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of gist of abnormality in mammograms
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Abstract 

Extraction of global structural regularities provides general ‘gist’ of our everyday visual environment as it does the 

gist of abnormality for medical experts reviewing medical images. We investigated whether naïve observers could 

learn this gist of medical abnormality. Fifteen participants completed nine adaptive training sessions viewing four 

categories of unilateral mammograms: normal, obvious-abnormal, subtle-abnormal, and global signals of abnormality 

(mammograms with no visible lesions but from breasts contralateral to or years prior to the development of can-

cer) and receiving only categorical feedback. Performance was tested pre-training, post-training, and after a week’s 

retention on 200 mammograms viewed for 500 ms without feedback. Performance measured as d’ was modulated 

by mammogram category, with the highest performance for mammograms with visible lesions. Post-training, twelve 

observed showed increased d’ for all mammogram categories but a subset of nine, labelled learners also showed a 

positive correlation of d’ across training. Critically, learners learned to detect abnormality in mammograms with only 

the global signals, but improvements were poorly retained. A state-of-the-art breast cancer classifier detected mam-

mograms with lesions but struggled to detect cancer in mammograms with the global signal of abnormality. The gist 

of abnormality can be learned through perceptual/incidental learning in mammograms both with and without visible 

lesions, subject to individual differences. Poor retention suggests perceptual tuning to gist needs maintenance, con-

verging with findings that radiologists’ gist performance correlates with the number of cases reviewed per year, not 

years of experience. The human visual system can tune itself to complex global signals not easily captured by current 

deep neural networks.

Keywords Gist of abnormality, Gist extraction, Medical image perception, Medical expertise, Medical imaging, 

Perceptual learning, Implicit learning, Statistical learning, Deep neural network

Medical experts often report having a gut feeling about 

the state of a radiograph when briefly looking at cer-

tain medical imaging cases, where they get the impres-

sion that something might be wrong but are not able to 

pinpoint the exact image elements that made them feel 

that way. These anecdotes suggest medical experts might 

rapidly access first impressions of abnormality. How-

ever, there is more than just anecdotal evidence for this 

notion: it is also supported by human observer studies, 

which have shown that radiologists are able to discrimi-

nate between normal and abnormal medical images with 

above-chance accuracy within 200–500  ms for chest 

radiographs (Kundel & Nodine, 1975), pathology images, 

or mammograms (Evans et  al.,  2013a, 2013b), the lat-

ter of which will be the focus of the current study. Thus, 

medical experts indeed possess the perceptual ability to 

rapidly extract a signal that indicates abnormality from 

images in their field of expertise.

This shows an incredible perceptive power, which 

is furthered by research demonstrating that the abil-

ity does not rely on the presence of a localizable signal 

like a lesion. Indeed, radiologists can recognize this gist 
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of abnormality in patches of the abnormal mammogram 

that do not contain a lesion, or even from the breast con-

tralateral to the abnormality (Evans et  al., 2016), both 

of which do not contain any localizable abnormalities. 

Even more striking, when normal mammograms from 

women who went on to develop cancer in the next two 

to three years were intermixed with normal and abnor-

mal mammograms, they were rated as significantly more 

abnormal than the normal images (Brennan et al., 2018; 

Evans et  al., 2019). Thus, the gist of abnormality sig-

nal can be detected without localizable abnormalities. 

For mammograms containing a single mass, it has been 

suggested that radiologists can sometimes access coarse 

location information (Carrigan et al., 2018), although this 

study did remove image artefacts and large calcifications 

from the breast tissue. Together, these findings point to 

a rapidly extracted global signal of image statistics that 

allows medical experts to detect whether the imaged tis-

sue is normal or abnormal, which might provide access 

to coarse location information, but does not require local 

information to function. This description fits closely 

with the process of gist extraction that has been widely 

described in the scene processing literature.

Gist extraction is a perceptual process that allows 

observers to quickly retrieve the global meaning, or gist, 

of visual input. After as little as 20–30 ms, humans can 

accurately discriminate between man-made and natural 

environments, so-called superordinate categories (Jou-

bert et  al., 2009), recognize forests, fields, rivers, and 

other basic scene categories (Greene & Oliva, 2009), or 

determine the presence or absence of broad categories 

such as animals (Bacon-Macé et  al., 2005) or vehicles 

(VanRullen & Thorpe, 2001). Indeed, there is a wide 

range of research showing that humans can extract sur-

prisingly complex information from rapidly presented 

visual information, which fits closely with the observa-

tions in rapid medical image perception.

The key characteristics of gist extraction are that it 

occurs rapidly, globally (across the whole image) with a 

loss of specific local information and does not require 

focused attention. Instead, it occurs without prior loca-

tion of items and in a non-selective manner. For exam-

ple, gist can be extracted from scenes in the periphery 

in parallel with a demanding foveal letter discrimination 

task (Li et  al., 2003) or from two, or even four scenes 

in parallel with minimal drops in performance (Rous-

selet et  al., 2004) or scenes presented in medium-to-far 

periphery (Boucart et al., 2013; Larson & Loschky, 2009), 

clearly showcasing the global and non-selective nature of 

the process. In addition, gist extraction does not require 

prior configuration of the visual system: it occurs when 

monitoring for multiple cue categories simultaneously 

(Evans et  al., 2011a, 2011b), or even when the target 

category is post-cued after a rapid serial visual presenta-

tion (Evans et al., 2011a, 2011b; Potter et al., 2014). How-

ever, it also means that information about the locations 

of specific elements that make up the scene is not con-

sciously accessible (Evans & Treisman, 2005). Overall, 

scene gist extraction clearly occurs rapidly, globally, and 

without the need of focused attention or preselection, 

which fits closely with the observations of what we will 

refer to as the gist of (medical) abnormality.

But which signals are extracted by this global, rapid 

process to contribute to the formation of our gist under-

standing? As every image is built up from spatial fre-

quencies at various orientations, shared categorical 

regularities between a gist category might be captured in 

similarities in spatial structural regularities, as described 

by Portilla and Simoncelli (2000)’s statistics. The statistic 

they define are extracted using spatial filters of specific 

sizes and orientations and are applied to noise to cre-

ate an artificial ‘metamer’, that contains the same spatial 

structural regularities, but no recognizable objects. Such 

a metamer is indistinguishable from the original in two 

alternative forced choice tasks (2-AFC) at 200 ms view-

ing time (Freeman & Simoncelli, 2011), suggesting that 

spatial structural regularities capture essential aspects of 

scenes that are accessed during gist extraction. The idea 

of a statistical signature of an image fits with the Effi-

cient Coding Hypothesis (Simoncelli, 2003), as reducing 

an image to its spatial structural regularities would allow 

efficient encoding of its essential information. Mammo-

gram content is even more closely related to its spatial 

frequency content than scene images, due to most of the 

content being textural. For example, previous research 

has shown that low-pass filtering strongly reduced 

gist extraction, while high-pass filtered mammograms 

retained most gist information (Evans et al., 2016). Spa-

tial structural regularities might be more similar between 

images from the same category and thus allow for flexible 

perceptual rules for gist categorization.

Oliva and Torralba (2001) further explained these spa-

tial structural regularities with a focus on human percep-

tion through gist descriptors, which similarly captured 

spatial frequency patterns on a global spatial scale, the 

global spatial envelope. Gist descriptors can be repre-

sented as scores on scales such as expansiveness and 

openness. Patterns in these feature scores have been 

shown to be more similar within than between scene 

categories. Additionally, false alarms made by observers 

could often be predicted by similarities in gist predic-

tors (Greene & Oliva, 2009). This supports the idea that 

shared patterns of frequencies and textures could play an 

important role in the flexible, yet reliable gist categori-

zation of scenes, which could reasonably be extended to 

mammograms.
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Fig. 1 Scene exemplars for beaches (A) and playgrounds (B) that illustrate the variation in viewing angle, lightning, configuration, and specific 

objects. Mammogram exemplars containing subtle abnormalities (C) or no abnormalities (D) illustrating the variation in shape, size, and textural 

patterns
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To allow for its non-selective and global nature, gist 

extraction must be highly flexible, especially as it must 

generalize across a wide range of exemplars that all fall 

under one gist category. For example, we can recognize 

the gist category of a scene environment in a variety of 

conditions, such as viewing angles, lighting, and specific 

objects (Fig.  1A, B), and the same applies to mammo-

grams, as these can also vary widely in their appearance, 

size, shape, density, and texture (Fig.  1C, D). However, 

previous experience influences our ability to extract gist 

accurately, as human observers performed consider-

ably worse on scene gist extraction for photographs from 

aerial compared to terrestrial viewpoints (Loschky et al., 

2015). Thus, our brain might develop a set of general 

perceptual rules of expected spatial regularities for each 

gist category, based on previous experience, that are flex-

ible enough to generalize across variations, but specific 

enough to allow it to distinguish a beach from a river, or a 

normal from an abnormal mammogram.

However, it is not yet known how people acquire these 

sets of expectations or sensitivity to emergent statistics 

needed to extract the gist of novel categories, whether 

that is a natural scene category, or a more abstract cat-

egorization of a medical image. Since the learning of 

natural scene categories happens during normal devel-

opment, this learning must be able to occur under nat-

ural viewing conditions and should not rely on detailed 

feedback that explicitly explains which features make the 

scene a beach. Rather, the learning would be expected to 

reliably occur with broad feedback consisting of just cat-

egorical information (‘We are at a beach’). This learning 

would be in line with the principles of statistical learning, 

the process through which humans can extract naturally 

occurring statistical patterns in space and/or time (Turk-

Browne et al., 2005).

Indeed, statistical learning leads observers to recognize 

temporal or spatial statistical regularities and patterns in 

auditory or visual stimuli after a multitude of exposures 

without explicit instructions on what to learn (Turk-

Browne, 2012). For example, passively viewing a stream 

of symbols produced strong familiarity feeling for viewed 

patterns (Fiser & Aslin, 2002a). Interestingly, children as 

young as 9 months old pay more attention to arrays con-

taining previously seen shape arrangements than new 

arrangements (Fiser & Aslin, 2002b), suggesting that sta-

tistical learning takes place from early on in our develop-

ment. While the previous examples used simple shapes, 

statistical learning also extends to more complex stimuli, 

such as scene images. Observers report more familiarity 

with scene sequences, such as a kitchen followed by a for-

est, that were previously seen in a visual stream (300 ms 

each) without being instructed to pay attention to the 

order of scene categories (Brady & Oliva, 2007).

Statistical learning is often investigated in the context 

of temporally separated stimuli, but as previously stated, 

it also occurs over spatial regularities, which would form 

the basis for gist category learning. Indeed, observ-

ers become familiar with the configurations of complex 

objects in a grid through repeated exposure (Fiser & 

Aslin, 2001), and they can decrease their reaction time in 

a search task due to repeated configurations of distractor 

arrays without recognition of repeated arrays occurring 

(Chun & Jiang, 1998), as they implicitly learn to recog-

nize the regularities in contextual cues, or in other words, 

invariant visual properties, allowing them to interact 

with the environment more efficiently (Chun, 2000). 

Similarly, someone might learn to recognize the invariant 

global properties of a forest, beach, or even an abnormal 

mammogram through statistical learning of spatial regu-

larities. Statistical learning with global feedback allowed 

observers to recognize camouflaged objects by learning 

the general statistics of the background (Chen & Hegdé, 

2012). Thus, in our definition of statistical, implicit learn-

ing, no assumptions are made about the unconscious 

nature of the learning or complete lack of awareness of 

learned patterns, but only that it consists of learning 

through repeated exposure without explicit instructions 

or feedback on which features or patterns to extract. We 

expect that statistical learning through repeated per-

ceptual exposure to novel categories and their group 

labels would allow observers to acquire the gist of a new 

category.

To investigate the learning of gist signals, a category 

is needed in which observers can be trained to improve. 

Previous training research has shown that the speed of 

gist extraction from natural scenes is already optimized 

and at ceiling levels, as extensive training across 15 days 

did not significantly speed up the reaction time of a 

2-AFC animal absent/present task (Fabre-Thorpe et  al., 

2001). While accuracy increased slightly and average 

reaction time decreased slightly for familiarized stim-

uli, this did not transfer to new stimuli and was mostly 

driven by an increase in speed/accuracy for the most dif-

ficult familiarized targets with RTs above 400 ms. Thus, 

the processes underlying gist extraction for scenes of cat-

egories are already highly efficient in adults and do not 

seem to be able to be further compressed or enhanced. 

Thus, scenes cannot be used to investigate the processes 

involved in the learning of a new category of gist. How-

ever, it does underline the fact that scene categories 

must be deeply familiar to the average human observer, 

which would only be possible if the global gist is learned 

through the rare instances of explicit feedback (‘these 

exact features make this a beach/forest/mountain’) or, as 

we hypothesize, is largely learned through the frequent 

global feedback moments we encounter in daily life (‘you 
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are in a forest’). Interestingly, expertise within a specific 

object category, such as cars, will increase the ability to 

rapidly detect scenes containing that object category, but 

not others (e.g. humans), in a simultaneous presenta-

tion of two scenes (Reeder et  al., 2016), adding support 

to the idea that expertise in a category might influence 

rapid detection of that category, similar to what is seen in 

medical experts.

For the gist of medical abnormality, previous research 

has repeatedly shown that, as expected, naïve observ-

ers are unable to extract this signal (Evans et al., 2013a, 

2013b; Raat et al., 2021), showing that the general popu-

lation is not familiar with this gist signal representing a 

medical abnormality. Interestingly, however, a recent 

study trained naïve observers to recognize obviously vis-

ibly abnormal mammograms (microcalcifications/breast 

mass) with above-chance accuracy after approximately 

600 cases of training (Hegdé, 2020), showing that non-

medically trained observers can develop the perceptual 

ability to recognize obvious abnormalities on free-view-

ing tasks. This indicates that naïve observers can, at the 

very least, learn to recognize perceptual characteristics 

of lesions in mammograms a localized signal, which sug-

gests they might also be able to be trained to recognize 

the gist signals of abnormality in the overall tissue.

Thus, this study’s aims are twofold: to investigate 

whether/how people can learn the categorization of a 

new gist signal (medical abnormality) and to explore 

which perceptual features in mammograms might drive 

this gist signal. We will evaluate whether naïve observers 

can learn to rapidly recognize the gist of a new category 

after repeated perceptual exposure through training with 

global feedback, and if this learning is retained after the 

end of training. Global feedback is defined as the ground 

truth of the trial, without additional instructions on the 

location of abnormalities or potential features that might 

indicate the ground truth. In other words, the task and 

label are both made explicit, but since no further guid-

ance on which content to use is provided, only implicit/

statistical learning can be used. Since the gist of abnor-

mality is a global signal, learning to recognize the gist 

of abnormality should improve performance on not 

only mammograms with visible abnormalities, but also 

on mammograms with only global signals of abnormal-

ity, such as contralateral mammograms or those taken 

prior to the development of localizable cancer, similar 

to the ability of trained medical experts (Brennan et al., 

2018; Evans et al., 2016, 2019). Based on the framework 

of gist development, and the previous findings of Hegdé 

(2020), training is expected to induce learning of the gist 

of medical abnormality, and this is expected to improve 

performance for mammograms with and without local 

abnormalities.

As an extension to the training findings, we will also 

evaluate the performance of a state-of-the-art machine 

learning model on the same images and compare it to 

human perception. Human statistical, implicit learning 

shares key similarities with the concept of deep learning, 

a computational method where each decision is com-

pared to the feedback of a simple label, inducing learning 

through backpropagation of the error between the deci-

sion and ground truth, which can lead to tuning towards 

statistical regularities in the input (Voulodimos et  al., 

2018). Both describe conceptually similar processes that 

could underlie learning without explicit rules or instruc-

tions. As one type of computational modelling, deep 

learning was developed based on observed brain archi-

tecture and processing (Voulodimos et  al., 2018). Deep 

learning models can capture complex visual patterns, 

allowing for object (Ouyang et  al., 2016; Simonyan & 

Zisserman, 2014) and facial recognition (Taigman et al., 

2014).

By comparing human and machine performance on 

specific images, we can learn more about whether these 

models capture the same image features that humans 

might be using—which in turn can be informative for 

human perception. The single breast classifier (SBC) ver-

sion of Wu et al. (2019) deep neural network (DNN) for 

breast cancer screening predicts the probability of both 

benign and malignant abnormalities for individual uni-

lateral mammograms and reaches a high performance 

(AUC malignant: 0.84–0.90, AUC benign: 0.74–0.76) on 

detecting visible abnormalities in a large screening data 

set, which make it suitable for our purposes. We will use 

both the SBC and SBC heatmap (SBC + HM) version, 

which adds heatmaps generated via a secondary network 

which examines smaller pixel patches for their malig-

nancy probability. These heatmaps provide additional 

scrutiny of local information that is expected to improve 

performance, while the SBC without heatmaps would be 

more equivalent to the global information used in gist 

extraction. Comparing the probability scores from both 

the SBC and SBC + HM network to human rating scores 

will allow us to investigate whether they capture similar 

information used by human gist extraction of medical 

abnormality.

Methods
Participants

Nineteen adults without previous medical training or 

experience with viewing mammograms took part in this 

multi-session experiment, of which 4 withdrew their 

participation during the training phase. The remaining 

15 participants were included in the final data set (aged 

20–38, average age 23, 11 female) as they all passed the 

pre-determined exclusion criteria. Exclusion criteria 
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were predefined in order to exclude participants if there 

was significant evidence to suggest inattention, defined as 

(1) having missed more than 30 out of 144 attention tri-

als in total across the 9 training sessions, (2) having failed 

more than 6 out of 16 attention trials in one training ses-

sion, or (3) having rated 85% or more of the trials as 50 

in any testing session or more than 1 training session. 

Attention trials which were randomly interspersed across 

different points in the training sessions briefly showed 

an image of a beach or forest, which the participant was 

asked to categorize, a task that should be trivial if the 

screen was attended.

Participants received a compensation of 50 pounds for 

their time (~ 5 pound per hour) after completing all 10 

sessions and they receive a bonus payment of 10 pounds 

if they passed 95% or more of the attention checks, as an 

incentive for them to pay close attention to each trial. 

Participants all had normal or corrected-to-normal 

vision. All participants had completed at least their A lev-

els or equivalent. The sample size was based on the work 

by Hegdé (2020), which reported significant learning 

during an untimed mammography training experiment 

with 11 and 14 general population participants in two 

separate experiments.

Stimuli and apparatus

The stimuli used in this experiment were 8-bit PNG 

images of four categories of anonymized unilateral mam-

mograms in mediolateral oblique (MLO) or craniocau-

dal (CC) view: normal mammograms of healthy women 

(normal), mammograms with obvious cancerous abnor-

malities (obvious), mammograms with subtle cancerous 

abnormalities such as architectural distortions (subtle), 

mammograms without visibly actionable lesions that are 

thought to contain global features of abnormality (either 

contralateral to a breast with a cancerous abnormality 

(contralateral), or mammograms taken 1 to 6 years prior 

to visible actionable sign of abnormality appearing in a 

subsequent scan (priors)). The labels ‘obvious’ and ‘subtle’ 

were categorized as such by an experienced radiologist 

for the Complex Cognitive Processing Laboratory of the 

University of York. Further information about cancer-

type descriptors can be found in Appendix 1. Contralat-

eral and prior cases were combined into one category, 

as both contain global signals of abnormality and lack 

any localizable lesions. The normal, obvious, subtle, and 

contralateral cases were sourced from the OPTIMAM 

database. The priors were sourced from the Complex 

Cognitive Processing Lab database in collaboration 

with Dr. Bradley of the York Hospital for this study. The 

majority of selected mammograms were acquired with 

Lorad Selenia (75.4%) and Selenia Dimensions (13.5%), 

with a smaller portion of mammograms acquired with 

Senographe Essential (8.9%) and the L30 (1.8%), and a 

minority taken by MammoDiagnost DR (0.3%) and Mam-

momat Novation DR (0.1%). All mammograms that are 

part of the Complex Cognitive Processing Lab database 

of stimuli can be shared with other researchers upon rea-

sonable request to the senior author (K.K. Evans), while 

the OPTIMAM database is also available for research 

purposes through an application process (https:// medph 

ys. royal surrey. nhs. uk/ omidb/ getti ng- access/).

The training set was composed of 5668 unilateral 

mammograms, consisting of 1558 normal, 1019 obvi-

ous, 899 subtle, and 2192 global (1868 contralateral, 

324 prior) images, so approximately 72% of the avail-

able stimuli contained the gist of abnormality. This large 

data set ensured that participants were trained on a wide 

range of mammograms and reduced the number of rep-

etitions. Some repetitions occurred randomly across the 

36 blocks, but never within a block: on average, normal 

mammograms were repeated 0.9 times, obvious, sub-

tle, and contralateral mammograms were repeated < 0.1 

times, and priors were repeated 2 times.

The testing set consisted of 200 unilateral mammo-

grams: 80 normal, 30 obvious, 30 subtle, 30 contralat-

eral, and 30 prior mammograms, meaning 60% of the 

stimuli contained the gist of abnormality signals. The 

same images were used for each test session to equate 

the difficulty level across participants and testing phases, 

and these were not used during training phases. Previous 

research has shown very low recognition memory in both 

general population (d’ prime = 0.36) and radiologists 

(d’ = 0.86) when tested on recognition directly after expo-

sure to 72 mammograms viewed for 3 s each (Evans et al., 

2011a, 2011b). Since we use a larger number of mammo-

grams shown for shorter durations and with longer inter-

exposure intervals no significant memory effects were 

expected, especially since no feedback was given on the 

test cases.

To further characterize the test cases, an experienced 

mammogram reading radiologist assessed each mam-

mogram on radiological perceptual features. The fol-

lowing radiological features were rated: 1) four-point 

BIRAD breast density scale (D’Orsi et  al., 2018) as (I) 

fatty, (II) mixed but predominantly fatty, (III) mixed but 

predominantly glandular, and IV) extremely dense), (2) 

breast pattern as normal or complex, and (3) level of 

concern/suspicion on a five-point scale from (I) normal, 

(II) benign, (III) indeterminate, (IV) suspicious, and (V) 

malignant. Chi-square tests of independence showed no 

significant association between density and image type 

(Χ2(12) = 9.63, p = 0.648). Associations between image 

type and both breast pattern (Χ2(4) = 11.50, p = 0.021) 

and level of concern (Χ2(16) = 138.05 p < 0.001) underline 

that an experienced radiologist could detect radiological 

https://medphys.royalsurrey.nhs.uk/omidb/getting-access/
https://medphys.royalsurrey.nhs.uk/omidb/getting-access/
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perceptual differences in our cases, but that these signals 

were not driven by density. Thus, simply becoming sensi-

tive to the density of mammograms would not result in 

significant increases in performance. This is in line with 

previous studies that also showed a lack of correlation 

between BIRAD density and gist of abnormality ratings 

(Evans et al., 2013a, 2013b, 2016, 2019).

The experiment took place on a computer or laptop 

screen, with the participant using a mouse and keyboard 

to submit rating responses. Since the experiment took 

place online, the exact apparatus varied between par-

ticipants. However, physical stimulus size was equated 

by using a screen calibration method using either diag-

onal screen length or a credit card size matching task 

inspired by the method proposed by Li et  al. (2020) to 

ensure the images were displayed as 12.8  cm/5 inches 

high by 15.75 cm/6.2 inches wide across all sessions and 

participants. The experiment was accessed via a website 

optimized for Firefox and Chrome browsers, where par-

ticipants could log in for each session according to the 

scheduling rules, using their unique user ID.

Procedure

This study used a multi-session within-subject repeated 

measures design. It consisted of a total of 9 training 

phases and three testing phases completed across 10 ses-

sions spread out over multiple days, as is summarized 

in the flow chart of Fig. 2. Before the first session, each 

participant joined an individual video conferencing call 

via Zoom with the experimenter to guide them through 

the instructions and check for any questions or technical 

difficulties. During this conference call, the participants 

also watched a pre-recorded instruction video, explaining 

what a mammogram is and what the experiment task is, 

to ensure all participants received identical instructions. 

The first session started with a pre-training test phase to 

establish a baseline of performance. After the pre-train-

ing baseline, participants immediately performed the first 

training phase, which was followed by 7 subsequent ses-

sions consisting of a training phase each, separated by at 

least 1 and at most 3 days each. The 9th session consisted 

of the last training phase and a subsequent post-training 

test phase to measure potential improvements in perfor-

mance. The tenth and last session took place 7 to 10 days 

after the last training session and consisted of a retention 

test of performance. Participants scheduled their own 

sessions according to these scheduling rules but received 

regular reminder emails to inform them when their next 

session was due.

Both test and training trials followed a similar format 

(Fig. 2). They each consisted of a fixation cross (500 ms), 

the mammogram (500 ms or 500–2500 ms), a mask of the 

filled shape of the mammogram (500 ms), followed by a 

rating scale between 0 and 100 (self-paced). Participants 

were asked to give their decision by adjusting a cursor on 

a rating scale that would indicate how sure they were that 

Fig. 2 Overview of the experimental procedure and flow chart schedule of the experiment. The screens show the presentation order within 

a training trial and the duration or button press to continue. Test trials always showed mammograms for 500 ms and omitted the feedback 

screen but were otherwise identical. The flow chart schedule shows the order of experimental phases for each session, and the number of 

unilateral mammograms viewed per session. In the test phases, 200 mammograms were viewed, while the training phases had 4 blocks with 180 

mammograms each. Sessions 1 to 9 were separated by 1 to 3 days each, while session 10 was delayed by 7 to 10 days after session 9
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a unilateral mammogram was normal or abnormal. This 

rating was then used as a performance measure applying 

signal detection theory methodology. In the training tri-

als, this was followed by a feedback screen (self-paced). 

Feedback was based on the rating decision and ground 

truth, e.g. if the ground truth was abnormal, ratings 

above 50 were counted as correct, and ratings of 50 or 

below were counted as incorrect. The feedback screen 

informed participants whether their submitted rating 

was correct or incorrect, and whether the ground truth 

for the trial was normal or abnormal. The colour of the 

text was green for correct and red for incorrect ratings. 

Participants received no feedback during the test phases.

Each test phase consisted of 203 trials: three practice 

trials with feedback to familiarize them with the task, 

then 200 test trials showing the pre-selected test set in 

a randomized order. The test set consisted of 80 normal 

mammograms, and 30 each of the four abnormal catego-

ries (see stimuli and apparatus for more details). Each 

mammogram was shown for 500 ms before the mask and 

then the rating screen appeared.

Each training phase consisted of a total of 736 trials, 

split into 4 blocks of 184 trials each: 180 mammograms, 

and 4 attention trials dispersed throughout each quar-

ter of the block. The 180 mammograms were randomly 

selected from the training set to show 72 normal mam-

mograms, 27 obvious, 27 subtle, and 54 global abnormal 

mammograms. More global abnormal mammograms 

were shown because these are thought to be both the 

most difficult, and the most likely to contain the global 

gist signal, on which we would expect increased perfor-

mance if indeed a gist signal was learned. The attention 

trials showed easily recognizable colour photographs of 

either a forest or a beach and had an alternative rating 

instruction to rate beaches as 0 and forests as 100. These 

trials also showed feedback based on the response; how-

ever, if the answer was incorrect, the feedback screen was 

shown for at least 10  s before they could continue, and 

the attention trial was repeated until they answered cor-

rectly. Participants were encouraged to take self-paced 

breaks in between each block.

During the training session, the maximum viewing 

time for the mammogram started at 2500 ms in the first 

block to familiarize the participants with the procedure 

and task. Participants were encouraged to press the 

spacebar as soon as they had a first impression to con-

tinue to the mask and then the rating screen (minimum 

viewing time 500  ms). However, this was not required, 

and the mammogram would automatically be replaced by 

the mask at the maximum viewing time. In subsequent 

blocks, maximum viewing time was adapted based on 

performance: if the total d’ prime for the block was above 

0.2, max viewing time was decreased to 90% of the aver-

age actual viewing time of that block, but if d’ prime was 

below 0.05, it instead increased to 105% of the current 

maximum viewing time to a maximum of 2500 ms.

Data analysis

Signal detection measures were used for analysing 

observers’ performance, as these can differentiate per-

formance (d’) and response biases (criterion) in a binary 

classification task, calculated from the proportions of 

hits and false alarms. D’ characterizes the accuracy of 

performance, with a d’ of 0 representing chance and 

higher values representing better performance. Crite-

rion characterizes response bias, with a criterion of 0 

being unbiased, a negative criterion is liberal, meaning 

that in any random trial the participant is more likely 

to label it as abnormal than normal, and the opposite is 

true for a positive criterion, which is conservative, lean-

ing towards rating trials as normal.

First, the proportions of hits and false alarms were 

calculated from the rating and ground truth (normal or 

abnormal) of the trials for each mammogram category. 

The numerical rating for a trial was compared to the set 

threshold of 50 for d’ and criterion: the binary rating 

decision was considered ‘normal’ if below, or ‘abnormal’ 

if above the threshold. D’ was then calculated by sub-

tracting the z-transformed false alarms from the hits 

(d’ = z(hits)−z(false alarms)). A d’ of zero represents 

chance performance, with positive values representing 

above-chance accuracy. Criterion on the other hand 

adds the z-transformed hit and false alarm rates and 

divides them by − 2 (c = (z(hits) + z(false alarms))/−2). 

As the task explicitly instructed participants to rate 

normal trials below 50 and abnormal trials above 50, 

and to rate more extreme values the more confident 

they were, d’ and criterion at threshold 50 were the pri-

mary outcome measures of performance.

To further characterize the shape of the rating curves 

at different points of the experiment, area under the 

curve (AUC) measurements of receiver operating 

characteristic (ROC) curves were used. ROCs were 

constructed by repeating the division of trials into pro-

portions of hits and false alarms using a sliding value 

of normal/abnormal rating thresholds (1–99) and plot-

ting all data points, from which the AUC was then 

calculated in Python. AUC ranges from 0 to 1 and rep-

resents the probability that a randomly chosen abnor-

mal trial will be rated higher than a randomly chosen 

normal trial (Hanley & McNeil, 1982), with chance per-

formance in a raw rating experiment yielding an AUC 

of 0.5 and higher AUCs representing more accurate 

performance.
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The average and median viewing time of different 

screens were also calculated for the mammogram screen 

(training phases only), rating screen, and feedback screen 

(training phases only) for each of the sessions. Outlier 

rating times (outside of mean plus/minus 3 STD of the 

individual session) were excluded.

The main research question of whether naïve observers 

can learn a new category of gist through perceptual train-

ing was evaluated using 3-by-3 two-way repeated meas-

ures ANOVAs with 2 factors: testing moment (3 levels, 

pretest, post-test, and retention test), and image type (3 

levels, obvious, subtle, global) for d’ prime and criterion. 

To evaluate whether participants were engaged with the 

task, attention checks and feedback viewing time were 

evaluated with descriptive statistics. Additionally, to 

investigate potential differences in rating speed, which 

might signify elements of decision-making speed, before 

and after training, a 4-by-3 two-way repeated measures 

ANOVA was performed on rating time across the test-

ing sessions (pre, post, retention) and image types (nor-

mal, obvious, subtle, global). For any repeated measures 

ANOVA with a significant effect of testing moment, 

planned simple contrasts were performed comparing the 

pretest and post-test, and the pretest and retention test, 

as this was the primary research interest. Pearson’s cor-

relations were calculated for d’ across the training phases, 

to evaluate whether individual performance improved 

throughout the training period. Based on the correlation 

coefficient, participants could be divided into learners 

(above 0 coefficient) and non-learners (below 0 coef-

ficient), which were investigated with the main aim to 

explore the main effect of testing phase on performance. 

This method was also used on a bootstrapped simula-

tion of a population making random rating decisions, to 

ensure that any learner vs non-learner effects were not 

caused by chance.

As an additional means of assessing whether partici-

pants outperformed chance, alternative log-linear-like-

lihood ROCs and AUCs were calculated and compared 

to chance levels. This was based on the methodology 

suggested by Semizer et  al. (2018) to handle poten-

tial bimodal distributions that can result from raw rat-

ing experiments more accurately. ROC curves were 

smoothed with a Gaussian kernel, width 10, after which 

log-likelihood ratios were calculated to compute the area 

under the curve (AUC). ROC curves and their AUCs 

are calculated for the real data and 100 randomly boot-

strapped samples (with resampling). If the AUC of the 

real ROC was higher than the  95th percentile of the ran-

domly bootstrapped AUCs, this strongly suggests that 

the participant outperformed chance.

Lastly, as exploratory analysis, we compared the ratings 

by human observers to the probability scores of benign/

malignant findings from a deep neural network (DNN). 

Single unilateral mammograms were evaluated using 

the single breast classifier (SBC) and SBC plus heatmap 

(SBC + HM) version of Wu et al. (2019) DNN for breast 

cancer screening. 16-bit PNG versions of each unilateral 

mammogram were pre-processed to remove annota-

tions and then run through the SBC and the SBC + HM. 

DNN inference was accomplished on Cloud Viking, a 

University of York HPC cluster. The compute nodes used 

were equipped with a NVIDIA V100 GPU. Stimuli sup-

plied to the SBC had higher pixel dimensions than those 

shown to human observers, and a greater bit-depth, due 

to the requirements of the SBC. The output consisted 

of prediction scores for benign and malignant findings 

for each mammogram, ranging from 0 to 1, which were 

transformed to 0-to-100 scale to match the human rating 

scale. AUCs were calculated for the SBC and SBC + HM 

to evaluate overall performance. Image-level and cate-

gory-level comparisons between human and SBC scores 

were made using Spearman’s rank correlations, to inves-

tigate the level of agreement. These correlations were 

compared before and after training, to see if training 

increased the level of agreement between human and 

machine scores.

Results and discussion
Human observer performance in training to detect cancer

Attention and task engagement

Participants were highly attentive during the training 

phases, as indicated by the very low number of incor-

rectly answered attention check trials (median 0, mean 

0.93, std 1.24, max 4) across the 144 total checks in the 

9 training phases. Additionally, participants actively used 

the spacebar to continue to the rating screen, mean-

ing that both their average and maximum viewing time 

rapidly decreased from 2500  ms, with all participants 

showing below 600  ms average maximum viewing time 

during the fourth training phase (see Appendix 2 for 

more details on engagement and viewing times).

Effect of training on performance measures

Figure 3 shows the mean d’, criterion, and AUC for each 

image type pre-training, post-training, and at reten-

tion. Averaged over image types, d’ increased after 

training in 12 out of 15 participants, with a mean d’ of 

0.274 ± 0.058 prior to and 0.378 ± 0.079 after training, 

and 0.255 ± 0.086 at retention. Compared to pre-training, 

rating criterion became more liberal after training in 14 

participants, and remained more liberal at retention in 

13, with a mean criterion of − 0.0377 ± 0.073 prior to, 

− 0.356 ± 0.112 after training, and − 0.284 ± 0.114 at 

retention. Meanwhile, AUC was higher than pre-training 

in 9 out of 15 after training, and in 6 out of 15 at retention, 
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with a mean of 0.582 ± 0.016 prior to, 0.589 ± 0.016 after 

training, and 0.568 ± 0.018 at retention. Similarly, log-

linear-likelihood AUCs were compared to bootstrapped 

chance levels, which showed a sizeable increase in par-

ticipants performing above-chance levels after training 

(see Appendix 3). Additionally, analysis of average and 

median rating times showed that participants took signif-

icantly less time to make rating decisions after complet-

ing their training (see Appendix 4).

3 × 3 repeated measures ANOVAs with the factors 

testing phase (pre, post, retention) and image type (obvi-

ous, subtle, global) were used to investigate the effect of 

training on d’, AUC, and criterion. For d’, this showed evi-

dence of an image type effect (F(1.433,20.066) = 7.451, 

p = 0.007, ηp2 = 0.347 with Greenhouse–Geisser correc-

tion), while the testing phase effect was trending towards 

significance (F(2,28) = 2.816, p = 0.077, ηp2 = 0.167) 

and there was no significant evidence for an interac-

tion effect (F(4,56) = 1.455, p = 0.288, ηp2 = 0.094). 

The image type effect was also observed for AUC 

(F(1.292,18.088) = 11.242, p = 0.002, ηp2 = 0.445), while 

there was no significant evidence for a testing phase 

(F(2,28) = 1.191, p = 0.319, ηp2 = 0.078) nor interaction 

effect (F(4,56) = 2.005, p = 0.106, ηp2 = 0.125). However, 

AUC was seen as less informative than d’ in this experi-

ment, as participants were explicitly instructed to rate 

trials below 50 for normal and above 50 for abnormal 

decisions, meaning the cut-off was fixed. Overall, there 

was no significant evidence of improvements as a result 

of training, but the trending p value for d’ suggests this 

might be due to individual variation in learning ability in 

the testing group, which will be further explored in the 

following section on performance throughout training.

On the other hand, for criterion, the 3 × 3 RM-

ANOVA showed a significant effect of image type 

(F(1.433,20.066) = 7.451, p = 0.003, ηp2 = 0.347 with 

Greenhouse–Geisser correction) and of testing phase 

(F(1.352,18.922) = 11.501, p < 0.001, ηp2 = 0.451 with 

Greenhouse–Geisser correction), but no evidence for an 

interaction effect (F(4,56) = 1.455, p = 0.228, ηp2 = 0.094). 

Overall, the criterion differed significantly between base-

line and both post-training (Estimate: − 0.319, t(28) =  

− 4.571, p < 0.001) and retention (Estimate: − 0.247, 

t(28) =  − 3.542, p = 0.001). In summary, perceptual train-

ing made participants more likely to rate any given trial as 

abnormal. This could indicate that participants tended to 

put more weight on negative feedback when they missed 

a cancerous case than when they incorrectly labelled a 

normal case as abnormal, causing a shift towards liberal 

rating bias. Importantly, however, participants were not 

instructed to preferentially avoid one type of error over 

the other.

Performance throughout training

To investigate performance improvements across train-

ing phases, linear Pearson’s correlations were calculated 

between d’ across image types and training phase, num-

bered 1 through 9 (Fig.  4). Correlation coefficient var-

ied considerably across participants, with an average of 

0.109 ± 0.239. Notably, a positive correlation was found 

between d’ and training phase for 9 participants (average 

0.418 ± 0.172) and a negative correlation of the remain-

ing 6 (average − 0.357 ± 0.245). This indicated that in the 

training groups there might be learners and non-learn-

ers when dividing participants based on their ability to 

Fig. 3 Mean d’, criterion, and AUC across test phases (± 95% confidence intervals) for all participants (n = 15), plotted separately for each abnormal 

image type (‘circle’ Obvious, ‘Bullet’ Subtle, ‘Square’ Global)
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improve their performance on this specific perceptual 

learning task.

To further explore this, analysis of performance meas-

ured by d’ was repeated separately for learners and non-

learners, to see if the learning during the training phases 

translated to improved performance on the test phases. 

For learners, it showed that d’ was affected by both image 

type (F(2, 16) = 13.169, p < 0.001, ηp2 = 0.622) and testing 

phase (F(2,16) = 4.597, p = 0.026, ηp2 = 0.365), without 

interaction effect (F(4,32) = 0.223, p = 0.924, ηp2 = 0.027). 

Planned comparisons for the testing phase effect with a 

simple contrast showed that post-training d’ was signifi-

cantly higher than pre-training levels (difference: 0.209, 

t(16) = 2.971, p = 0.009), while this was not the case at 

retention (difference: 0.068, t(16) = 0.962, p = 0.350) 

(see Fig.  5). On the other hand, for non-learners, d’ 

was not significantly affected by image type (F(1.091, 

5.455) = 3.409, p = 0.118, ηp2 = 0.405) or testing phase 

(F(2,10) = 2.184, p = 0.163, ηp2 = 0.304), but did show evi-

dence for an interaction effect (F(4,20) = 4.254, p = 0.012, 

ηp2 = 0.460). Post hoc comparisons for this interaction 

effect with Holm correction showed that this was driven 

by significant differences between obvious and subtle 

pre-training (d’ difference: 0.579, t = 4.438, p = 0.005), 

and between obvious pre-training and global at retention 

(d’ difference:4.165, t = 4.165, p = 0.008), both of which 

do not signify learning of the gist signal. Thus, for learn-

ers, d’ improved significantly after training and returned 

towards baseline levels at retention, suggesting that the 

learning period was not sufficient for long-term reten-

tion. The fact that these effects were not found for the 

non-learners suggests there is individual variation in peo-

ple’s ability to obtain the gist of a new category through 

this type of online training. Analyses of the criterion can 

be found in Appendix 5.

These results were compared to those expected under 

random chance to further ascertain that the split in 

learning effect was caused by individual differences, 

rather than any selection bias caused by applying a cri-

terion based on Pearson’s correlation coefficients. Ran-

dom rating decisions were simulated across 1000 runs 

of 15 participants each, calculating their performance on 

the pre-training and post-training test phase, and each 

of the 9 training phases, and splitting them into learner 

and non-learner categories with the same Pearson’s 

Fig. 4 Individual progression of d’ across the 9 training phases, with 

the learners in green hues in the left plot and the non-learners in 

orange hues in the right plot

Fig. 5 Mean d’, criterion, and AUC across test phases (± 95% confidence intervals) for the learners (n = 9), plotted separately for each abnormal 

image type (‘circle’ Obvious, ‘Bullet’ Subtle, ‘Square’ Global)
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correlations as used for the real observers. The differ-

ence between pre- and post-training d’ for ‘learners’ was 

on average 0.001 ± 0.006, while for the ‘non-learners’ this 

was 0.002 ± 0.006 (95%CI). This clear lack of improve-

ment in both simulated groups demonstrates that the 

observed split in learners and non-learners cannot be 

explained by random effects.

Our results show that nine sessions of perceptual train-

ing with global feedback were sufficient to induce a small, 

but robust increase in gist recognition across all mam-

mogram categories that was significant in the subset of 

learners. Importantly, this included mammograms that 

did not contain any localizable lesions, as they were con-

tralateral or prior to the development of a visible lesion, 

supporting the notion that this was a global signal, and 

not only the local signal that was captured by the learn-

ers. Thus, perceptual exposure paired with global feed-

back was sufficient to learn the gist of a new category in a 

group of learners.

However, performance returned towards baseline levels 

after 7 to 10 days of retention without exposure to mam-

mograms, indicating that the learned signal is poorly 

retained. While this in itself might seem unfortunate, it 

is evidence that participants underwent perceptual learn-

ing of the global gist signal rather than following any 

rating strategy based on simpler specific local features, 

as a strategy would be expected to be retained. Instead, 

this ‘use it or lose it’ aspect fits with the view of percep-

tual tuning of the visual system to regularly occurring 

image statistics in the mammogram texture that must 

be actively maintained. This finding also converges with 

findings that radiologists’ gist performance correlates 

with cases reviewed in a year, not years of experience 

(Evans et al., 2019). Thus, showing it is recent, continued 

perceptual experience, and not only (medical) knowledge 

that allows gist extraction to occur.

Further underlining the importance of perceptual 

experience rather than knowledge for detection tasks 

is previous research that showed that pigeons could be 

trained to recognize cancer-relevant microcalcifications 

in small patches with above-chance accuracy (Leven-

son et  al., 2015). The findings give supporting evidence 

that mammograms contain perceptual features that can 

be learned through global feedback in implicit learning. 

However, importantly, the pigeons could not learn to dif-

ferentiate benign from suspicious masses nor could they 

detect cancer before the onset of any visibly actionable 

lesions, suggesting a limitation of their perceptual capa-

bilities. Thus, while pigeons could potentially be used as 

a cost-effective medical image observer to, for example, 

investigate the impact of technical aspects such as spa-

tial frequency, colour, or other display parameters on 

performance, as suggested by Levenson et  al. (2015), 

our research instead suggests that training naïve human 

observers might be a more viable alternative, especially 

for more complex medical imaging categorization tasks, 

as humans can learn a complex gist of abnormality, and 

are arguably easier to instruct.

Our findings suggest an important role for individual 

differences in the ability of a participant to learn the 

gist of abnormality, resulting in a group of learners and 

non-learners. This can be compared to the variability in 

gist extraction performance between individual radiolo-

gists, which partially but not fully correlates with recent 

perceptual exposure, suggesting there are additional 

individual factors influencing radiologist performance. 

What’s more, while the learner and non-learner groups 

were identified based on their learning rate across the 

nine training phases, further investigation showed that 

the learner group had an above-chance performance on 

identifying global abnormalities even before any training 

had taken place. This is striking, as no local abnormalities 

are present in these mammograms. Thus, learner partici-

pants might already have been more sensitive to disrup-

tion of image statistic regularities pre-training than their 

non-learner counterparts. The previous literature con-

tains numerous examples of individual differences in per-

ceptual sensitivity. Individual differences in performance 

or sensitivity have been reported across many perceptual 

domains: in visual search tasks (Brock, Xu, & Brooks, 

2011; Sobel, Gerrie, Poole, & Kane, 2007; Wang, Lin, & 

Drury, 1997), face processing (White & Burton, 2022), 

scene processing (Pringle et al., 2004), or even low-level 

visual properties such as colour sensitivity (Emery & 

Webster, 2019), or auditory temporal processing (Shinn-

Cunningham et  al., 2017). In this context, it is not sur-

prising that our participants also showed a range of initial 

sensitivity to the task.

Furthermore, the observed variability in learning rates 

between participants in this study matches the previ-

ous literature. Learning rates differ significantly between 

individuals across seven perceptual tasks in the visual 

and auditory domain, such as Vernier acuity, face view 

discrimination, and auditory frequency discrimination 

(Yang et al., 2020). Importantly, the contribution of par-

ticipant-specific (36.8%) factors is approximately equal 

to the task-specific (~ 38.6%) factors influencing learning 

rate, underlining the large impact individual differences 

can have on learning rates across tasks. Individual differ-

ences in learning rates have also been demonstrated in 

spatial learning in virtual environments (Waller, 2000).

So, learners might have been predisposed to have 

enhanced sensitivity to structural regularities, result-

ing in above-chance pre-training performance, and 

subsequently further improved their performance after 

training. This predisposition might be innate, or due to 
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previous experiences. Innate factors can influence per-

formance and learning, as shown by positive correlations 

between learning rates and cortical thickness in the pos-

terior parietal cortex (PPC) and motion-sensitive area 

MT + of the V5 for a motion discrimination visual search 

task (Frank et  al., 2016), and similarly for the left fusi-

form face area in a face view discrimination task (Bi et al., 

2014). Furthermore, previous experiences such as gam-

ing activity might influence brain plasticity and increase 

general perceptual learning ability (Bavelier et  al., 2012; 

Bejjanki et  al., 2014). Another factor that might have 

made learners more likely to learn the gist signal could be 

differences in strategy. It is possible learners were tuned 

to a more global strategy compared to non-learners 

who might have focused more on local signals. Previous 

research suggested that learners and non-learner groups 

utilized different strategies while being trained on a diffi-

cult grating orientation task (Dobres & Seitz, 2010). Fur-

ther research could further explore differences in initial 

sensitivity, neural markers, and strategies employed by 

learners and non-learners in a gist learning task.

The fact that non-learners did not show improvement 

in their ability to detect the gist of abnormality might also 

be related to the duration of training. Perhaps, these non-

learners would have shown improvement after additional 

training sessions, where this was not the case after nine 

sessions, for example, due to a slower learning rate or 

an initial maladaptive learning strategy. Interestingly, in 

Hegdé’s (2020) design participants trained until a prede-

fined performance level, which took anywhere between 

288 to 936 trials, a factor of 3.25 difference, providing 

evidence for the existence of a range in individual learn-

ing times. However, they also reported that 4 participants 

left part-way through the experiment, leaving it up to 

question if/when these participants would have reached 

the predefined performance level. Thus, while non-learn-

ers in the current study might have lacked the aptitude or 

capacity to learn the new gist category in the task format, 

they might have simply required further perceptual train-

ing before they would have been able to increase their 

performance. Future research could employ a predefined 

performance threshold similar to Hegdé’s (2020) design 

to gain further insight into the variation in perceptual 

exposure needed to learn the gist of a new category.

As briefly discussed above, our results corroborate the 

main findings of a previous training study that showed 

that implicit learning through auditory global feed-

back could induce learning of visual patterns of medical 

abnormality in a free-viewing task (Hegdé, 2020). Nota-

bly, however, the learning described by Hegdé occurred 

much faster, after an average of ~ 600 trials, and resulted 

in a higher performance of d’ 2.5. One factor that might 

explain the difference in performance is the differences 

between the stimuli. The abnormal mammogram cases 

used by Hegdé and colleagues contained localizable, and 

obvious abnormalities with one region of interest at least 

200 pixels wide, whereas the current study used a larger 

variety of mammograms, containing obvious or subtle 

abnormalities, or even only global signals of abnormali-

ties with no visible lesions. Another factor is likely the 

difference in tasks, as free-viewing tasks are generally 

easier than rapid gist extraction tasks. The same effect 

can be observed for medical experts, as their perfor-

mance in laboratory free-viewing experiments reached 

d’ of 2.5 for chest radiographs (Kundel & Nodine, 1975), 

and d’ of 1.9 for mammograms (Evans et  al., 2013a, 

2013b), whereas gist extraction performance reached a d’ 

of 1 for chest radiographs (Kundel & Nodine, 1975), and 

a d’ of 1 (250  ms) and 1.14 (500  ms) for mammograms 

(Evans, Georgian-Smith, et al., 2013a, 2013b). Thus, while 

the current performance did not reach the same levels as 

observed by Hegdé, this can be explained by differences 

in task and stimuli.

A general limitation of the current study was the dura-

tion of the perceptual training. This had to be limited 

for the viability of the research, but consequently, naïve 

participants did not reach the same performance levels 

as expert radiologists. After training, learners reached 

an overall average d’ of 0.43, which is close to a medium 

effect size. Learners did not quite reach the d’ of 0.88–

1.14 reported for expert radiologists on obvious/subtle 

lesions in similar experiments (Evans et  al., 2016, 2019; 

Evans, Georgian-Smith, et  al., 2013a, 2013b), but learn-

ers’ post-training performance on mammograms with 

global abnormalities (d’ 0.57) was remarkably similar to 

the performance of expert radiologists on comparable 

cases in different experiments, such as a reported d’ of 

0.59 on contralateral mammograms (Evans et  al., 2016) 

and a d’ of 0.21 on priors (Evans et al., 2019), demonstrat-

ing the validity of the learning. The difference in perfor-

mance on visible actionable lesions difference could be 

partially the result of specific medical knowledge, or it 

could reflect the differences in the magnitude and dura-

tion of perceptual training. While medical experts do 

not routinely perform gist rating tasks, they have years 

of real-world exposure to the stimuli with an average of 

up to 4000 read mammograms a year in which they focus 

on detecting visible abnormalities, which would involve 

an early non-selective stage of visual processing shaping 

their knowledge of the gist of abnormality.

In the current study, participants became signifi-

cantly more liberal in their ratings after training, 

meaning they were more likely to label any given 

mammogram as abnormal than before. This could 

potentially reflect a self-imposed criterion in which 

participants tried to avoid missing any cancerous 
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cases at the cost of more false alarms—although it is 

important to note that no such instruction was given 

in the experiment. A move to a more liberal deci-

sion criterion may indicate the participants’ feel-

ing of familiarity with images after training and thus 

more willingness to report a signal but it is more likely 

a result of early stages of learning-related changes in 

developing perceptual expertise as observed in some 

perceptual training studies (Aberg & Herzog, 2012; 

Palmeri et al., 2004; Xu et al., 2016).

Another interesting observation was the change in 

rating time, as participants became significantly faster 

after training. This increase in rating speed could 

potentially be a marker of the development of exper-

tise. Decreases in reaction times have previously been 

described to occur in naïve learning to categorize 

aerial photographs (Lloyd et al., 2002) and training on 

face-like artificial object categorization (Wong et  al., 

2009). However, other studies reported no consistent 

changes in reaction time after training subordinate and 

superordinate level bird categorization (Devillez et al., 

2019; Jones et  al., 2020). Additionally, the interpre-

tation of our findings is complicated by the fact that 

this study used a 0–100 rating scale, operated using a 

mouse. Thus, it is also possible that participants habit-

uated to using the slider and became faster at reach-

ing their desired rating score. Overall, this increase in 

rating speed is an interesting observation, but a dif-

ferent design is needed to be certain that this effect 

is caused by changes in decision-making time rather 

than adeptness at the rating task.

Deep neural network performance in detecting cancer

With the aim of further understanding how gist exper-

tise develops we examined whether a DNN, analogous 

to human implicit learning, was able to capture the same 

image statistics that humans might be using when learn-

ing to detect the gist of the abnormal. We use a DNN 

specifically developed for malignancy detection, which 

was pre-trained on mammograms, to evaluate its per-

formance on the mammograms we used for training and 

testing our human learners. This is assessed using the 

DNN’s calculated malignancy probability scores (Wu 

et al., 2019), the probability that that mammogram con-

tained a malignant abnormality. Each unilateral mam-

mogram in the training image set and test image set was 

scored by both the single breast classifier image-only 

(SBC) and SBC + heatmaps (SBC + HM) DNN. The DNN 

also provided benign probability scores, the probabil-

ity that a mammogram contained a benign abnormality, 

which showed the same pattern of results as discussed 

below (see Appendix 6).

Histograms of DNN malignancy probability scores 

show more overlap between the normal and global 

Fig. 6 Distribution of single breast classifier (SBC) and SBC + Heatmap (SBC + HM) malignancy probability scores on the full image set of 

mammograms split into 25 bins for each of the image type categories, with a combined plot showing the overlap between normal (red), obvious 

(green), subtle (blue), and global (yellow) scores
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cases than between the obvious/subtle and normal cases 

(Fig.  6), indicating that both the SBC and SBC + HM 

were less able to distinguish global and normal from each 

other. The finding illustrates an apparent difficulty for 

the SBC and SBC + HM to distinguish the global gist sig-

nal of cancer compared to the visible obvious and subtle 

cancers.

Similarly, AUC calculations (Table  1) show that the 

SBC and SBC + HM both performed well in discriminat-

ing the obvious and subtle mammograms from the nor-

mal mammograms on malignancy probability, whereas 

AUC dropped considerably for the global mammograms, 

although it did remain above-chance levels for all except 

the malignancy-SBC on the global mammograms in the 

test set. The increase in AUC for SBC + HM shows that 

heatmaps improved the DNN’s ability to detect the prob-

ability of malignancy in mammograms, especially in 

more subtle cases. These results on our mammography 

image lend support to the reported increase in perfor-

mance with the added heat map described in the original 

publication (Wu et al., 2019).

Most critically, the low or even at-chance performance 

(AUC: 0.505 SBC on the test set) on the globally abnor-

mal mammograms shows that mammograms with the 

global signal of abnormality are especially obscure and 

difficult to detect. This adds to the significance of our 

finding that human observers were able to learn to detect 

abnormalities in these mammograms, performing above 

chance on the test set with which the SBC struggled 

severely. It also demonstrates that the chosen test set was 

representative of, or potentially even more difficult than, 

the overall mammography data set, and learning was not 

a result of coincidentally easier stimuli in the test set.

Next, a direct comparison of human and SBC scores 

was made to see if similar image statistics might be used 

by human observers and machine learning models. This 

was done by correlating the average rating from the 

‘learner’ group of observers to the malignancy probability 

scores of the SBC and SBC + HM. Spearman’s rank cor-

relations were performed between the DNN malignancy 

probabilities and the average of the human learner scores 

given pre- and post-perceptual training (Table 2). Before 

perceptual training, the correlation between SBC malig-

nancy and human scores was non-significant (p = 0.137), 

while the correlation between SBC + HM and human 

scores was (p = 0.005). At the post-training test, the aver-

age human score across the 200 test mammograms cor-

related significantly with both the SBC and SBC + HM 

malignancy and benign scores (all p < 0.01, see Table 2). 

Comparing pre- and post-perceptual training correla-

tions showed that the correlation coefficient increased 

after the human observers completed their perceptual 

training. After training, human scores more closely 

agreed with the classifier judgements—mammograms 

that were judged as more abnormal by humans also 

received higher malignancy probability scores.

The finding that agreement between human and SBC 

scores increased after training has interesting impli-

cations. It suggests that the gist of abnormality signal 

learned by human observers during perceptual train-

ing is partially captured by the DNN as well. This adds 

validity to our findings, as the human observers learned 

signals that were also detected by an ‘expert’ in the form 

of a DNN, demonstrating they were able to learn image 

features of abnormality. Additionally, the finding that 

the correlation coefficient was markedly higher for the 

Table 1 AUCs for malignancy probability scores for the SBC and SBC + HM for obvious, subtle, and global mammograms versus the 

group of normal mammograms. This is calculated for the training set and the test set separately. Square brackets contain the lower 

and upper bands of 95% CIs

Training set Test set

SBC SBC + HM SBC SBC + HM

Obvious 0.839 [0.842–0.854] 0.897 [0.885–0.909] 0.844 [0.772–0.916] 0.885 [0.824–0.946]

Subtle 0.689 [0.668–0.710] 0.738 [0.719–0.757] 0.701 [0.599–0.603] 0.803 [0.720–0.886]

Global 0.582 [0.563–0.601] 0.598 [0.579–0.617] 0.505 [0.408–0.602] 0.683 [0.596–0.770]

Table 2 Spearman’s rank correlations between the average human learner score pre- and post-training of human observers, and the 

SBC/SBC + HM malignancy probability scores

Pre-training Post-training Difference

Correlation p value Correlation p value

SBC Malignant 0.105 0.137 0.207 0.003 0.102

SBC + HM Malignant 0.198 0.005 0.318 0.000 0.119
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SBC + HM (0.318) than SBC (0.207) suggests that the 

added heatmap might capture additional perceptual fea-

tures used by the trained human observers. This suggests 

that the SBC + HM and similar deep neural networks 

could be used to investigate the perceptual features in 

mammograms contributing to the gist signal, for example 

by performing network dissection, a technique where lay-

ers of the network are investigated to extract the content 

that is activating nodes in these layers (Bau et al., 2020).

Conclusion
In conclusion, perceptual training with global feedback 

can result in the learning of the gist of a new category, 

although there are individual differences in both pre-

training sensitivity to global structural regularities and 

ability to further learn the gist signal, and the new gist 

signal is poorly retained if exposure is not maintained. 

This suggests that gist categorization might be a case of 

‘use it or lose it’, although retention or complete tuning 

of the visual system to a new category might be obtained 

after extended exposure. The exposure in our study only 

amounted to approximately 9  h task time, and 6470 

instances viewed with feedback, which is substantially 

less than in real-world learning of gist categories.

Furthermore, human perceptual expertise on difficult, 

ambiguous cases containing only global signals of abnor-

mality (contralateral, prior) is still not matched by state-

of-the-art neural networks, as indicated by the markedly 

lower, or even at-chance performance of the DNN on 

mammograms with global abnormalities that human 

observers were able to learn in our perceptual training 

paradigm. The global signal of abnormality is extremely 

difficult to detect and requires considerable percep-

tual expertise. On the other hand, we also observed an 

increase in agreement between the human observers and 

DNN after perceptual training, which indicates a poten-

tial overlap in image statistics used to classify mammo-

grams as normal or abnormal. Finding out what these 

image statistics are could teach us more about the gist of 

abnormality and could help find ways to improve image 

filtering for both human observers and machine learn-

ing models. Together, these findings solidly emphasize 

the need for continued research into medical perceptual 

expertise with human observers in its own right, espe-

cially into more ambiguous global signals that would be 

vital for early cancer detection. But it also reinforces the 

need of combining these lines of research with the thriv-

ing field of machine learning research, especially since 

recent research has suggested benefits of combining radi-

ologists’ gist ratings with machine learning models to 

reach higher levels of performance than either could on 

their own (Gandomkar et al., 2021; Wurster et al., 2019).

We based our study on drawing a clear parallel between 

scene gist and the gist of abnormality in radiographs, and 

it would be beneficial to generalize the current results on 

learning to a wider area of gist extraction. The parallels 

between the two types of gist extraction would imply that 

the current findings of implicit learning should generalize 

to the learning of scene gist as well. However, as far as the 

authors are aware, this area has not yet been investigated in 

the known literature. A potential avenue to answering this 

question for scene gist could be developmental research 

with young children, especially as previous research has 

shown that infants already exhibit signs of statistical learn-

ing (Fiser & Aslin, 2002b). However, previous research on 

the development of rapid perceptual processing is very 

limited (but see Sweeny et al. (2015). Overall, developmen-

tal research often suffers from complications, such as com-

munication of task instructions or difficulties in directing 

attention, a lack of control over previous exposure, individ-

ual differences, and other developmental processes occur-

ring at the same time (Johnson, 2011; Maurer, 2013). These 

factors make it less suitable to investigate the acquisition of 

the gist of a novel category.

Overall, the current study shows a strong case for how 

implicit learning would allow the learning of a new cat-

egory of any gist, including scenes. What is more, our 

finding that gist extraction abilities can develop separately 

from medical knowledge reinforces the viability of the 

idea, suggested by Voss et al. (2010), of using trained naïve 

observers, not to ‘usurp’ radiologists’ ratings, but to create 

a more accessible ‘model observer’ to use for further dis-

semination of the gist of abnormality signal. This training 

regime can be used for training of novice radiologists and 

screening radiographers or even as a refresher training 

for expert radiologists who over their careers see a con-

siderable reduction in cases they read. Further research 

is needed to measure the effectiveness of our training 

paradigm on these populations, and to explore explana-

tory parameters for individual differences in pre-training 

performance, learning ability, and learning rate/speed, 

for example by investigating the potential variation in the 

length of perceptual training required to achieve percep-

tual learning across different participants.

Appendix 1: Mammographic descriptors of obvious 
and subtle cases
Ductal carcinoma in  situ (DCIS) grade can be clas-

sified as high, intermediate, or low. Percentages of 

DCIS grades in obvious and subtle mammograms can 

be found in Table  3). Tumour surfaces can be posi-

tive, negative, or borderline (not strongly + or −) for 

human epidermal growth factor receptor 2 (HER-2), 
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and positive or negative for oestrogen and progester-

one receptors (see Table 4 for percentages in the obvi-

ous and subtle cases). The presence or absence of these 

receptors in the tumour can impact both the cancer 

severity and viable treatment options. For example, 

the so-called triple-negative cancers, without HER-2, 

progesterone, and oestrogen receptors, currently lack 

approved targeted therapy and overall have poorer 

long-term outcomes (Sharma, 2016).

Appendix 2: Engagement and attention in training 
phases
As mentioned in the main document, participants rou-

tinely used the spacebar to manually continue to the rat-

ing screen before reaching the maximum viewing time 

(2.5 s) in the first training phase. This occurred on aver-

age on 234 out of 720 trials (95% CI 138–330), indicating 

active engagement with the task instruction to view the 

mammogram until they formed a first impression to base 

their rating on. As a result, both average and maximum 

viewing time rapidly decreased, as is plotted in Fig. 7.

Additionally, participants viewed the feedback screen 

for an average of 741 ± 72.4  ms per trial across the 9 

training phases, which is estimated to be sufficient to 

perceive the ‘right or wrong’ global feedback, due to the 

colour-coded and regular nature of the feedback text 

combined with the recency of the rating choice as feed-

back was shown immediately after confirming the rating. 

In conclusion, there was clear evidence of attention to 

and engagement with the training phases.

Table 3 Percentage of mammograms with a high, intermediate, 

low, or unassessed DCIS grade for the obvious and subtle 

subsets of the image set. Where descriptors were not available 

in the OPTIMAM database, the mammogram was classified as 

unassessed

Obvious Subtle

High 26.3 14.7

Intermediate 25.2 21.8

Low 8.7 7.9

Unassessed 39.7 55.6

Table 4 Percentage of mammograms that were positive, negative, borderline, or unassessed DCIS grade for the obvious and 

subtle subsets of the image set. Where descriptors were not available in the OPTIMAM database, the mammogram was classified as 

unassessed

HER-2 Progesterone receptor Oestrogen receptor

Obvious Subtle Obvious Subtle Obvious Subtle

Positive 5.4 3.5 66.5 55.8 58.4 49.7

Negative 58.8 51.1 6.3 3.3 11.9 7.4

Borderline 0.5 0.1 N/A N/A N/A N/A

Unknown 1.2 1.7 1.4 1.6 1.6 1.7
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Fig. 7 Maximum and average viewing time in milliseconds per participant at the end of each training phase. Maximum viewing time is calculated 

for the fourth block of the session. Individual lines are plotted, while the dashed black line represents the group average
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Appendix 3: Log‑linear likelihood ratios ROC 
curves
To evaluate whether individual participants’ performance 

was significantly above-chance the AUCs of log-linear 

likelihood (LLR) ROCs were compared to the AUC of 

the  95th percentile AUC of simulated ROCs. As given 

in Table  5, the number of participants that performed 

above-chance increased from 5 to 11 overall after train-

ing, an increase driven by an increase from 1 to 7 out of 9 

learners, while no change was observed for non-learners. 

This analysis shows that training caused most partici-

pants to outperform a very strict definition of chance lev-

els, especially the subgroup of learners, in line with the 

significant testing phase effect observed for d’.

Appendix 4: Effect of training on rating time
To evaluate if perceptual training affected partici-

pants’ decision-making speed, a 4 × 3 repeated meas-

ures ANOVA was conducted on the average rating 

time with the factors image type (normal, obvious, 

subtle, global) and testing phase (pre-training, post-

training, and retention). Average rating time was sig-

nificantly affected by test phase (F(1.08,15.10) = 25.590, 

p =  < 0.001 with Greenhouse–Geisser correction, 

ηp
2 = 0.646), but not by image type (F(3,42) = 1.631, 

p =  < 0.001, ηp
2 = 0.104), nor was there evidence for 

an interaction effect (F(6,84) = 0.594, p =  < 0.001, 

ηp
2 = 0.041). Rating time went down significantly 

after training compared to pre-training (differ-

ence = − 1291 ms, p < 0.001) and remained that way at 

retention (difference = − 1158  ms, p < 0.001), as shown 

by a simple contrast planned comparison. Due to the 

lack of evidence for an image type effect, the main 

effect of testing phase on average rating time is visual-

ized in the bar graphs in Fig. 8. The same pattern per-

sisted for median rating time.

Median rating time was also evaluated using a 4 × 3 

repeated measures ANOVA with the factors image 

type (normal, obvious, subtle, global) and testing phase 

(pre-training, post-training, and retention). Median 

rating time was significantly affected by test phase 

(F(1.04,14.49) = 24.590, p =  < 0.001 with Greenhouse–

Geisser correction, ηp
2 = 0.637), but not by image type 

(F(3,42) = 1.307, p = 0.285, ηp
2 = 0.085), nor was there 

evidence for an interaction effect (F(6,84) = 0.284, 

p = 0.943, ηp
2 = 0.020). Rating time went down signifi-

cantly after training compared to pre-training (differ-

ence = − 1160 ms, p < 0.001) and remained that way at 

retention (difference = − 1069  ms, p < 0.001), as shown 

by a simple contrast planned comparison and visual-

ized in Fig. 9. Thus, participants took significantly less 

time to make rating decisions after completing their 

training.

Table 5 Number of participants performing at above-chance 

levels (real AUC >  95th% simulated AUC) at each testing phase, 

split-up for learners, non-learners, and total

Pre-training Post-training Retention

Learners 1 (11.11%) 7 (77.77%) 5 (55.55%)

Non-learners 4 (66.66%) 4 (66.66%) 2 (33.33%)

Total 5 (33.33%) 11 (73.33%) 7 (46.66%)

Fig. 8 Individual average rating times are shown at pre-training 

(pre, green), post-training (post, orange), and retention (ret, purple) 

testing phases, as connected dot-clouds per participant-image type 

combination and boxplots to show both individual patterns and the 

population distributions

Fig. 9 Individual median rating times are shown at pre-training 

(pre, green), post-training (post, orange), and retention (ret, purple) 

testing phases, as connected dot-clouds per participant-image type 

combination and boxplots to show both individual patterns and the 

population distributions
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Appendix 5: Criterion for learners and non‑learners
For learners, it showed that the criterion was affected by 

both image type (F(2, 16) = 13.169, p < 0.001, ηp2 = 0.622) 

and testing phase (F(2,16) = 12.509, p < 0.001, 

ηp2 = 0.610), without interaction effect (F(4,32) = 0.223, 

p = 0.924, ηp2 = 0.027). Planned comparisons with a 

simple contrast showed that post-training criterion was 

significantly lower (more liberal) than pre-training levels 

(estimate: − 0.345, t(16) = 4.703, p < 0.001), and remained 

this way at retention (estimate: − 0.280, t(16) = 3.826, 

p = 0.001). However, for non-learners, criterion was 

not affected by image type (F(1.091, 5.455) = 3.409, 

p = 0.118, ηp2 = 0.405) nor testing phase (F(2,10) = 2.002, 

p = 0.186, ηp2 = 0.286), but did show an interaction effect 

(F(4,20) = 4.254, p = 0.012, ηp2 = 0.460).

Appendix 6: DNN probability of benign 
abnormality
Histograms of DNN benign probability scores show 

more overlap between the normal and global cases than 

between the obvious/subtle and normal cases (Fig.  10), 

indicating that both the SBC and SBC + HM were less 

able to distinguish global and normal from each other. 

Similar to the malignancy probability scores, this again 

illustrates the difficulty for the SBC and SBC + HM to 

distinguish the global gist signal of cancer compared to 

the visible obvious and subtle cancers.

AUC calculations for benign probabilities (Table  6) 

show that the SBC and SBC + HM both performed well 

in discriminating the obvious and subtle mammograms 

from the normal mammograms on malignancy prob-

ability, whereas AUC dropped considerably for the global 

mammograms, although it did remain above-chance lev-

els (~ 0.55).

Spearman’s rank correlations between the DNN malig-

nancy probabilities and the average of the human learner 

scores given pre- and post-perceptual training (Table 7) 

showed a marked increase in correlation after percep-

tual training. After training, human scores more closely 

agreed with the classifier judgements—mammograms 

that were judged as more abnormal by humans also 

received higher benign abnormality probability scores.

Appendix 7: DNN correlation with non‑learners
Correlating SBC scores with the average ratings of the 

learner group showed that the correlation went up post-

training. The same correlations were performed for the 

average ratings of the non-learners (Table 8).

Fig. 10 Distribution of single breast classifier (SBC) and SBC + Heatmap (SBC + HM) benign abnormality probability scores on the full image set of 

mammograms split into 25 bins for each of the image type categories, with a combined plot showing the overlap between normal (red), obvious 

(green), subtle (blue), and global (yellow) scores
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These results show two things. Firstly, before training, 

the correlation between SBC + HM malignancy predic-

tions and the non-learners was 0.301, compared to 0.198 

for learners. This suggests that the non-learners might 

have started out sensitive to part of the same signals 

used by the SBC, and especially the SBC + HM. Poten-

tially, this could be caused by more focus on localized 

signals, as implied by the increased correlation with the 

added heatmap—which adds scrutiny to local features. 

Secondly, the correlation between non-learner and SBC 

goes down after training and becomes non-significant for 

all four comparisons. This was unexpected and could be 

the result of a maladaptive learning strategy, where non-

learners incorrectly establish certain perceptual features 

as normal/abnormal and this leads them to not only fail 

at learning, but additionally diverge from the SBC pre-

dictions. However, since this data set only contained six 

non-learners, a larger, more structured approach would 

be needed to further investigate potential maladaptive 

strategies in such a perceptual learning task.

Abbreviations

AUC   Area under the curve

ROC  Receiver operating characteristic

SBC  Single breast classifier

SBC + HM  Single breast classifier plus heatmap
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Significance statement

Breast screening plays a vital role in the early diagnosis of breast cancers, 

which is essential for improving patient outcomes. Correct interpretation of 

mammograms relies on both medical knowledge and perceptual expertise. 

Perceptual expertise is thought to increase the effectiveness of gist extraction: 

the ability to recognize global properties of an image after brief exposure. 

Indeed, expert radiologists can detect a global ‘gist of abnormality’ from 

mammograms after just 250 ms with above-chance accuracy, even when no 

visible lesions are present, for example in breasts contralateral to breast with 

cancer, or breasts that will develop cancer in the nearby future (Evans et al., 

2016, 2019). This suggests that the gist of abnormality could be of clinical 

use as a risk factor. However, gist extraction performance varies between 

radiologists, correlating with the number of mammograms screened within 

a year, suggesting an important role of perceptual exposure. How human 

Table 6 AUCs for the probability of benign abnormality for the SBC and SBC + HM for obvious, subtle, and global mammograms 

versus the group of normal mammograms. This is calculated for the training set and the test set

Training set Test set

SBC SBC + HM SBC SBC + HM

Obvious 0.817 [0.801–0.833] 0.818 [0.802–0.834] 0.818 [0.739–0.897] 0.785 [0.698–0.872]

Subtle 0.701 [0.681–0.721] 0.670 [0.649–0.691] 0.670 [0.563–0.777] 0.764 [0.673–0.855]

Global 0.569 [0.550–0.588] 0.555 [0.536–0.574] 0.555 [0.459–0.651] 0.547 [0.451–0.643]

Table 7 Spearman’s rank correlations between the average human learner score pre- and post-training, and the SBC/SBC + HM 

probabilities of benign abnormality

Pre-training Post-training Difference

Correlation p value Correlation p value

SBC Benign 0.286 0.000 0.373 0.000 0.087

SBC + HM Benign 0.280 0.000 0.402 0.000 0.122

Table 8 Spearman’s rank correlations between the average human non-learner score pre- and post-training, and the SBC/SBC + HM 

probabilities of malignant or benign abnormality

Pre-training Post-training Difference

Correlation p value Correlation p value

SBC Malignant 0.158 0.026 − 0.038 0.592 − 0.196

SBC + HM Malignant 0.301 0.000 0.099 0.161 − 0.201

SBC Benign 0.310 0.000 0.104 0.142 − 0.206

SBC + HM Benign 0.342 0.000 0.105 0.140 − 0.237
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observers develop the ability to extract the gist of new categories is unknown. 

Understanding the development of perceptual expertise for gist extraction 

could be leveraged to enhance the training of radiology residents and could 

be used to train perceptual experts for the purpose of triage or evaluat-

ing risk assessment. The current work provides a proof-of-concept training 

paradigm that was able to induce the learning of the gist of abnormality in 

naïve observers without any medical training, using perceptual exposure and 

global feedback. Our findings support the idea that gist extraction abilities can 

develop separately from medical knowledge and can be developed through 

simple, perceptual training paradigms.
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