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A B S T R A C T   

In the context of the debate on energy transition and its implication for the energy-export-dependent GCC region, 
this study developed a dependence structure using a multiscale approach of wavelets to investigate the impact of 
global clean energy production, oil price and CO2 emission prices on the energy stock markets of the largest three 
oil exporters in the GCC region: Saudi, UAE and Kuwait. Our key findings indicate that the three global energy 
markets are weakly and positively correlated with the GCC energy stock prices at lower frequencies (higher 
scales). Besides, at the same level of frequencies, we found that changes in the global clean energy production 
index and CO2 emission price positively influence the three GCC energy stock prices. Oil price is a stronger 
moderator for the three GCC energy equities at lower frequencies relative to other variables, especially for 
Kuwait’s energy stock price. We also discover that the Abu Dhabi energy index is more sensitive to swings in the 
three perspective markets compared to Saudi and Kuwait energy markets. These findings carry important im-
plications and guidelines for policymakers, portfolio managers and scholars who attempt to understand the 
dynamic nexus between GCC energy sectors stock, global transition to clean energy and pricing emissions.   

1. Introduction 

The energy transition is one of the most pressing global issues and 
determining factors in efforts to tackle climate change and sustainabil-
ity. In this regard, the price of non-renewables, specifically oil and the 
pricing of emissions are two crucial aspects. The oil price dynamics have 
been of particular interest to scholars and economic and energy poli-
cymakers. This interest has triggered a stream of literature investigating 
the underlying reasons for oil price dynamics. Some researchers have 
reasoned that the sharp drop such as the one in 2014 or most recently in 
2020 was due to macroeconomic factors, e.g., a weak global economy 
and an oil supply glut due to a slowdown in the Chinese economy 
(Timilsina, 2014; Ratti and Vespignani, 2014; Mohaddes and Pesaran, 
2017; Monge et al., 2017; Marchionna, 2018). Others have linked such a 
fall to the rapid expansion in global renewable energy production and 
the application of emissions control systems (Omri et al., 2015; Rebor-
edo, 2015; Bauer et al., 2015; Khan et al., 2017). The dynamics of oil 
prices have profound implications for the economy (Nasir et al., 2018a, 
2019, 2020a, 2020b; Pham et al., 2023) and this underlying importance 
is also manifested in their impact on the financial markets. In this regard, 

the financial markets of non-renewable export-dependent economies, 
particularly of the GCC region are of profound importance as the dy-
namics of oil and emission prices and the global clean energy sector that 
is vital for energy transition can have implications for them. 

Several studies have discussed the causal links between oil price 
swings and stock prices at the aggregate or industry level (e.g., Park and 
Ratti, 2008; Kilian and Park, 2009; Angelidis et al., 2015; Alsalman and 
Herrera, 2015; Ghosh and Kanjilal, 2016; Alsalman, 2016; Kumar, 2017; 
Nasir et al., 2018b; Naimy and Kattan, 2020; Riahi, 2021; Anasweh, 
2021). There are also several studies that have investigated the impact of 
the emission trading schemes on oil price swings (e.g., Scholtens and 
Van Der Goot, 2014; Bauer et al., 2015; Soliman and Nasir, 2019; Chang 
et al., 2020; Wang et al., 2020). Some researchers discussed how the 
emission trading schemes boost the profits of clean energy companies 
(Hammoudeh et al., 2014; Tian et al., 2016; Zhang et al., 2018; Dutta 
et al., 2018; Bhat, 2018; Lin and Chen, 2019). While Stern (1993), Stern 
(2000), Oh and Lee (2004), Payne (2012), Chevallier (2012), Tan and 
Wang (2017) and Ji et al. (2018) have investigated the like among 
renewable energy growth and oil price changes. However, there is still 
not much evidence that can provide us insight into the notion that 
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whether the recent expansion in global clean energy production as well 
as CO2 emission allowances impact conventional energy stock prices. 
This is area is very vital to analyse because clean energy production and 
emission pricing and trading can have implications for the oil-dependent 
economies in general and their energy sector in particular. Yet, there is 
not much evidence for this study which is crucial in terms of the energy 
transition. Furthermore, the nature of the dependence structure between 
these elements in multiple time horizons remains unclear. The objective 
of this study is to investigate how global clean energy production, CO2 
emission and oil price fluctuations have influenced the fossil energy 
stock index of three GCC heavy oil-exporting countries namely, Saudi, 
UAE and Kuwait. Using the daily data from January 02, 2013, to March 
20, 2019, we develop a dependence structure of wavelet multi- 
resolution decomposition for each of the GCC markets. The choice of 
GCC is also important due to the economic dependency of these econ-
omies on fossil energy (See Nasir et al., 2019; Alkathery et al., 2022 for 
details) and hence their role in the energy transition. 

Our empirical results indicate that global clean energy production, 
oil prices and CO2 emission is positively correlated with the GCC energy 
stock prices at lower frequencies (higher scales). This was confirmed by 
the wavelet correlation (WC) analysis. From the wavelet cross- 
correlation (WCC), we find evidence that changes in the global clean 
energy production index and CO2 emission price positively leads the 
three GCC energy markets at low frequencies. However, the oil price can 
only lead Kuwait’s energy stock price at the same level of frequency. 
Both techniques uncover that the Abu Dhabi energy index is more sen-
sitive to swings in the three perspective markets compared to Saudi and 
Kuwait energy markets. Besides, the oil price is found to be the primary 
moderator for the three GCC energy stocks in comparison with the clean 
energy production and CO2 emission price. 

This study documents three contributions to energy economics 
literature. First, this is the first study to analyse the role of global clean 
energy production and CO2 emission price in deriving the GCC energy 
stock prices. This is important in the context of the implications of clean 
energy and emission pricing for the energy sector stock. Next, we used 
different time scale approaches to identify the leading variable in the 
correlated pairs. Finally, we focus on industry-level data for GCC energy 
prices which is likely linked more closely to global energy market trends. 

The rest of the paper is organised as follows; Section 2 provides a 
survey of the relevant literature. Section 3 offers a description of the 
methods and data used in this study. The empirical results are provided 
in Section 4, followed by a discussion of these results in Section 5. 
Finally, Section 6 concludes this study. 

2. Literature review 

Since Hamilton (1983) seminal paper that investigated the depen-
dence structure between oil price changes and US stock returns, several 
studies followed and analysed such a link in three key streams. Most 
earlier researchers have investigated the effect of oil price changes on 
the aggregate stock market indexes/returns (e.g., Park and Ratti, 2008; 
Kilian and Park, 2009; Angelidis et al., 2015; Ghosh and Kanjilal, 2016; 
Bastianin et al., 2016; Bouri et al., 2017; Ferreira et al., 2019; Nasir 
et al., 2019; Balcilar et al., 2019; Mokni, 2020; Ashfaq et al., 2020; Wang 
et al., 2020; Al Refai et al., 2021; Abuzayed and Al-Fayoumi, 2021). 
Relatively fewer scholars focused on the influence of oil price shifts on 
the industry-level stock market indices /returns (e.g., Alsalman and 
Herrera, 2015; Alsalman, 2016; Kumar, 2017; Badeeb and Lean, 2018; 
Xiao et al., 2018; Nazif Çatık et al., 2020; Ferreira et al., 2020; Naimy 
and Kattan, 2020; Riahi, 2021; Anasweh, 2021). Lastly, several authors 
have integrated the crude oil-stock prices dependence structure with 
some respective factors such as exchange rate, gold, gas, coal, carbon, or 
clean energy prices (Lescaroux and Mignon, 2008; Anoruo, 2011; Masih 
et al., 2011; Hammoudeh et al., 2014; Bauer et al., 2015; Tian et al., 
2016; Zhang et al., 2018; Toparlı et al., 2019; Lin and Chen, 2019; Chang 
et al., 2020; Morema and Bonga-Bonga, 2020; Ghabri et al., 2021). 

Together, the three types of studies were conducted using two different 
time perspectives: (i) standard timescales (short and long terms) or (ii) 
multi timescales (short, middle and long terms). The next sections crit-
ically discuss the three streams of studies considering the two-time scale 
techniques. 

2.1. Oil price and stock market indexes dependence structure 

The vast majority of studies focused on the correlation between oil 
price volatility and the aggregate stock market indexes /returns (e.g., 
Marsh and Merton, 1987; Anoruo, 2011; Tiwari et al., 2019; Nasir et al., 
2019; Alqahtani et al., 2020; Xiao and Wang, 2020; Wang et al., 2020; 
Peng et al., 2020; Hung, 2020; Al Refai et al., 2021; Abuzayed and Al- 
Fayoumi, 2021). Xiao and Wang (2020); Wang et al. (2020) found 
that oil price boosts significantly Ganger cause a decrease in both the 
stock markets of China and BRICS respectively. This view is supported 
by Tiwari et al. (2019) who used a nonparametric conditional causality 
test for the oil price-BRICS equities relationship. Similarly, Anoruo 
(2011) and Peng et al. (2020) implemented linear and nonlinear cau-
sality tests to assess the impact of oil prices on the US and China stock 
markets respectively. They provided empirical evidence on the negative 
causality from oil price changes to the stock returns. Alike, Hung (2020) 
has documented similar evidence on the causal relationship between oil 
prices and some European stock returns using a time-varying analysis. 
Nevertheless, Bouri et al. (2017) have reported that the causality-in- 
variance between oil prices and the stock market of China is absent 
between 2013 and 2016. Furthermore, Alqahtani et al. (2020) discov-
ered a positive Ganger causality between oil prices and the stock market 
returns of the GCC. More recently, Al Refai et al. (2021) and Abuzayed 
and Al-Fayoumi (2021) discussed the impact of the oil price drop during 
the global COVID-19 crisis on the GCC stocks. They found that these 
markets highly responded to the oil price shock except for Oman stock 
prices. 

Recently, a few articles have also used the historically-decomposed 
oil price shocks, following Kilian (2009) approach, to analyse the 
dependence structure among oil prices and the aggregate stock market 
indexes/ returns (e.g., Park and Ratti, 2008; Kilian and Park, 2009; 
Apergis and Miller, 2009; Kang et al., 2015; Angelidis et al., 2015; 
Bastianin et al., 2016; Zhang, 2017; Ji et al., 2020; Mokni, 2020; Ji et al., 
2020; Kielmann et al., 2021). Generally, empirical findings were sensi-
tive to the employed methodological approach. While Kilian and Park 
(2009) and Kang et al. (2015) applied a structural VAR and revealed that 
the joint long-run effects of oil price shocks on the US stock market 
returns were 22% and 25.7% respectively. On contrary, Apergis and 
Miller (2009), Angelidis et al. (2015) and (Zhang, 2017) reported 
moderate or no relation between oil price shocks and the US stock 
market returns using various volatility models. Finally, both Ji et al. 
(2020) and Kielmann et al. (2021) applied the approach of structural oil 
price shocks on the BRICS stock returns. The results varied depending on 
the types of oil price shocks and the domestic economic situation of the 
markets. Similarly, Bastianin et al. (2016), Ji et al. (2020) and Mokni 
(2020) provided further details about the impact between the structural 
oil price shocks and equities. Mokni (2020) stated that the influence of 
supply shocks is negatively moderate for a set of stock prices in oil- 
exporting and importing countries, while the impact of aggregate de-
mand shocks is significantly positive on stock returns. Regarding oil- 
specific demand shocks, Mokni (2020) uncovered that these types of 
shocks increase stock returns of oil-exporting economies and reduce 
returns for oil-importing ones. Bastianin et al. (2016) and Ji et al. (2020) 
reported the same evidence for stock returns by applying it to G7 and 
BRICS countries. 

Novel empirical studies have used multi-timescales of wavelets to 
capture various dependency levels between oil price changes and the 
aggregate stock market indexes/returns (e.g., Jammazi and Aloui, 2010; 
Jammazi, 2012; Akoum et al., 2012; Jammazi and Reboredo, 2016; Ftiti 
et al., 2016; Huang et al., 2016; Wu et al., 2020). Although they used 
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various multiple wavelet decomposition analyses, the results were 
nearly the same. For example, Jammazi (2012) used a sequence of 
square-shaped wavelets namely ‘the Haar Trous decomposition’ to study 
the dependence structure between oil and the US, UK, Japan, Germany 
and Canada stock market prices. The results uncovered the dependency 
between the pairs among multiple time horizons. Jammazi and Rebor-
edo (2016) utilised the same model and reported similar results when 
analysing the impact of oil prices on Morgan Stanley Capital Interna-
tional (MSCI). In a similar vein, both Jammazi and Aloui (2010) and 
Huang et al. (2016) combined both wavelet analyses with different 
multivariate vector autoregression models to investigate the influence of 
oil prices on the returns of a selected number of stocks in developed 
countries. Results of studies confirmed the existence of only a long-term 
interdependence relationship. On contrary, Jammazi and Aloui (2010) 
and Huang et al. (2016), Ftiti et al. (2016) postulated that the depen-
dence structure between the oil and stock market of G7 countries was 
evident in the short and medium terms. Furthermore, Akoum et al. 
(2012) argued that dependence between oil prices and the GCC stock 
markets is inconspicuous while utilising the wavelet coherency 
approach. In a more recent study, Maghyereh and Abdoh (2022) re-
ported that oil supply shocks negatively while oil demand shocks posi-
tively affect the GCC stock markets. Similarly, in another recent study 
Tien and Hung (2022), reported time-varying spillover effects between 
oil prices and GCC stock. Despite the overwhelming evidence of the 
nexus between oil and the stock market, it is important to account for the 
potential heterogeneity among the different stocks and industries when 
it comes to oil price dynamics. 

2.2. Oil price and industry-level stock market dependence structure 

Another strand of literature draws attention to the impact of oil price 
volatility on sectoral stock market prices/ returns (e.g., Gogineni, 2010; 
Alsalman and Herrera, 2015; Chiek and Akpan, 2016; Alsalman, 2016; 
Kumar, 2017; Badeeb and Lean, 2018; Xiao et al., 2018; Mensi et al., 
2020; Nazif Çatık et al., 2020; Ferreira et al., 2020; Naimy and Kattan, 
2020; Riahi, 2021; Anasweh, 2021). Most authors have focused on the 
response of the US industries’ returns to oil price changes. For instance, 
Alsalman and Herrera (2015); Kumar (2017) examined the dependence 
structure among oil prices and a number of the US industries (e.g., au-
tomobiles, financials, industrials and telecom). They found limited evi-
dence of volatility transmission from oil prices to the estimated equity 
sectors. Similarly, Gogineni (2010) has stated that the effect of oil prices 
on the US stock market industries is limited to the short term. This view 
is supported by both Badeeb and Lean (2018) and Mensi et al. (2020) 
who estimated the response of the US Islamic equity market to oil price 
shifts and found weak linkages between oil and Islamic stock prices. 

The effect of oil price changes on industries’ returns has also been 
investigated in other countries. For example, Chiek and Akpan (2016) 
examined the impact of oil price fluctuations on gas industry firms listed 
on the Nigerian stock market. Besides, Ferreira et al. (2020) assessed the 
influence of oil prices on the Brazilian oil-sensitive sectoral stock 
returns. Both lines of studies confirmed the short-termed impact of oil 
price shocks. Nazif Çatık et al. (2020) reported similar findings on the 
relationship between the Turkish stock exchange rates and oil prices. 
Alsalman (2016) and Xiao et al. (2018) used an oil price uncertainty 
measure, as an alternative to the actual oil prices, to examine its impact 
on sectoral stock returns. Both Naimy and Kattan (2020) and Riahi 
(2021) examined the impact of oil price swings on the GCC banking 
performance. They found a significant impact, especially in heavy oil- 
producing countries such as Saudi Arabia and Kuwait. While Alsalman 
(2016) claimed that there is no significant impact between oil price 
uncertainty and US industries, Xiao et al. (2018) on the other hand, 
reported that oil price uncertainty significantly and negatively affects 
the Chinese industries’ returns. 

The use of multi-scale perspectives for studying the link between oil 
price swings and equities behaviour at an industry level is documented 

in a few studies (e.g. Ftiti and Hadhri, 2019; Pal and Mitra, 2019; Shao 
and Zhang, 2020; Zhang et al., 2020). Both Shao and Zhang (2020) and 
Zhang et al. (2020) analysed the dynamics between oil prices and 
renewable energy firms’ sectors. Shao and Zhang (2020) argued that the 
impact of oil price changes on seven clean energy metals indexes in 
China is significant and positive at different time scales. Similar con-
clusions were reported by Zhang et al. (2020) who discussed the effect of 
exogenous oil price shocks on three different clean energy stock prices in 
the EU. They stated that oil supply shocks are the strongest moderator of 
oil prices relative to other types of shocks. Likewise, Ftiti and Hadhri 
(2019) investigated the causal relationship between oil prices and the 
Dow Jones Islamic Market returns. They detected that the wavelet 
approach produces more significant results compared to the standard 
timescale techniques. While Pal and Mitra (2019) stated that the causal 
relationship between oil prices and the key global automobile stock 
returns is mostly observed over long time scales. Adding to this strand of 
literature in this study we are focusing on the energy sector stock in the 
GCC region. To reiterate, of GCC market energy sector equities have 
idiosyncratic nature due to the dependence of these economies on oil. 
Furthermore, we also employed the wavelet approaches as advocated by 
Ftiti and Hadhri (2019). 

2.3. Oil price and other related variables to stock markets dependence 
structure 

Other papers have considered other related variables to better un-
derstand the linkages between oil price swings and stock market 
movements (e.g. Lescaroux and Mignon, 2008; Anoruo, 2011; Masih 
et al., 2011; Hammoudeh et al., 2014a; Bauer et al., 2015; Tian et al., 
2016; Zhang et al., 2018; Toparlı et al., 2019; Lin and Chen, 2019; Chang 
et al., 2020; Morema and Bonga-Bonga, 2020). Some researchers have 
used macroeconomic variables and found that, in particular, exchange 
rates, interest rates, GDP growth and inflation are significant moderators 
of the relationship between oil prices and stock returns over the short 
term (Lescaroux and Mignon, 2008; Masih et al., 2011; Toparlı et al., 
2019). 

Another strand of literature has examined the moderation role of 
gold prices such as (Wanat et al., 2015; Morema and Bonga-Bonga, 
2020). Whereas Wanat et al. (2015) reported that both oil and gold 
prices do not granger cause some EU stock markets. Morema and Bonga- 
Bonga (2020) postulated that both oil and gold prices significantly and 
positively influence selected south African stock prices. 

Global warming and climate change mitigation policies and their 
impact on commodity prices and stock returns have been discussed in 
several papers such as (Scholtens and Van Der Goot, 2014; Hammoudeh 
et al., 2014; Bauer et al., 2015; Tian et al., 2016; Zhang et al., 2018; 
Dutta et al., 2018; Bhat, 2018; Lin and Chen, 2019; Chang et al., 2020). 
Bauer et al. (2015) showed that restrictions imposed on the conventional 
energy markets would decrease oil, gas and coal market revenues. Other 
studies such as Scholtens and Van Der Goot (2014) exploited the impact 
of the EU’s Emission Trading Scheme on carbon prices in fossil fuel 
markets. They found that these restrictions raise carbon prices that in 
turn boost several EU aggregate stock market indexes. Chang et al. 
(2020) showed that the increase in stock market returns leads to a rise in 
carbon levels in Taiwan. 

Considering the importance of emission trading in the efforts to 
tackle climate change and facilitate energy transition, in this study we 
are also focusing on emission prices. The emission pricing can have 
implications for the energy sector. On this aspect, a number of studies 
have focused on the link between the carbon emission market and clean/ 
electricity energy companies (e.g. Hammoudeh et al., 2014; Tian et al., 
2016; Zhang et al., 2018; Dutta et al., 2018; Bhat, 2018; Lin and Chen, 
2019). They reported that the boom in clean energy sources, as a sub-
stitute for fossil sources, will increase production costs and prices of 
conventional energy sources. Thus, customers will find it more feasible 
to shift their consumption towards cleaner energy sources thus 

M.A. Alkathery et al.                                                                                                                                                                                                                           



Energy Economics 121 (2023) 106659

4

expanding the revenue for clean energy companies. Dutta et al. (2018) 
used the VAR-GARCH model and found that an increase in CO2 emission 
price positively impacts alternative energy firms’ revenues over the 
short run. Similar evidence was found by applying it on renewable en-
ergy companies in China (Lin and Chen, 2019) and five emerging 
countries of the BRICS (Bhat, 2018). 

Other papers have studied the potential impact of CO2 emission 
prices on the electricity industry (Hammoudeh et al., 2014; Tian et al., 
2016; Zhang et al., 2018). Tian et al. (2016) and Zhang et al. (2018) have 
applied to the EU and China, they concluded that the emission trading 
systems raise electricity prices over the short term. Hammoudeh et al. 
(2014) presented a comprehensive analysis of the impact of oil, gas, 
coal, and electricity prices on the US emission trading index. Their re-
sults indicate that the increase in crude oil or natural gas prices pushes 
down CO2 emission prices, while higher electricity prices increase CO2 
emission levels over the short term. 

Relatively fewer studies have applied multi-time scale wavelet 
analysis to examine the relationship between oil prices and other related 
variables to stock markets (Mensi et al., 2018; Kalmaz and Kirikkaleli, 
2019; Jiang et al., 2020; Alshammari et al., 2020). Jiang et al. (2020) 
stated that CO2 emission prices in China negatively impact coal prices at 
lower and higher frequencies (short and long-term). While the effect on 
the clean energy stock market only occurs in the middle and lower 
frequencies (middle and long term). Both Mensi et al. (2018) and 
Alshammari et al. (2020) studied the dependence structure among oil, 
gold and stock prices. Whereas Mensi et al. (2018) detected that oil 
prices negatively affect five of the largest stock markets of the BRICS at 
low frequencies (long term) and they reported no significant relation-
ships between the gold price and the stock markets. In contrast to Mensi 
et al. (2018), Alshammari et al. (2020) found that a surge in oil price 
causes growth in the Kuwait stock market at low frequencies (long term) 
whereas gold price has a short-term negative impact. Finally, in another 
noteworthy study, Kalmaz and Kirikkaleli (2019) have reported long- 
term causal effects at low frequencies between carbon levels, energy 
consumption and energy growth in the Turkish stock market. Our study 
makes three contributions to existing literature. First, this is the first 
study to analyse the role of global clean energy production and CO2 
emission price in deriving the GCC energy stock prices. Second, we have 
used different time scale approaches to identify the leading variable in 
the correlated pairs. Third and finally, we focus on industry-level data 
for GCC energy prices which is likely linked more closely to global en-
ergy market trends. 

3. Methodology and data 

3.1. Methodology 

We employed the multiscale wavelet correlation (WC) and wavelet 
cross-correlation (WCC) in this study. In this regard, Ftiti and Hadhri 
(2019) analysis has shown that the wavelet approach produces more 
significant results compared to the standard timescale techniques.1 We 
followed Percival and Walden (2000) and used the maximal overlap 
discrete wavelet transforms (MODWT) to estimate the coefficients of 
multiscale wavelet correlation (WC) and wavelet cross-correlation 
(WCC) among the respective variables. Up to six levels of wavelets 
were performed to cover daily to monthly frequencies. The timescales 
determined as scale 1 (1–2 days), scale 2 (2–4 days), scale 3 (4–8 days), 
scale 4 (8–16 days), scale 5 (16–32 days) and scale 6 (32–64 days). For 
the cross-correlation, a lag of 22 days has been selected, like the 

approximate number of trading days per month. This way we accounted 
for both the short and long scales. 

To identify the MODWT, we initially specified discrete wavelet 
transforms (DWT) as a core component of the MODWT. Two main 
wavelet functions called the father wavelet ϕ (the scaling function) and 
the mother wavelet ψ (the wavelet function) by: 

ϕj,k(t) = 2−
j
2ϕ
(

t − 2jk
2j

)

(1)  

ψj,k(t) = 2−
j
2ψ
(

t − 2jk
2j

)

(2)  

where j = 1, …, J represents the scaling parameter and k is a shifting 
parameter, the expansion of Wavelet function gives a discrete signal y(x) 
in (L2 ∈ ℝ) as symbolised by: 

y(x)=
∑

k
vJ,kϕJ,k(x)+

∑

k
ωJ,kψJ,k(x)+

∑

k
ωJ− 1,kψJ− 1,k(x)+…+

∑

k
ω1,kψ1,k(x)

= Sj(x)+Dj(x)+Dj− 1(x)+…+D1(x), (3)  

where k vary between 1 to the number of coefficients in the specified 
element, J denotes the number of multiple scales. The term of SJ, k is 
known as smooth and DJ, k is the detail of wavelet transform coefficients 
(approximations). They are integrated over time as follows: 

SJ,k(x) =
∫ ∞

− ∞
ϕJ,ky(x)dx (4)  

Dj,k(x) =
∫ ∞

− ∞
ψj,ky(x)dx (j = 1, 2,….J). (5)  

where the smooth coefficient (SJ, k) depicts the underlying smooth 
behaviour at the scale 2J (the highest-level of the coarse-scale), the 
detailed coefficient D1(x), D2(x), …, Dj(x) describes deviations of length 
from the smooth behaviour. 

The MODWT is almost identical to DWT as they have the same two 
filters, but for co-movement analysis, the MODWT asymptotically pro-
duces a more efficient wavelet variance estimator (Percival and Walden, 

2000). Consider 
{

h̃j,l : l = 0,…, Lj− 1

}

is the wavelet filter for a size 2j of 

two time series while Lj = (2j − 1)(L − 1) is the length of the filter. Thus, 
it can be described the stochastic process by: 

Wj,t ≃
∑Lj − 1

l=0
h̃j,lXt− 1 (6)  

where X = x, y gives a signal when X has been filtered to obtain the 
wavelet function of MODWT, the signal can only be captured if it is 
present and finite. Therefore, wavelet variance for scale λj of signal X can 
be expressed as follows: 

σ2
X,t

(
λj
)
≃ var

{

W̃j,t

}

(7)  

it can be decided the presence of wavelet variance for the scale λj when 
the impact of time is absent meaning that σX, t

2 (λj) = σX
2(λj). About the 

wavelet co-variance for the scale λj, it can be estimated by: 

σX
(
λj
)
= cov

{

W̃x,j,t, W̃x,j,t

}

(8)  

hence, the MODWT coefficient of the wavelet correlation is can be ob-
tained by: 1 Wavelets are particular types of function, localized both in time and fre-

quency domain and can be used to decompose a function f(x), including 
different information about the same the same f(x). The advantage lies in 
decomposition of the used series in estimation into their time-scale components 
and therefore avoids a relationship averaged over all time scales. 
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Fig. 1. The raw data of the time series of the study (2013–2019).  

M.A. Alkathery et al.                                                                                                                                                                                                                           



Energy Economics 121 (2023) 106659

6

ρX

(
λj
)
=

cov
{

W̃x,j,t, W̃y,j,t

}

(

var
{

W̃x,j,t

}

var
{

W̃y,j,t

})1
2
=

σX
(
λj
)

σx
(
νj
)
σy
(
λj
) (9) 

Whiles the wavelet cross-correlation can be obtained if we suppose a 
delay τ in one variable as formulated by: 

ρX,τ
(
λj
)
=

σX,τ
(
λj
)

σx
(
λj
)
σy
(
λj
) (10)  

3.2. Data and further preliminary statistics 

We used daily log-differenced data from January 02, 2013, to March 
20, 2019. The S&P Global Clean Energy Index (CE) is obtained from the 
S&P Dow Jones Indices. It is a weighted index that measures the per-
formance of the biggest listed 30 clean energy companies around the 
world.2 The CO2 emissions allowance price (EP) is obtained from the 
European Energy Exchange (EEX). It represents the spot price of the 
European Union CO2 emissions allowances. The prices of the EU CO2 
emissions allowances have been converted from euros to U.S. dollars 
utilising the WM/Refinitiv FX rates of the U.S. dollar-euro exchange 
rate. The rest of the data is obtained from Invisting.com such as Brent 
crude oil price (OP) which is measured in US dollars per barrel. Saudi 
petrochemical index (SPI), the Abu Dhabi energy index (AEI) in the UAE 
and Kuwait Oil & Gas index (KEI) are the stock price energy indexes 
under consideration. Fig. 1 plots the raw data of the all-time series. 

Table 1 shows basic statistics and pre-estimation diagnostics of log- 
returns of the six variables. 

The standard deviation values indicate that all-time series are fluc-
tuating in nature and CO2 emission price is found to be the most volatile. 
The variables of clean energy production, CO2 emission price and Saudi 
petrochemical index are negatively skewed and oil price, Abu Dhabi 
energy index and Kuwait energy index are positively skewed. Further, 
fat tails are present in all six series, as evidenced by the statistically 
significant excess kurtosis values. To confirm the possibility that the 
presence of skewness and fat tails might point towards volatility in the 
market, we (i) use Engle (1982) ARCH-LM test to analyse potential 
volatility clustering and (ii) employ the Ljung and Box, 1978 test on the 
squared standardised residuals to test for possible autocorrelation. The 
LM ARCH test indicates that the null hypothesis of volatility clustering is 

rejected for all the series up to lag 10, showing conclusive evidence of 
volatility clustering across all the series. Similarly, the Ljung-Box test 
result confirms the presence of autocorrelation in our dataset. 

3.3. Unit root test 

Table 2 shows the results of augmented Dickey-Fuller and Phillips- 
Perron (Phillips and Perron (1988)) unit root tests applied to the log 
of the six-time series. The unit-roots tests clearly show that all the six- 
time series are stationary at the first difference. Fig. 2 illustrates the 
fluctuations of the log-returns of the variables. 

We also report in Table 3 six diagnostic statistical tests. First, a 
variance ratio test called Lo and MacKinlay (1988) is used to test the 
random walk hypothesis of the series. The null hypothesis is that the 
series follows a geometric Brownian motion (GBM) or random walk. We 
can see that clean energy production and CO2 emission price rejects the 
null of the random walk. Where oil price and the three GCC energy 
markets do not reject the null. It means that these four series follow a 
random walk. Second, we employ the Runs test, which is considered an 
alternative test to examine autocorrelation among the variables. The 
test’s null hypothesis is the absence of autocorrelation. All the series 
reject the null, except for the Kuwait energy index. This gives a pre-
liminary indication of the presence of a dependence structure among the 
series. 

To check the dependence structure in our time series, we apply four 
memory tests to discover long memory processes across lags. The first 
two tests Hurst-Mandelbrot (Hurst, 1951, Mandelbrot, 1982) and Lo’s 
Lo (1991) R/S statistic are allocated to reveal long-run dependence. The 
statistical results show that none of the six series rejects the null of the 

Table 1 
Summary statistics.   

CE OP EP SPI AEI KEI 

Obs. 1614 1614 1614 1614 1614 1614 
Min − 0.02156 − 0.03847 − 0.1888 − 0.0411 − 0.04519 − 0.02796 
Mean 0.000118 − 0.00013 0.000332 − 8.09E-05 4.40E-05 6.02E-05 
Max 0.019796 0.045237 0.17567 0.04031 0.05848 0.038385 
Std.Dev 0.004612 0.008627 0.022646 0.006364 0.009682 0.005381 

Skewness 
− 0.197 
(0.001) 

0.128 
(0.000) 

− 0.010 
(0.876) 

− 0.3502 
(0.000) 

0.4736 
(0.000) 

0.1540 
(0.011) 

Excess Kurtosis 1.861 
(0.000) 

3.047 
(0.000) 

11.110 
(0.000) 

7.246 
(0.000) 

4.276 
(0.000) 

3.985 
(0.000) 

Jarque-Bera 243.79 
(0.000) 

629.21 
(0.000) 

8305.4 
(0.000) 

3567.1 
(0.000) 

1291.1 
(0.000) 

1075.2 
(0.000) 

Q2(10) 
176.524 
(0.000) 

910.673 
(0.000) 

264.985 
(0.000) 

414.778 
(0.000) 

253.611 
(0.000) 

146.664 
(0.000) 

ARCH (1) 
10.432 
(0.000) 

28.05 
(0.000) 

19.476 
(0.000) 

25.687 
(0.000) 

15.376 
(0.000) 

10.737 
(0.000) 

Note: The formula of the Engle’s (1982) ARCH-LM test can be identified as Var(yt|Ht− 1) = Var(εt|Ht− 1) = E(εt
2|Ht− 1) = σt

2 where the Ljung-Box test is Q =

n(n + 2)
∑h

k=1
ρ2

k
n − k.

Table 2 
Unit root tests.  

Variables DF-GLS test PP test 

Level First dif. Level First dif. 

CE − 0.417910 − 2.858014*** − 2.640044* − 32.14744*** 
OP − 0.111376 − 10.08350*** − 1.645372 − 42.90586*** 
EP 0.403696 − 3.186813*** 0.646400 − 48.26537*** 
SPI − 0.998246 − 6.033719*** − 1.264757 − 36.05854*** 
AEI − 1.718527 − 41.29152*** − 1.706390 − 41.27211*** 
KEI − 1.108942 − 40.19248*** − 1.307199 − 41.45450*** 

Note: The null hypothesis for the DF-GLS and PP tests is the existence of a unit 
root. *, ** and *** denote the significant level at 1%, 5% and 10% levels, 
respectively. 

2 It comprises a diverse mix of companies that use environment-friendly 
processes to produce clean energy. 
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Fig. 2. Log returns of the time series of the study (2013–2019).  
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absence of long memory. Where both Geweke and Porter-Hudak (1983) 
and Robinson and Henry (1999), which quantify the extent of the long 
memory process by estimating the fractional differencing parameter d, 
indicate that clean energy production, CO2 emission price and Saudi 
petrochemical index exhibit moderate long memory.3 

4. Results 

The wavelet correlation (WC) analysis produces two kinds of results: 
(i) the correlation of the GCC energy equities with the three respective 
variables: global clean energy production index, oil price and CO2 
emission price for the lower timescales (high frequencies) is near zero, 
and (ii) there is a positive correlation between the pairs for the higher 
timescales (low frequencies). For the wavelet cross-correlation analysis 
(WCC), we prove that there is no lead/lag relationship between the 
respective pairs at low scales. For the higher scales, we find that changes 
in both the clean energy production index and CO2 emission price 
positively leads the three GCC energy markets. While oil prices can only 
influence Kuwait’s energy stock price at the same level of scales. Overall, 
the wavelet correlation of the Abu Dhabi energy index was more sen-
sitive to changes in the three global energy indexes relative to Saudi and 
Kuwait energy indexes. Besides, oil price correlation effects on the three 
GCC energy equities are stronger than the correlation effects of clean 
energy production and CO2 emission price. 

The wavy lines in the wavelet correlation graphs can be interpreted 
as follows: the lines U and L represent the maximum limits for the 
confidence interval of 95%, while the middle line denotes the wave 
correlation coefficient. For the wavelet cross-correlation, if the highest 
value of the correlation coefficient is found at lag 0, there is no 
discernible lead-lag relationship among the pairs. However, if the 
highest value is found at a lag t, the first series lags behind the second 
series; and if the highest values are found at the negative lag (lead) t, the 
first series leads the second series. 

4.1. Wavelet results of the Saudi petrochemical sector 

4.1.1. The wavelet correlation 
Fig. 3 shows the standard wavelet correlation of the Saudi petro-

chemical index with the global clean energy production index, oil price 
and CO2 emission price. The Saudi energy returns/clean energy pro-
duction wavelet correlation is near zero across all six scales. However, 
the wavelet correlations of the Saudi energy sector with both crude oil 
and CO2 emission prices are found to be positively remarkable at scale 5, 
which represents 16–32 days. The greatest wavelet correlation across all 
pairs is detected between the Saudi petrochemical index and oil price at 
scale 5. Otherwise, the values of the wavelet correlation coefficients are 
negligible. Consequently, we can reject the null hypothesis of no 

correlation between the pair with a 95% confidence level. 

4.1.2. The wavelet cross-correlation 
Since the basic wavelet correlation does not capture the leads and lag 

effects between time series, the wavelet cross-correlation (WCC) 
approach is used with leads and lags up to 22 days (the working days per 
month). This is to enable identifying the leader among the pairs with 
multiple time scales. Figs. 4, 5 and 6 illustrate the cross-correlation re-
lationships for the Saudi model. There exists weak positive cross- 
correlation dynamics between Saudi energy equities and the global 
clean energy production index at level 5 (16–32 days) and lags − 18. A 
similar relationship is also revealed for CO2 emission al level 3 (4–8 
days) and lags − 10 and − 15. This implies that both variables positively 
and slightly lead the Saudi energy stock market. However, for the link 
with the oil price, we found that Saudi energy stock returns significantly 
and positively lead oil prices across different levels and lags. This is 
shown at level 4 (lags 14), level 3 (lags 5, 10 and 16) and levels 5 and 6 
(lags 22). It implies that the null hypothesis of no interdependence be-
tween the pairs is rejected with a 95% confidence level. 

4.1.3. Wavelet results of the UAE energy sector 

4.1.3.1. The wavelet correlation. Fig. 7 illustrates the correlation of the 
Abu Dhabi energy sector with the global clean energy production index, 
oil price and CO2 emission price. Correlations in general dramatically 
increase after scale 5. Furthermore, the highest positive value of the 
correlation is at a scale of 6 for all variables, although the correlation of 
the global clean energy index is stronger. This scale corresponds to the 
period from 32 to 64 days and signifies the lower frequency in the equity 
markets. Overall, the wavelet correlation of the Abu Dhabi energy sector 
across all three frequencies increases as the scale rises. Therefore, it can 
be concluded that the correlation of the Abu Dhabi energy sector with 
the global clean energy index, oil price and CO2 emission price is evi-
denced in the higher scales (lower frequency). Nevertheless, the corre-
lation between the respective pairs is minimal in the high frequency 
(lower scales). 

4.1.3.2. The wavelet cross-correlation. The wavelet cross-correlations of 
the Abu Dhabi energy index with the global clean energy production 
index, oil price and CO2 emission price is shown in Figs. 8, 9 and 10. The 
cross-correlation analysis with clean energy production index and CO2 
emission price signifies minimal positive correlations across different 
levels, but the most significant correlation is at levels 3 and 4 with 
negative lags. This is evidence that both the global clean energy index 
and CO2 emission price leads Abu Dhabi energy price at these scales. For 
the link with the oil price, there is higher positive cross-correlation at the 
last three levels under the lags 22. It implies that any increase in the Abu 
Dhabi energy stock price would raise oil prices. 

Table 3 
Further descriptive statistics.  

Variables Variance ratio test Runs Lo’s R/S statistic Hurst-Mandelbrot Gewke and Powter-Hudak Robinson & Henry 

CE 5.18867 
(0.000) 

− 2.878 
(0.000) 

1.3387 1.47653 0.12790 
(0.000) 

0.10278 
(0.000) 

OP 
− 0.83336 
(0.404) 

2.94100 
(0.004) 1.7480 1.67616 

0.01725 
(0.480) 

0.01030 
(0.558) 

EP 
− 4.52554 
(0.000) 

2.91691 
(0.003) 0.8353 0.71404 

0.21899 
(0.000) 

0.20258 
(0.000) 

SPI 1.37375 
(0.169) 

− 2.0668 
(0.036) 

1.5350 1.59470 0.02706 
(0.007) 

0.03657 
(0.000) 

AEI − 0.44837 
(0.653) 

2.59356 
(0.009) 

1.2715 1.24521 0.01952 
(0.424) 

0.00793 
(0.652) 

KEI 
− 0.37284 
(0.709) 

0.859477 
(0.390) 1.3704 1.37056 

0.02635 
(0.282) 

0.03075 
(0.080) 

Note: the critical values for Hurst-Mandelbrot and Lo’s R/S statistics test are 90%: [0.861, 1.747], 95%: [0.809, 1.862] and 99%: [0.721, 2.098]. 

3 If 0 < d < 0.5, that indicates long memory. 
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Fig. 3. Wavelet correlation of CE, OP and EP with SPI.  
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Fig. 4. Wavelet cross-correlation for CE-SPI.  

Fig. 5. Wavelet cross-correlation for OP-SPI.  
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4.1.4. Wavelet results of Kuwait energy sector 

4.1.4.1. The wavelet correlation. Fig. 11 shows the wavelet correlation 
of the Kuwait energy index with the clean energy production index, oil 
price and CO2 emission price. Overall, the wavelet correlation of the 
Kuwait energy index with the respective variables is low. While the 
wavelet correlation with oil price is positively distinguished at scale 5, 
which represents 16–32 days. This is only evident at the higher scales 
(lower frequencies). 

4.1.4.2. The wavelet-cross correlation. Figs. 12, 13 and 14 exhibit the 
cross-coronation of wavelets of the Kuwait energy index with the clean 
energy production index, oil price and CO2 emission price. There is 
evidence that the clean energy production index and CO2 emission price 
slightly and positively leads Kuwait’s energy market at the lag − 14 of 
level 4 and the lag − 22 of level 6 respectively. For Kuwait’s energy 
retunes and oil price, there exists a stronger positive cross-coronation at 
levels 3, 4 and 5 with the lags − 13, − 19 and − 22 respectively. There-
fore, oil price swings positively lead Kuwait energy stock prices at these 
scales. 

4.1.4.3. Wavelet spectrum and wavelet coherence analysis. We also per-
formed the Wavelet Spectrum and Wavelet Coherence Analysis. As 
known, CE denotes Global Clean Energy Production, EP is Emission 
Price, OP means Oil Price, AEI is Abu Dhabi Energy Index, SPI is Saudi 
Petrochemical Index and KEI is Kuwait Energy Index. First, we present 
the wavelet spectrum results for CE, EP, OP, AEI, SPI and KEI. The results 
are presented in Fig. 15. 

From the wavelet spectrum, we can observe certain factors. First, CE 
exhibits short-run fluctuations (up to 16 days) between 2014 and 2017. 
Similarly, we observe short-run fluctuations up to 8 days in EP during 
2012–15. In the case of OP, we see short-run fluctuations during 
2015–2017. The three indices (SPI, AEI and KEI) exhibited short-run (up 
to 32 days) fluctuations during 2015–2017. This period coincides with 
the Oil price crisis during these periods. From the wavelet spectrum 

results, we see that the middle eastern markets were influenced in the 
short run by the oil price crisis which is intuitive considering the 
dependence of these economies on oil exports. 

Next, we observe the wavelet coherence between each GCC index 
with the three global variables. We present the results in Figs. 16, 17 and 
18. 

The areas surrounded by the white lines indicate significant coher-
ence at 5%. From the plots, we see that there are instances of medium to 
long run (32–356 days) coherences between CE and AEI. In the short 
run, these series are not correlated as such. For CE and SPI, we observe 
medium to long-run coherence. We see strong coherence in the annual 
scale (256–512 days) around 2014–16 coinciding with the sharp decline 
in oil prices and global commitment to reducing emissions in the Paris 
Agreement a.k.a. COP21. For CE/KEI, we see instances of medium-run 
coherence throughout the period. Here too, short-run coherence is 
found to be absent. Next, we analysed the wavelet coherence between 
OP and the three indices. 

For OP/AEI, we observe instances of medium to long-run coherence 
(32–256 days). We do not see any significant short-run coherence. This 
again suggests medium to long-run association. For OP/KEI also, we 
observe instances of medium to long-run coherence (32–256 days). We 
do not see any significant short-run coherence. For OP and SPI, we 
observe instances of medium to long-run coherence. We see strong 
coherence in the annual scale (256–512 days) around 2014–18 coin-
ciding with the sharp decline in the oil prices in 2014 that followed a 
period of low oil price regime. 

For EP/AEI, we observe instances of medium to long-run coherence 
like in the previous cases. We see strong coherence in the annual scale 
(256–512 days) around 2016, coinciding with the 2016 oil crash. For 
EP/KEI, we observe instances of medium to long-run coherence. Here 
too, we note the absence of short-run coherence. For EP/SPI, we observe 
instances of medium to long-run coherence. We observe coherence in 
the annual scale (256 days) during 2016–2017. From the wavelet 
coherence results, we see that there are instances of medium to long-run 
coherence between CE, EP, OP and the three indices. Further, the 

Fig. 6. Wavelet cross-correlation for EP-SPI.  
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Fig. 7. Wavelet correlation of CE, OP and EP with AEI.  
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Fig. 8. Wavelet cross-correlation for CE-AEI.  
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Fig. 9. Wavelet cross-correlation for OP-AEI.  

Fig. 10. Wavelet cross-correlation for EP-AEI.  
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Fig. 11. Wavelet correlation of CE, OP and EP with KEI.  
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Fig. 12. Wavelet cross-correlation for CE-KEI.  

M.A. Alkathery et al.                                                                                                                                                                                                                           



Energy Economics 121 (2023) 106659

17

instances of long-run coherences are coinciding with crude oil price 
fluctuations. However, in the short run, we do not see statistically sig-
nificant coherence. 

5. Dissection of results 

Our results mainly indicate that a positive and nominal wavelet 
correlation of the GCC energy stock prices exists at lower frequencies 
(higher scales) with the three global energy markets: global clean energy 
production, oil price and CO2 emissions. In this regard, Orlov (2009) and 
Gallegati (2012) have argued that the wavelet correlation at lower fre-
quencies points out evidence of interdependence (or co-movement) 
between markets. This is because the innate co-movements of markets 
are sluggish; hence they require a longer horizon to be captured. 
Whereas wavelet correlation at higher frequencies indicates a contagion 
phenomenon.4 This is due to the financial shock transformation between 
markets being quick; thus, it can be computed in a few days. 

The positive link between oil price and GCC stock returns comes in 
line with some previous works’ findings (Hammoudeh and Choi, 2006; 
Arouri and Rault, 2010; Arouri et al., 2011; Mohanty et al., 2011). This 
is attributed to the macroeconomic performance of the GCC countries, 
which mainly depends on crude oil revenues. Thereby, any increase in 
oil prices will lead to a boost in the GCC stock market prices, particularly 
in the energy sector. However, limited evidence is found about the un-
derlying reasons for the positive impact between the global clean energy 

production index and the CO2 emission price for the three GCC energy 
stock prices. 

There is no concrete existing theoretical model to describe a direct 
relationship between global clean energy production, EU ETS imple-
mentation and the energy stocks in the GCC region. However, based on 
the evidence and mere logic we can hypothesise through the notion of 
substitution effect and that oil price changes play a crucial role in this 
relationship. Higher oil prices could lead to a higher demand for clean 
energy, as renewable energy sources are adequate substitutes for non- 
renewables, thus a rise in its production (Bhattacharyya, 2011). While 
lower oil prices could tempt heavy-oil businesses to consume higher 
levels of oil causing an increase in carbon emissions levels (Hussain 
et al., 2012; Nwani, 2017; Liu et al., 2020). This pushes the installations 
to demand extra emission allowances causing an increase in their prices. 
Finally, oil prices, global clean energy production and CO2 emission 
exhibit common links with global economic activity conditions, tech-
nology development and environmental issues (He et al., 2010; Bar-
khordari and Fattahi, 2017; Troster et al., 2018; Chen et al., 2018; Dong 
et al., 2019). Concomitantly, there are crucial implications for the en-
ergy transition. 

The distinctive nature of GCC stock markets can explain their 
behaviour in our empirical analysis. First, high percentages of the GCC 
energy company shares are owned by governmental institutions.5 

Therefore, they are not fully and timely responsive to changes in global 
clean energy production, CO2 emission and oil prices. The GCC stock 
markets are more sensitive to regional common issues such as wars, 

Fig. 13. Wavelet cross-correlation for OP-KEI.  

4 Key studies such as those by Bodart and Candelon (2009), Orlov (2009) and 
Gallegati (2012) define contagion as an unexpected and direct transmission of 
shocks between markets/countries that mostly caused by surprising financial 
crises. While co-movements, interdependence are spillovers refer to normal 
association between markets during non-crisis periods. 

5 For example, the Abu Dhabi National Oil Company (ADNOC) hold 80% 
ownership of the ADNOC Distribution in the UAE. While the Saudi government 
is substantial shareholder by 98.18%. 
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Fig. 14. Wavelet cross-correlation for EP-KEI.  
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Fig. 15. Wavelet spectrum analysis.  
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domestic regulations and government budgetary plans (Mensi et al., 
2017; Braunstein, 2019; Erdoğan et al., 2020; Alkhateeb and Mahmood, 
2020). Finally, energy in GCC countries including fuel, gas and elec-
tricity are locally subsidised and sold based on governmental fixed 
rates.6 This implies that the GCC energy companies’ revenues coming 
from domestic sales would be less correlated with the dynamics of global 
energy prices. 

6. Conclusion 

Energy transition has paramount importance for tackling climate 
change. Two crucial factors in this regard are the pricing of emissions 
and the production of clean energy. However, both the pricing of 
emissions and clean energy production may have implications for the 
non-renewable energy sector, particularly in economies that are heav-
enly dependent on oil and petrochemical exports. In this regard, using a 
multiscale approach of wavelets, we develop a dependence structure to 
investigate the impact of global clean energy production, oil price and 
CO2 emission on the energy stock markets of the largest three oil ex-
porters in the GCC region; Saudi, UAE and Kuwait. The purpose is to 
evaluate the effect of the recent boom in the global renewable energy 
industry and the EU ETS on the GCC conventional energy stock prices. 
Our findings lead us to conclude that the three global energy markets are 
weakly and positively correlated with the GCC energy stock prices at 

Fig. 16. Wavelet Coherence CE/AEI, CE/SPI & CE/KEI.  

6 In 2016 the Saudi government announced a timeline to cut energy subsidies 
to improve the energy use efficiency and the government expenditure. Where in 
the UAE, the government release fuels prices to align with global energy prices 
(Morgan, 2016). 
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Fig. 17. Wavelet Coherence OP/AEI, OP/KEI & OP/SPI.  
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lower frequencies (higher scales). Besides, at the same level of fre-
quencies, we also conclude that changes in the global clean energy 
production index and CO2 emission price positively influences the three 
GCC energy stock prices. This implies that as such there are no major 
direct risks that the production of clean energy may pose to the GCC 
energy sector and its equities. However, the Oil price is a stronger 
moderator for the three GCC energy equities at lower frequencies rela-
tive to other variables, especially for Kuwait’s energy stock price. We 
also discover that the Abu Dhabi energy index is more sensitive to 
swings in the three perspective markets compared to Saudi and Kuwait 
energy markets. These findings carry important implications and 
guidelines for policymakers, portfolio managers and scholars who 
attempt to understand the dynamic nexus between GCC energy sectors 
and global energy markets’ behaviour. The positive relationship em-
ploys that as such the performance of investments in the GCC equities 

will not be hampered by the progress of the clean energy sector. How-
ever, the dynamics of the oil price are important in this regard, which 
implies that investors and portfolio managers need to account for the oil 
price dynamics as much as the dynamics of the emission trading mar-
kets. Future studies can explore these relationships over the long term 
using other statistical techniques. Future studies are also encouraged to 
consider the potential impact of the recent US shale oil production on 
oil-exporting economies. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.eneco.2023.106659. 

Fig. 18. Wavelet Coherence EP/AEI, EP/KEI & EP/SPI.  
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