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Abstract—Machine learning has shown great promise in a
variety of applications, but the deployment of these systems is
hindered by the “opaque” nature of machine learning algorithms.
This has led to the development of explainable AI methods,
which aim to provide insights into complex algorithms through
explanations that are comprehensible to humans. However, many
of the explanations currently available are technically focused
and reflect what machine learning researchers believe constitutes
a good explanation, rather than what users actually want. This
paper highlights the need to develop human-centred explanations
for machine learning-based clinical decision support systems,
as clinicians who typically have limited knowledge of machine
learning techniques are the users of these systems. The authors
define the requirements for human-centred explanations, then
briefly discuss the current state of available explainable AI
methods, and finally analyse the gaps between human-centred
explanations and current explainable AI methods. A clinical use
case is presented to demonstrate the vision for human-centred
explanations.

Index Terms—Explainable AI, Human-centred XAI, CDSS

I. INTRODUCTION

Machine learning (ML) models have been proposed as deci-

sion support systems (DSS) in healthcare and there is evidence

that these systems can perform as well as, or better than,

humans in some circumstances [1]. However, comparatively

few systems are in widespread use in healthcare and one of

the reasons for this is the challenge of demonstrating safety

[2], especially of the ML components. Thus, there is a growing

interest in how the safety of such systems can be assured, e.g.

by assessing the ML models in their system context [3], or by

using explainable AI (XAI) methods to gain confidence that

they meet safety objectives [4]. To date, many explanations

generated for ML systems are technically focused, although we

have argued previously that the forms of explanations should

vary with their purpose and the stakeholders [5].

In this paper, we focus on ML-based clinical DSS (CDSS),

which is also the most common class of ML system that has

obtained regulatory approval in healthcare [6]. Such CDSS are

often viewed by regulators as low risk compared with more

highly autonomous systems as it is still up to human actors

to make the final decision, and the CDSS only provides a

recommendation. Therefore, they are often evaluated “stand-

alone”, assuming that as long as the performance of the

ML-based CDSS is good enough, then it will improve clini-

cians’ diagnostic performance. However, some studies [7] have

pointed out the paucity of evidence that using ML-based CDSS

correlates with improved clinician diagnostic performance and

suggested that we should consider human decisions as end

points, as the ultimate effect or impact of such systems is

achieved by human-AI teaming not AI alone. Therefore, we

believe that one of the important means to support effective

human-AI teaming is explanation.

Despite the significant progress in XAI, some researchers

have already shown that technically-focused explanations, e.g.

just showing feature importance, are not satisfying and tend to

have limited impact on users’ responses to system behaviour

[8]. Similarly, referring to probabilities or statistical relation-

ships in explanation is not as effective as people believe [9].

Further, the critics of current approaches argue that XAI should

build on existing research in other domains, for example phi-

losophy, cognitive psychology/science, and social psychology

[9]. Therefore, in this paper, we will build on psychology and

decision making theory to derive the requirements for human-

centred XAI.

The rest of the paper is structured as follows. Section

II introduces our conceptualisation of human-centred XAI.

Section III provides a general introduction to the current

state of XAI methods. Section IV uses a clinical use case

to illustrate our vision for human-centred XAI. Conclusions

are presented in section V.



II. HUMAN-CENTRED EXPLAINABLE AI

The need to understand how users interact with technology

is fundamental for any successful deployment of the technol-

ogy, especially in complex domains such as healthcare [10].

However, it is not just the interaction that is important to

consider, but how the user and the technology form a cognitive

unit to accomplish tasks together. This view is known as a

Joint Cognitive System [11], which originated in the 1980s

and explains how humans and technology use knowledge

of one another and the environment to plan and modify

their actions. This also relates to the theory of distributed

cognition [12], which explains how people navigate complex

worlds by sharing cognition with other entities (e.g., the work

environment, the tools used, and other people).

These views show it is not enough to understand the roles

of the human and technology in isolation, as how they work

together within a context reveals the true nature of the task.

It is therefore essential to understand both how the human

and computer interact during tasks, as well as the wider

context where the task is performed. To do so, it is important

to use established methods such as Applied Cognitive Task

Analysis (ACTA) to elicit user requirements based on the task

being analysed and its wider system requirements. Alongside

this, other human computer interaction design principles (e.g.,

human-centred design) can be used in refining general re-

quirements. However, the theory of joint cognitive systems

has not yet been widely applied to ML-based systems. There

is therefore a need to understand how it could be applied to

ML-supported tasks, which includes considering how to design

human-centred XAI.

To design human-centred explanations in a joint cognitive

system such as a CDSS, a first step is understanding the

context; specifically, who to explain to and what goal the

explanation has. For a CDSS, the users are clinicians, i.e.

expert users, and the goal is to augment the clinicians’ decision

making. In other words, when the predictions from ML-based

CDSS are right, we want the explanations to help the clinicians

to accept the recommendation (right for the right reasons) and

when the predictions are wrong, we want the explanations to

help clinicians identify and reject the wrong recommendation

in order to achieve the best human-AI teaming performance,

i.e. better performance than human alone or AI alone. In order

to design human-centred XAI that will work effectively with

expert users, two concepts must be understood; how experts

process information to make a decision, and how decisions are

best communicated. Understanding the former highlights what

elements human decision-makers are likely to look for in an

explanation, and by extension what an explanation will need to

contain to be evaluatable. Understanding the latter highlights

the need to match a user’s expectations of what an explanation

“should” look like.

A. How experts process information to make decisions

The main distinction between experts and novices is in

their situation assessment abilities, not their general reasoning

skills [13]. Further, experts are able to represent available

information about a situation in a deeper, more conceptual,

and more abstract manner than novices whose representations

are more superficial [14].

Abstract representation involves two capabilities that are

particularly relevant for the design of human-centred XAI:

the ability to select relevant information to make a decision,

and the ability to ‘chunk’ information together for quicker

processing. The former ability is the acquisition of skilled

knowledge; the ability to separate relevant from irrelevant

information, by considering the entire situation rather than

only the tasks involved [15]. What information is considered

relevant is variable, but interestingly experts do not simply

rely on having a larger quantity of information than non-

experts. A review of the literature shows that many experts in

a variety of fields only use a small number of cues/features to

make decisions [16]. Research shows that medical radiologists

use 2-6 cues [17], and medical pathologists use only 1-4

cues [18], highlighting that it is not volume but the type of

information used which varies between experts and novices.

Furthermore, although experts naturally single out relevant

information, the presence of irrelevant information can neg-

atively effect decisions made. Experts can struggle to ignore

irrelevant information leading to less optimal decisions, known

as the dilution effect [19]. Therefore, presenting explanations

that contain too much information irrelevant to the current

situation could potentially decrease effective decision-making,

as clinicians may struggle to focus on what is important.

The latter ability involves information being considered at

different levels of abstraction, by taking raw data and inputs

and grouping them together in meaningful ways. Rasmussen

[20] argued that complex work systems can be decomposed

into five hierarchical levels of information abstraction. This

means that experts not only have a larger knowledge base

to draw on in the course of decision making; they can also

organise their knowledge in a more conceptual and abstract

manner [21]. Therefore, it is possible for expert decision-

makers within a work context to use different information

abstractions when making decisions. For example, [17] shows

some cue patterns appear to be of consistent importance among

medical radiologists. Using such patterns allows an expert to

overcome the limitations of working memory capacities by

‘chunking’ information together, learning over time how to

store information in memory as a collection of patterns [22].

This is known as chunking theory, where experts have both

larger and more numerous chunks available to them in their

area of expertise, and these also tend to be more abstract than

novices’ [23]. Increasingly complex chunks, formed by itera-

tive chunking, allow for rapid identification and processing of

patterns. Therefore, experts making a decision are likely to rely

on abstracted chunks of complex patterns stored in memory,

and are less likely to rely solely on raw data. By extension,

for an ML-based CDSS to be meaningfully explainable may

require the presentation of information to match the structure

of the clinicians’ chunks, such as by grouping together data

known to be related.

Specifically, [14] provides a more granular description of



the mechanisms that experts use to excel at decision making.

In contrast to a novice decision-maker, experts (1) are tightly

coupled to cues and contextual features of the environment; (2)

have a larger knowledge base that is organised differently from

non-experts; (3) engage in pattern recognition; (4) have better

situation assessment and representations of problems; (5) have

specialised memory skills; (6) self-regulate and monitor their

processes; (7) automate the small steps; (8) seek diagnostic

feedback; and (9) engage in deliberate and guided practice.

The first six features are particularly relevant for designing

human-centred XAI.

The abstract representation abilities described above can be

seen in many of these features — the selection of relevant

information is present in features 1, 3, and 5, whereas the

ability to chunk information together is present in features 2, 3,

4, and 5. Therefore, how experts process information to make

decisions can be condensed into the following five aspects:

the use of contextual cues, the use of selective information,

chunking information together, pattern recognition, and

monitoring/reflecting on their decisions. Viewing expert

decision-making in this way indicates that human-centred XAI

will need to present explanations of how a decision has been

reached in ways that are understandable to an expert. This will

facilitate user understanding and comparing the explanation

against their own decision-making process.

B. How decisions are communicated

It is important to understand how decisions are commu-

nicated as well as how they are made. For a user to work

effectively with an ML-based system, the system must be able

to communicate its decisions and explanations to the user.

Many rules for effective communication between people have

been shown to apply to human-machine communication (such

as between users and chatbots [24]), and have been considered

for XAI design in the past, e.g. [25]. Overall, the goal of com-

munication is to exchange not only information, but also the

meaning behind information. Both “speakers” work together

to allow the sharing of meaning, known as the cooperative

principle, that was introduced by the philosopher of language

Paul Grice, [26], which is composed of four maxims, as fol-

lows: quantity (what is said provides sufficient information),

quality (what is said is genuine and relevant), relation (what is

said is contextually relevant to the conversation and the current

topic), and manner (what is said is understandable). These

maxims imply that effective communication is an ongoing

state, rather than something achieved at one specific time –

both parties work together to select the correct information at

the correct level of abstraction to be understandable to each

other. If one party is unclear, the other can ask for more

information. Conversely, a party can indicate they understand

enough about the smaller details and wish to talk at higher

levels (such as strategies and concepts). Therefore, human-

centred XAI should communicate its decisions effectively to a

user, which involves the ability to adjust provided explanations

both to the needs of the user and the context in which they

are given.

C. The requirements for human-centred XAI

As discussed at the beginning of this section, designing

human-centred XAI for CDSS may benefit from a foundation

based on the theory of joint cognitive systems. Specifically,

it is important to understand the task requirements and the

wider context when designing a CDSS. For example, what

kind of support does a clinician need to enable them to work

effectively in its clinical context? In this section, our focus is

to derive requirements for the design of human-centred XAI

for a CDSS. The purpose is not to replace the well-established

joint cognitive systems design principles, instead it is to build

on them and add specific requirement for explanation.

Therefore, we derived four requirements for designing

human-centred XAI, see Figure 1. The first requirement is

to provide salient and timely information, which reflects the

element “selective information” in expert decision making and

the elements “correct”, “sufficient” and “relevant” information

from effective communication. The second requirement is

to provide different types of explanations, which reflects the

element “being understandable” from effective communica-

tion. The third requirement is to provide different levels of

abstraction, which reflects the element “information chunks”

and “pattern recognition” in expert decision making. The

final requirement is to provide interactive explanation, which

reflects that different experts might use different information

to make decisions and that effective communication is an

ongoing process.

Figure 1 condenses these insights into a framework for

designing human-centred XAI, showing how the requirements

arise from reconciling how experts make decisions with key

elements of effective communication. The requirements above

are intended to be general. That means that they need to

be refined when designing a specific ML-based CDSS. For

example, when designing a ML-based CDSS using structured

data, counterfactual explanations might be preferred by experts

in order to understand what features to change to achieve a

desired outcome. However, when designing a ML-based CDSS

using an imaging dataset, a saliency map might be preferred.

III. THE CURRENT STATE OF XAI

A. Types of explanation

ML encompasses a diverse set of methods, some of which

are considered to be inherently interpretable, such as linear

models, decision rules or trees, and general additive models.

It is worth noting that even with such models, interpret-

ing the results can be challenging for humans, particularly

when the model input features exhibit heterogeneity or the

dimensionality of the input features surpasses human cognitive

capacity, which is a frequent occurrence in healthcare settings.

In contrast, other ML models, such as neural networks (NNs),

are more complex or opaque, but post-hoc explanations can

be generated to provide insights into how and why the mod-

els make their decisions, even if they are too complex for

direct human interpretation. This paper briefly discusses four

main post-hoc explanation types, but a more comprehensive

overview of XAI has been presented in [4].
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Fig. 1. A framework to inform design of human-centred XAI.

Feature importance explanation involves ranking or scor-

ing all of the input features for a given model. A higher score

means the specific feature has a greater effect on the model’s

prediction. Perturbation or gradient-based methods can be used

to obtain these scores. One example of a popular perturbation

method is SHAP [27], which is based on Shapley values.

Meanwhile, Integrated Gradients is a gradient-based method

that calculates the average gradient of the output in relation

to each input feature [28].

Explanation by example selects specific instances from the

dataset or generates new ones, which can include prototypical

examples, counterfactual examples and influential instances.

Prototypical examples are able to capture and encapsulate a

complex underlying data distribution, making them a useful

tool for explaining specific predictions. By identifying the

training instance that is most similar to the current instance of

interest, they can provide a clear and concise representation

of the reasoning behind a given prediction. Counterfactual

explanations are hypothetical scenarios that explore “what

if” situations. Influential instances are the training instances

which have a significant impact on the model or a specific

prediction. Note that influential instances are not necessarily

representative for the current instance of interest although they

are influential in the training process.

Explanation by approximation refers to the use of surro-

gate models, which are often inherently interpretable, such as

linear models, to approximate the complex model, e.g. a NN.

Depending on whether the surrogate model is approximating a

single prediction or the entire model, it can be further classified

as either local or global explanation. For instance, Anchors

[29] generate if-then rules for predictions in a particular region

by employing a perturbation based approach. LIME [30] trains

a local surrogate, e.g. a linear model, to explain an individual

prediction by mimicking the complex model behaviour.

Other visual explanation techniques can illustrate how

input features of a ML model interact with the model pre-

diction or other input features in order to improve model

comprehension. Note that the categories presented here are

not orthogonal. For example, although LIME is categorised as

providing explanation by approximation, it can also provide

feature importance explanations.

B. Different levels of abstraction

Turning to deep learning, three levels of abstraction have

been explored, which are particularly relevant to producing

explanations to expert users. The first level is to provide

explanations at the input feature level, i.e. explaining what

features are important for the ML model to make a specific

prediction. For example, a “saliency map”, which highlights

the pixels that were relevant for a certain image classification

by a NN, would be considered to belong to feature level

explanation. Many XAI methods produce explanation at the

input feature level, e.g. DeepLift [31], and LIME [30].

The second level is to provide explanations at the con-

cept level, i.e. explaining the concept that the ML uses to

make prediction, e.g. a small “crater” present in the X-ray

image. When the number of input features exceeds a certain

amount, the ranking of all the input features would not be

sufficient to provide human intelligible explanation and as

we mentioned above, experts use abstract representation of

the information, not only the information itself. Concept-

based explanation could address this limitation and provide

human-friendly explanation. There are two ways to generate

concept level explanations. One is to integrate concepts used

by humans into the design of the NN itself. For example,

concept bottleneck models map the input features to concepts,



then map the concepts to predict model outputs [32]. Another

is to use post-hoc interpretations to explain already-trained

NNs in terms of high-level concepts, e.g. Kim et al use

a linear probe to predict concepts from hidden layers [33].

However, these post-hoc concept-based XAI techniques rely

on models automatically learning those concepts despite not

having explicit knowledge of them. That means if the models

doesn’t learn the concepts used by humans, then the approach

can fail.

The third level is to provide explanation at a strategic

level, i.e. explaining the decision strategy that the ML model

uses to make predictions. This can reveal whether the ML

model’s problem-solving behaviours are naive, short-sighted,

or well-informed and strategic. For example, Lapuschkin et

al uses spectral relevance analysis to characterise the decision

behaviour of ML models [34].

Current XAI methods are mostly focused on input feature

level explanations. Concept-based XAI methods are better

developed for image-based datasets, where it is much easier to

show that a concept present in an image is used for a certain

prediction task. In comparison, it is much harder to develop

concept-level explanations for structured datasets, where it is

less obvious how to group raw features as the raw features are

already meaningful to humans, e.g. patient blood pressure. We

will illustrate this further in our clinical use case in section

IV. Further, strategy level explanations are less well explored.

Also, although there are methods to provide explanations at

different level of abstraction as discussed above, it still might

not be possible to provide explanations for all of the levels of

abstraction for a given ML-based CDSS.

IV. A CLINICAL USE CASE

In this section, we present a clinical use case to illustrate

our vision for human-centred XAI. It focuses on an ML-based

CDSS using convolutional neural networks (CNN) to predict

extubation readiness for patients on mechanical ventilation in

an Intensive Care Unit (ICU). Extubation is the final step

in liberating a patient from mechanical ventilation and is

a potentially dangerous time for ICU patients as the range

of breathing support options from the ventilator is markedly

reduced when the endotracheal tube has been removed, and

the lack of the tube also means that there is limited access for

suction catheters to be passed to remove respiratory secretions.

Both early and delayed extubation can cause patient harm.

Determining the right time to extubate a patient is a complex

clinical task. Reported rates of reintubation in the literature

range from 3% to greater than 30% [35]. Although a lot of

effort has been made to come up with criteria for extubating

patients, e.g. the rapid shallow breathing index (RSBI), there

is no consensus on a standardised protocol and such indices

are still not very accurate and are unlikely to be sufficient

in themselves [36]. This shows the difficulty of predicting

extubation readiness, therefore ML can potentially be helpful

to support clincians to make such decision.

Thus, we developed the CNN model using the MIMIC-

III clinical database incorporating 25 patient features, such

as demographics, vital signs and laboratory values (see our

previous paper [4] for more detail). Here, we used DeepLift

[31] to generate feature importance for the CNN model. Figure

2 (a) illustrates what features are important for a particular

prediction. The length of the bars shows importance, with

those to the right contributing to extubation and those to the

left indicating otherwise. Showing features that influenced a

prediction can allow clinicians to recognise contextual cues.

In contrast, Figure 2 (c) illustrates counterfactual expla-

nations for a particular patient. The leftmost column lists

the features (the same as in Figure 2 (a)), and the central

column shows the current values that lead to the prediction.

In this case the patient is not ready for extubation (predicted

probability >0.5). The rightmost column shows one counter-

factual example – changes in input features that can reverse

the prediction (predicted probability <0.5). Some features

cannot be changed, e.g. age and ethnicity, and the methods for

producing counterfactuals seek to identify the smallest change

that brings about the desired change in prediction. Some

methods can generate multiple alternative counterfactuals [4].

It is worth noting that feature importance is a more process-

based than outcome-based way to explain an ML prediction. In

other words, with feature importance clinicians can see that the

ML is using the “right” set of features to make its prediction,

comparing with their own knowledge, but it is hard to know

exactly how they affected that prediction. In contrast, one of

the benefits of counterfactuals is that they make clear the

effects of feature change on the outcome. Thus, there is benefit

in generating different types of explanation so clinicians can

select the most effective type for the task at hand.

Further, when clinicians make decisions about extubation,

they not only look at each individual feature, they also organise

the information based on their clinical knowledge. They are

more likely to group or “chunk” the features into a more

abstract level to assess extubation readiness. For example, they

are more likely to ask “whether the acid-base balance for the

patient is appropriate”, which indicates that CO2 in the patient

blood is normal. This can involve comparing multiple variables

such as PaCO2, pH, and SpO2. Also, they may ask whether

the patient has adequate oxygenation and adequate pulmonary

function to extubate, whether the patient has haemodynamic

stability, and whether the patient’s psychological status is

suitable for extubation. They might also consider other pa-

tient information, e.g. patient weight in this case, as being

“relevant information”. These are the questions that clinicians

are more likely to consider to make the extubation decision,

rather than just considering the 25 raw features. Thus, just

showing the input feature importance might not be sufficient

to support clinicians to make decisions as feature importance

alone does not fully support “information chunks” or “pattern

recognition”.

Based on these considerations, we have grouped the raw

patient features used in our CNN model based on how

clinicians will look at them, as shown in Figure 2 (b). In

principle, we can just sum up the raw feature importance

based on the grouping and derive more abstract measures of



(a)

Input features original 

input

Counterfactua

example

Admit type Emergency --

Ethnicity White --

Gender Female --

Age 78.2 --

Weight 86.5 --

HR 119 110

RR 24 --

SpO2 98% --

FIO2 100% 40%

PEEP 10 5

MAP 14 10

TV 541 --

PH 7.46 --

RR(Spont.) 0 24

Richmond 

RAS Scale

−1 0

PIP 21 --

O2 Flow 5 --

Pplat 19 --

PaO2 124 118

PaCO2 33 --

BP (systolic) 101 --

BP (diastolic) 65 --

BP(mean) 76 --

SBT No result Completed

VM CMV/ASSIST/

AutoFlow

SIMV/PSV

Predicted outcome 0.93 0.17

(c)

Acid-base 

balance

Oxygenation

Ventilation

Haemodyna

mics

Psychology

General 

patient info.

PH

PaCO2

SpO2

FiO2
PaO2

O2 flow

PEEP

PIP
MAP

TV

Pplat

RR
RR(Spont.)

SBT
VM

HR
BP (systolic)

BP (diastolic)
BP (mean)

Richmond 

RAS scale 

Admit type
Ethnicity

Gender
Age

Weight

Extubation

Probability

(b)

Fig. 2. An example of representing different types and levels of explanation for the CNN model. (a) Feature importance for a specific prediction which
ranks the 25 input features. (b) More abstract level of explanation for the model by grouping raw features together in a meaningful way. (c) Counterfactual
explanation for a specific patient instance showing what features to change in order to extubate the patient. “–” shows that the features don’t change. Legend:
PaCO2, arterial carbon dioxide pressure; SpO2, oxygen saturation pulseoxymetry; PaO2, arterial oxygen pressure; FiO2, inspired oxygen fraction; PEEP,
positive end expiratory pressure; PIP, peak inspiratory pressure; MAP, mean airway pressure; TV, tidal volume; Pplat, plateau pressure; SBT, spontaneous
breathing trial; VM, ventilatory mode; RR, total respiratory rate; RR (spont.), spontaneous breaths; HR, heart rate; BP, blood pressure; Richmond RAS scale,
Richmond Agitation and Sedation scale.

importance, e.g. showing how acid-base balance contributed to

the decision. For example, this has been done in [37] where

they simply summed up the feature importance of the raw

features based on which clinical domain they belong to.

This is an evolving use case and we also plan to develop

other XAI methods to represent the abstract level explanations,

e.g. using fuzzy logic to map the raw patient features to

abstract levels, e.g. acid-base balance, then using NN to map

the result from fuzzy logic to extubation probability.

We also plan to evaluate the impact of human-centred XAI

using two main criteria. We will test task performance in this

context and assess experts’ mental models. This will help to

determine whether or not the explanation provided is “salient

and timely”, providing the right amount of support and not

diluting the experts’ decision-making, thus achieving the goal

of explanation.

V. CONCLUSIONS

This paper has set out the need for human-centred expla-

nations for ML-based CDSS. We have systematically derived

four requirements for human-centred XAI from an analysis

of how experts make decisions and considering elements of

effective communication. These requirements are intended to

be general and they will need refinement for a specific CDSS.

Then we discussed the current state of XAI methods and the

gap between these and human-centred XAI, especially for

development of different levels of abstraction. The concepts

we have developed have also been illustrated using a clinical

use case of a CDSS supporting clinicians about extubation

readiness decisions for patients on mechanical ventilation.

We intend to explore further the utility of our concepts,

on several fronts. Most importantly, we are engaged in a

programme of experimentation with clinicians which will

enable us to evaluate and refine the requirements we have

developed for human-centred XAI. For example, we will be

able to explore what types of explanations clinicians prefer

and how interactive explanation can best be supported. Whilst

the ideas set out here have been informed by current research

on XAI methods, we think it likely that new methods will be

needed, and we expect the experimental evaluation of human-

centred XAI for extubation readiness will provide insights into

the need for new development of XAI method.

We are also interested in understanding how human-centred

explanation could improve overall transparency (of the design



and deployment process as well as the machine output) that is

needed for assuring the ethical acceptability of AI in safety-

critical applications [38], particularly in healthcare. Addition-

ally, we are exploring the concept of accountability for AI in

terms of two core features: giving an explanation and facing

the consequences [39]. In particular, we are mapping how

these two features relate to each other and the conditions under

which the former may or may not be necessary for establishing

the latter from a moral and legal perspective.
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