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ARTICLE

Single-photon emission from single-electron
transport in a SAW-driven lateral light-emitting
diode
Tzu-Kan Hsiao 1,3✉, Antonio Rubino1,4, Yousun Chung1,5, Seok-Kyun Son 1,6, Hangtian Hou1,

Jorge Pedrós 1,7, Ateeq Nasir 1,2, Gabriel Éthier-Majcher1, Megan J. Stanley1,8, Richard T. Phillips 1,

Thomas A. Mitchell1, Jonathan P. Griffiths1, Ian Farrer 1,9, David A. Ritchie 1 & Christopher J.B. Ford 1✉

The long-distance quantum transfer between electron-spin qubits in semiconductors is

important for realising large-scale quantum computing circuits. Electron-spin to photon-

polarisation conversion is a promising technology for achieving free-space or fibre-coupled

quantum transfer. In this work, using only regular lithography techniques on a conventional

15 nm GaAs quantum well, we demonstrate acoustically-driven generation of single photons

from single electrons, without the need for a self-assembled quantum dot. In this device, a

single electron is carried in a potential minimum of a surface acoustic wave (SAW) and is

transported to a region of holes to form an exciton. The exciton then decays and creates

a single optical photon within 100 ps. This SAW-driven electroluminescence, without

optimisation, yields photon antibunching with g(2)(0)= 0.39 ± 0.05 in the single-electron

limit (g(2)(0)= 0.63 ± 0.03 in the raw histogram). Our work marks the first step towards

electron-to-photon (spin-to-polarisation) qubit conversion for scaleable quantum computing

architectures.
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T
he long-distance transfer of quantum information encoded
as electron-spin qubits in semiconductor quantum dots has
been extensively studied because of its importance in rea-

lising scaleable quantum-computing architectures1. While high-
fidelity qubit operations have been achieved in small-scale few-qubit
systems2–4, long-distance coupling between distant spin qubits in a
large quantum circuit is a big challenge since the exchange inter-
action relies on the overlapping of two electron wavefunctions. To
solve this issue, many methods such as repeated SWAP operations5,
electron shuttling6–8, and surface acoustic waves (SAWs)9–12, have
demonstrated quantum information transfer within a 10 μm length
scale. Spin-microwave-resonator coupling is also investigated, and
the coupling between two electron spins on a millimetre scale has
been demonstrated13.

Semiconductors like GaAs are a good platform for converting
electron spins to the polarisations of optical photons. Such an
electron-to-photon (spin-to-polarisation) interface is a promising
method to achieve kilometre-scale quantum information transfer
since the polarisation-encoded qubits are robust to decoherence
in free space and optical fibres14,15. Hence, large-scale distributed
quantum-computing networks may be constructed by combining
with the inverse (polarisation-to-spin) conversion16. In order to
achieve this ambitious goal, the first major step is to develop a
technology that is capable of converting a single-electron state to
a single-photon state, and is also compatible with conventional
semiconductor fabrication for device integration.

A scheme that can be used for producing single photons from
single electrons was proposed by Foden et al.17. It was originally
proposed for making a SAW-driven single-photon source with a
high repetition rate. This makes use of the fact that, in a piezo-
electric material such as GaAs, a SAW consists of both a strain
and a potential modulation. In a narrow channel, electrons are
confined in moving quantum dots formed by the SAW potential
and the lateral channel potential. The number, n, of electrons in
each SAW potential minimum is well defined if the Coulomb
charging energy is large enough. The SAW (of frequency fSAW)
can therefore drive a quantised current nefSAW along the channel
(e is the electronic charge)18,19. To generate photon emission,
single electrons must be carried in SAW potential minima across
a lateral n-i-p junction to create single photons by recombining
with holes (see Supplementary Movie 1 for a schematic anima-
tion). Using this scheme, a propagating single-electron state is
converted to a single-photon state.

To demonstrate the electron-to-photon conversion in the
single-electron limit, the second-order correlation function, g(2)

(0), where g(2)(0) ≤ 1 for sub-Poissonian light and g(2)(0) ≤ 0.5 for
single-photon emission, needs to be measured when the SAW-
driven current ~1efSAW. For two decades, various attempts have
been made to implement this scheme but single-photon emission
has not been observed20–25. Our recent work shows quantised
SAW-driven current in a gate-induced n-i-n junction, indicating
a promising route for an electron-to-photon interface using gate-
induced n-i-p junction26.

We note that several works based on SAW-injected excitons
into a self-assembled quantum dot27,28 or a SAW-modulated
Purcell effect in a dot-cavity system29,30 have shown single-
photon emission. Long-distance transport of optically excited
carriers along an etched quantum wire is also achieved using a
SAW31. These works demonstrate the capability of a SAW to
transport and inject single excitons, and to dynamically modulate
the coupling between a quantum dot and a cavity, but these
results rely on optically excited carriers and the presence of a
randomly formed self-assembled quantum dot or recombination
centre, which will pose a challenge in device integration.

Here we successfully demonstrate the generation of single
photons from single electrons using Foden’s scheme. Our device

is fabricated using a deterministic conventional lithography
process, which is compatible with gate-defined quantum dots. In
the single-electron limit, without any spectral filtering, our device
shows clear photon antibunching with g(2)(0)= 0.39 ± 0.05,
indicating single-photon emission created by single-electron
transport.

Results
Device and setup. In this work, the lateral n-i-p junction is made
in a conventional undoped 15 nm GaAs quantum well using
standard lithography techniques (see the “Methods” section).
Electrons and holes are induced in the regions under the electron
and hole surface gates, which are separated by an intrinsic region
(Fig. 1a). A source-drain (S-D) bias less than the GaAs bandgap is
applied across the n-i-p junction to create a finite potential
difference between the electron and hole regions. A SAW is
generated by applying a radio-frequency (RF) signal to an
interdigitated transducer (IDT) at its resonant frequency fSAW=
1.163 GHz. Electrons are trapped in SAW potential minima and
pushed towards the hole region (Fig. 1b).

To achieve SAW-driven single-electron transport, lateral
confinement is provided by etching the region connecting the
electron and hole regions into a 1D intrinsic channel. In addition,
a pair of side gates is placed on either side of the channel to adjust
the electrostatic potential in the intrinsic region. The physical
length of the channel is made to be similar to the SAW
wavelength of 2.5 μm. In this case, any current flow will be caused
by the SAW carrying electrons up the potential slope linking the
conduction band in the regions of electrons and holes, not by the
SAW reducing the height of the potential barrier in the intrinsic
region at a certain part of its cycle. All measurements were carried
out at 1.5 K.

SAW-driven electron transport and electroluminescence. In
order to test the effect of a SAW on the induced lateral n-i-p
junction, a S-D bias, VSD, <1.45 V is applied to the junction. This
is at least 90 mV below the voltage required to align the con-
duction band in the n and p regions so that a current can flow at
cryogenic temperature if any intermediate barrier is overcome. In
this case, due to the conduction-band offset between the n and p
regions, electrons cannot reach the p region to recombine with
holes unless a SAW carries them there. Therefore, a S-D current
and electroluminescence (EL) signal will only appear when an RF
signal is applied to the IDT at fSAW.

The SAW-driven current and EL are shown in Fig. 1c. The S-D
current (Fig. 1c top panel) is greatly enhanced around fSAW ~

1.163 GHz with an RF power of 9 dBm (quality factor f SAW
Δf

� 390).

This SAW-driven current is close to 1 efSAW= 0.186 nA. It means
that the number of electrons carried in each SAW minimum is
roughly one on average, a single-electron regime which will, in
principle, generate single photons. These electrons driven by the
SAW arrive at the hole region and recombine, causing a SAW-
driven EL signal, as seen in Fig. 1c (bottom panel). The EL signal
is emitted from the p region as electrons recombine with
holes there.

The internal quantum efficiency, η, defined as the ratio of the
number of photons actually collected to the number of photons
that can theoretically be collected by the optics, is about 2.5% (see
the “Methods” section). This low η may be caused by trapping
and non-radiative recombination in surface states around the
etched edges32, or due to electrons being carried away without
recombining near the junction. The time-resolved measurement
of the SAW-driven EL, shown in Fig. 1d, exhibits periodic peaks
with a period of 860 ps. Hence, it is evident that electrons are
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injected into the hole region by the SAW, leading to photon
emission with the period of the SAW.

The spectrum of the SAW-driven EL is shown in Fig. 1e. The
spectral peak corresponds to the neutral-exciton transition from
the conduction band to the first heavy-hole subband in the
quantum well (see Supplementary Note 1)33. The full width at
half maximum (FWHM) of the peak is about 1 meV, which
can be attributed to acoustic-phonon scattering (ΔE ~ 0.2 meV at
1.5 K) and interface roughness (atomic monolayer fluctuations in
the quantum-well thickness give ΔE ~ 0.5 meV)34. The lower-
energy tail of the peak may be due to localised exciton states or a
Stark shift in the hole region. Unlike conventional single-photon
emission based on self-assembled quantum dots, which usually
have an extra peak in the spectrum due to biexciton states, this
device shows only one peak (neutral exciton) without any spectral
filtering or optical cavity.

Time-resolved SAW-driven electroluminescence. The dynamics
of the SAW-driven generation of single photons from single
electrons can be studied using a time-resolved EL measurement
technique. A 350 ns-long pulsed RF signal is applied to the IDT to
generate a pulsed SAW (Fig. 2a top). The SAW-driven current is
close to the single-electron regime. Because the SAW velocity on
GaAs is ~2800 m/s and the distance from the IDT to the n-i-p
junction is ~1.1 mm, it will take about 400 ns for the SAW to
arrive at the junction, and for its amplitude to build up so that it
transports electrons which then recombine with holes. Therefore,
compared with the RF signal, the SAW-driven EL is delayed by
about 400 ns, as can be seen in Fig 2a (bottom). This confirms
that the EL signal is indeed caused by the SAW, rather than by

electromagnetic crosstalk generated by the RF signal, which
should have an effect without any noticeable delay since the speed
of light is five orders of magnitude faster than the SAW.

In order to understand more detailed dynamics, data points
three SAW periods apart are averaged across a large part of the
region where the EL signal is observed, in Fig. 2a (bottom), to give
three periods that are the combination of every third period of the
data. The resulting data is shown in Fig. 2b. The shape of an
individual peak can be understood from the injection of electrons
by the SAW. When an electron is pumped across the n-i-p
junction by the SAW, the probability of electron-hole recombina-
tion suddenly steps up and causes a rapid enhancement of the EL
signal. The signal then decays exponentially as the probability that
the electron has already recombined rises. The peaks in Fig. 2b are
broadened by the temporal uncertainty (jitter) of the single-
photon avalanche photodiode (SPAD) and of the SAW-driven
electron transport itself, originating from a slight uncertainty
about the position of an electron in a SAW minimum. Note that
each peak in Fig. 2b does not decay to zero by the time the next
peak appears. The reason for this non-zero background level may
be due to after-pulsing of the SPAD35 or to slowly decaying
secondary-exciton states (lifetime ~0.2–1.5 ns)36,37. These slowly
decaying exciton states may be the localised excitons seen in the
small lower-energy tail in Fig. 1e.

Dynamical parameters, including carrier lifetime, τ, back-
ground offset, BGEL, and jitter, w, are quantified by fitting the
data to a function, H(t), describing the SAW-driven EL
(see Supplementary Note 2). The best fit, plotted along with the
data in Fig. 2b, gives τ= 94 ps, w= 33 ps, and BGEL= 7% of
the peak height. The short carrier lifetime of 94 ps is likely to be
caused by non-radiative recombination at surface states, which
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Fig. 1 SAW-driven lateral n-i-p junction, and its electrical and optical properties. a Schematic of the device. Electron and hole surface gates induce
electrons (n-region) and holes (p-region) in a GaAs quantum well, forming a lateral n-i-p junction along an etched 1D channel. A SAW is generated by
applying an RF signal to a transducer (placed 1 mm from the n-i-p junction). b Schematic diagram showing the band structure of the n-i-p junction
modulated by the SAW potential, for an applied forward bias less than the bandgap. A single electron is carried in each SAW minimum, creating a single
photon when it recombines with a hole. c S-D current (top) and EL intensity (bottom) as a function of applied RF frequency at an RF power of 9 dBm. They
both show a significant enhancement around 1.163 GHz, which is the resonant SAW frequency of the IDT. d SAW-driven EL intensity as a function of time.
The 860 ps periodic feature corresponds to the applied SAW frequency of 1.163 GHz. e Energy spectrum of the SAW-driven EL. The spectrum shows a
peak at 1.531 eV (FWHM ~ 1 meV), which matches the exciton energy in the quantum well (see Supplementary Note 1).
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also gives rise to the observed low quantum efficiency η. On the
other hand, a propagating electron only spends a few hundred ps
in the junction area, which would also lead to the observed short
lifetime. This carrier lifetime is short compared with the 860 ps
SAW period, so photons driven by consecutive SAW minima do
not overlap significantly in the time domain.

Photon antibunching in the single-electron regime. In this
device, quantised SAW-driven current cannot be observed,
meaning that there is some variation in the number of electrons
in each SAW minimum. However, the probability distribution of
electron occupation numbers can still be affected by the discrete
nature of SAW-driven charge transport, causing a reduced var-
iance in electron number. The probability distribution should
thus become a sub-Poissonian distribution, which will lead to
photon antibunching after recombination.

Photon antibunching in the SAW-driven EL is tested by
measuring an autocorrelation histogram using a Hanbury
Brown and Twiss (HBT) setup (see the “Methods” section).
A continuous SAW is used to drive the n-i-p junction in the
single-electron regime (with an average number of electrons in a
SAW minimum of 0.89) stabilised by a feedback control loop.
Coincidences occurring outside the optimum single-electron

regime (SAW-driven current above 1ef or below 0.8ef) are
removed from the dataset after acquisition (see the “Methods”
section). The autocorrelation histogram as a function of time
delay, Δt, in Fig. 3a shows periodic peaks with the 860 ps SAW
period, indicating that coincidences in the histogram are indeed
caused by the periodic SAW-driven photon emission. In the
single-electron regime, the peak at Δt= 0 is suppressed to 58% of
the average peak value (69% for the raw data, see Supplementary
Note 6). The suppression at Δt= 0 is clear evidence of photon
antibunching in the SAW-driven EL (a reduced probability of two
photons arriving at the same moment).

Second-order correlation function. Although photon anti-
bunching is observed in Fig. 3a, the second-order correlation
function g(2)(Δt), which confirms the presence of single-photon
emission if g(2)(0) < 0.5, cannot be simply obtained from the peak
heights. This is because coincidence at a peak can have a con-
tribution from the two neighbouring peaks if they have significant
overlap, and also because an effective background (BGEL) in EL
can give rise to a background, BGg2, in the autocorrelation his-
togram. Therefore, the actual shape of individual peaks and the
background BGg2 have to be considered in order to extract
the real g(2)(Δt). The peak shape and the background can be
estimated by fitting the autocorrelation histogram to a function,
G(Δt), describing the autocorrelation of SAW-driven EL (see
Supplementary Note 3). To have a better fit, points from every
third peak in the histogram are averaged together. The averaged
histogram and the best fit are plotted in Fig. 3b. The fit shows that
the autocorrelation histogram is caused by a SAW-driven EL
signal with τ= 99 ps, w= 33 ps and BGEL= 8% of the peak
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height. These parameters are consistent with those obtained in
fitting the time-resolved data (Fig. 2b). With these parameters,
the actual shape of individual peaks and the background BGg2 are
known. Hence, the real g(2)(Δt) can now be extracted from the
autocorrelation histogram.

g(2)(Δt) of the SAW-driven EL is obtained by finding the real
contribution from each peak in the autocorrelation histogram
(see Supplementary Note 4). The result is shown in Fig. 4a. In the
single-electron regime, the suppressed photon-antibunching peak
at Δt= 0 gives g(2)(0)= 0.39 ± 0.05 (g(2)(0)= 0.63 ± 0.03 for the
raw data), showing that the SAW-driven n-i-p junction can
indeed produce single-photon emission from single-electron
transport. In addition, since the average number of electrons,
Navg, in a SAW minimum is 0.89, the probability distribution of
photon-number states can be estimated. The wave function of
electrons in a SAW minimum can be expressed in the Fock basis

ψj i ¼
ffiffiffiffiffi

P0

p

0j i þ
ffiffiffiffiffi

P1

p

1j i þ
ffiffiffiffiffi

P2

p

2j i þ
ffiffiffiffiffi

P3

p

3j i þ � � �

where nj i and Pn denote the electron-number states and their
respective probabilities. Navg is thus a function of the probability
distribution {Pn}. When n electrons (electron-number state nj i)
arrive at the hole region, each of these electrons may recombine
with a hole and produce a photon according to the internal
quantum efficiency η. Hence, up to n photons are produced from
nj i. These photons then cause coincidences in an autocorrelation
histogram. As a result, g(2)(0) is also a function of the probability
distribution {Pn}. Assuming that ψj i has no projection on to mj i
with m ≥ 4 (meaning that a SAW minimum can carry only up to

three electrons) and given that Navg= 0.89 and g(2)(0)= 0.39, the
probability distribution {P0, P1, P2, P3} of electron-number states
(and photon-number states) in the single-electron regime
is estimated to be {25 ± 3%, 63 ± 7%, 10 ± 6%, 2 ± 2%} (see
Supplementary Note 5 for the analysis). This probability
distribution is shown in Fig. 4b, along with the distribution
expected for a classical Poissonian light source (with the same
average number Navg= 0.89) for comparison. It can be seen that,
in the SAW-driven n-i-p junction, the single-photon probability
is greatly enhanced compared with the classical case. Based on
this estimated probability distribution, when a detector receives a
light signal from this SAW-driven n-i-p junction, the signal has a
probability of P1∕(P1+ P2+ P3)= 79–90% to actually be a single
photon.

Discussion
Conversion of single electrons to single photons has been
experimentally demonstrated in this SAW-driven lateral n-i-p
junction. However, many improvements need to be made to
optimise future devices. In particular, g(2)(0)= 0.39 in our work
is high compared with g(2)(0) ~ 1 × 10−4 in the very best self-
assembled quantum dots38. In order to understand how to
improve this, we build a simplified SAW-transport model to cal-
culate the probability distribution of SAW-driven electrons.
The result indicates that a more well-defined single-electron state
(and thus higher P1 and lower g(2)(0)) may be achieved with a
stronger confinement in the 1D channel and the SAW potential
(see Supplementary Note 7). This may be done by using a nar-
rower channel, and depositing ZnO thin film to enhance the SAW
potential39. As for the low efficiency η, this can be improved by
surface passivation to reduce non-radiative surface states32, by
better capturing of the SAW-driven electrons, and by building an
optical cavity (see Supplementary Note 8).

In order to develop spin-to-polarisation qubit conversion, the
next step is to generate polarised single photons from single-
electron spins by integrating spin-injection techniques with our
device40,41. In addition, a superposition of spin states can be
converted to a superposition of photon polarisations via the
recombination of an electron and a light hole under an in-plane
magnetic field42. Combining the spin-to-polarisation and
the inverse polarisation-to-spin conversions16, one would then
achieve long-distance quantum-information transfer between dis-
tant semiconductor spin qubits. Moreover, though our experiment
is done in GaAs, the same scheme may also be applied to emerging
2D semiconductors, where the spin coherence time T2 is predicted
to be about 30 ms in isotopically purified MoS243, and the essential
SAW-driven charge transport and gate-defined junction have
already been realised44,45. In addition, as the scheme was originally
proposed as a single-photon source, this device may also be useful
as a novel single-photon emitter in on-chip quantum photonic
networks (see Supplementary Note 9).

In conclusion, we have shown that single photons can be
generated using a SAW-driven lateral n-i-p junction operating in
the single-electron limit. This device is fabricated in a fully
deterministic lithographic process using gates, etching and an
IDT, and hence is compatible with conventional semiconductor
fabrication. Such an electron-to-photon conversion interface
marks the first major step towards long-distance semiconductor
qubit transfer via single optical photons.

Methods
Device fabrication. The SAW-driven lateral n-i-p junction was made in a 15 nm
undoped GaAs quantum well. The quantum-well layer structure consists of (from
the top) a 10 nm GaAs capping layer, a 100 nm Al0.33Ga0.67As top barrier, a 15 nm
GaAs quantum well, a 285 nm Al0.33Ga0.67As back barrier, and finally a 1 μm GaAs
buffer layer. n-type and p-type ohmic contacts were in direct contact with the
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Fig. 4 SAW-driven single-photon emission in the single-electron regime.

a The second-order correlation function g(2)(Δt), which is obtained after
fitting the autocorrelation histogram to G0ðΔtÞ. g(2)(0)= 0.39 ± 0.05 <
0.5 shows that the SAW-driven lateral n-i-p junction produces single-
photon emission from the single-electron transport. b Estimated probability
distribution of photon-number states nj i in the SAW-driven EL, compared
with the probability distribution in a Poissonian light source with Navg=

0.89. See Supplementary Note 5 for error estimation.
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quantum well. AuGeNi (for n-type contacts) and AuBe (for p-type contacts) were
evaporated in regions recessed to the quantum well, and annealed at 470 and 520
∘C respectively. Bridging gates for inducing electrons and holes from the ohmic
contacts were fabricated by evaporating Ti/Au on a 100 nm Al2O3 insulator, which
is on top of the ohmic contacts. Surface gates for extending charge carriers and
forming a lateral n-i-p junction were fabricated on the wafer surface using electron-
beam lithography. 1.2 μm-wide 1D channel between the electron and hole regions
was made by removing the quantum well next to the 1D channel using electron-
beam-defined wet etching. The IDTs with a period of 2.5 μm were made using
electron-beam lithography. The completed device was then mounted on a custom-
made sample holder for measurement at 1.5 K.

Post-selection in the single-electron regime. Ideally, the device should be
operated precisely in the single-electron regime (S-D current= 1ef). However, even
with the S-D bias and all gate voltages kept fixed, the SAW-driven S-D current can
drift between 5ef (multiple-electron regime) and 0ef (vacuum state). This instability
may be related to a charging effect near the n-i-p junction so that the potential
drifts and affects the SAW-driven charge transport. In order to deal with this
instability, a PID control loop was used so that constant adjustment could be made
to S-D bias to keep the SAW-driven current around 0.9ef. Note that the SAW-
driven current still occasionally drifts away from the single-electron regime, so we
post-select the coincidences that occurred when the current is between 0.8ef and
1.0ef. We then use these post-selected coincidences (30% of the total coincidences)
to analyse g(2)(0) in the single-electron limit. The current measurement had a
response time of up to 1 s so sometimes the current might appear to be below 1 ef
even though it had drifted up slightly, worsening the statistics. If we use a smaller
range of 0.8ef–0.9ef for the post-selection, g(2)(0)= 0.38 ± 0.04. If a larger range of
0.75ef–1.1ef is used for selecting coincidences, g(2)(0) becomes 0.47 ± 0.05 since it
includes more coincidences in the multi-electron regime or vacuum state. Note that
even before post-selection, the raw data shows clear photon antibunching with g(2)

(0)= 0.63 ± 0.03 for a long measurement period of 54 h. We expect that this
charging effect will be reduced by eliminating surface states using surface passi-
vation. Interestingly, this post-selection can be done simultaneously in the mea-
surement because we can know if the device is in the single-electron regime or not
by measuring the current in real time rather than looking for photon correlations.

Optical setup. An EL signal emitted from a 2 μm2 area is collected by a home-
made confocal fibre-coupled lens assembly, the position of which relative to the
sample is controlled by a three-axis piezoelectric stage. The EL signal is then sent
through a single-mode fibre to optical components outside the cryostat. A 750 mm
Czerny-Turner spectrometer with a chilled EMCCD camera is used for taking the
EL spectrum. Note that no spectrometer or spectral filtering is involved in the time-
resolved EL or HBT experiments.

The internal quantum efficiency η is defined as the ratio of the number of
photons actually collected to the number of photons that can theoretically be
collected by the optics. In the single-electron-transport regime, η is determined by

η ¼
Ndetect

f SAW � Coptics � CSPAD

where Ndetect is the number of photons detected by the SPAD per second, fSAW is
the SAW frequency (corresponding to the number of recombinations per second),
Coptics is the collection efficiency of the lens assembly (~0.4%), and CSPAD is the
sensitivity of the SPAD at 800 nm (~15%).

Time-resolved EL measurement setup. A time-resolved EL setup consists of a
SPAD, an arbitrary waveform generator that produces timing pulses, a time-to-
digital converter, and a RF source that is synchronised to the timing pulses. The
SPAD can be triggered by the detection of a single photon and will then output a
signal pulse with a 40 ps jitter. The pulse generator also produces timing pulses
with a 10 ps jitter. The signal pulses and the timing pulses are connected to the
time-to-digital converter, which measures the time difference between a timing
pulse and a signal pulse. The RF source is synchronised with the pulse generator by
using a 10MHz sync signal. The RF signal is used to generate a SAW signal
synchronised to the timing pulses. A time-correlated histogram of a SAW-driven
EL signal can thus be obtained by recording the time difference between timing
pulses and SPAD signal pulses.

Hanbury Brown-Twiss setup. An HBT setup consists of a 50:50 fibre-coupled
beam-splitter and two SPADs. The beam-splitter splits the stream of photons in a
SAW-driven EL signal into two beams. Each beam is sent to a SPAD. These two
SPADs produce signal pulses when they are triggered by the incoming photons. In
a start-stop autocorrelation method, a signal pulse from SPAD 1 (start) will cause
the time-to-digital converter to begin time counting until the counter receives a
signal pulse from SPAD 2 (stop). The counter then records one coincidence at the
time delay between these two signal pulses. The two beams of photons will give rise
to the autocorrelation histogram, which is the number of coincidences as a function
of time delay.

Data availability
Data and processing scripts associated with this work are available at the University of
Cambridge data repository (https://doi.org/10.17863/CAM.47728). The source data
underlying Figs. 2, 3 and 4 are provided as Source Data files.
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