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Integrating the Kondo correlation and spin-orbit interactions, each of which have individually offered

unprecedented means to manipulate electron spins, in a controllable way can open up new possibilities for

spintronics. We demonstrate electrical control of the Kondo correlation by coupling the bound spin to leads

with tunable Rashba spin-orbit interactions, realized in semiconductor quantum point contacts. We observe

a transition from single to double peak zero-bias anomalies in nonequilibrium transport—the manifestation

of the Kondo effect—indicating a controlled Kondo spin reversal using only spin-orbit interactions.

Universal scaling of the Kondo conductance is demonstrated, implying that the spin-orbit interactions

could enhance the Kondo temperature. A theoretical model based on quantum master equations is also

developed to calculate the nonequilibrium quantum transport.

DOI: 10.1103/PhysRevLett.128.027701

The Kondo effect—which entails the many-body inter-
action between localized spins and their nearby itinerant
electrons—is continuously of central interest in condensed
matter physics. Not only is it a historical challenge with
many still unresolved puzzles [1,2], but it also provides a
powerful laboratory to study quantum spin correlations and
coherence that could extend over micrometers [3], as well
as to investigate other strongly correlated electronic sys-
tems [4,5]. One of the most intriguing problems among all
Kondo systems is when it is associated with spin-unbal-
anced itinerant electrons. This has generally been realized
by coupling the localized spin in a quantum dot to magnetic
reservoirs, e.g., using ferromagnetic contacts and tuning the
Kondo resonance through exchange-driven energy renorm-
alization associated with quantum fluctuations [6–10]. This
kind of system holds the key for controllable single-spin
reversal as achieved by the use of ferromagnetic leads [8,9].
However, for greater impact in spin-related quantum
technologies it is essential for the Kondo spin reversal to
be controlled electrically.
Spin-orbit (SO) coupling—which links the electron spin

to its motion—provides an ideal method of spin manipu-
lation and has played a crucial role in both fundamental
science and the advent of technologies. Intuitively, the
combination of SO coupling and the Kondo correlation is a
powerful paradigm for more comprehensive spin manipu-
lation. However, thus far very few systems have been
shown to harbor both effects, and most of them are in

emergent materials [11–13]. The experimental demonstra-
tion and implementation of such interplay in a controllable
nanostructure with single magnetic impurity is challenging.
Prior experiments have been limited to measurements of
multielectron quantum dots (QDs) with SO splitting of the
energy levels [14,15] focusing on the role of the SO coupling
in the QD energy spectrum, with the Kondo resonance
merely a tool to probe the energy spectrum. In that case, the
itinerant electrons are from the conventional spin-degenerate
reservoirs in a well-established Kondo system. The inability
to tune the SO coupling while retaining the electron number
(and thus the unpaired electron spin) within the QD also
creates difficulties for investigating their interplay and for
realizing the Kondo spin reversal.
Here, we report on a system in which the Kondo

correlation is coupled to and controlled by the leads with
SO coupling. It is essential to study whether the SO coupling
in the reservoirs can influence the Kondo correlation through
exchange-driven energy renormalization, as previously
achieved by the use of magnetic leads [6–10]. The study
is accomplished using quantum point contacts (QPCs) with
strong Rashba SO coupling, a one-dimensional (1D) con-
striction defined electrostatically in a two-dimensional elec-
tron gas of an InGaAs/InAlAs heterostructure [16], where
the electric field leading to the Rashba SO coupling arises
from the structural inversion asymmetry of the heterostruc-
ture [27,28]. QPCs are proven to be a powerful means
for spin manipulation [29–31] and realization of the spin

PHYSICAL REVIEW LETTERS 128, 027701 (2022)

Editors' Suggestion Featured in Physics

0031-9007=22=128(2)=027701(7) 027701-1 © 2022 American Physical Society



transistor [30]. The Kondo effect can also occur in QPCs
when conduction electrons interact with a quasibound spin
that arises within a double-barrier potential of the QPC
channel [32–35], which is shown schematically in Fig. 1(a).
The microscopic origin of the quasibound state can be
attributed to strong electron interactions associated with
either Friedel oscillations [33,35] (a scenario recently also
linked to the van Hove ridge [36]) or backscatterings induced
by the potential barrier profile [34], although no consensus
has yet been reached. Its interplay with SO coupling occurs
regardless of its detailed microscopic origin. The Kondo
effect manifests in QPCs as a zero-bias anomaly (ZBA), a
peak in conductance centered around zero source-drain bias
voltage (Vsd ¼ 0). The peak splits as a function of in-plane
magnetic field and is suppressed as T increases at a rate
determined by the Kondo temperature TK , similar to the
manifestation of the Kondo effect in quantum dots. Prior to
our work, most research in this context used systems with
negligible SO coupling. One advantage of using QPCs over

quantum dots is that the localized spin moment is strongly
coupled to the neighboring electron reservoirs since the
quasibound state within the QPC is shallow [33,34]; thus, the
exchange-driven energy renormalization of the Kondo res-
onance is more pronounced. Figure 1(b) shows a simplified
device schematic.
Figures 1(c)–1(e) show schematic energy-level diagrams

to illustrate the interplay between SO coupling and the
Kondo effect. The Kondo resonance can be represented
by a peak in the density of states (DOS) at the source and
drain chemical potentials (μs and μd) arising from the
interaction between an Anderson magnetic impurity and
conduction electrons. Figure 1(c) represents the normal
Kondo circumstance in which the localized spin is coupled
to spin-degenerate leads, and the characteristic conductance
enhancement, i.e., single-peak ZBA centered on Vsd ¼ 0, is
expected [Fig. 1(f)]. However, when the leads are spin
unbalanced—e.g., by ferromagnetism [6–9], spin accumu-
lation [10], or presumably the SO couplings as presented
here—a spin splitting of Kondo resonances is expected
even without any external magnetic field [Fig. 1(d)]. For a
finite dc source-drain bias eVsd equal to the spin splitting
ΔESO ¼ 2αRkx, where αR parametrizes the strength of SO
coupling and kx is the electron wave vector, the local
resonances in the source and drain DOS align as shown
in Fig. 1(e) for the Kondo spin reversal to occur. This leads
to a double-peak ZBA with peaks at eVsd ¼ �2αRkx
[Fig. 1(g)].
Figure 1(h) shows the differential conductance G ¼

dI=dVac for a QPC at T ¼ 22 mK in the linear regime
(Vsd ¼ 0), where I is the source-drain current. In addition
to standard conductance plateaus near integer multiples of

2e2=h due to the 1D quantization of energy levels, a plateau
is present roughly halfway between G ¼ 0 and the first

conductance plateau. Plateaus at 0.5 × 2e2=h have been
observed in QPCs with strong SO coupling attributed to
spin polarization driven by the SO coupling and electron-
electron interactions [29], as has the conductance feature
known as the 0.7 anomaly [37,38], which on some

occasions is visible near 0.5 × 2e2=h when SO interactions
are strong [39]. Figure 1(i) shows the nonlinear conduct-
ance G as a function of Vsd at different split-gate voltage
Vsg. The classic single-peak ZBA, which is commonly

observed in QPCs, occurs at certain Vsg, especially at lowG

when the 1D channel just opens, indicating relatively weak
SO coupling in this regime. An example is highlighted in
red. However, further from the pinch-off voltage when

G > ∼0.5ð2e2=hÞ, a double-peak ZBA emerges (the blue
traces mark two examples). An increase of the peak
splitting with G is observed for double-peak ZBAs and
may be explained by a change in ΔESO due to αR and kF
increasing with carrier density via the gate voltage, where
previous measurements in an identical heterostructure show
αR increasing with density [30,31]. A qualitatively similar
transition from the single-peak to double-peak ZBAs with

FIG. 1. Illustrations of the Kondo and spin-orbit-coupled
system and zero-bias anomalies. (a) Schematic profile of the
bound-state potential in the QPC. (b) Simplified circuit sche-
matic. ER and BSO indicate directions of the electric field from the
structural inversion asymmetry and the effective magnetic field
due to SO coupling, respectively. (c)–(e) Energy-level diagrams
of a Kondo impurity coupled to source and drain leads at three
situations described in the text. (f),(g) Sketches of G against Vsd

in the absence and presence of SO coupling, respectively.
(h) QPC conductance at Vsd ¼ 0. Plateaus are slightly suppressed
below expected values due to imperfect transmission through the
QPC. (i) QPC conductance as a function of Vsd, with Vsg stepped

incrementally between traces.
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conductance has been observed in a GaAs QPC [35] but is
attributed to the two-impurity Kondo effect since the SO
coupling is negligibly small. Hence, deeper investigation
into these double-peak ZBAs for our high SO material is
essential to determine its origin.
The double-peak ZBA based on a scenario of the Kondo

effect and SO coupling has a unique behavior in the
influence of magnetic field. For the case where it is the
time-reversal-symmetry breaking field (including ferro-
magnetism and spin accumulation) that leads to the spin
splitting of Kondo resonances (and hence the splitting of
ZBA), an external magnetic field will either enlarge or
reduce the splitting depending on the orientation relative to
the net polarization of the Kondo system. Although the SO
interaction (which can also be viewed as an effective
magnetic field BSO), is also expected to lift the degeneracy
and split the Kondo-enhanced conductance, a crucial
difference is that BSO and its resulting spin splittings are
momentum dependent and, more importantly, time reversal
symmetric. For external B parallel (Bk) to BSO, the spin

splitting is simultaneously enlarged and reduced since B is
parallel to BSO for one momentum (kF) but antiparallel to
its opposite counterpart (−kF). The two spin subbands
of 1D leads are simply shifted vertically by the Zeeman
energy. A distinctly different B dependence is predicted for
B perpendicular (B⊥) to BSO since the two spin subbands
become mixed and anticross [40,41]. The spin gap between
these spin states in the eigenbasis is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2

⊥
þB2

SO

p

and hardly varies in energy while B⊥<BSO;

therefore, the peaks should barely change with B⊥.
Figures 2(a) and 2(b) show G as a function of Vsd at

various Bk for the single- and double-peak ZBAs, respec-

tively. In Fig. 2(a), the classic splitting of the Kondo-
induced single-peak ZBA with increasing Bk is observed.

The splitting is consistent with the magnetic-field depend-
ence of the Kondo effect [32], i.e., eΔVsd ≈ 2g�μBBk,

where ΔVsd is the peak separation and Landé g factor g
� ¼

9 for InGaAs [42]. For the double-peak ZBAs [Fig. 2(b)],
the two peaks merge as Bk increases, forming a single peak

around Bk ≈ 1.4 T, and continue to move past each other

as Bk increases further. Their evolution is quantitatively

consistent with a Zeeman splitting 2g�μBðBk − BSOÞ, with

an offset BSO accounting for the zero-field splitting. The
same double-peak ZBA dependence with Bk for a second

QPC is shown in the Supplemental Material [16].
Applying B⊥ perpendicular to BSO has a distinctly

different effect. The single-peak ZBA [Fig. 2(c)] splits
as B⊥ increases with separation equal to twice the Zeeman
energy, similar to Bk. However, for the double-peak

ZBA [Fig. 2(d)], the peak positions hardly change as B⊥
increases from 0 to 0.8 T. The peaks remain at
Vsd ≈�0.6 mV, illustrated by the vertical lines, and have
almost fully disappeared by B⊥ ¼ 0.8 T. The fact that the
ZBAs survive to a much smaller B⊥ than Bk may be due to

the mixing and significant modification of the two spinful
subbands driven by the interplay between the B⊥ and SO
interactions [40,41]. The SO effective magnetic field in
Fig. 2(d) is estimated to be BSO ¼ 1.15 T using eΔVsd ¼
2g�μBBSO assuming that the zero-field splitting is wholly
attributed to SO coupling.
Figures 2(e) and 2(f) show color maps of G as a function

of Bk and Vsd for the case of a single-peak ZBA and a

double-peak ZBA, respectively. Light (dark) colors indicate
high (low) G, such that peaks in G correspond to bright
diagonal regions. Dashed lines with a slope given by
the Zeeman splitting of Kondo resonances are overlaid.
Figure 2(e) shows the single-peak ZBA centered on
Vsd ¼ 0 at Bk ¼ 0 T splits at a rate of eVsd ¼ �gμBBk

with Bk (marked with overlaid dashed lines), following the

Zeeman splitting expected for Kondo resonances. For the
double-peak ZBA [Fig. 2(f)], each of the two peaks split
and dissolve into two crossing branches as Bk increases,

although the outer pair of branches (i.e., at larger Vsd) are
more blurred since the electrons are in a highly non-
equilibrium transport region and may be heated by the large
source-drain bias. These right and left moving branches
follow the Zeeman splitting for SO-coupled Kondo reso-
nance and represent energies eVsd ¼ �gμBðBk þ BSOÞ,

with the offset gμBBSO¼2αRkx, which changes sign as
the momentum reverses. The evolution of ZBA peaks is thus
mirror symmetrical across both Bk and Vsd. The agreement

FIG. 2. Magnetic-field dependence of the single- and double-
peak zero-bias anomalies. (a),(b) G as a function of Vsd for
single- and double-peak ZBAs, respectively. The external
magnetic field is applied parallel (Bk) to BSO and stepped

between traces. (c),(d) Same as (a) and (b) but for the external
magnetic field applied perpendicular (B⊥) to BSO. In (a)–(d)
data are offset vertically for clarity. (e),(f) Color maps of G as a
function of Bk and Vsd for the single- and double-peak ZBA,

respectively. The positions of the ZBA peaks are well described
by dashed lines eVsd ¼ �gμBðBk þ BSOÞ for (e) BSO ¼ 0 and

(f) BSO ¼ �1.8 T. BSO in (f) differs from the estimate for
Fig. 2(d) since data are measured at different Vsg and G. All

data are obtained at T ¼ 22 mK.
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between the dashed lines and bright regions highlights the
cohesiveness between the data and a scenario given by the
Kondo effect with SO coupling. This is distinctly different
from the double-peak ZBAs induced by a time-reversal-
symmetry-broken spin imbalance and is also the opposite of
that expected for the two-impurity Kondo system [35], in
which the evolution with B depends mostly on the coupling
between different impurities and reservoirs and the Zeeman
energy is irrelevant.
We now present a theoretical basis for the nonequili-

brium Kondo phenomenon with SO-coupled reservoirs and
its behavior with magnetic field, with a full treatment given
in the Supplemental Material [16]. Although the Landauer-
Büttiker scattering theory and the nonequilibrium Green’s
function formalism are two standard approaches to capture
the quantum nature of transport with the nonequilibrium

Kondo effect, the application to some nontrivial cases
becomes formidable. Attempts have therefore been made
to develop a more convenient approach [43–45] based on
quantum master equations (QMEs) in open systems
[46,47]. However, this becomes cumbersome for cotunnel-
ing and Kondo problems which require higher-order
expansions. An improved QME approach under the self-
consistent Born approximation has been proposed [45] to
efficiently account for higher-order tunneling contribu-
tions. This improved QME is capable of reproducing the
Kondo peaks, but extending this approach to the Kondo
problem with SO interactions is still challenging since the
electron Fock state with a specific spin is no longer the
eigenstate of the leads. Here, by introducing the helicity

quantum number together with the orbital magnetic quan-
tum number, we diagonalize the lead Hamiltonian in the

presence of the Rashba SO term ĤSO. Owing to the
conservation of angular momentum, the problem can be
effectively transformed into a two-channel Anderson
model, where the effect of SO interactions is equivalent
to coupling each spin state in the impurity to two helicities
in the leads [16]. Figures 3(a) and 3(b) showG as a function
of Vsd at selected values of Bk in the absence and presence

of SO coupling, respectively. The corresponding color
maps as a function of Bk are shown in Figs. 3(c) and 3(d),

for the single- and double-peak ZBAs, respectively. The
evolution of all the ZBA peaks follows the Zeeman term in
good agreement with experimental observations.
The universal temperature dependence of G with T=TK

(i.e., the Kondo universal scaling) is a fundamental trait of
the Kondo effect. This Kondo universality and its character-
istic energy scale (kBTK) are crucial to identifying and
understanding many-body correlations and quantum criti-
cal phenomena [1,48,49]. Figure 4(a) shows the T depend-
ence of the single-peak ZBA at four different conductance
values for B ¼ 0 T. Peak heights at Vsd ¼ 0 are plotted in
Fig. 4(b) as a function of T. Solid curves show fits using the
Anderson model for a Kondo impurity [50,51],

FIG. 3. Theoretical simulation of the differential conductance
using a quantum master equation approach. (a),(b) G against Vsd

in the absence and presence of Rashba SO coupling, respectively,
for selected B. Data in (b) are offset vertically from B ¼ 0 (top

trace) in increments of −0.06 × 2e2=h for clarity. Data in (a) are
not offset. (c),(d) Corresponding color maps of G as a function of
B and Vsd without and with SO coupling, respectively.

FIG. 4. Temperature dependence of single- and double-peak zero bias anomalies. (a) Temperature dependence of four different single-
peak ZBAs (B ¼ 0). (b) Peak height of ZBAs in (a) as a function of T measured at Vsd ¼ 0. Solid lines are fits to the data using Eq. (1),
with TK as the fitting parameter. From top to bottom, TK ¼ 8.5, 7.0, 6.6, and 8.4 K. (c) Temperature dependence of the double-peak

ZBA at B ¼ 0. Inset: G against T at Vsd ¼ 0. (d),(e) Temperature dependence of two double-peak ZBAs at Bk ¼ 1.2 and 0.72 T,

respectively. The values of Bk are those where the peaks merge into a single peak. (f) Normalized ZBA peak height (G=G0) at Vsd ¼ 0

for both the single- and double-peak ZBAs. For each datasetG0 is the ZBA peak height at base temperature and Vsd ¼ 0. The black line
is plotted using the Anderson model for a Kondo impurity [Eq. (1)].
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GðTÞ ¼ G0½1þ ð21=s − 1ÞðT=TKÞ
2�−s; ð1Þ

with TK as the fitting (scaling) parameter, where G0 is the
zero-temperature conductance, and s ¼ 0.22 for the

spin-1=2 Kondo system. Above the first plateau, 2e2=h
is subtracted from G before fitting to remove the conduct-
ance from the first 1D subband. Similar values of TK are
obtained in all cases (TK ¼ ∼6–8 K). Deviations from
Eq. (1) at high T are likely due to thermal fluctuations in the
state occupancy.
Figure 4(c) shows the temperature dependence of the

double-peak ZBA at B ¼ 0 T. The peak heights decrease
with T, while G between the peaks increases. The inset
shows G at Vsd ¼ 0 as a function of T. The conductance
rises almost monotonically. This is opposite to a two-
impurity Kondo system [35,52], where G is expected to
decrease with T. We also plot the T dependence of several
double-peak ZBAs with finite Bk applied, sufficient to merge

the peaks, so they appear as a single peak. Figures 4(d)
and 4(e) illustrate examples at two different Vsg, showing

that the peak height reduces with T similar to Fig. 4(a).
Figure 4(f) shows the Kondo universal scaling ofG at Vsd ¼
0 for four such double-peak ZBAs with Bk applied, merging

the peaks. The values of TK estimated by fitting range from
∼14 to 22 K, which is larger than the single peak. The single-
peak data from Fig. 4(c) are also plotted for comparison.
There is a lack of consensus between theoretical works

regarding how SO interactions influence the Kondo corre-
lation, unaided by the lack of experimental data because of
the challenge of realizing a Kondo system with a control-
lable SO interaction. Some theories predict exponential
enhancement of TK as SO interactions increase [53,54],
whereas others suggest that it remains relatively unchanged
[54,55]. Our estimates of TK are larger when SO coupling
appears to be significant (double-peak ZBAs present).
Although it is difficult to draw definite conclusions from
this limited dataset, the Kondo system presented here may
suggest a new route to explore this fundamental spin
correlation problem.
Integrating the Kondo effect and SO coupling in a single

device and regulating their interactions may provide insight
into many strongly correlated quantum systems associated
with these two mechanisms, such as heavy fermion
materials and topological Kondo materials. From a tech-
nological perspective, demonstrating electrical control of
the spin degree of freedom removes any drawbacks
associated with requiring external magnetic fields or
ferromagnetic components, and thus could be significant
for quantum-based technologies, including quantum com-
putation and spintronics.

We thank M. Pepper for the helpful discussion. This work
was supported by the Ministry of Science and Technology
(Taiwan), the Higher Education Sprout Project, Ministry of
Education to the Headquarters of University Advancement at

the National Cheng Kung University (NCKU), the
National Center for Theoretical Sciences (Taiwan), the
U.S. Army Research Office (Grant No. W911NF-19-1-
0081), and the Engineering and Physical Sciences
Research Council (U.K.).

*
tmchen@phys.ncku.edu.tw

[1] Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D.

Parmentier, A. Cavanna, and F. Pierre, Two-channel Kondo

effect and renormalization flow with macroscopic quantum

charge states, Nature (London) 526, 233 (2015).
[2] A. J. Keller, L. Peeters, C. P. Moca, I. Weymann, D. Mahalu,

V. Umansky, G. Zaránd, and D. Goldhaber-Gordon, Uni-

versal Fermi liquid crossover and quantum criticality in a

mesoscopic system, Nature (London) 526, 237 (2015).
[3] I. V. Borzenets, J. Shim, J. C. H. Chen, A. Ludwig, A. D.

Wieck, S. Tarucha, H.-S. Sim, and M. Yamamoto, Obser-

vation of the Kondo screening cloud, Nature (London) 579,

210 (2020).

[4] A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, Cambridge, England, 1993).
[5] Stefan Kirchner, Silke Paschen, Qiuyun Chen, Steffen

Wirth, Donglai Feng, Joe D. Thompson, and Qimiao Si,

Colloquium: Heavy-electron quantum criticality and single-

particle spectroscopy, Rev. Mod. Phys. 92, 011002 (2020).
[6] J. Martinek, J. Martinek, Y. Utsumi, H. Imamura, J. Barnaś,

S. Maekawa, J. König, and G. Schön, Kondo Effect in

Quantum Dots Coupled to Ferromagnetic Leads, Phys. Rev.

Lett. 91, 127203 (2003).
[7] A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose,

L. A. K. Donev, P. L. McEuen, and D. C. Ralph, The Kondo

effect in the presence of ferromagnetism, Science 306, 86

(2004).
[8] J. R. Hauptmann, J. Paaske, and P. E. Lindelof, Electric-

field-controlled spin reversal in a quantum dot with ferro-

magnetic contacts, Nat. Phys. 4, 373 (2008).
[9] J. C. Oberg, M. R. Calvo, F. Delgado, M. Moro-Lagares,

D. Serrate, J. Fernández-Rossier, and C. F. Hirjibehedin,

Control of single-spin magnetic anisotropy by exchange

coupling, Nat. Nanotechnol. 9, 64 (2014).
[10] T. Kobayashi, S. Tsuruta, S. Sasaki, T. Fujisawa, Y. Tokura,

and T. Akazaki, Kondo Effect in a Semiconductor Quantum

Dot with a Spin-Accumulated Lead, Phys. Rev. Lett. 104,

036804 (2010).
[11] M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological

Kondo insulators, Annu. Rev. Condens. Matter Phys. 7, 249

(2016).
[12] Y. Li, Q. Ma, S. X. Huang, and C. L. Chien, Thin films of

topological Kondo insulator candidate SmB6: Strong spin-

orbit torque without exclusive surface conduction, Sci. Adv.

4, eaap8294 (2018).
[13] J.-X. Yin et al., Spin-orbit quantum impurity in a topologi-

cal magnet, Nat. Commun. 11, 4415 (2020).
[14] T. S. Jespersen, K. Grove-Rasmussen, J. Paaske, K. Muraki,

T. Fujisawa, J. Nygård, and K. Flensberg, Gate-dependent

spin-orbit coupling in multielectron carbon nanotubes, Nat.

Phys. 7, 348 (2011).

PHYSICAL REVIEW LETTERS 128, 027701 (2022)

027701-5



[15] Y. Kanai, R. S. Deacon, S. Takahashi, A. Oiwa, K. Yoshida,

K. Shibata, K. Hirakawa, Y. Tokura, and S. Tarucha,

Electrically tuned spin-orbit interaction in an InAs self-

assembled quantum dot, Nat. Nanotechnol. 6, 511 (2011).
[16] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.128.027701, which in-

cludes Refs. [17–26], for details on the materials and

methods, measurements from a second QPC, and full details

on the theoretical model.
[17] L.W. Smith et al., Dependence of the 0.7 anomaly on the

curvature of the potential barrier in quantum wires, Phys.

Rev. B 91, 235402 (2015).
[18] L.W. Smith et al., Effect of Split Gate Size on the

Electrostatic Potential and 0.7 Anomaly within Quantum

Wires on a Modulation-Doped GaAs/AlGaAs Heterostruc-

ture, Phys. Rev. Applied 5, 044015 (2016).
[19] S. Datta, Electronic Transport in Mesoscopic Systems

(Cambridge University Press, New York, 1995).
[20] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport

and Optics of Semiconductors, 2nd ed. (Springer-Verlag,

Berlin, 2007).
[21] S. Hershfield, J. H. Davies, and J. W. Wilkins, Probing the

Kondo Resonance by Resonant Tunneling through an

Anderson Impurity, Phys. Rev. Lett. 67, 3720 (1991).
[22] J. Fransson, Nonequilibrium theory for a quantum dot with

arbitrary on-site correlation strength coupled to leads, Phys.

Rev. B 72, 075314 (2005).
[23] M. Galperin, A. Nitzan, and M. A. Ratner, Inelastic trans-

port in the Coulomb blockade regime within a nonequili-

brium atomic limit, Phys. Rev. B 78, 125320 (2008).
[24] H.-P. Breuer and F. Petruccione,TheTheory ofOpenQuantum

Systems (Oxford University Press, New York, 2002).
[25] J. Malecki, The two dimensional Kondo model with Rashba

spin-orbit coupling, J. Stat. Phys. 129, 741 (2007).
[26] X.-Q. Li, J. Luo, Y.-G. Yang, P. Cui, and Y. Yan, Quantum

master-equation approach to quantum transport through

mesoscopic systems, Phys. Rev. B 71, 205304 (2005).
[27] J.Nitta,T.Akazaki,H.Takayanagi, andT.Enoki,GateControl

of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As=

In0.52Al0.48As Heterostructure, Phys. Rev. Lett. 78, 1335

(1997).
[28] T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, Rashba

Spin-Orbit Coupling Probed by the Weak Antilocalization

Analysis in InAlAs/InGaAs/InAlAs Quantum Wells as a

Function of Quantum Well Asymmetry, Phys. Rev. Lett. 89,

046801 (2002).
[29] P. Debray, S.M. S. Rahman, J. Wan, R. S. Newrock, M.

Cahay, A. T. Ngo, S. E. Ulloa, S. T. Herbert, M. Muhammad,

and M. Johnson, All-electric quantum point contact spin-

polarizer, Nat. Nanotechnol. 4, 759 (2009).
[30] P. Chuang et al., All-electric all-semiconductor spin field-

effect transistors, Nat. Nanotechnol. 10, 35 (2015).
[31] S.-T. Lo et al., Controlled spatial separation of spins and

coherent dynamics in spin-orbit-coupled nanostructures,

Nat. Commun. 8, 15997 (2017).
[32] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P.

Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen,

and V. Umansky, Low-Temperature Fate of the 0.7 Structure

in a Point Contact: A Kondo-like Correlated State in an

Open System, Phys. Rev. Lett. 88, 226805 (2002).

[33] T. Rejec and Y. Meir, Magnetic impurity formation in

quantum point contacts, Nature (London) 442, 900 (2006).
[34] F. Sfigakis, C. J. B. Ford, M. Pepper, M. Kataoka, D. A.

Ritchie, and M. Y. Simmons, Kondo Effect from a Tunable

Bound State within a Quantum Wire, Phys. Rev. Lett. 100,

026807 (2008).
[35] M. J. Iqbal et al., Odd and even Kondo effects from

emergent localization in quantum point contacts, Nature

(London) 501, 79 (2013).
[36] D. H. Schimmel, B. Bruognolo, and J. von Delft, Spin

Fluctuations in the 0.7 Anomaly in Quantum Point Con-

tacts, Phys. Rev. Lett. 119, 196401 (2017).
[37] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper,

D. R. Mace, and D. A. Ritchie, Possible Spin Polarization in

a One-Dimensional Electron Gas, Phys. Rev. Lett. 77, 135

(1996).
[38] A. P. Micolich, What lurks below the last plateau: Exper-

imental studies of the 0.7 × 2e2=h conductance anomaly in

one-dimensional systems, J. Phys. Condens. Matter 23,

443201 (2011).
[39] K. L. Hudson et al., New signatures of the spin gap in

quantum point contacts, Nat. Commun. 12, 5 (2021).
[40] Y. V. Pershin, J. A. Nesteroff, and V. Privman, Effect of

spin-orbit interaction and in-plane magnetic field on the

conductance of a quasi-one-dimensional system, Phys. Rev.

B 69, 121306(R) (2004).
[41] C. H. L. Quay, T. L. Hughes, J. A. Sulpizio, L. N. Pfeiffer,

K.W. Baldwin, K. W. West, D. Goldhaber-Gordon, and R.

de Picciotto, Observation of a one-dimensional spin-orbit

gap in a quantum wire, Nat. Phys. 6, 336 (2010).
[42] P. J. Simmonds, F. Sfigakis, H. E. Beere, D. A. Ritchie, M.

Pepper, D. Anderson, and G. A. C. Jones, Quantum trans-

port in In0.75Ga0.25As quantum wires, Appl. Phys. Lett. 92,

152108 (2008).
[43] S. Welack, M. Schreiber, and U. Kleinekathöfer, The

influence of ultrafast laser pulses on electron transfer in

molecular wires studied by a non-Markovian density-matrix

approach, J. Chem. Phys. 124, 044712 (2006).
[44] M. Esposito and M. Galperin, Transport in molecular states

language: Generalized quantum master equation approach,

Phys. Rev. B 79, 205303 (2009).
[45] J. Jin, J. Li, Y. Liu, X.-Q. Li, and Y. Yan, Improved master

equation approach to quantum transport: From Born to self-

consistent Born approximation, J. Chem. Phys. 140, 244111

(2014).
[46] H.-B.Chen,N.Lambert,Y.-C.Cheng,Y.-N.Chen, andF.Nori,

Using non-Markovian measures to evaluate quantum master

equations for photosynthesis, Sci. Rep. 5, 12753 (2015).
[47] I. de Vega and D. Alonso, Dynamics of non-Markovian

open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
[48] H. E. Stanley, Scaling, universality, and renormalization:

Three pillars of modern critical phenomena, Rev. Mod.

Phys. 71, S358 (1999).
[49] M. Grobis, I. G. Rau, R. M. Potok, H. Shtrikman, and D.

Goldhaber-Gordon, Universal Scaling in Nonequilibrium

Transport through a Single Channel Kondo Dot, Phys. Rev.

Lett. 100, 246601 (2008).
[50] T. A. Costi and A. C. Hewson, Transport coefficients of the

Anderson model via the numerical renormalization group,

J. Phys. Condens. Matter 6, 2519 (1994).

PHYSICAL REVIEW LETTERS 128, 027701 (2022)

027701-6



[51] D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H.
Shtrikman, D. Mahalu, and U. Meirav, From the
Kondo Regime to the Mixed-Valence Regime in a
Single-Electron Transistor, Phys. Rev. Lett. 81, 5225
(1998).

[52] R. Aguado and D. C. Langreth, Kondo effect in coupled
quantum dots: A noncrossing approximation study, Phys.
Rev. B 67, 245307 (2003).

[53] M. Zarea, S. E. Ulloa, and N. Sandler, Enhancement of the
Kondo Effect through Rashba Spin-Orbit Interactions, Phys.
Rev. Lett. 108, 046601 (2012).

[54] A. Wong, S. E. Ulloa, N. Sandler, and K. Ingersent,
Influence of Rashba spin-orbit coupling on the Kondo
effect, Phys. Rev. B 93, 075148 (2016).

[55] R.Žitko and J. Bonča, Kondo effect in the presence of Rashba
spin-orbit interaction, Phys. Rev. B 84, 193411 (2011).

PHYSICAL REVIEW LETTERS 128, 027701 (2022)

027701-7


