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Abstract
The Earth observation (EO) community is coordinating a range of activities in support of the
Global Stocktake. One objective is to enhance the uptake of satellite-based global-scale maps
(hereafter ‘EO products’) in national greenhouse gas (GHG) inventories submitted to the United
Nations Framework Convention on Climate Change (UNFCCC). To measure progress towards this
objective, we compile information on the use of EO products on land cover, fire, and above-ground
biomass to derive carbon flux estimates in forest reference levels from 56 tropical countries
submitted to the UNFCCC between 2014–2022. The global forest change (GFC) was the only EO
product used to measure land extent and change, and was used by almost half the countries. Only
two countries used existing EO products for fire mapping. Four countries used biomass maps,
although only indirectly, such as for comparing with biomass estimates from field plot
measurements or with IPCC defaults. The uptake is limited but improved the measurement,
reporting and verification capacity of 22 countries. The relatively high uptake of the GFC
demonstrates the importance of meeting essential conditions in the IPCC guidance when
developing EO products, including conditions on spatial and temporal resolution, temporal
coverage and consistency, and the flexibility to adapt to biophysical thresholds in national
definitions. The limited use of other global land EO products underlines the need for developers of
EO products to interact with groups responsible for GHG inventories and experts familiar with
IPCC guidance so that their products are suitable for national reporting, and thus contribute to
more complete aggregated estimates in the Global Stocktake.

1. Introduction

Forests play a key role in the pledges made by coun-
tries towards meeting Paris Agreement (UNFCCC
2015) targets, mostly through reducing carbon emis-
sions from deforestation or enhancement of car-
bon removals from large afforestation programmes
(Grassi et al 2017). However, measuring and track-
ing these contributions from the land use, land use
change and forestry (LULUCF) sector is complex,
and the corresponding estimates of greenhouse gas
(GHG) fluxes have high uncertainties (Friedlingstein
et al 2022). The Global Stocktake, running in

2021–2023 and to be repeated in 5 year cycles, will
use aggregated information from national submis-
sions to the United Nations Framework Convention
on Climate Change (UNFCCC), complemented by
independent inputs (e.g. the assessment report of
the United Nations Intergovernmental Panel on Cli-
mate Change, IPCC), to assess the collective progress
in achieving the objectives of the Paris Agreement.
For the process to be effective in informing policy
makers on the role of forests and land use in achiev-
ing carbon neutrality, the high levels of uncertainty
in the estimates of GHG fluxes from land must be
reduced.

© 2023 The Author(s). Published by IOP Publishing Ltd
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Table 1. Examples of key uses and opportunities for earth observation (EO) products in the core elements of the Paris Agreement
(UNFCCC 2015, corresponding article in brackets). Satellites can only measure the land surface, so only the above-ground biomass pool
is considered here within emission and removal factors (EF/RF). Note the identified key uses have a bias towards the mitigation
component of the Paris Agreement.

Element of the Paris agreement
Opportunities for satellite data and derived products (‘EO
products’)

Updating nationally determined
contributions (NDCs) (Art. 4)

• Quantitative metrics to derive quantitative targets and to
obtain GHG targets from non-GHG targets.

Reducing emissions from deforestation and
forest degradation in developing countries
(REDD+) (Art. 5)

• Estimation of activity data (land area change, AD) and
emission/removal factors (biomass change, EF/RF)) for
establishing forest reference levels (FRLs) and report
REDD+ results in a technical annex to the Biennial
Transparency Report (BTR) in the context of accessing
results-based payments,

• assessment of drivers of forest changes and corresponding
carbon fluxes for REDD+ strategies,

• independent data sources for comparison by the assess-
ment teams/UNFCCC LULUCF experts or to constraint the
estimates by the Party (verification).

National reporting under the enhanced
transparency framework (Art. 13)

• Estimation of carbon emissions and removals from forests,
and non-forest areas with significant woody biomass (i.e.
cropland/ grassland) in the GHG inventory (GHGi) and
biennial transparency reports (BTRs; including AD and
EF/RFs for all categories), and to track progress of the
quantitative indicators of the NDCs,

• supporting tools for Parties with lower Measurement,
Reporting and Verification (MRV) capacity who will need
to adapt to the more stringent reporting rules (previous
non-Annex I Parties),

• Independent data sources for verification and to support
assessment teams in the technical expert review of BTRs.

Global stocktake (Art. 14) • Contribution to inputs (first phase) to each cycle of the
Global Stocktake (taking place every five years), and its
collective view on progress to achieve the objectives of
the Paris Agreement, through country-Party submissions
(NDCs, REDD+, GHGi/BTR, see above) and independent
estimates by non-Party stakeholders.

Global maps derived from satellite-based Earth
observation (hereafter ‘EO products’) are considered
fundamental in addressing this problem, as a prac-
tical means to consistently monitor large-scale and
remote land areas at high spatial and temporal res-
olutions (DeFries et al 2007, Achard and House 2015,
Romijn et al 2018,Herold et al 2019). Such global cap-
abilities can support country Parties to the UNFCCC
in measuring fluxes from LULUCF and in fulfilling
their reporting obligations, namely the national GHG
inventories that form an integral part of the Global
Stocktake (table 1). This is particularly relevant for
tropical countries, where domestic GHG inventories
are neither frequent nor complete (Federici et al 2017,
Grassi et al 2022).

The international EO community monitoring the
land surface has responded spectacularly to the needs
of the Global Stocktake (CEOS 2021, ESA 2022,
Hegglin et al 2022). Firstly, space agencies are mak-
ing large investments to launch new missions (e.g.
Landsat 8, GEDI, BIOMASS, NISAR) dedicated to
measuring land dynamics, forest structure and bio-
mass using a combination of sensor types (Quegan

et al 2019, Dubayah et al 2020). Secondly, there is
an unprecedented degree of collaboration between
international groups on harmonizing methods and
improving the accuracy and policy-relevance of EO
products (Szantoi et al 2020, Tsendbazar et al 2021,
Araza et al 2022, Labriere et al 2022). Finally, part-
nerships with technology platforms allow free and
easy dissemination and processing of EO products
(Gorelick et al 2017) which should facilitate their
uptake in reports to the UNFCCC and support the
operationalization of the Paris Agreement (table 1).
Nonetheless, it is unclear how extensively the wide
range of EO products offered by the EO community
(table 2) are being used in national reporting and thus
is contributing to the Global Stocktake.

We therefore present a compilation of informa-
tion on the use of satellite data, specifically global
EO products developed from satellite data, for
estimating carbon fluxes from the LULUCF sec-
tor in the reporting from country Parties to the
UNFCCC. The overall objective is to evaluate if the
global capabilities provided by these new opportun-
ities are being exploited in the national reporting
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Table 2. Examples of existing satellite-based global-scale maps (or earth observation products in the text) on land-cover, land-cover
change, fire, and above-ground biomass (AGB) covering the tropics. Many of these products are identified as being key for the land
sector by the research and systematic observation community (ESA 2022). Because the focus of our study is on country uptake for
domestic GHG inventories and on consistent global monitoring for the global stocktake, we have excluded datasets with spatial
resolutions coarser than 1 km and with only regional to local coverage. Maps produced with Earth observations from airborne data are
not included.

Earth Observation products (global/
pantropical scope)

Spatial
resolution Temporal coverage Theme/units

Land cover and land cover change

NASA MODIS Land Cover
MCD12Q1

(Friedl et al 2010) 500 m 2001-present (yearly) Class (in 6 different
legends)

Global land cover facility
tree-canopy

(Sexton et al 2013) 30 m 2000, 2005, 2010, 2015 Percent tree-cover

Global forest change (Hansen et al 2013) 30 m 2000 Percent tree-cover
2000-present (yearly) Class loss
2000-present Class year of gain

JAXA forest non-forest maps (Shimada et al 2014) 25 m 2007–2010 (yearly),
2015–2021 (yearly)

Class (Forest,
Non-Forest)

CCI land cover maps (ESA 2017) 300 m 1992-present (yearly) Class (hierarchical)
Global mangrove watch (Bunting et al 2018) 25 m 1996, Class

2007–2010 (yearly),
2015–2020 (yearly)

Copernicus land cover (Buchhorn et al 2020) 100 m 2015–2019 (yearly) Class
(hierarchical)+
cover fraction

Global mangrove loss drivers (Goldberg et al 2020) 30 m 2000–2005;
2005–2010; 2010–2015

Class

HILDA+ global land-use
change reconstruction

(Winkler et al 2021) 1 km 1960–2019 (yearly) Class (6+ change)

WorldCover (Zanaga et al 2021) 10-m 2020; 2021 (planned) Class
Sentinel-2 land-use/land-cover (Karra et al 2021) 10 m 2017–2021 (yearly) Class (10, including

“trees”)
Global land cover mapping
and estimation (GLanCE)

(Arevalo et al 2022) 30 m 2001–2019 (yearly) Class (7, including
‘tree-cover’)

Fire

Copernicus burned area (Tansey et al 2008) 300 m 2014-present Class
MODIS active fire MOD14A1 (Giglio et al 2016) 1 km 2000-present

(monthly)
Class

MODIS burned area
MCD64A1

(Giglio et al 2018) 500 m 2001-present (daily) Class

VIIRS S-NPP NOAA-20
hotspots

(Schroeder and Giglio
2018)

375 m 2012-present Class

CCI-fire burned area (Lizundia-Loiola et al
2020)

250 m 2001-present Class

Above-ground biomass

NASA JPL (Saatchi et al 2011) 1 km 2003–2004 Mg/ha
WHRC pantropical AGB map (Baccini et al 2012) 500 m 2007–2008 MgC/ha
GEOCARBON (map fusion) (Avitabile et al 2016) 1 km 2003–2008 Mg/ha
GlobBiomass growing stock
and AGB

(Santoro et al 2021;
2018)

100 m 2010 m3/ha; Mg/ha

Global mangrove AGB (Simard et al 2019) 30 m 2000 Mg/ha
CCI biomass (Santoro et al 2021) 100 m 2010, 2017, 2018 Mg/ha
AGB change, pantropical belt (Baccini et al 2021) 500 m 2003–2016 Mg C/ha/yr
NASA GEDI footprint product (Duncanson et al

2022)
25 m 2019–2021 Mg/ha

NASA GEDI gridded product (Dubayah et al 2022) 1 km 2019–2021 Mg/ha

obligations to the UNFCCC, and thus to assess
the extent to which the decade-long investment
in developing EO products is effective in support-
ing national aspects of international climate policy

(Oliver and Cairney 2019, Findlater et al 2021).While
other studies aggregate data from reports to the
UNFCCC to explain the large differences in carbon
flux estimates fromdifferent sources (Deng et al 2022,

3



Environ. Res. Lett. 18 (2023) 034021 J Melo et al

Grassi et al 2022), here we focus on the satellite-based
data andmethods that are used to ingest EOproducts.
We also focus on tropical developing countries, where
remote sensing contributions to forest monitoring
are larger (Nesha et al 2021), GHG inventories are
scarcer and less complete, and measurement, report-
ing and verification (MRV) capacity has improved
through REDD+ (Federici et al 2017). We include
data from 56 countries with 75 submissions to the
UNFCCC under the MRV for REDD+ Framework
(UNFCCC 2014) from 2014 and up to 2022. We seek
to understand: (a) if satellite data, and specifically the
numerous products offered by the EO community,
are being used; (b) which ones are used; and (c) how
they contribute to quantifying the domestic carbon
fluxes from the LULUCF sector. This provides a basis
for identifyingwhich products are effective in this sec-
tor, and why. It also highlights the challenges to wider
use of existing and planned products.

2. Methods

Wecompile data from all the forest reference emission
levels/forest reference levels (FREL/FRLs) to date sub-
mitted voluntarily to the UNFCCC over the almost
10 years of the REDD+ framework (UNFCCC 2014).
We use the term FRL regardless of whether removals
are included (typically FRL) or only emissions are
reported (typically FREL). Our analysis covers 56
countries and 75 FRLs submitted since 2014. Com-
bined, these submissions cover a forest area of over
1.5 billion ha, which is over 1/3 of global forest area
and more than 80% of the forest land in the trop-
ical domain (FAO 2020b). We group the submissions
by geopolitical regional groups recognized by the UN
and the group of least developed countries (LDCs)
which overlap with the regional groups. Of the 75
FRLs included in our analysis, six are still undergoing
technical assessment (cut-off date December 2022).
For the 69 that have completed the assessment we also
extracted information from the technical reports pre-
pared by the LULUCF expert reviewers. Annexes to
the 75 FRLs or other auxiliary information, if made
available by the Party, were also reviewed. All the
information used is accessible in the REDD+ portal
(UNFCCC 2022b) and through web links within each
submission. The overview database prepared by the
UNFCCC secretariat (UNFCCC 2022a) was used for
quality control and as an alert for new submissions or
for submissions completing the technical assessment
process and with technical assessment reports avail-
able for inspection (figure 1).

In each submission we identify the use of satel-
lite data (e.g. Landsat imagery) and EO products (or
satellite-based global maps as in table 2) for land
cover and land cover change, fire and above-ground
biomass to estimate the IPCC variables related to

activity data (area and area change, AD), and emis-
sion or removal factors (biomass and biomass change,
EF/RF). We separate the different ways in which EO
products can contribute to estimating AD from (a)
‘deforestation’, and (b) ‘other REDD+ activities’ (all
classes can be mapped to the IPCC categories used
in GHG inventories, see supplementary information;
table S1), and also whether they were used (c) as aux-
iliary data, or (d) to map fire occurrences associated
with either deforestation or forest degradation. These
are ‘direct’ contributions to deriving AD. The use of
EO products for EFs is only disaggregated into uses
to directly estimate carbon fluxes from (a) ‘defor-
estation’ and (b) ‘other REDD+ activities’. We fur-
ther identify ‘indirect contributions’ of EO products
if they are not used directly to estimate one of the vari-
ables (ADor EF) but are used, for example, to support
decisions and compare/constrain national estimates
(verification).

Finally, to understand if other methodological
choices determine the use or preference for cer-
tain satellite data sources, including EO products,
we identify which of three methods was selected
by the country to derive AD: (a) ‘pixel-counting’,
where areas of change are obtained by comparing
two (or more) wall-to-wall maps or direct change
detection wall-to-wall maps are produced; (b) ‘strat-
ified area estimation’ (Olofsson et al 2014), where
the classification bias of the areas from the wall-
to-wall map is corrected using a reference dataset
(i.e. better quality data, such as photo-interpretation
from higher resolution imagery or use of field data);
and (c) ‘sampling’, when AD estimates are derived
from a reference dataset and calculated directly
from sample proportions without using areas from a
map.

3. Results

Satellite data, mostly Landsat imagery or imagery
accessed through the Collect Earth platform (com-
bining a time series of Google Earth, Bing Maps,
Landsat, Sentinel, SPOT and RapidEye images), were
used by all countries to produce their own maps or
estimates for the FRL, in particular as a data source for
forest change data (AD; red quadrants, figure 2). EO
products were used by 46% of the countries (n = 26;
lower quadrants figure 2), but this proportion var-
ied with geopolitical/negotiating groupings: 70% of
LDCs (noting the overlap with regional groups), 65%
of African States, 50%of Asian States, but only 25%of
Latin American and the Caribbean (LAC) States used
EO products. Hence, the regional group with highest
proportion of countries submitting FRLs (more than
60% of LAC countries submitted at least one FRL) is
also the group relying less on EO products to derive
their FRLs (figures 2(a); S1).
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Figure 1. List of all data sources used in this study (accessed through the UNFCCC REDD+Web platform, (UNFCCC 2022b),
and methodological steps in the analysis. For each of the 75 forest reference level (FRL) submissions, we checked if: (i) satellite
data (e.g. Landsat imagery) or ii) EO products (satellite-based global maps, see examples in table 2) were used in their
development; if so, for which element of the FRL (AD—activity data or EF—emission factors) and in which way (direct or
indirect use). In addition, we identify (iii) which method was used to derive AD. For clarity, the colour scheme and symbol •
match the legend of the figures and tables in the results section.

All countries using EO products to derive AD
(n = 24 or 43% of the total countries with FRL
submissions; yellow quadrants, figure 2) relied on
a single product—the global forest change (GFC)
product (Hansen et al 2013). Submitted FRLs show
that national technical teams found ingenious ways to
adapt and integrate the GFC product into their mon-
itoring systems, even to directly estimate deforesta-
tion and other forest dynamics and land-use trans-
itions (‘other REDD+ activities’) (n = 16; tables 3,
4, S2). For example, tree cover or tree cover loss or
gain data were resampled to pixel blocks matching
the minimum mapping unit of the national defini-
tion and combined with domestic maps or a refer-
ence dataset for the correct attribution of land uses
in cases of tree crops, shifting agriculture, harvest
and oil palm plantations (e.g. Bhutan, Equatorial
Guinea, Madagascar, Sri Lanka). The GFC product
was also used in combination with other data, includ-
ing very high resolution imagery, to train a map clas-
sifier (e.g. Ethiopia, Zambia, Tanzania) or to cor-
rect mapped areas (e.g. Honduras). Furthermore, 14
countries used it indirectly, e.g. for quality control
or verification by comparing the estimates produced
with national data with the deforestation magnitude
and trends of the GFC product (n= 9).

Technical teams found creative ways of using the
GFC product regardless of the technique employed
to derive AD (figure 3, table 4), although more than

half of the available examples are from FRLs using a
‘stratified area estimate’ approach. There is a trend for
countries to move away from purely pixel-counting
techniques using wall-to-wall mapping (p < 0.001,
95%CI) to a combination of wall-to-wall maps with a
reference dataset to correct the bias of the map-based
estimates (as recommended by Olofsson et al (2014)
and GFOI (2020); p > 0.1, 95%CI) or to probabil-
istic samplingmethods using either a stratified or sys-
tematic approach (p < 0.001, 95%CI). This trend is
closely linked to a change in preferred data sources,
since the latter two methods rely heavily on very high
resolution imagery. It is noteworthy that in the past
two years there are no examples of use of EO products
to directly estimate AD.

The use of satellite data to derive information on
biomass and biomass change (EF/RF) is much less
common. Just three countries used satellite imagery
to produce their own biomass maps, from ALOS
(Zambia 2017) or Landsat (Honduras for forest
degradation and Togo, 2020) and no country used
available global biomass maps (tables 3 and 4).
National forest inventory (NFI) plot measurements
are the main source of biomass data (61%), some-
times complemented with IPCC defaults and addi-
tional field data (23%). If an NFI was not avail-
able, countries used a combination of other sources
such as harmonized plot data, literature, and IPCC
defaults (38%), or even biomass data from neighbor-
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Figure 2. Location of the 56 country parties to the UNFCCC that submitted 75 forest reference emission levels/forest reference levels (FREL/FRL) to the UNFCCC from 2014 up to 2022. The colour scheme in the quadrant
charts shows the use of satellite data (e.g. Landsat imagery) and derived products (i.e. satellite-based global maps in table 2 or ‘EO products’ in the text) to directly derive activity data (AD, left-hand quadrants in red and
yellow respectively), and emission factors (EF, right-hand quadrants in teal and green respectively). Indirect uses of EO products are represented with a •mark in a quadrant (e.g. use for validation, to justify decisions, to
adjust the FREL/FRL, or for comparison of reported estimates). See table 4 for more details on what is considered direct and indirect contributions and table S2 for details on the specific ways country parties use the data. Use
of maps produced from airborne technology are not included. Panel (a) shows the proportion of developing country parties that have submitted at least one FREL/FRL (blue bars) and proportion within those that submitted
at least one FREL/FRL using ‘EO products’ in their FREL/FRL (black bars; including direct and indirect use of EO products depicted in the widgets in yellow and green and with a •mark). Country parties are separated in
panel (a) by geopolitical regional groups recognized by the UN—Latin American and the Caribbean (LAC) States, African States, Asian States—and the negotiating party group defined as least developed countries (LDCs,
marked with the & symbol). Note that the 56 countries with FREL/FRL submissions are part of one of the three regional groups while 20 of them are also designated by the UN as LDCs. See figure S1 for more information on
MRV capacity indicators separated by party groupings.
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Table 3. All the global maps derived from satellite-data (‘EO products’) used by 26 out of the 56 countries that submitted a forest reference emission levels/forest reference levels (FREL/FRL) to the UNFCCC between 2014 and 2022
and ways in which these products were used: to directly derive activity data (AD; yellow box) and emission factors (EF; green box) or contributing indirectly to the FREL/FRL. The EO products are grouped by type: land cover and
land cover change, fire, and above-ground biomass (text in bolt). Colors and symbols (yellow, green and •match the legend of figures 1–2). Uses for AD are separated into deriving information on ‘deforestation’, on ‘other REDD+
activities’, as auxiliary data (e.g. as training data or to correct the maps), and to map fire occurrences. Uses for emission factors are separated into deriving information on ‘deforestation’ and ‘other REDD+ activities’. Unlisted
countries (from the 56 with submitted FREL/FRL) used no EO product in their FRLs, or if one was used, it is not clearly identified in the submission and supporting documentation. Dash (-) denotes no use. ∗ Togo compared
emission results with data from the global forest watch relying on the global forest change (Hansen et al 2013) product. Totals are total number of countries. Note countries can appear repeated in the same column or row.

EO products used

Activity data Emission factors Indirect contribution (•)

Total countriesDeforestation
Other REDD+
activities Auxiliary data Fire mapping Deforest.

Other REDD+
activities

Support
decisions
assumptions
adjustments

Comparison of
results

Land cover and land cover change
Global forest
change (GFC)

(10)
Bhutan
Congo
Costa Rica
Equat.Guinea
Liberia
Madagascar
Myanmar
Nigeria
Solom.Islands
Sri Lanka

(6)
Bhutan
Costa Rica
Equat.Guinea
Liberia
Solom.Islands
Sri Lanka

(6)
Ethiopia
Honduras
Lao
Tanzania
Uganda
Zambia

— — — (6)
Congo
DRC
Indonesia
Madagascar
Mongolia
Nigeria

(9)
Chile
Ecuador
Ethiopia
Indonesia
Mozambique
Nepal
Togo∗

Uganda
Zambia

24

Fire
MODIS burned area — — — (1) — — (1) — 2

Ghana Equatorial Guinea
MODIS active fire — — — (1) — — — — 1

Indonesia
NOAA fire hotspots — — — (1) — — — — 1

Indonesia
Above-ground
biomass
Saatchi et al (2011) — — — — — — — (3) 3

Congo
Equat.Guinea
Mozambique

Baccini et al (2012) — — — — — — (1) (1) 2
Guyana Congo

Total countries 18 0 16 26

7
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Figure 3. Number of forest reference emission levels/forest reference levels (FREL/FRL) submissions to the UNFCCC per year
since 2014 and up to 2022 separated by technique employed to generate activity data (AD): pixel-counting, stratified area
estimate, or sampling. Panel a) includes all the 75 submissions to date with a1) showing the trend of the annual proportion of
submissions using each AD technique. The trend is statistically significant (at 95% CI) for ‘pixel-counting’ (p-value< 0.001) and
‘sampling’ approaches (p-value< 0.001) but not for ‘stratified area estimate’ (p-value= 0.374). Panel (b) shows only those
submissions using products derived from satellite data (n= 29; 29 submissions from 26 country-parties with Madagascar, Nigeria
and Zambia using earth observation products in their two submissions; see table 4); and further separated into submissions using
earth observation products b1) to directly derive AD for deforestation (n= 11 including all nine countries in table 3, with
Madagascar and Nigeria using it in their two submissions) or b2) to directly derive any of the other REDD+ activities (n= 6).

ing countries (n = 2) (table S2). Two biomass maps
(Saatchi et al 2011, Baccini et al 2012) were explored
in four (5%) submissions (from Congo, Equatorial
Guinea, Guyana, and Mozambique; tables 3, S2).
However, they were only used indirectly, for example
to compare estimates with the reported values in
the FRL (verification). The use of EO products is
also negligible for fire mapping (table 3). Of the 16
countries including emissions from forest fires or
non-CO2 emissions from biomass burning from
deforestation, only two used EO products to estim-
ate AD for burnt areas (Ghana and Indonesia), and
another (Equatorial Guinea) used them simply to jus-
tify omitting these fluxes.

4. Discussion

Given the wealth of products offered by the EO
community (table 2 shows just the most prom-
inent examples and some of their characteristics),
the most striking finding from this study is the
lack of diversity in those used for AD and their
very limited use to map fire and support estim-
ates of EFs. Below we explore some of the issues
surrounding this observation.

4.1. IPCC considerations for area representation:
national definitions, spatial and temporal
resolution, temporal coverage and consistency
The GFC (Hansen et al 2013) is the only EO product
used to estimate AD, consistent with studies high-
lighting its suitability to produce estimates of forest
area at both global (Harris et al 2021) and national
scales if local maps are not available (McRoberts et al
2016). Reasons for its use in almost half the FRLs, and
preference to other global land EO products, include
its flexibility, which allows it to be adapted to dif-
ferent national definitions of forest land. The GFC
includes a layer of percentage tree cover per Landsat
pixel for the year 2000 and annual loss layers corres-
ponding to the removal of all tree cover in a Land-
sat pixel. As a result, countries using the GFC selec-
ted the percentage tree covermatching the biophysical
thresholds in their national definition of forest land
(which always includes canopy cover thresholds, and
varies between 10 and 60% among countries studied
here, table S2) and integrated it with national data
to produce AD. We found examples in ten submis-
sions (see tables 4 and S2). Alternative global maps
with more rigid thematic classes (e.g. MODIS land
cover, JAXA F/NF, CCI land cover; table 2) are not
broadly applicable and equally accurate at national
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Table 4. Examples of how this study classifies the different contributions from products derived from satellite data (EO products) found
in forest reference emission level/forest reference level (FREL/FRL) submissions to the UNFCCC. The main classification of EO product
uses is as i) a direct contribution to derive activity data (AD; highlighted in yellow), ii) a direct contribution to derive emission factors
(EFs; in green; n.a. because no examples of uptake were found) and iii) indirect contributions related to either AD or EFs (in white). See
more details at country level in Table S2.

Classes of EO product
uses

Examples of uses found in reference level submissions
(Party, year of submission)

Activity data (AD) Direct use for ‘deforestation’
Direct use for ‘other REDD+
activities’

• Filling cloud gaps (Costa Rica 2016);
• Produce wall-to-wall forest non-forest maps by adjust-
ing tree-cover and tree-cover change to national defini-
tions or combining it with national layers (Bhutan 2020,
Congo 2016, Costa Rica 2016, Liberia 2020, Madagascar
2017 and 2018, Nigeria 2018 and 2019, Sri Lanka 2017);

• Support the classification of sample units (Solomon
Islands 2019) or segments (Equatorial Guinea 2020);

• ‘Pixel-counting’ approach (Costa Rica 2016,Madagascar
2017);

• Stratification in a ‘stratified area estimation’ approach
(Bhutan 2020, Congo 2016, Equatorial Guinea 2020,
Liberia 2020, Madagascar 2018, Myanmar 2018, Nigeria
2018 and 2019, Sri Lanka 2017);

• ‘Sampling’ approach (Solomon Islands 2019).

Auxiliary data • Training data (Ethiopia 2016, Tanzania 2017, Uganda
2017, Zambia 2016);

• Map correction (Honduras 2017, Lao 2018, Zambia
2021).

Fire mapping • Burned areas mapping (Ghana 2017);
• Supporting the mapping (Indonesia 2022);
• Validating burned areas (Indonesia 2022).

Emission factors (EF) Direct use for ‘deforestation’
n.a.Direct use for ‘other REDD+

activities’
Indirect contribution (•) • Map validation (Madagascar 2017);

• Justification of omission of activities and gases (Equat-
orial Guinea 2020, Nigeria 2019);

• Supporting the choice of tree canopy threshold to define
forest land (DRC 2018, Equatorial Guinea 2020);

• Adjusting the FRL (Guyana 2015; Congo 2016);
• Comparing estimates by the Party (Congo 2016, Equat-
orial Guinea 2020, Ethiopia 2016, Mozambique 2018,
Nepal 2017, Togo 2020, Uganda 2017) or the assessment
team (Chile 2016, Congo 2016, Ecuador 2015, Zambia
2016);

• Support decisions on the intensification of the sampling
grid (Mongolia 2018);

• Stratification to support the spatial distribution of field
plots for biomass measurements (Indonesia 2022).

level (Tsendbazar et al 2015, 2017, Li et al 2016) given
the wide variation of canopy cover thresholds used to
define forest, i.e. they cannot simultaneously match
the forest definitions of all countries.

Land cover maps with a spatial resolution coarser
than the minimum area that defines forest at national
level were never used in FRL submissions.Most coun-
tries select either 0.5 ha or 1 ha as the minimum area
of land in their national definitions (51% and 39%
of submissions, respectively; table S2). EO products
with spatial resolutions coarser or finer than the
corresponding 70 m and 100 m do not accurately
depict forest and forest change extent. For example,
coarser pixels may include mixed classes from the

national definitions and miss small-scale dynamics
(Milodowski et al 2017, Kalamandeen et al 2018,
Ganzenmuller et al 2022). For finer resolutions, FRLs
using theGFC (30mpixels, or approximately 0.09 ha)
resampled the data to the minimum mapping unit
matching the national definition of forest so as not
to overestimate the area of forest and deforestation.
For example, Zambia in 2016 used the GFC aggreg-
ated into 5× 5 pixel blocks to create an initial training
dataset for stable forest, non-forest and deforestation
(table S2; see also Bhutan, Congo).

Temporal resolution, coverage and consistency
are also important considerations (Herold et al 2019,
IPCC 2019, GFOI 2020). FRLs estimate yearly fluxes
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and most have reference periods of 10–15 years. EO
products need to be available and comparable over
time, as well as consistently applied to the entire time
series. Starting in the year 2000, with annual estim-
ates of total tree cover loss, and described as globally
consistent, the GFC product is the only example from
table 2 meeting those requirements. Products that are
not annual (i.e. coarser temporal resolutions) may
miss land dynamics such as harvest and conversions
to tree crops (Pengra et al 2020,Woodcock et al 2020).
Discontinuation (e.g. GLCF; (Sexton et al 2013)) or
unexpected interruptions (JAXA Forest/Non-Forest;
(Shimada et al 2014)) of EO products at equival-
ent spatial resolutions could have prevented their use.
Note that recent studies highlight a temporal incon-
sistency also in theGFCproduct attributed to changes
in the algorithm (Ceccherini et al 2021, Palahi et al
2021). Temporal inconsistencies in fact exist in all EO
products, even those from the long-running Landsat
programme, because of sensor degradation or sensor
and technology changes between successive missions
(Roy et al 2016, Vogeler et al 2018).

Temporal inconsistencies and the biases they
introduce may help explain why countries are rely-
ingmore on reference data, most commonly a sample
dataset of visually-interpreted imagery with high spa-
tial resolution available through the Collect Earth
platform (table S2; figure 3). In the last three years
70% of the submissions used a reference dataset to
estimate AD. While 40% stratified the sample with
a map (including the GFC product), as recommen-
ded to reduce omission errors (Olofsson et al 2020),
30% relied only on the samples. This trend towards
reduced dependency on wall-to-wall maps to derive
AD can partially explain the limited uptake of EO
products. The need for compliance with IPCC good
practice and reporting of uncertainty may also help
explain this trend. Pixel-counting methods intro-
duce bias in the estimate from map classification
errors, and the map accuracies derived from error
matrices do not quantify that bias, as required by
the IPCC guidelines (McRoberts 2011, Olofsson et al
2013).

Another reason for the transition in methods to
derive AD is related to attribution: while land cover
can be obtained from EO, and is typically used as
a proxy for land-use, the two are not the same. We
find countries are using sampling methods and visual
interpretation of very high resolution imagery to
identify complex land dynamics, and to distinguish
plantations, tree crops, shifting agriculture and trees
outside forest, in order to attribute these areas to
the correct class according to the national land clas-
sification. Such attribution is not possible with EO
products alone (Tropek et al 2014, Curtis et al 2018,
GFOI 2020). For example, the Bangladesh FRL iden-
tifies that more than 50% of mapped tree canopy
cover is from trees outside forest (Potapov et al 2017).

Solomon Islands usedCollect Earth to correct cases of
harvest and replanting of oil palm (cropland) identi-
fied in theGFC as forest loss. Similarly, Guinea-Bissau
manually corrected the land cover maps and noted
in its FRL that 74% of the corrected pixels corres-
ponded to cashew trees (a tree crop) being mapped
as forest (Melo et al 2018). Ghana changed its AD
approach from pixel-counting (in the 2017 submis-
sion) to systematic sampling (in the 2021 submis-
sion), resulting in a change in the deforestation (AD)
estimate from around 312 000 to around 18 000 ha
per year in the same reference period (i.e. deforesta-
tion estimate with the systematic sampling approach
rendered a deforestation estimate which is only 6%
of that obtained with pixel-counting). Ghana noted
in its FRL that using very high resolution imagery as
source of AD allowed the proper disaggregation of
tree crops from forest which had led to the overestim-
ation of the AD in the 2017 submission.

However, we note that in this transition towards
sampling-based methods for deriving AD (including
‘stratified area estimate’ and ‘sampling’ in this study)
the bias of the reference data is never quantified in the
FRLs. Such bias can be substantial due to interpreta-
tion errors and to the temporal inconsistencies of the
available imagery, given that the tropics do not have
good coverage by very high resolution imagery, espe-
cially for a reference period of 10–15 years (Lesiv et al
2018,McRoberts et al 2018, Schepaschenko et al 2019,
Pengra et al 2020).

4.2. Limited uptake of global biomass maps
None of the available above-ground biomass EO
products were used to estimate EFs. The only ways
they were used, and only in the submissions of four
countries, was as independent estimates to compare
and enhance the confidence in the national above-
ground biomass values used to derive EFs, or, in
Guyana, to adjust the national historical emission
trend with a global emission level to predict future
emissions more accurately. Using EO products for
verification (i.e. comparing with national estimates)
was the only example of implementation of the 2019
Refinement to the 2006 IPCCGuidelines, now includ-
ing a section on the use of above-ground biomass EO
products. Similarly to AD, when reporting the uncer-
tainty of EFs, national teams need to document the
precision of the estimates through confidence inter-
vals. However, none of the biomass EO products from
table 2, except the most recent ones using GEDI data
(Dubayah et al 2022, Duncanson et al 2022), provide
the required variances and covariances (GFOI 2020,
McRoberts et al 2022). There are examples on how
to improve the precision of NFI plot-based estim-
ates with global EO products of above-ground bio-
mass (Naesset et al 2016, 2020,Malaga et al 2022), but
there has been no implementation of these methods
in FRLs.
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4.3. Regional differences in the uptake of EO
products
Our study reveals a higher uptake of EO products by
countries from Party groupings with lower forest
monitoring capacity (African States and LDCs;
figures 2 and S1) and highlights the important role
of EO products in enhancing these countries’ MRV
capacity. This finding is consistent with a recent
study from Nesha et al (2021) on forest monit-
oring capacity in reporting to the FAO, where the
authors conclude that despite remaining lower than
in other regional groups, the remote sensing capacity
of African States has increased significantly between
2015 and 2020. It also confirms that developing coun-
tries’ capacity to report GHG fluxes from LULUCF
to the UNFCCC has been increasing with REDD+
investments (Federici et al 2017) (figure S1). For
80% (n = 45) of the developing countries imple-
menting REDD+ activities, submission of the FRL
was their first experience of reporting GHG fluxes
from LULUCF and going through a technical review
under the UNFCCC (table S3). Half of those coun-
tries (n= 22) did so while using EO products in their
FRL. Furthermore, as of December 2022, there were
13 countries submitting a FRL with the support of
EO products that have not yet submitted any biennial
update report. The contribution of EO products can,
therefore, be more prominent if the capacity built
for FRLs leverages the development of GHG invent-
ories. This is an important conclusion because stra-
tegically selecting collaborations with national teams
with lower MRV capacity, who rely more on the EO
products offered, will support their transition to the
more stringent reporting requirements of the Paris
agreement. At the same time, it contributes to a more
complete global time-series of carbon fluxes obtained
from the aggregation of national GHG inventories in
the Global Stocktake.

4.4. Transparency of reference level submissions
and limitations of the analysis
Of the 75 submissions included in our analysis, 69
have completed technical assessment. Of those, 75%
(n = 52) are described by the expert reviewers in
the technical assessment report as being ‘transparent
and in overall accordance with the guidance’. How-
ever, the remaining submissions ranged from ‘mostly
transparent’ to ‘not sufficiently transparent’, with the
experts flagging the need for includingmore detail on
the data sources and methods. The limitations of this
study due to lack of transparency in at least 25% of
the submissions are twofold:

(a) Possible underestimation of the use of EO
products due to our inability to find all data
sources used. For example, maps were used
for stratification but were not adequately doc-
umented in the FRL submission and accompa-
nying methodological annexes. To minimize this

source of bias we assumed that the technical
assessment report had priority over the FRL,
given that experts have access to more inform-
ation that is not publicly shared. For example,
Equatorial Guinea does not clearly describe how
the GFC layers ‘were superimposed over the
maps to help to classify AD’ but because it is in
the technical assessment report, we attributed a
direct contribution of GFC in deriving AD.

(b) Possible underestimation of the direct use of
EO products to derive AD due to poor descrip-
tions of the methods. For example, any incor-
rect definitions of the AD method as ‘sampling’
instead of ‘stratified area estimate’ will lead to
an incorrect classification of the use of the EO
product as indirect instead of direct (e.g. Myan-
mar, Mongolia). In our analysis, eight submis-
sions (10%) were flagged with low confidence
in the attribution of the method used to derive
AD because the FRL submission was not clear or
our classification disagreed with FAO analysis on
REDD + FRL (FAO 2020a). Of these eight sub-
missions, three (4%) used the GFC product. To
address this uncertainty, for these submissions,
we relied on personal communications with the
national technical teams to attribute the method
used (e.g. Nigeria, see table S2).

5. Conclusions

Analysis of the use of satellite data and derived EO
products by 56 developing country parties to the
UNFCCC in 75 REDD+ forest reference levels indic-
ates that the only land EO product used was the
GFC; this was used by 43% (n = 24) of the coun-
tries, with 29% (n = 16) using it directly to estim-
ate AD. The number of countries using EO products
to map burnt areas (n = 2) and to estimate emis-
sion factors (n = 0) is negligible. However, the GFC
and pantropical biomass maps were used for veri-
fication (n = 9 and n = 3, respectively) by coun-
tries and expert reviewers. There is a trend towards
using probabilistic samplingmethods that do not rely
on wall-to-wall mapping to quantify land dynamics
(p< 0.001, 95%CI), which can partially explain a lim-
ited uptake of land maps. Nevertheless, overall, the
availability of EO products enhances MRV capacity:
70% of LDCs and 65% of African States with FRL
submissions relied on EO products, and for 22 of the
countries using EO products in their submission, this
was their first reviewing process under the UNFCCC.
This analysis may help the EO community by clari-
fying the properties EO land products must have for
their effective take-up by countries in their report-
ing for the land use sector. Fostering collaboration
with experts familiar with IPCC guidance can help in
the design of EO products and facilitate their integra-
tion into national reporting, and hence enable more
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completeGHG inventories and increase confidence in
the data used by the Global Stocktake process.
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