benefits of this coalitional approach.

The paper is structured as follow: §2 introduces the prob-
lem setting, §3 describes the tube-based coalitional MPC
approach, §4 presents the control algorithm, §5 details
PnP operations, §6 reports results on a case study, and
§7 provides the conclusions.

Notation: Sets R0` and R` (N0` and N`) refers to non-
negative and positive real numbers (integers). For two sets
X ,Y Ď R

n, the Cartesian product is X ˆ Y fi tpx, yq :
x P X , y P Yu. If tXiuiPN is a finite family of sets

indexed by N “ t1, . . . , Nu, then the Cartesian product
Ś

iPN Xi is defined as X1 ˆ ¨ ¨ ¨ ˆ XN “ tpx1, . . . , xN q :
x1 P X1, . . . , xN P XNu. The image of a set X Ď R

n

under a linear mapping A : R
n ÞÑ R

m is given by
AX fi tAx : x P X u. For sets X ,Y Ď R

n, the Minkowski
sum is X ‘Y fi tx`y : x P X , y P Yu, and the Pontryagin
difference is X a Y fi tz P R

n : Y ‘ tzu Ď X u for Y Ď X .
||x||a represents la-norm of the vector x P R

n with a P N`,
and ||x||2Q “ xJQx, with Q being a weight matrix.

2. PROBLEM SETTINGS

This section provides an overview of the dynamics and con-
straints of the subsystems, defines the coalitional structure
given by the cooperation topology of the control network,
and also details the coalitions’ dynamics and constraints.

2.1 Subsystem dynamics and constraints

The system is composed of N “ t1, 2, . . . , Nu dynamically
coupled subsystems i, whose discrete-time dynamics are:

xipk ` 1q “ Aiixipkq ` Biiuipkq ` wipkq,

wipkq “
ř

jPMi

`

Aijxjpkq ` Bijujpkq
˘

` we
i pkq, (1)

where k P N` is the discrete-time index, xi P R
qi and

ui P R
ri are the state and input vectors, respectively,

subject to constraints Xi and Ui, wi P R
qi is the coupling

through states and inputs with neighbors j P Mi fi tj P
N ztiu : Aij ‰ 0_Bij ‰ 0u with Aij P R

qiˆqj , Bij P R
qiˆrj ,

and the external noise we
i is assumed to be bounded byWe

i .

Assumption 1. Xi,W
e
i Ă R

qi and Ui Ă R
ri are compact

convex sets that contain the origin in their interiors.

2.2 Control network and cooperation topology

Each subsystem i is managed by an agent that has access
to local information and can coalesce with its neighbors to
improve performance and handle unplanned disturbances
such as plug-and-play events. Let us describe the control
network by an undirected graph (N ,L) with N agents
and L Ď N ˆN cooperation links. Each link lij “ ti, ju “
tj, iu “ lji P L, which connects agents i and j, is assumed
to provide a bidirectional information flow that can be
enabled or disabled by the control scheme. Each enabled
link involves a fixed cooperation cost clink P R`. The set
of active links at time instant k defines the cooperation
topology Λ Ď L, which is determined by a balance between
performance and cooperation costs. Being |L| total number
of links, there are 2|L| different topologies that are grouped
into a set T “ tΛ1,Λ2, . . . ,Λ2|L| u. For convenience, Λ1 is
the decentralized topology with all links disabled: t0, 0, 0u,
and the centralized topology Λ2|L| denotes full network
cooperation: t1, 1, 1u. The cardinality of Λ is denoted by
|Λ| and provides the number of active links in the topology.

Definition 2. Given a current topology Λcur, the set of the
potential successor topologies Tnew Ď T is defined as:

Tnew fi tΛ P T : distpΛcur,Λq ď 1u Ď T , (2)

where distpΛcur,Λq denotes the Hamming distance be-
tween two topologies.
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2.3 Coalition dynamics and constraints

The cooperation topology defines the coalitional structure
of the control network as follows.

Definition 3. (Coalitional structure). A cooperation topol-
ogy Λ partitions the system N “ t1, . . . , Nu into a set of
non-overlapping coalitions C “ tc1, . . . , cCu with C ď N ,
which cover all subsystems:

Ť

cPC
c “ N . Each coalition

c P C is a non-empty cluster of subsystems that range from
the grand coalition c “ N to a single subsystem c “ i.

The discrete-time dynamics of each coalition c P C is

xcpk ` 1q “ Accxcpkq ` Bccucpkq ` wcpkq,

wcpkq “
ř

dPMc

`

Acdxdpkq ` Bcdudpkq
˘

` we
cpkq, (3)

where xc “ pxiqiPc and uc “ puiqiPc are, respectively,
aggregate state and input vectors, Acc “ rAijsi,jPc and
Bcc “ rBijsi,jPc are state and input matrices, and dis-
turbance term wc represents coupling with neighbors plus
external noise we

c. The neighbors of coalition c are gathered
in set Mc fi td P Czc : Acd ‰ 0 _ Bcd ‰ 0u.

Assumption 4. State and input constraint sets of a coali-
tion are Xc “

Ś

iPc Xi and Uc “
Ś

iPc Ui, respectively.

3. TUBE-BASED COALITIONAL MPC

Given a coalitional structure C, we consider that coali-
tions can scale down their constraint sets and reconfigure
disturbance sets to reduce conservatism of tube-based ap-
proaches. The constraint sets of coalition c P C are scaled
by factors αc P r0, 1s and βc P r0, 1s as:

Xcpαcq “ αcXc, Ucpβcq “ βcUc, (4)

where the original set of state constraint is Xc “ Xcp1q
and the set of input constraint is Uc “ Ucp1q. Note that
states xc and inputs uc satisfy constraints provided that
αc P r0, 1s and βc P r0, 1s.

Given the dynamics (3) and constraints (4) of coalition c,
the disturbance wc is constrained by the set:

Wcpα, βq fi

à

dPMc

`

AcdXdpαdq ‘ BcdUdpβdq
˘

‘ W
e
c , (5)

where pα, βq represents the dependence of the scaling
factors of all neighbors d P Mc, and external noise is
also assumed to be constrained by set We

c . The original
disturbance setWcp1, 1q depends on the original constraint
sets Xdp1q and Udp1q for all d P Mc.

Definition 5. The set Ωc is robust control invariant (RCI)
for the dynamics xcpk ` 1q “ Accxcpkq ` Bccucpkq `
wcpkq with constraint sets pXc,Uc,Wcq if Ωc Ď Xc and
there exists a control law uc “ µpxcpkqq P Uc such that
xcpkq P Ωc implies xcpk ` 1q P Ωc,@wc P Wc. The control
law is said to be invariance-inducing over the set Ωc.

Since the size of Ωc depends on the size of Wcpα, βq, its
existence defines a set ΩcpWcq such that:

ΩcpWcq Ď Xcpαcq, µ
`

ΩcpWcq
˘

Ď Ucpβcq. (6)

In tube approaches, the existence of invariant sets equips
controllers with robustness to handle disturbances from
coupling subsystems. For that reason, the following as-
sumption is considered as starting point.

Assumption 6. There exists an RCI set ΩcpWcp1, 1qq Ď
Xcp1q for all c P C in the decentralized cooperation
topology, i.e., for all current and future subsystems.

3.1 Inherent robustness gap

For accommodating locally disturbances not covered by
tubes without any serious reconfiguration of the control
system, we create an extra robustness gap by using two
different scaling factors:

‚ Public factors α
p

i , β
p

i P r0, 1s, which are shared with
the network and parameterize constraint sets.

‚ Private factors αr
i , β

r
i P r0, 1s, which are confidential

and individually optimized by each controller.

At start, all public and private scaling factors are set
equal to 1 for all i P N . Then private factors are online
optimized by agents to tighten their constraints and the
idea is that agents share larger public scaling factors to
their neighbors. In this way, the robustness gap is created
by setting public factors as outer bounds of private scaling
factors:

α
p

i

`
“

"

α
p

i p1 ´ ραq ` αr
i ρα, if α

r
i ď α

p

i ,
αr
i , if αr

i ą α
p

i ,
(7)

β
p

i

`
“

"

β
p

i p1 ´ ρβq ` βr
i ρβ , if β

r
i ď β

p

i ,
βr
i , if βr

i ą β
p

i ,
(8)

where α
p

i

`
and β

p

i

`
denote, respectively, the state and

input public scaling factors of agent i at instant k`1, and
tuning parameters ρα, ρβ P p0, 1q.

The formation of coalitions is based on the public informa-
tion of the agents involved, which frozen their public fac-
tors pαp

i , β
p

i q. Hence, the coalition scaling factors pαp
c , β

p
c q

hold with the corresponding values to be fulfilled:

αp
cXc “

ą

iPc

α
p

iXi, βp
cUc “

ą

iPc

β
p

i Ui. (9)

Remark 7. Public scaling factors of all i P c are frozen
while in coalition, unless private factors of any i P c
are greater than public factors. In the latter case, factors
pαp

c , β
p
c q are recomputed as (9) with the updated factors

of those agents i P c whose αr
i ą α

p

i and βr
i ą β

p

i to avoid
misleading their neighbors about the real disturbances.

3.2 Preliminaries of the tube-based approach

Approaches based on tubes are characterized by dealing
with a nominal system with no uncertainties:

zcpk ` 1q “ Acczcpkq ` Bccvcpkq,

where vc is the control input obtained by an MPC con-
troller to regulate the nominal state zc, and handling error
dynamics:

ecpk ` 1q “ Accec ` Bcc µc

`

ecpkq
˘

` wc,

with ecpkq “ xcpkq ´ zcpkq contained in an invariant set,
in this work, the RCI set is ΩcpWcpαp, βpqq.

The nominal constraint sets depend on RCI sets as follows:

Zcpαp
c q fi Xcpαp

c q a ΩcpWcpαp, βpqq,

Vcpβp
c q fi Ucpβp

c q a µ
`

ΩcpWcpαp, βpqq
˘

,
(10)

but we can employ an outer bounding of the RCI set to
reduce the computational effort of calculating Ωc explicitly
every time the size of Wcpαp, βpq changes. To this end, a
linear programming problem is solved to obtain the RCI
set ΩH , as proposed by Raković et al. (2007):

mintϵ : ϕ P Φu, (11)
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where ϕ “ pMH , a, b, ϵq and Φ “ tϕ : MH P MH , ΩH Ď
aX , µpΩHq Ď bU , a P r0, 1s, b P r0, 1s, qxa` qub ď ϵu with
MH “ pM0, . . . ,MH´1q, and weights qx and qu. Here,
scaling constants a and b tighten, respectively, the state
and input constraint sets to guarantee: ΩH Ď aX and
µpΩHq Ď bU (see (Raković et al., 2007) for more details).

Therefore, constraint sets (10) can be substituted by:

Zcpαp
c , acq “ Xcpαp

c q a acXcpαp
c q “ p1 ´ acqXcpαp

c q,
Vcpβp

c , bcq “ Ucpβp
c q a bcUcpβp

c q “ p1 ´ bcqUcpβp
c q.

(12)

with ac P r0, 1s and bc P r0, 1s.

3.3 Tube-based coalitional MPC problem

The objective of coalition c P C is to lead the state
to the origin while fulfilling the constraints. We propose
a coalitional MPC scheme based on optimized tubes to
manage coalition dynamics (3) with the control policy:

ucpkq “ µc

`

ecpkqq ` voc pzcpkq
˘

, (13)

where µcpecpkqq is the RCI control law, and voc is the first
element of optimal control sequence. The control sequence
V o
c pkq fi tvoc pkq, . . . , voc pk ` Np ´ 1qu, the state sequence

Zo
c pkq “ tzoc pkq, . . . , zoc pk ` Npqu, and private factors

pαr
c, β

r
cq are obtained by solving the following nominal

MPC problem in the prediction horizon Np:

min
Vcpkq,αr

c
,βr

c

Jc
`

Zcpkq, Vcpkq
˘

` ραα
r
c ` ρββ

r
c, (14)

with weights ρα, ρβ P R`, and subject to constraints:

zcpk ` t ` 1q “ Acczcpk ` tq ` Bccvcpk ` tq
zcpkq “ z̃cpkq, t “ 0, . . . , Np ´ 1,

zcpk ` tq P αr
cZcpαp

c , acq, t “ 1, . . . , Np ´ 1,

zcpk ` Npq P Ωf
cpαp

c , β
p
c , ac, bcq,

vcpk ` tq P Vcpβp
c , bcq, t “ 0, . . . , Np ´ 1

αr
c P r0, 1s, βr

c P r0, 1s,

(15)

for all c P C, where z̃cpkq is the current state value, and
the set Ωf

c is the terminal state constraint.

Assumption 8. Terminal set Ωf
cpαp

c , β
p
c , ac, bcq is positively

invariant for dynamics zcpk`1q “ Acczcpkq`Bccvcpkq un-
der the control law vc “ Kf

czc, that is, pAcc `BccK
f
cqΩf

c Ď
Ωf

c with Ωf
c Ď Zcpαp

c , acq and Kf
cΩ

f
c Ď Vcpβp

c , bcq.

The function JcpZcpkq, Vcpkqq in problem (14) is:
Np´1

ř

t“0

`

}zcpk ` tq}2Qc

` }vcpk ` tq}2Rc

˘

loooooooooooooooooooomoooooooooooooooooooon

lc

`

zcpk`tq,vcpk`tq
˘

` }zcpk ` Npq}2Pc
loooooooomoooooooon

fc

`

zcpk`Npq
˘

,

where stage cost lcp¨q weight the nominal state and input
vectors by matrices Qc ą 0 and Rc ą 0, respectively, and
terminal cost fcp¨q, with Pc ą 0, is designed such that

zcpkqJPczcpkq ´ zcpk ` 1qJ
Pczcpk ` 1q ě lc

`

zcpk ` 1q,Kf
czcpk ` 1q

˘

,

therefore, zcpkqJPczcpkq is a control Lyapunov function.

4. CONTROL ALGORITHM

We present a top-down coalitional MPC algorithm based
on optimized tubes and an extra robustness margin.

The supervisory layer is responsible for selecting the
cooperation topology every Tup P N` time instants (and
when needed) to improve performance and guarantee
recursive feasibility. The algorithm is described as follows:

Alg. 1: Supervisory layer

Initial data: Xi,Ui,K
f
i , Hi, @i, Np, ρα, ρβ , τα, τβ , clink

Start: Λcur “Λcen,zip0q“xip0q,αp
i ,β

p
i , α

r
i ,β

r
i “ 1,@i P N

Inputs: Λcur, α
p
i , β

p
i , @i P N . Output: Λnew

1: Given Λcur, measure x̃c and z̃c for all c P C.
2: Calculate Tnew as (2) with Λcur.
3: for each Λnew P Tnew do
4: Compute Wc as (5), Ωc by (11), and Ωf

c,@c P C.
5: if EΩc for any c then
6: Mark Λnew as infeasible, and go to Step 3.
7: end if
8: for each c P C do
9: Solve (14) with τα, τβ “ 0 and αr

c, β
r
c “ 1

to obtain control sequence Uc via (13) and

Γc “
řNp

t“1plcpxcpk ` tq, ucpk ` tqq ` clink|Λc|.
10: end for
11: Calculate the cost ΓΛ “

ř

cPC Γc for Λnew.
12: end for
13: if all Λnew P Tnew are marked as infeasible then
14: Any c with EΩc clusters with neighbor d P Mc

with the largest Wd, and update Λcur.
15: Go to Step 2.
16: else
17: Select topology Λnew P Tnew with lowest cost ΓΛ.
18: Sent Λcur to the lower layer (Alg. 2).
19: end if

In the lower layer, each c P C implements Alg. 2 according
to the current topology Λcur and public scaling factors:

Alg. 2: Lower control layer

Initial data: Xc,Uc, Hc,K
f
c, Np, τα, τβ , σc “ 0, @c P C.

Inputs: Λcur, xc, α
p
c , β

p
c , @c P C

Outputs: αp
c

`, βp
c

`, x`
c , z

`
c

1: Compute Wc by (5), Ωc by (11), and Ωf
c.

2: Solve (14) to obtain voc and αr
i and βr

i ,@i P c.
3: Apply uc to get x`

c and voc to obtain z`
c .

4: if αr
i ą α

p
i and βr

i ą β
p
i for any i P c then

5: Set αp
i

` “ αr
i and β

p
i

` “ βr
i .

6: Update αp
c and βp

c by (9).
7: Execute Alg. 1.
8: else if c “ tiu, and αr

i ď α
p
i and βr

i ď β
p
i then

9: Get αp
i

`
(7), β

p
i

`
(8), and active flag σc “ 1.

10: Share αp
c

`, βp
c

` with all c P Mc.
11: Update W`

c and Ω`
c .

12: end if
13: if σc “ 1, DΩ`

c , and x`
c ´ z`

c P Ω`
c ,@c P C then

14: Set σc “ 0 and share αp
c

`, βp
c

` with all d P Mc.
15: else
16: Hold current scaling factors as αp

c
` and βp

c
`.

17: end if

5. PLUG-AND-PLAY SUBSYSTEMS

We consider that subsystems can join and leave the system
in real time, so switching dynamics may be introduced.
This fact may force the redesign of the current cooperation
topology for feasibility and performance reasons. When a
new subsystem i “ N ` 1 is plugged at time instant kplug,
the system yields: N pkq “ t1, 2, . . . , N ` 1u. Due to dy-
namic couplings, the disturbances of neighbors j P Nipkq
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m1 m2 m3 m4 m5

h12 h23 h34 h45

κ12 κ23 κ34 κ45

F2F1 F3 F4 F5

r2r1 r3 r4 r5

Fig. 2. System compound of an array of coupled trucks.

grow, and recursive feasibility may be lost. To prevent
that, plug-ins are only executed when the supervisory layer
is triggered, and cooperation topology is updated accord-
ing to Alg. 1 at the infinitesimal instant after the plug-
in, k`

plug. Conversely, when a subsystem i is disconnected

from the system, it results in N pkq “ t1, 2, . . . , i ´ 1, i `
1, . . . , Nu. Since disturbances of neighbors d P Mi de-
crease, Alg. 1 could be executed to select another topology
that improves performance. Otherwise, the current topol-
ogy could be held, which is computationally less expensive.

6. ILLUSTRATIVE EXAMPLE

We use the system presented in (Trodden and Maestre,
2017), where four trucks are coupled by springs and
dampers with their neighbors, as depicted in Fig. 2. At
time instant kplug, a fifth truck is connected to the system.
Each truck i P N pkq has a state xi, which is composed
of position displacement ri and velocity vi, and follows
continuous-time dynamics:

„

9ri
9vi

ȷ

loomoon

9xi

“

»

–

0 1

´
1

mi

ÿ

jPMi

κij ´
1

mi

ÿ

jPMi

hij

fi

fl

„

ri
vi

ȷ

`

„

0
100

ȷ

ui ` wi,

where each truck’s controller applies a horizontal force

Fi “ ui r0, 100s
J
with ui being the control input, and the

disturbance wi is defined as:

wi “
ř

jPNi

»

–

0 0
1

mi

ÿ

jPMi

κij

1

mi

ÿ

jPMi

hij

fi

fl

„

rj
vj

ȷ

` we
i ,

where the external noise |we
i | ď r2.5e ´ 3, 2.5e ´ 3sJ. A

discrete-time model with sample time Ts “ 0.2 s that
approximates the continuous-time model is employed to
simulate and control each truck i. As for model parameters
in simulations, masses [kg]: m1,m3 “ 3, m2,m4 “ 2, and
m5 “ 5; spring constants [N/m]: κ12 “ 0.5, κ23 “ 0.7,
κ34 “ 1, and κ45 “ 0.8; and damping factors [Ns/m]:
h12 “ 0.3, h23 “ 0.4, h34 “ 0.5, and h45 “ 0.2.

The objective is to lead trucks from initial states x1p0q “
r1.5, 0sJ, x2p0q “ r´0.5, 0sJ, x3p0q “ r1, 0sJ, x4p0q “
r´1, 0sJ, and x5pkplugq “ r1, 0sJ to their equilibrium po-
sitions, considering constraints |ri| ď 4m, |vi| ď 1m/s,
and |ui| ď 0.5N/kg, and handling a plug-in truck at
kplug “ 16 s. The weighting matrices for each truck are
Qi “ I and Ri “ 100, and are aggregated as Qc “
diagpQiqiPc and Rc “ diagpRiqiPc. The LQR terminal con-
troller Kf

c “ diagpKf
iqiPc, where Kf

1 “ r´0.0365,´0.0460s,
Kf

2 “ r´0.0334,´0.0443s, Kf
3 “ r´0.0335,´0.0446s, Kf

4 “
r´0.0306,´0.0441s, Kf

5 “ r´0.0363,´0.0463s, and the
terminal weight matrix Pc “ diagpPiqiPc, where

P1 “

„

4.3327 ´2.7765
´2.7765 3.9817

ȷ

, P2 “

„

4.2137 ´2.7240
´2.7240 3.9148

ȷ

, P3 “

„

4.2203 ´2.7763
´2.7163 3.9196

ȷ

,

P4 “

„

4.1235 ´2.6833
´2.6833 3.8755

ȷ

, P5 “

„

4.3305 ´2.7743
´2.7743 3.9825

ȷ

.

Fig. 3. Formation of coalitions.
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Table 1. Comparison of costs.

Methods Jperf Jcoop Jtotal Jtotal[%]

Cen. MPC 28.47 14.50 42.97 —
Coal. MPC 28.84 2.00 30.84 28.24%

6.1 Simulated results

We consider simulations of length Nsim “ 40, a prediction
horizon Np “ 10, and a cost per link clink “ 0.1.
We also define the supervisory layer period Tup “ 5,
parameter ρα “ 0.1, and weight τα “ 5e ´ 5. In
Fig. 3, we present the formation of coalitions starting
from the centralized topology. Since the supervisory layer
decides the new topology every Tup “ 5 instants, the
coalitional structure is C “ tt1u, t2, 3, 4uu for k ă 5, and
C “ tt1u, t2u, t3, 4uu for 6 ď k ă 11. Afterwards, agents
work independently until i “ 5 is introduced, causing the
disturbance of its neighbor to increase. As a result, agent 4
forms a coalition with agent 3. This coalition is disbanded
when disturbances decrease enough as a consequence of
shrinking constraints sets of neighbors. In Fig. 4, we show
the evolution of the public and private scaling factors of
all agents. When agents 3 and 4 break their coalition at
k “ 21 (see Fig. 3), factor αr

4 ą α
p
4 . At next instant k “ 22,

it is updated α
p
4 “ αr

4, and Alg. 1 is triggered to hold
recursive feasibility. By chance, instant k “ 22 coincides
with the normal moment of execution of the supervisory
layer. Afterwards, all agents work individually until the
end. In Fig. 5, we illustrate the nominal and real state
trajectories of agents and their tubes, which can shrink
and grow due to changes of topology and factors αp

i for all
i P N pkq. For example, tube of agent 3 generally shrinks
but, at instants k “ 11 and k “ 21, its disturbances
increase due to its coalition breakups (see Fig. 3), so its
tube grows to handle more uncertainty.

Finally, Table 1 shows a comparison of the performance,
cooperation, and total cost for all MPC schemes:

Jperf “
Nsim
ÿ

k“1

}xpkq}2Q ` }upkq}2R, Jcoop “
Nsim
ÿ

k“1

clink|Λpkq|.

As shown, centralized MPC provides the lowest perfor-
mance cost at the expense of a high cooperation cost,
while coalitional MPC yields a total cost (Jtotal “ Jperf `
Jcoop) reduction of 28.24%. We report that decentralized
MPC cannot be implemented since it becomes infeasible.
Therefore, coalitional MPC provides a suitable control
framework to deal with plug-and-play operations online,
while reducing the total cost.

7. CONCLUSIONS

We propose a tube-based coalitional MPC method with
plug-and-play (PnP) features for linear multi-agent sys-
tems. Agents exchange information about the size of their
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Fig. 4. Evolution of scaling factors in coalitional MPC.
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Fig. 5. Evolution of tubes cross sections for each agent.

state and input constraints to reconfigure their disturbance
sets and reduce conservatism. Moreover, agents can form
coalitions to improve their performance and handle PnP
operations. As shown in simulations, our coalitional MPC
outperforms centralized MPC in total cost and has a
degree of flexibility for handling PnP using a distributed
setting. Since tubes depend on disturbances, they shrink
when states come close to the origin. Future work will
include a bottom-up implementation of our proposal and
a rigorous analysis of the recursive feasibility and stability.
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