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The ability to convert spin accumulation to charge currents is essential for applications in spin-
tronics. In semiconductors, spin-to-charge conversion is typically achieved using the inverse spin
Hall effect or using a large magnetic field. Here we demonstrate a general method that exploits
the non-linear interactions between spin and charge currents to perform all-electrical, rapid and
non-invasive detection of spin accumulation without the need for a magnetic field. We demonstrate
the operation of this technique with ballistic GaAs holes as a model system with strong spin-orbit
coupling, in which a quantum point contact provides the non-linear energy filter. This approach is
generally applicable to electron and hole systems with strong spin orbit coupling.

Introduction. Spintronics is a technology that uses
the spin degree of freedom to manipulate information
[1, 2]. A key challenge in spintronics is the generation
and detection of spin accumulation [3]. In semiconduc-
tors, spin accumulation is typically generated by optical
excitations [4–8] or the intrinsic spin Hall effect [9–12],
whilst spin-to-charge conversion (i.e. spin accumulation
translating into a charge current or voltage) is achieved
through the inverse spin Hall effect [9–11]. However, gen-
erating/detecting spin accumulation optically or via the
spin Hall effect-inverse spin Hall effect pair is challenging
for strongly spin-orbit coupled mesoscopic systems with
short spin relaxation time and spin diffusion lengths.
Here we adapt the concept of a spin filter, i.e. a device

that separates spin species based on their energies, for de-
tecting spin accumulation in strongly spin-orbit coupled
mesoscopic systems. The first spin filter was developed
by Stern and Gerlach who used an inhomogenous mag-
netic field to spatially separate electrons with different
spins [13]. Spin filters have also been realized in the solid
state using spin-dependent transport in mesoscopic de-
vices [14, 15]. These techniques allow a spin current to
be converted into a charge current, which is then detected
as a voltage signal that depends on the applied magnetic
field. Unfortunately, these linear techniques require a
large magnetic field, which is impractical and can change
the spin signal being probed. In this work, we demon-
strate a non-linear technique that requires no magnetic
field, and allows fast detection of spin accumulation.
We use GaAs holes as a model system for strongly spin-

orbit coupled systems with short spin relaxation time
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(< 100 fs) [16] and spin diffusion length much shorter
than the typical device dimensions (∼ 100 − 1000 nm,
see also Sec. S2 of the Supplementary Material). Semi-
conductor holes have recently attracted great interest
in semiconductor spintronics due to their exceptionally
strong spin-orbit interaction [17–24]. The spin accumu-
lation in strongly spin-orbit coupled ballistic mesoscopic
systems is generated as follows. In mesoscopic systems
with strong spin-orbit interaction, charge currents are
generally accompanied by spin currents [25–29]. When
the spin-orbit length is much shorter than both the device
dimensions and mean free path, the spin precesses around
randomly oriented spin-orbit fields throughout the sam-
ple region, giving rise to spin currents with a non-zero av-
erage [27]. Consequently, different spin species can have
different chemical potentials, which give rise to a net spin
accumulation whose amount and distribution depend on
the sample geometry as well as the strength and form of
the spin-orbit interaction. The spin accumulation adja-
cent to the energy barrier can then be detected through
a voltage signal containing contributions linear and non-
linear in spin accumulation.

This paper is laid out as follows. We first demonstrate
spin-to-charge conversion in the linear regime using an in-
plane magnetic field. We then show spin-to-charge con-
version in the non-linear regime and confirm that it works
even at zero magnetic field, so that is all-electrical and
works much faster than linear spin-to-charge conversion.
Our method can be generalized for any strongly spin-
orbit coupled material such as GaSb, InAs, transition
metal dichalcogenides, as well as topological insulators,
since non-linear spin-to-charge conversion only requires
a finite spin accumulation, regardless of the spin orienta-
tion, and an energy barrier. Furthermore, the rapidness
of non-linear spin-to-charge conversion enables detection
of spin orientation with radio-frequency techniques down
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FIG. 1. (a) A schematic of the experimental setup. A current
Isd flows between terminals 1 and 2, resulting in a voltage
difference Vsd across the drive channel. (b), (c) Near the
quantum point contact (QPC), opposite spin orientations σ+

and σ− accumulate on opposite sides of the drive channel.
The QPC acts as an energy filter: Spin-to-charge conversion
occurs due to the difference in the transmission probability
through the QPC between each spin species. In the linear
regime (d), this difference arises from a different kinetic en-
ergy caused by, for instance, a Zeeman interaction. (e) In the
non-linear regime, the different local chemical potentials for
σ+ and σ− give rise to different transmission probabilities. In
both (f) linear and (g) non-linear cases, spin-polarized holes
accumulate after passing through the QPC, resulting in a volt-
age V3 between terminals 2 and 3. Note that the schematics
in (a)-(g) are not to scale.

to 1 ns [30].

Experimental concept. We use a three-terminal geom-
etry with a quantum point contact (QPC) as an energy-
selective barrier (Fig. 1a). Passing a current Isd in the
drive channel between terminals 1 and 2 results in a volt-
age difference Vsd and a net non-equilibrium spin accu-
mulation δµs: Spins with orientation σ+ have a higher
chemical potential (of δµs) than σ− (Figs. 1b and c). The

kink in the drive channel helps direct the spin accumu-
lation towards the QPC [31]. Spin-to-charge conversion
occurs if one spin species has a higher transmission prob-
ability T (E) through the QPC than the other. In the lin-
ear regime, the difference in the transmission probability
originates from the difference in the hole’s kinetic energy
due to an in-plane Zeeman interaction (Fig. 1d). How-
ever, in the non-linear regime, the energy dependence
of the transmission probability T (E) through the bar-
rier causes the σ+ spins to have a higher transmission
probability through the QPC (Fig. 1e) than σ− even at
zero field. In both the linear and non-linear regimes, the
charge current through the QPC (Figs. 1f and g) causes a
restoring voltage V3 to maintain zero net charge current
through the QPC with terminal 3 set as a floating probe.
While the drive current Isd oscillates at a frequency ω,
the linear and non-linear signals oscillate at the first and
second harmonics of V3, i.e. V3(ω) and V3(2ω) respec-
tively.
Theoretical analysis. Using the transmission probabil-

ity T (E) ≡ T (E,B) for a QPC [33] (see also Sec. S1 of
the Supplementary Material [34]), in the linear regime,
the spin signal is proportional to the Zeeman splitting
of the one-dimensional subbands. This gives rise to a
three-terminal voltage V3(ω) ≡ V3(ω,B) asymmetric in
B. The asymmetry ∂BV3(ω)|B=0 is [32]:

∂BV3(ω)|B=0 = −
σgµB

2

[

2e

h

∫

dE (−∂Ef(E)) ∂ET (E)

]

δµs,

(1)
where σ is the sign of the spin accumulation, g is the in-
plane g−factor, µB is the Bohr magneton, and f(E) is
the Fermi-Dirac distribution. Eq. (1) allows one to quan-
tify the spin accumulation from the voltage asymmetry.
The spin current through the QPC is [15, 28]

Ispin,linear ≃
2~Ωqpc

πgµB

e2

h
∂BV3(ω)|B=0, (2)

where ~Ωqpc is the QPC saddle potential curvature [33].
In the non-linear regime, the difference in the transmis-

sion probability across the QPC is proportional to δµs.
Thus, the non-linear component of the spin signal V3 is
quadratic in δµs:

V3(2ω) =
1

2

[

e

h

∫

dE (−∂Ef(E)) ∂ET (E)

]

(δµs)
2. (3)

Given that V3(2ω) is independent of the sign of δµs, it is
also symmetric in B.
Besides quantifying the spin current and accumula-

tion, Eqs. (1)-(3) allow us to verify the spin origin of
V3(ω) and V3(2ω) via their dependence on the QPC gate
voltage Vqpc, B, and Isd. Furthermore, since ∂ET (E)
[Eqs. (1) and (3)] correlates with the QPC transconduc-
tance ∂Gqpc/∂Vqpc, we expect maximal (no) spin signals
when ∂Gqpc/∂Vqpc is maximal (minimal), where Gqpc is
the QPC conductance.
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FIG. 2. Device image and linear spin-to-charge conversion. (a) A scanning electron microscope image of the device. Light
gray regions denote the surface gates, dark gray regions represent the AlGaAs/GaAs heterostructure, while light blue squares
depict terminals 1-3. (b) QPC conductance versus QPC gate voltage Vqpc. The dashed lines denote the second and third
conductance risers as well as the second conductance plateau. (c) Color map of the two-terminal resistance Vsd/Isd across
the channel as a function of Vqpc and B, showing a symmetric dependence on B. (d) Line cuts of Vsd/Isd from (c) along the
second and third QPC conductance risers, as well as along the middle of the second conductance plateau. (e) Color map of
the three-terminal resistance V3(ω)/Isd as a function of Vqpc and B. Its asymmetry in B indicates a spin accumulation. (f)
Line cuts of V3(ω)/Isd from (e) along the second and third QPC conductance risers, as well as along the middle of the second
conductance plateau. The asymmetry of V3(ω)/Isd in B is present at a QPC conductance riser but absent at a plateau. (g)
The asymmetry ∆(ω) ≡ (∂V3/∂B)|B=0/Isd of V3(ω)/Isd as a function of Vqpc around the second riser at different Isd. The
asymmetry of V3(ω)/Isd persists up to Isd = 10 nA, but becomes hard to correlate to the transconductance at 32 nA. The
∆(ω) traces are offset by 25 Ω/T for clarity. The quantity ∆′(ω) measures the amplitude of the asymmetry ∆(ω) relative to
the background.

Methods. An image of the device is shown in Fig. 2a.
The device is made from an AlGaAs/GaAs heterostruc-
ture grown on a (100) GaAs substrate. For the measure-
ments presented here, the two-dimensional hole density
is p = 2 × 1011 cm−2, corresponding to a Fermi wave-
length λF = 56 nm, a spin-orbit length lSO = 35 nm,
and a mobility µ = 550, 000 cm2 V−1 s−1 (see Sec. S2 of
the Supplementary Material [34]). Surface gates define
a conducting region in the shape of a ‘K’, with length
4 µm and width 1 µm, whilst the QPC is 370 nm wide
and 210 nm long. When the ‘K-bar’ is defined, the con-
ducting channel in the region is one-dimensional and the
transport is ballistic with a mean free path of 4 µm (see
Sec. S3 of the Supplementary Material [34] for details).
All measurements were performed in a dilution fridge us-
ing standard lock-in techniques with ω = 7 Hz.
We send a current Isd through the drive channel, and

measure the resulting two-terminal Vsd ≡ V1 − V2 and
three-terminal voltages V3(ω) between terminals 2 and
3 (see also Fig. 1). Unless otherwise stated, Isd is
kept at 5 nA. Throughout this work, we concentrate
our analysis on the second subband. While the first
subband is affected by the “0.7 feature” [35–39], the
spin signal is small for higher subbands (Nqpc > 3):
The conductance quantization is progressively worse for
these subbands, diminishing the spin-to-charge conver-
sion efficiency. Fig. 2b shows how the QPC conduc-
tance is tuned by the QPC gate voltage. The two outer
dashed lines mark the second and third conductance ris-

ers, where the spin-to-charge conversion should be most
pronounced. The middle dashed line locates the second
QPC plateau, where the spin-to-charge conversion should
be suppressed. Fig. 2c shows the two-terminal resistance
Vsd/Isd across the drive channel as a function of Vqpc and
B. As expected from the Onsager reciprocity relation
for electrical current in two-terminal systems, Vsd/Isd is
approximately symmetric in B (the QPC is a small per-
turbation to the drive channel, see Fig. S4 of the Supple-
mentary Material [34]). Fig. 2d shows line cuts of Fig. 2c
at the second and third QPC conductance risers and at
the second QPC conductance plateau, confirming that
Vsd is approximately symmetric in B regardless of Vqpc.
Linear spin-to-charge conversion. We now examine

the linear three-terminal voltage V3(ω). Fig. 2e shows
V3(ω)/Isd as a function of Vqpc and B, demonstrating
that V3(ω) is generally asymmetric in B. The line cuts
of Fig. 2e shown in Fig. 2f reveal that V3(ω)/Isd is asym-
metric in B on the second and third QPC conductance
risers, but almost symmetric on the middle of the second
conductance plateau. This is a crucial observation for
the linear spin-to-charge conversion: The asymmetry of
V3 with B is expected only if the spin accumulation is
present and the QPC transmission is spin-(Zeeman en-
ergy) sensitive. At the QPC conductance plateau, al-
though the spin current is still flowing through the QPC,
it is not converted to a charge voltage. The asymme-
try in V3(ω) as a function of B cannot be due to a Hall
voltage as the sample was oriented to within ±0.01◦ with
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respect to the magnetic field [40], so that the out-of-plane
magnetic field is always < 0.5 mT.

We next quantify the spin accumulation, spin cur-
rent and the spin-to-charge conversion efficiency. Fig. 2g

shows the asymmetry ∆(ω) ≡ 1
Isd

∂V3(ω)
∂B

∣

∣

∣

B=0
∝ Ispin,linear

of the three-terminal resistance at Isd = 2, 5, 10, 32 nA
as a function of Vqpc. The asymmetry ∆(ω) is obtained
by performing a linear fit of V3(ω) against B between
−1 T ≤ B ≤ 1 T in Fig. 2g [41]. There is a clear correla-
tion between ∆(ω) and ∂Vqpc

Gqpc/Gqpc, which indicates
linear spin-to-charge conversion (Eq. 1) for currents up
to Isd = 10 nA. The spin signal is suppressed at large Isd
(e.g. at Isd = 32 nA), possibly due to averaging out of
spin accumulations at different energies [15].

Using the results in Fig. 2g and experimental param-
eters Isd = 5 nA, g = 0.38 ± 0.01, ~Ωqpc = (0.17 ±
0.01) meV (see Sec. S3 of the Supplementary Material),
∆(ω) = 40 Ω/T, Ndrive = 14 (see Sec. S4 of the Sup-
plementary Material [41]) and Nqpc = 1.5, we find that
the spin accumulation is δµs = 1 µeV (Eq. S7) while the
spin current is Ispin,linear = 37 pA (Eq. 2). The spin Hall
angle [15], which measures the spin-to-charge conversion
efficiency, is Θ ≡ (Ispin,linear/Nqpc)/(Isd/Ndrive) = 6.8%.
While our spin Hall angle falls within the range of pre-
viously reported values [15, 42–44], caution must be ex-
ercised in the comparison since Θ is not only determined
by the material but also the device details.

Non-linear spin-to-charge conversion. Now that we
have established evidence for spin-to-charge conversion
in the linear regime, we show that it also occurs in the
non-linear regime. As before, we evaluate the depen-
dence of the non-linear signal V3(2ω) on B, Vqpc, and
Isd. Fig. 3a shows a color map of the non-linear resistance
V3(2ω)/I

2
sd as a function of B and Vqpc. The non-linear

signal V3(2ω) is symmetric in B, contrasting with the lin-
ear signal V3(ω) (Fig. 2e), and in line with Eq. (3). Next,
we examine the dependence of Vqpc at 0 ≤ Isd ≤ 44.1 nA
at B = 0 T (Fig. 3b). The peak in the non-linear signal
coincides with the QPC transconductance since ∂ET (E)
is maximal at T (E) = 1/2 when B = 0 T, consistent
with Eq. (3).

We next compare the linear and non-linear signals.
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FIG. 4. (a) The amplitude ∆′(ω)Isd of the linear signal rela-
tive to the background, which is obtained by subtracting the
lowest adjacent ∆(ω) minimum (see also Fig. 2g) from ∆(ω)
at the second QPC riser. (b) V3(2ω) versus Isd at B = 0. The
dashed lines in (a) and (b) are guides to the eye, suggesting
that the linear and non-linear spin signals saturate at ∼5-10
nA. (c) The asymmetry ∆(ω) of the linear signal and (d) the
non-linear resistance V3(2ω)/I

2
sd versus B. (c) and (d) show

that at low excitation currents (e.g. Isd = 5 nA), the spin
signal gradually decreases as a function of B, whereas at high
excitation currents (e.g. Isd = 32 nA), it is almost unaffected
by B. The difference in the B−dependence of the low and
high Isd signals suggests that at low Isd the three-terminal
voltages are of spin origin.

Fig. 4a shows the amplitude ∆′(ω) of the linear signal
relative to the background, i.e. the value of ∆(ω) at
the second subband subtracted by the lowest minimum
(see Fig. 2g), against Isd. The spin current is linear in
Isd (and hence δµs) at low excitation currents (Isd . 5
nA, see Fig. 4a). For comparison, Fig. 4b shows how
V3(2ω) varies with Isd. We find that the non-linear volt-
age is proportional to I2sd for Isd . 7 nA. While there is a
possibility that Joule heating, which causes thermopower
[45, 46], could contribute to the second-harmonic re-
sponse, the fact that both the linear and non-linear sig-
nals saturate at similar Isd (≈ 5 nA and ≈ 7 nA for the
linear and non-linear signals, respectively) suggests that
they are of a spin origin.
To further verify the spin origin of the signals, we con-

sider their dependence on B at low (Isd = 5 nA) and high
(Isd = 32 nA) excitation currents. At low Isd (Figs. 4a
and b), both the linear (Fig. 4c, see also Sec. S5 of
the Supplementary Material [41]) and non-linear signals
(Fig. 4d) gradually decrease at B & 1.4 T, suggesting
that a strong magnetic field suppresses the spin accu-
mulation. In contrast, for high Isd, where the spin-to-
charge conversion is inefficient [32], both the linear and
non-linear signals are almost unaffected by the in-plane
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magnetic field (see also Sec. S6 of the Supplementary
Material [41]). The consistency between the linear and
non-linear signals confirms the reliability of non-linear
spin-to-charge conversion. As non-linear spin-to-charge
conversion requires no magnetic field (Figs. 3b and 4b),
it allows a much faster detection of spin accumulation
than linear spin-to-charge conversion [47].
Conclusions and outlook. Using ballistic mesoscopic

GaAs holes as a model system, we demonstrate a new all-
electrical non-linear technique for spin-to-charge conver-
sion that does not require a magnetic field. We confirm
the spin origin of the non-linear signals by calibrating
them against linear spin-to-charge conversion. The non-
linear spin detection technique allows much faster mea-
surements than linear detection schemes, limited only
by the bandwidth of the measurement circuit. Finally,
we note that non-linear spin-to-charge conversion is very

general: it only requires a spin accumulation regardless of
its orientation and an adjacent energy-selective barrier.
Our methods should be applicable in materials with very
strong spin-orbit interaction such as GaSb, InAs, tran-
sition metal dichalcogenides, and topological materials,
while its rapid speed will enable time resolved measure-
ments of spin orientation to a 1 ns resolution using radio-
frequency techniques.
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