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Abstract

Interaction and action anticipation remains a challenging
problem, especially considering the generalizability con-
straints of trained models from visual data or exploiting vi-
sual video embeddings. To overcome these constraints, we
present an initial investigation of a novel approach for solv-
ing the task of interaction anticipation between objects in a
video scene by utilizing a qualitative spatial graph represen-
tation. A convolutional recurrent neural network architecture
learns in a self-supervised way to predict qualitative spatial
graph structures of future object interactions, while being de-
coupled from visual information.

Introduction

Performing long-range predictions of spatio-temporal infor-
mation from video data is a challenging problem, evident
in many real-world applications, such as self-driving, robot
control, and human-robot collaboration, as well as percep-
tion tasks, as action prediction and object tracking.

Some prior works focused on short-term video prediction,
such as the ContextVP network (Byeon et al. 2018) which
models contextual dependencies. Furthermore, the MCnet
network (Villegas et al. 2017) acts on the motion and con-
tent of the video data, separating them into different encoder
paths and performing prediction of future frames consider-
ing the observed motion. Also, inspired by ‘predictive cod-
ing’, frame predictions with PredNet (Lotter, Kreiman, and
Cox 2016) are based on the deviations of local predictions
from every layer of the architecture.

Other works have focused on long-range prediction net-
works, such as the Convolutional LSTM network (Xingjian
et al. 2015), which integrates convolutions into state transi-
tions of a recurrent neural network. Also, action-conditioned
video prediction networks (Finn, Goodfellow, and Levine
2016) model pixel motion for learning physical object mo-
tion. Another long-range prediction network proposes a
memory transition mechanism which memorizes local ap-
pearance and motion for short-term spatio-temporal predic-
tions and exploits an attention mechanism on previous mem-
ory cells for long-range predictions (Wang et al. 2018). Sim-
ilar to the MCnet, the DRNet (Denton et al. 2017) considers
two separate Encoder pathways for the object pose and the
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content of the video for better prediction quality. Moreover,
the VPN network (Kalchbrenner et al. 2017) models the fac-
torization of the joint likelihood of the video by estimating
local dependencies of neighboring pixels. Also, two-stream
recurrent neural networks (Xu et al. 2018) are employed for
capturing the different frequency domain information.

However, pixel-level predictions of future video frames
have high uncertainty after a few frames causing blurriness
of the output. Moreover, learning from visual features con-
strains the model’s generalizability across different domains
as the features learned are based on the visual appearances
present in the dataset. In this paper we present an initial in-
vestigation of a novel approach for addressing the problem
of spatio-temporal anticipation considering object interac-
tions from real-world video data. The proposed approach
considers class-agnostic objects and learns high-level fea-
tures of object interactions. Hence, we obtain information
about how the scene is going to change in the future in ref-
erence to the activity taking place.

We exploit high-level qualitative graphical structures to
represent object interactions present in a video, to abstract
from the feature space of the image scene and attain repre-
sentation generalization across different domains. We learn
from these qualitative graphs in a self-supervised way the
spatio-temporal correlations between interactions and we
predict future qualitative graphs of future object interactions
by exploiting a Convolutional LSTM network architecture.
Due to the high-level representations of interactions, our
method is not video frame dependent and can predict fu-
ture object interactions with high Jaccard index, Accuracy
and F1 scores. Figure 1(a) illustrates an overview of the pro-
posed method. The objectives of this work are:

• to create a 3D tensor representation that captures the in-
formation from high-level relational graphs;

• to predict future interactions in frames-independent time
intervals, considering graph representations of object in-
teractions, based on episode detections.

Interaction Sequence Modeling
As graphical structures are able to capture high level infor-
mation and achieve generalization across different domains,
we exploit qualitative relational graphs to represent activities
between objects in a video scene considering their spatio-
temporal interactions.
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Figure 1: (a) An overview pipeline of the proposed approach for future interaction graph prediction. (b) Episode detection in a
demo video with several color-coded objects. For simplicity we visualize only the RCC5 relations. (c) A ConvLSTM network
is employed for predicting the future RCC5 relationships from qualitative spatio-temporal tensor representations.

For this purpose, we employ a variant of Activity Graphs
(Sridhar, Cohn, and Hogg 2010a,b) (vAGs) to represent en-
tity, i.e. object, interactions present in a video. These graph
representations (g) comprise two layers of vertices where
each layer consists of a single type of node and only nodes
in adjacent layers can be connected with each other. The
bottom (object) layer contains the set of vertices represent-
ing the interacting entities of the video, and the top (spa-
tial) layer consists of the vertices with the spatial relations
describing the spatial interaction of the entities. The spatial
relations we capture are:

• for every pair of objects, the relationships from the Re-
gion Connection Calculus (RCC5) (Randell, Cui, and
Cohn 1992; Cohn et al. 1997) which consist of the re-
lations: ‘discrete’ (DR), ‘partially overlapping’ (PO),
‘proper part’ (PP, PPi), and ‘equal’ (EQ),

• for every pair of objects, the relationships from the
Qualitative Trajectory Calculus (QTC) (Van de Weghe
et al. 2006; Delafontaine, Cohn, and Van de Weghe
2011) which contains the relations: ‘-,-’, ‘-,0’, ‘-,+’, ‘0,-
’, ‘0,0’, ‘0,+’, ‘+,-’, ‘+,0’, and ‘+,+’; where the pair ‘α,
β’ represents the relative motion of each object towards
the other and ‘+’ means motion away, ‘-’ means motion
towards, and ‘0’ means no relative motion,

• for every object, a binary state of Moving or Stationary
(MoS) ,

• and the Cardinal Direction of motion (CarDir) (Frank,
Mark, and White 1991) for every moving object in the
scene, that corresponds to the set of relations: ‘north’
(N), ‘north east’ (NE), ‘east’ (E), ‘south east’ (SE),
‘south’ (S), ‘south west’ (SW), ‘west’ (W), ‘north west’
(NW), and ‘equal’ (EQ).

The maximum period of time throughout which a spatial re-
lation between the video entities occurs, whilst before and
after that time a different spatial relation holds, is an episode
(e), and multiple episodes define the sequence of spatial re-
lations obtained in every interaction (Fig. 1(b)).

Tensor Representation

At training time, for every video we utilize object proposals
to define entities and extract a vAG (g), representing each
detected episode and consisting of all the objects involved.
E.g. in Figure 1(b) episode et+4 is represented by vAG gt+4.
The temporal information for every vAG is represented by
ordering them in temporal episode-detection order.

We exploit a 3D tensor representation for the vAGs (Fig.
1(b)). Each tensor describes the spatial relationships hold-
ing in an episode. Hence, a sequence of tensors carries all
the interactions present in a video. A vAG tensor T ∈

{0, 1}
O×O×R

is based on the construction of a 3D adja-
cency matrix between all entities and spatial relations of an
episode, where O is the number of entities and R the num-
ber of relations. Thus, the values in T are assigned based on
Equation 1 where o1, o2, and r are the locations of the two
objects and the location of the relation (relationr) respec-
tively, in T .

T [o1, o2, r] =

{

1 if relationr(objo1 , objo2) = True

0 if relationr(objo1 , objo2) = False

(1)
Since the size of the tensor is static, it doesn’t change de-
pending on the number of detectable objects; some object
rows will be filled with zeros if fewer than O objects are
detected. A zero value in a detected object specifies that
the specific relation between that object and another is not
present, whereas a zero value for a non-detected object
means that the object is not present. To explicitly differen-
tiate these two cases, for every relational set we add an ex-
tra relation ‘not applicable’ (N/A) which applies to all non-
detected objects. We select O to be sufficiently big so the
number of detected objects does not exceed the tensor’s size.

Convolutional LSTM network for Qualitative

Interactions Prediction

As our application requires capturing long-range dependen-
cies in multi-dimensional tensors for representing qualita-



tive spatio-temporal information we exploit Convolutional
LSTM networks (ConvLSTM) (Xingjian et al. 2015) that
were introduced as an extension of the Fully Connected
LSTM network (FC-LSTM) considering convolution struc-
tures in the input-to-state and the state-to-state transitions.
All features are represented by 3D tensors with dimensions
(height × width × channels) and the matrix multiplications
are replaced with tensor convolutions. The parameters of a
ConvLSTM are the input weights Wx ∈ R

K×K×C and the
recurrent weights Wh,Wo ∈ R

K×K×F with K, C, and F
denoting the kernel size, the number of channels of the in-
put Xt ∈ R

H×W×C and the hidden states Ht ∈ R
H×W×F

respectively. The key equations of ConvLSTM are:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)
(2)

where σ(·) represents a sigmoid function, ‘∗’ denotes a
convolution, ‘◦’ the Hadamard product, and it, ft, ot, Ct ∈
R

K×K×F are the input gate, forget gate, output gate and
memory cell respectively. The input to our network is of di-
mension (M × H × W × C), where M is the number of
samples, H = W = O represent the number of detectable
objects, and C is the set of the spatial relations captured
(29). Also, the output tensor is of dimension (H ×W ×F ),
where H = W = O and F is the number of relations to
be predicted. We selected the output to describe spatial posi-
tions of the objects based only on RCC5, since we consider
such information as the most useful for many real-world ap-
plications. Thus we set F = 6, where 6 is the number of
RCC5 relations with an additional N/A relationship for non-
detected objects.

At deployment time, this network processes incremen-
tally a sequence of vAGs for predicting the future state of
objects’ interactions. The networks updates its internal re-
current state for every episode of interactions, accumulat-
ing in that sense past information and enhancing its future
predictions. The complete representation of the input/output
tensors and the proposed pipeline are shown in Figure 1(c).
The input data capture the information of object interactions
for all the relations (RCC5, QTC, MoS, CarDir), though the
output represents the spatial interactions from the RCC5 set
of relationships only.

Self-supervised The network is trained in a self-
supervised way, by exploiting the sequential nature of our
tensor data. More specifically, at timestep t the input com-
prises of the tensor data at time t (Tt) and t− 1 (Tt−1), from
which Tt−1 is used as the model’s input and Tt is compared
against the predicted output to update the model’s weights.

Training Loss Due to the nature of our data, i.e. binary
sparse tensors, our task is to correctly predict the correct ten-
sor as a multi-class classification problem for every pair of
objects between the different spatial relations we capture.
Hence, for updating the weights of the network in every iter-
ation we minimize a weighted categorical cross-entropy loss

function, defined as:

L =
1

M

K
∑

k=1

M
∑

m=k

wk · ykmlog(hθ(xm, k)) (3)

where M represents the number of training examples, K is
the number of classes, wk is the weight of class k, hθ rep-
resents the model with neural network weights θ, ykm is the
target label for the training example m of class k, and xm

denotes the input of the training example m. The weights
of each class k (wk) are set percentage-wise depending on
the overall detection of each one across the whole dataset.
Hence a relation that appears often will have a low weight,
whereas a relation that appears rarely in the dataset’s inter-
actions will have a higher weight.

Model Architecture Inspired by the model architecture
proposed by (Xingjian et al. 2015), our proposed network
comprises of a series of layers of ConvLSTM modules with
128, 64, 64, and 32 hidden states outputting to a 6 channeled
tensor (Fig. 1(c)). Hence, the output tensors are of dimen-
sion (O × O × 6) and the input tensors are of dimension
(O × O × 29), where O represents the number of detected
objects. Furthermore, the kernel size is set to (1, 1) as every
value in the tensor is independent of its neighbors, and the
weights are initialized based on the LeCun uniform distribu-
tion (LeCun et al. 2012).

Training Hyper-parameters During training, the Adam
optimizer was employed for the update of the weights. The
learning rate started from 0.01 along with a scheduler to re-
duce the value of the learning rate every 1000 epochs with a
factor of 0.1. We trained the model until convergence for a
maximum of 2.5k epochs. Moreover, the batch size was set
to 5 considering the minimum number of episodes captured
from a single video. Thus, no batch disturbs the temporal
ordering of the data by shuffling or concatenating data from
different videos. We also added a Lasso regularization term
of λ|w| with λ = 1e − 4 in the loss function to avoid over-
fitting of the model.

Experiments
Dataset

We trained and evaluated the proposed approach on the
CAD-120 dataset (Koppula, Gupta, and Saxena 2013) whilst
exploiting the groundtruth bounding boxes of object po-
sitions. The CAD-120 dataset comprises of 120 RGB-D
sequences of frames of everyday-life activities, capturing
human-object interactions in various scenes, e.g. office,
kitchen, etc. From every video of the dataset, tensor repre-
sentations of the object interactions are created by consid-
ering the input relations while extracted from the QSRlib
library (Gatsoulis et al. 2016). Due to the static size of the
tensors we set the maximum number of detected objects (O)
to be 10 which is adequate for capturing all the object in-
teractions for the employed dataset. Also, in every epoch,
the tensor data are shuffled along both the object axes so no
correlation between the rows is learned.

Evaluation

We performed experiments using different qualitative spatial
information to evaluate how the incorporation of each rela-



Table 1: Quantitative results of the experiments on the test set.

Training parameters

Model J.I. (↑) W.C.E. (↓) C.Acc. (↑) F1 (↑) num. parameters batch

B1: RCC5 0.4228 0.9765 0.9198 0.4504 164,904 4
B2: RCC5+QTC 0.5747 0.7453 0.9454 0.5921 170,024 5
B3: RCC5+QTC+CarDir 0.6329 0.8512 0.9469 0.6472 175,144 5
RCC5+QTC+CarDir+MoS 0.6477 0.6133 0.9621 0.6659 176,680 5

tional set helps improve the predicted output. The predicted
tensors represent the future interactions of the next episode.
For baselines B3 and B2 we set the batch size to 5 whereas
for B1 to 4, due to the smaller number of episodes detected,
fewer spatial relations denote fewer episodes.

Inspired by the evaluation metrics in the instance segmen-
tation literature, for quantifying the overlap of 1s in the pre-
dicted tensors over 1s in the groundtruth tensors of RCC5
spatial interactions, one of the metrics we employ is the Jac-
card similarity index (J.I.) (Eq. 4) for multiple classes, which
considers the number of classes (K) and the true positives
(TPk), false positives (FPk) and false negative (FNk) for ev-
ery class (k).

Jmc =
1

|K|

K
∑

k=1

TPk

FPk + FNk + TPk

(4)

Moreover, we report the categorical accuracy measure
(C.Acc.), the F1-score (Van Rijsbergen 1979) (F1), as well
as the weighted cross-entropy loss value (W.C.E.) for ev-
ery experiment. Our method was evaluated on 25% of
randomly-picked unseen video data and the results in Ta-
ble 1 demonstrate that the proposed approach achieves the
best results in all reported metrics 1. More specifically, the
proposed approach combining the information of 1) the spa-
tial location, 2) the relative motion, 3) the absolute motion,
and 4) the direction of the absolute motion of the objects,
can achieve an increase of the Jaccard index score of 2%,
13% and 53% compared to the baselines B3, B2 and B1

respectively. Moreover, we acquire an increase of the cat-
egorical accuracy of 1.6%, 1.8% and 4.6%, as well as an in-
crease of the F1-score of 2.9%, 12.5% and 47.8% compared
to the baselines B3, B2 and B1, respectively. The weighted
cross-entropy loss value shows a significant improvement
of 27.9%, 17.7% and 37.2% compared to the baselines B3,
B2 and B1, respectively, since it considers the imbalance of
the data by applying a weight at each relation. Furthermore,
these results were attained with a maximum growth of 7.1%
in the model size.

Some qualitative results are illustrated in Figure 2 along
with the corresponding vAGs, with the pair-wise relations,
for one of the interactive objects (object α). Figure 2 illus-
trates a visual representation of a two dimensional snap shot
of the model’s input, along with the model’s prediction and
corresponding groundtruth tensor, of the relationships be-
tween all objects and object α. For simplicity we only show
the graph information for RCC5 and QTC relations, omit-
ting the MoS and CarDir relations from the input tensor.

1↑ indicates ‘highest is best’ and ↓ indicates ‘lowest is best’

α β γ δ ε

RCC5:PO RCC5:DR RCC5:DR RCC5:PO

α β γ δ ε

RCC5:DR RCC5:DR RCC5:DR RCC5:PO

QTC: (-,0) QTC: (+,0)

predict

Input Output

(a) (b)

Figure 2: Qualitative results in an example case for the in-
teractions with object α. Output matrix (a) corresponds to
the network prediction, whereas matrix (b) represents the
groundtruth relations. White cells contain the value 1 and
black cells the value 0. Yellow and purple cells are the pre-
dicted values closer to 1 and 0, respectively.

It is evident that the motion information (QTC:(-,0)) as
well as the direction of motion, signify that object β is mov-
ing towards object α. Hence, in the predicted vAG a PO

RCC5 relation holds between objects α and β. We binarize
the values of the predicted tensors by setting the switch point
to 0.5. Thus, values greater than 0.5 are considered as 1.0
and 0.0 otherwise. Hence, by binarizing the predicted tensor
our prediction tensor for this example maps exactly to the
groundtruth.

Conclusions

We have presented an initial study of a novel approach for
solving the task of interaction anticipation whilst exploiting
high-level qualitative spatial representations and training a
ConvLSTM network in a self-supervised way. Our results
demonstrate that exploiting a rich set of high-level relations
is a promising direction for predicting future spatial interac-
tions, whilst not being frame dependent.

This is ongoing research, and we are working towards
cross-validating the performance of our trained model in
various real-world everyday-life activity datasets, as well
as investigating the impact of the incorporation of object
visual feature embeddings. Moreover, we are working to-
wards evaluating the proposed approach against the works of
Srivastava, Mansimov, and Salakhudinov (2015) and Chen
et al. (2022). We are also focusing on conducting real-world
experiments, in which a robot agent is asked to complete an
activity initiated by a human agent, to showcase the impact
of such episodes-based predictions in a human-robot collab-
oration scenario.
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