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Figure 1: Given a single identity image and speech audio, our model generates high-resolution talking-head video of the

identity lip-synced with the audio.

ABSTRACT

We propose a novel method for generating high-resolution videos

of talking-heads from speech audio and a single ’identity’ image.

Our method is based on a convolutional neural network model that

incorporates a pre-trained StyleGAN generator. We model each

frame as a point in the latent space of StyleGAN so that a video

corresponds to a trajectory through the latent space. Training the

network is in two stages. The first stage is to model trajectories

in the latent space conditioned on speech utterances. To do this,

we use an existing encoder to invert the generator, mapping from
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each video frame into the latent space. We train a recurrent neural

network to map from speech utterances to displacements in the la-

tent space of the image generator. These displacements are relative

to the back-projection into the latent space of an identity image

chosen from the individuals depicted in the training dataset. In the

second stage, we improve the visual quality of the generated videos

by tuning the image generator on a single image or a short video of

any chosen identity. We evaluate our model on standard measures

(PSNR, SSIM, FID and LMD) and show that it significantly outper-

forms recent state-of-the-art methods on one of two commonly used

datasets and gives comparable performance on the other. Finally,

we report on ablation experiments that validate the components of

the model. The code and videos from experiments can be found at

https://mohammedalghamdi.github.io/talking-heads-acm-mm/

CCS CONCEPTS

·Computingmethodologies→Computer vision;Animation;

Rendering; Image-based rendering.
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1 INTRODUCTION

Synthesising video of talking heads from speech audio has many

potential applications, such as video conferencing, video animation

production and virtual assistants. Although there has been consid-

erable prior work on this task, the quality of generated videos is

typically limited in terms of overall realism and resolution. In this

paper, we propose an audio-driven model that synthesises high-

resolution talking-head videos (1024 x 1024 in our experiments)

from a single identity image.

Many previous models generate low-resolution video [31, 32] or

cropped faces [3, 4]. Low resolution video is generally not suitable

for deployment in many real world applications, such as a virtual

assistant. A common approach has been to use intermediate fea-

tures such as facial landmarks to map from audio to output video

[3, 7, 41]. Another approach has been to edit an existing talking-

head video to blend in a new mouth region synthesised from audio

[28, 29].

Recent advances in image synthesis have been successful at gen-

erating high-resolution images from noise [12ś14]. Karras et al. [14]

propose a style-based generator StyleGAN that synthesises high

quality images that are largely indistinguishable from real ones.

Some works have studied the latent space of StyleGAN [1, 9, 22, 24]

and discovered meaningful semantics for manipulating images. Re-

cent work has leveraged the richness of a pre-trained StyleGAN

generator [15] to generate high-resolution videos from noise by

decomposing (disentangling) the motion and content in the latent

space [8, 26, 30]. Tian et al. [30] discover motion trajectories in

the latent space to render high-resolution videos while image and

motion generators are trained on different domain datasets.

Inspired by these advances, we propose a novel method for gen-

erating high-resolution videos conditioned on speech audio by

constructing trajectories in the latent space of a pre-trained image

generator [15]. Our framework uses a pre-trained image encoder

[21] to find the latent code of a given identity image in the latent

space of the generator. We then train a recurrent audio encoder

along with a latent decoder to predict a sequence of latent displace-

ments to the encoded identity image. In this stage, we show our

approach can generate talking-head videos with accurate mouth

movements conditioned on speech audio. To improve the visual

quality of the generated videos further, we tune the generator on

a single image or short video of a target subject using the PTI

[22] method. We compare our approach with other state of the

art approaches qualitatively and quantitatively using benchmark

measures: LMD, SSIM, PSNR and FID. We show that it achieves per-

formance at least as good as the state of the art on two commonly

used datasets.

Our principal contributions are:

• Amethod for generating high-resolution videos from speech

audio by constructing motion trajectories in the latent space

of a pre-trained image generator;

• A comparative evaluation, including a user study, demon-

strating the performance of the method on both quantitative

and qualitative criteria.

2 RELATED WORK

2.1 Audio-driven talking-head generation

Various methods have been proposed to generate videos of talking

heads. Given audio, the task is to lip-sync the head to the audio.

The audio may itself be generated automatically from text or be

extracted from a video clip of someone speaking. Some of these

methods are generic, and can generate videos of any identity given

one ormore images of that identity [3, 4, 20, 31, 32, 39ś41]. However,

they can only generate low-resolution videos. Other methods that

generate high-resolution videos from speech audio [11, 17, 18, 27ś

29, 34, 36, 38] can only work on a single subject. These approaches

require retraining the models for each new subject.

Chung et al. [4] propose a model to generate videos using mul-

tiple images of the target face and an audio speech sample. The

model consists of an audio encoder and identity encoder that learn

a joint embedding of the face and audio, and a decoder that gen-

erates a frame that best represents the audio sample for the target

identity. Prajwal et al. [20] adopt a similar approach, except that

a pretrained lip-sync discriminator, and a visual discriminator are

used in addition to 𝐿1 loss. Vougioukas et al. [31] expand the ap-

proach by training a recurrent-based decoder with a noise generator

to model spontaneous facial expressions (e.g. blinks). Other models

rely on 2D intermediate features (e.g. facial landmarks) to learn the

mapping between audio input and video output [3, 7, 41]. Chen et

al. propose a cascade approach that generates a talking face video

given an image and audio. The method first transfers the given

audio signal to facial landmarks and then generates video frames

conditioned on the landmarks. Zhou et al. [41] adopt a similar ap-

proach that first disentangles the content and speaker information

from the input audio. Then, these two components are mapped

to content and speaker facial landmark spaces using a recurrent

model on each.

Other methods rely on 3d intermediate features (e.g. through

monocular reconstruction) to synthesise high-quality videos of a

single subject. Some attempt to generate only the mouth region and

blend it to a target video [17, 27ś29]. Thies et al. [29] propose an

approach that predicts the coefficients that drive a person-specific

expression blendshape basis using audio features. A neural texture

rendering network is then used to generate the mouth region. In

addition, others modify the facial expressions, geometry or pose

of a target video conditioned on the audio [11, 36]. In contrast, our
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Figure 2: Overview of the model: Given an identity image and a speech audio, the aim is to synthesise a video of the identity

lip-synced with the audio. We first find the corresponding latent code of the identity image using the image encoder 𝐸𝐼 . We

then encode the audio using the audio encoder 𝐸𝐴. Next, we embed the identity latent code using the PCA basis𝑉 . The decoder

𝐷 then takes both the embedded identity latent vector and encoded audio to predict a displacement to the identity latent vector

in the latent space of a pre-trained image generator 𝐺 .

approach generates a full-frame video of a talking-head without

editing a target video or relying on intermediate features.

2.2 Unconditional video generation using
StyleGAN

Recently, there have been several works that use a pre-trained image

generator (StyleGAN) to generate videos [8, 26, 30]. They all share

the idea of discovering motion trajectories in the latent space of a

StyleGAN generator without conditioning on any driving source.

Tian et al. [30] propose a MOCOGAN-HD model that uses a motion

generator to predict residual latent codes from an initial latent code

sampled from the latent space of StyleGAN. The model is trained

in the image space with a multi-scale video discriminator as well as

contrastive image discriminator. Similarly, Fox et al. [8] reduce the

training cost by training a Wasserstein GAN model in the latent

space instead of image space. Although their model is trained on a

single subject dataset, it can transfer the learned motion to a new

subject using an offset trick. Skorokhodov et al. [26] modify the

StyleGAN network to learn a continuous latent trajectory using a

neural representation based approach. Our work differs from these

methods by learning the motion trajectories in the latent space of

StyleGAN conditioned on speech audio.

3 THE METHOD

Our method consists of four components: image encoder 𝐸𝐼 , audio

encoder 𝐸𝐴 , latent decoder 𝐷 and image generator 𝐺 . Given an

identity image I and speech audio a, the goal is to synthesise a

video of the identity lip-synced with the audio. We first partition

the audio clip into a sequence of 𝑇 fixed-duration audio segments

{𝑎1, 𝑎2, .., 𝑎𝑇 }. From this audio segment sequence, we target a video

clip consisting of a sequence of𝑇 video frames {𝑥1, 𝑥2, .., 𝑥𝑇 }. There

is therefore a one-to-one correspondence between input audio seg-

ments and output video frames.

The inference pipeline is as follows. We take the identity image I

and finds its latent code𝑤𝐼 in the latent space𝑊 + of the generator

𝐺 using the image encoder 𝐸𝐼 . Next, we encode an audio segment

𝑎𝑡 using the audio encoder 𝐸𝐴 and extract an audio embedding

vector 𝑒𝑡 = 𝐸𝐴 (𝑎𝑡 ). We then feed in the identity latent code 𝑤𝐼

and the audio vector 𝑒𝑡 jointly to the latent decoder 𝐷 to predict a

latent displacement 𝑑𝑡 = 𝐷 (𝑤𝐼 , 𝑒𝑡 ). We then calculate the displaced

latent vector �̄�𝑡 = 𝑑𝑡 +𝑤𝐼 . Lastly, the image generator𝐺 takes the

displaced latent vector �̄�𝑡 and generates the corresponding video

frame 𝑥𝑡 . An overview of the model can be seen in figure 2. In the

following section, we describe each component in detail.

3.1 Architecture

3.1.1 Image generator. For our image generator 𝐺 , we use the

pre-trained StyleGAN [15] trained on the FFHQ dataset [14] to

synthesise static images of faces. The StyleGAN architecture con-

sists of mapping and synthesis networks. The mapping network

is a non-linear 8-layer MLP which maps a latent code 𝑧 sampled

from a latent space 𝑍 to an intermediate space𝑊 +. The produced

𝑤 controls the synthesis network through an adaptive instance
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Figure 3: This figure illustrates how the image encoder 𝐸𝐼
can encode a video (top row) into the latent space of Style-

GAN𝑊 + while preserving its mouth movements and other

facial expressions. Bottom row shows the inverted video.

normalization (AdaIN) operation after each convolutional layer. We

use only the synthesis part as our image generator 𝐺 .

3.1.2 Image encoder. We use pSp [21], an off-the-shelf pre-trained

image encoder that inverts real images to the𝑊 + space of StyleGAN.

The encoder was trained by embedding the FFHQ [14] dataset

to a fixed StyleGAN generator. Critically, the encoder produces

latent vectors that preserve the mouth expression on synthesis

with StyleGAN. Figure 3 shows frames from a video that has been

inverted into the latent space𝑊 + using the image encoder 𝐸 and

then re-generated using 𝐺 .

3.1.3 Audio encoder. We represent each audio segment 𝑎𝑡 using

Mel-frequency cepstral coefficients (MFCC). The audio encoder

𝐸𝐴 is a recurrent model that takes a sequence of audio segments

{𝑎1, 𝑎2, .., 𝑎𝑇 } and produces a sequence of encoded audio segments

{𝑒1, 𝑒2, .., 𝑒𝑇 }. The encoder network 𝐸𝐴 consists of multiple convo-

lutional layers followed by three LSTM layers.

3.1.4 Latent decoder. The latent decoder 𝐷 takes as input the iden-

tity latent vector𝑤𝐼 and an encoded audio segment 𝑒𝑡 to predict a

displacement 𝑑𝑡 to the identity vector in the latent space𝑊 +. To

reduce the high dimensionality of the latent space𝑊 +, we first con-

duct principal component analysis (PCA) on the FFHQ dataset [14]

mapped into𝑊 + using the image decoder. We obtain a subspace

from the components with the largest eigenvalues, giving a basis V.

We project the identity latent𝑤𝐼 input into the subspace defined

by V and concatenate it with the encoded audio segment 𝑒𝑡 . This

provides the input to the decoder. We map the decoder’s output ℎ𝑡
from the subspace to𝑊 + to get the displacement vector 𝑑𝑡 . Thus,

we obtain𝑤𝑡 as follows:

𝑤𝑡 = 𝑤𝐼 + 𝑑𝑡 = 𝑤𝐼 + ℎ𝑡 · V, 𝑡 = 1, 2, 3, · · · ,𝑇 , (1)

3.2 Training

Our model is trained in two stages. In stage one, we are only inter-

ested in learning trajectories in the latent space𝑊 + conditioned

on the speech audio. The model predicts latent displacements to

the identity in the latent space of a fixed image generator. This

disentangles the mouth motion and the image content. The motion

trajectories are learned by training the model using a talking-head

dataset. Although the model learns to generate accurate mouth

movements, the visual quality of the generated video exhibits some

distortion (see section 4.5). The quality is determined by the pre-

trained StyleGAN generator, which has been trained on images of

people who are typically making a static pose. In stage two, we

tune the generator 𝐺 on a single image or short video of a target

speaker.

3.2.1 Stage one. We train only the audio encoder 𝐸𝐴 and latent

decoder 𝐷 while keeping the pre-trained image encoder 𝐸𝐼 and

the pre-trained image generator 𝐺 fixed. For the loss function, we

project the target frame 𝑥𝑡 into the generator’s latent space𝑊 +

using the image encoder 𝐸𝐼 . We then have the corresponding latent

code𝑤𝑡 = 𝐸𝐼 (𝑥𝑡 ) for 𝑡 = 1, 2, ...,𝑇 . We calculate an L2 loss between

each target latent code 𝑤𝑡 and the predicted latent code �̄�𝑡 . We

define Llatent as follow:

Llatent =

𝑇∑︁

𝑡=1

| |𝑤𝑡 − �̄�𝑡 | |2 (2)

In addition, we apply another loss in the image domain between

the generated video x̄ and the target video x. Since the pre-trained

image generator has not seen the training data, applying the loss

directly on the target video would affect the model’s performance,

enforcing it to focus on the facial appearance rather than mouth

movements. For this, we invert the target video x using the image

encoder 𝑥𝑡 = 𝐸𝐼 (𝑥𝑡 ). We calculate the perceptual loss [37] between

the generated video {𝑥1, 𝑥2, .., 𝑥𝑇 } and the inverted target video

{𝑥1, 𝑥2, .., 𝑥𝑇 } as follows:

LLPIPS =

𝑇∑︁

𝑡=1

| |𝜙 (𝑥𝑡 ) − 𝜙 (𝐺𝐼 (𝐸𝐼 (𝑥𝑡 ))) | |2 (3)

where 𝜙 is based on the VGG neural network [25]. Thus, the

overall loss for learning to predict latent displacements driven by

audio is a weighted sum of the two losses:

Lstage1 = 𝜆latentLlatent + 𝜆LPIPSLLPIPS (4)

3.2.2 Stage two. One could tune both the image encoder 𝐸𝐼 and

the image generator𝐺 on the target speaker using an auto-encoder.

However, this would transform the latent space𝑊 + and the learned

model at stage one would consequently fail to generate correct

mouth movements. To improve the visual quality of the generated

video, we use the PTI method [22] to tune only the generator on

a single image or video of a target speaker. In experiments, we

implement stage two on short videos, and as a limiting case, on a

single image.

Given a video x of a speaker, we tune the image generator 𝐺 on

the video frames 𝑥𝑡 . For this task, we use the pre-trained encoder

𝐸𝐼 to encode the frames 𝑥𝑡 to the latent space𝑊 + to get𝑤𝑡 . Given

𝑥𝑡 = 𝐺 (𝑤𝑡 ;𝜃
∗), we tune the weights of the generator while keeping

the encoder fixed. We use the same objective loss used in PTI [22]:

Lstage2 = LLPIPS + LL2 (5)
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Figure 4: Samples generated using our approach. The top row shows frames from a source video providing the audio used to

drive the generation. The middle row shows the corresponding generated frames where the generator 𝐺 is tuned on a single

frame. The bottom row shows generated frames where the generator 𝐺 is tuned on a 5-second video clip. These videos are

included in the supplementary material.

where LL2 is defined as :

LL2 =

𝑇∑︁

𝑡=1

| | (𝑥𝑡 − 𝑥𝑡 | |2 (6)

After tuning the generator, we can generate videos of talking-

heads using our inference pipeline with the components trained in

both stages.

4 EXPERIMENTS

4.1 Datasets

We evaluate our approach using two widely used datasets for syn-

thesizing talking-head videos: GRID [5] and TCD-TIMIT [10]. The

GRID dataset has 33 speakers uttering 1000 short sentences each

containing 6 words. The TCD-TIMIT has 59 speakers each uttering

100 sentences. We hold-out ten speakers from each dataset for test-

ing and use the remaining for training. The videos are resampled to

25 fps. To align the video frames, we use the same face alignment

method used in preprocessing the FFHQ dataset [14] for training

the original StyleGAN [15]. The input to the audio encoder 𝐸𝐴 is

an audio segment of length 0.2 seconds which corresponds to a

window of five frames. However, we choose only the middle frame

as the the ground truth frame. The identity image is a randomly

chosen frame out of this window. We represent the audio speech

using MFCC values extracted from the raw values. Each audio seg-

ment is a window of size 12 x 28, where the columns represent

MFCC features for each time step.

4.2 Implementation details

We perform our experiments using PyTorch [19]. For the image

generator, we use an unofficial implementation of StyleGAN1. For

the pre-trained image encoder, we use the official implementation

of p2p [21]. For training the audio encoder 𝐸𝐴 and the decoder 𝐷

in stage one, we use an Adam optimiser [16] with a learning rate

of 0.0002. In Eqn. 4, we set 𝜆latent = 250 and 𝜆LPIPS = 1. We tune the

1https://github.com/rosinality/stylegan2-pytorch

generator with a learning rate of 0.0003. The tuning process takes

less than two minutes for a single identity image. All experiments

use an NVIDIA V100 GPU with 32 GB of memory.

4.3 Results

In this section, we evaluate our model after tuning the generator.

Figure 4 shows the quality of the generated videos from tuning the

generator on a single frame (middle row) and on a short video (bot-

tom row). The figure shows that tuning the generator on multiple

frames has resulted in better visual quality. This can be seen in the

mouth appearance highlighted in red.

To evaluate the quality of the generated videos, we use two

common reconstruction measures: The peak signal-to-noise ratio

(PSNR) and the structural similarity (SSIM) [35]. For these measures,

a larger score is better. We use a landmarks distance metric (LMD)

[2] to evaluate the synchronisation between the mouth movement

and the speech audio. This metric computes the Euclidean distance

between mouth landmarks of each generated frame and its cor-

responding true frame. It then averages the score on the number

of frames and number of mouth landmark points. We also use a

Fréchet Inception Distance (FID) to quantitatively evaluate gener-

ated videos. For LMD and FID measures, a lower score is better.

We compare our work against four state of the art models [3,

20, 31, 41] and use the official available codes of these models to

generate the videos and compute the evaluation measures. Table 1

shows that our approach outperforms other state of the art models

on the TCD-TIMIT dataset [10]. On the GRID dataset [5], the model

achieves better scores on the PSNR and FID measures. Figure 5

shows the visual quality of generated videos by our model in com-

parison with other models. The highlighted frames show that our

model generates photo-realistic videos largely indistinguishable

from the ground truth.

Figure 6 shows a visual comparison of our model with others on

a challenging mouth movement associated with the phoneme /p/

in the word "place". It can be seen that our model and Vougioukas

et al. produce a closed-mouth shape (highlighted in green) in sync
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Vougioukas et

al.

Chen et al.

Zhou et al.

Prajwal  et al.

Ours

Ground truth 

Figure 5: Qualitative comparisons. The videos are generated by the methods of Vougioukas et al. [31], Chen et al. [3], Zhou et

al. [41], Prajwal et al. [20] and Ours on audio samples form TCDTIMIT (left) and GRID (right). It can be seen that our model

synthesises a lip-movement that is closer to the ground truth than the other methods.

Table 1: We conducted quantitative comparisons in two benchmark datasets.

Method TCD-TIMIT GRID

PSNR↑ SSIM↑ FID↓ LMD↓ PSNR↑ SSIM↑ FID↓ LMD↓

Vougioukas, et al. [31] 17.24 0.60 16.05 3.42 16.72 0.62 13.58 3.08

Chen, et al. [3] 15.31 0.58 11.79 3.66 16.80 0.69 13.27 3.74

Zhou, et al. [41] 18.10 0.58 18.02 2.59 18.53 0.61 11.87 2.64

Prajwal, et al. [20] 18.26 0.64 15.24 2.19 17.83 0.69 11.11 2.05

Ours 20.55 0.65 8.11 2.18 20.33 0.65 5.30 2.18

with the ground truth while Prajwal et al. (highlighted in yellow)

is out of sync with the ground truth. In addition, Chen et al. and

Zhou et al. (highlighted in red) fail to produce the required mouth

shape.

Table 2 shows the number of trainable parameters, inference time

and output frame size for the five methods. We ran all experiments

on a V100 Nvidia GPU and report the achieved frame rate (FPS) as

a measure of inference time. The source videos are sampled at 25

FPS. We can see that the method of Vougioukas, et al. [31] and ours

are faster than real-time. In addition, our method generates much

higher resolution videos compared to others.

Table 2: Comparisons between our method and others in

terms of number of parameters, inference time and output

size.

Method Number of

parameters

Inference

time

Output

size

Vougioukas, et al. [31] 55.28 M 441 FPS 96x128

Chen et al. [3] 88.43 M 15.57 FPS 128x128

Zhou, et al. [41] 36.40 M 10.32 FPS 256x256

Prajwal, et al. [20] 36.30 M 16 FPS 256x256

Ours 29.68 M 35 FPS 1024x1024
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Vougioukas et

al.

Chen et al.

Zhou et al.

Prajwal  et al.

Ours

Ground truth 

Figure 6: Visual comparison of mouth-closure during bilabial events. The green highlighted areas show closed lip gestures

generated by ours and Vougioukas et al in comparison with the ground truth. The yellow area shows out of sync mouth-

closure generated by Prajwal et al. while the red area shows failure in producing a closed mouth for Chen et al. and Zhou et

al. The video is included in the supplementary material.

4.4 User Study

We conducted a user study to compare our approach with related

works using Amazon Mechanical Turk services. We evaluate both

the audio-visual synchronisation and the visual quality of the state-

of-the-art methods. We show participants a pair of videos: one

generated by our method and the other generated by either Chen

et al. [3] or Zhou et al. [41]. For each pair, we either ask which

video looks more photo-realistic or which video has more accurate

lip-sync with the audio. The choices for each question are "right",

"left", "none", and "both". We randomly choose the order of videos

in each pair. We obtained 80 answers from 20 participants for each

question. Figure 7 shows the results of the user study. It can be seen

our model achieves a better result in terms of both the audio-visual

sync and the visual quality.

4.5 Ablation analysis

We analyse the effect of each loss in Eqn 4 on the performance of

the model in generating talking-head videos. We train the model

in stage one without Llatent and LLPIPS separately and test it after

tuning the generator in stage two. We observe that the choices

of these losses do not affect the visual quality of the generated

video but affect the lip-synchronisation accuracy. This is indicated

in table 3 on the LMD column. The model trained on both losses

outperforms the model trained on either of the losses alone.

45% 20% 7.5% 27.5%

40% 12.5% 15% 32.5%

52.5% 12.5% 12.5% 27.5%

50% 10% 7.5% 32.5%

Ours

Ours

Ours

Ours

Zhou et al. 

Chen et al. 

Zhou et al. 

Chen et al. 

User Study: Audio-Visual Sync

User Study: Visual Quality

ours othersboth none

Figure 7: User study results for evaluating our approachwith

state of the art methods in terms of the audio-visual syn-

chronisation (top) and and the visual quality (bottom)
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We also compare the performance of the model at stage one

without tuning the generator and after tuning the generator. Figure

8 shows a sample of generated video using the model trained in

stage one. It can be seen that the model generates correct mouth

positions but the visual quality inherits some distortion caused

by the image generator. In stage two, we tune the generator on a

single frame or short video of the target speaker. We can see from

Table 4 that SSIM and PSNR are higher after tuning the generator,

indicating that stage two is important to improve the quality of the

generated video.

5 ETHICAL CONSIDERATION

Our framework can synthesise high quality videos from speech

audio. This is perfect for video production animation, a talking-

head avatar and video-dubbing. Creative people may use our work

to edit content in movies or generate new videos. However, the

model can be misused to spread misinformation or manipulate

Table 3: Ablation analysis on losses in Eqn 4

Method TCD-TIMIT

PSNR↑ SSIM↑ LMD↓

w/o Llatent, in Eqn 4 20.57 0.65 2.30

w/o LLPIPS, in Eqn 4 20.78 0.66 2.75

Proposed Model 20.55 0.65 2.18

Table 4: Comparisons between the performance of the

model before and after tuning the generator.

Method TCD-TIMIT

PSNR↑ SSIM↑ LMD↓

Stage one only 17.55 0.49 2.37

Proposed Model 20.55 0.65 2.18
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Figure 8: This figure compares the visual quality between a

video generated before tuning the generator 𝐺 (stage one)

and after tuning the generator (stage two). The top row is

the target video.

existing data. Generated videos using deep learning are becoming

hard to distinguish from the real thing, although there have been

promising advances in forensics on the detection of "deepfake"

videos [6, 23]. We will share generated videos of our framework

with the community to help detecting manipulated videos.

6 CONCLUSION AND FUTUREWORKS

We propose a novel method for synthesising high-resolution videos

from speech audio. The model can generate videos of a target

speaker given a short video (or single image) of the speaker. Our

model is built on top of a pre-trained image generator. We first learn

to generate talking-head videos by constructing motion trajectories

conditioned on speech audio. We then improve the image generator

by tuning it on a short video of a target speaker.

We show that the method significantly outperforms recent state-

of-the-art methods on TCD-TIMIT in quantitative experiments and

gives performance comparable to the state-of-the art on GRID. The

method also performs best in the user study.

The generated faces depict only mouth movements because the

training datasets (TCD-TIMIT and GRID) are neutral and expres-

sionless. We anticipate our approach could in principle generate

other facial expressions where these are present in the dataset (e.g.

[33]), but have not yet demonstrated that this is the case.
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