UNIVERSITY of York

This is a repository copy of A sequential direct arylation/Suzuki-Miyaura cross-coupling transformation of unprotected 2 '-deoxyadenosine affords a novel class of fluorescent analogues.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/19794/</u>

Article:

Storr, T.E., Strohmeier, J.A., Baumann, C.G. orcid.org/0000-0002-8818-972X et al. (1 more author) (2010) A sequential direct arylation/Suzuki-Miyaura cross-coupling transformation of unprotected 2 '-deoxyadenosine affords a novel class of fluorescent analogues. Chemical Communications. pp. 6470-6472. ISSN 1364-548X

https://doi.org/10.1039/c0cc02043e

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ promoting access to White Rose research papers

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Chemical Communications White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/ 19794

Published paper

Storr, T.E, Strohmeier, J.A, Baumann, C.G, Fairlamb, I.J. S (2010)

A sequential direct arylation/Suzuki-Miyaura cross-coupling transformation of unprotected 2 '-deoxyadenosine affords a novel class of fluorescent analogues Chemical Communications 46 (35) 6470- 6472 http://dx.doi.org/10.1039/c0cc02043e

White Rose Research Online eprints@whiterose.ac.uk

5

10

A sequential direct arylation/Suzuki–Miyaura cross-coupling transformation of unprotected 2'-deoxyadenosine affords a novel class of fluorescent analogues[†]

Thomas E. Storr,^{*ab*} Johanna A. Strohmeier,^{*b*} Christoph G. Baumann^{*b*} and Ian J. S. Fairlamb^{*a*}

10 *Received 23rd June 2010, Accepted 22nd July 2010* DOI: 10.1039/c0cc02043e

Novel rigid 8-biaryl-2'-deoxyadenosines with tuneable fluorescent properties can be accessed by an efficient sequential catalytic 15 Pd⁰-coupling approach.

Fluorescent nucleosides are used widely as probes of enzymatic turnover and biomolecular structure, and as labels in high-throughput biotechnologies.¹ Common organic, *e.g.* pyrenyl

- 20 or fluorescein, and inorganic metal-containing extrinsic fluorophores can be attached to either sugar² or nucleobase.³ Direct coupling of a conjugated aromatic group yields a more compact fluorescent analogue. Examples include aryl,⁴ heteroaryl⁵ or arylalkynyl⁶ nucleosides, but also modified nucleobase
- ²⁵ mimetics exhibiting unique fluorescent properties (Fig. 1).⁷ This communication describes the synthesis of novel 8-biaryl-2'-deoxyadenosines (*e.g.* **II**, Scheme 1) which function as *Rigid Organo-fluorescent Nucleosides* (RONs). These π -conjugated systems are accessible using our recently developed direct
- ³⁰ arylation methodology for unprotected adenine nucleosides, which facilitates the chemoselective installation of an aryl group at the 8-position.⁸ The use of a dihaloaromatic coupling partner would provide a secondary handle for further chemical manipulation, allowing addition of aryl groups *via* a classical
- ³⁵ cross-coupling (hereafter 'coupling') approach. Suzuki– Miyaura coupling has been used effectively with unprotected nucleosides⁹ and nucleotides,¹⁰ therefore it should be applicable

^a Department of Chemistry, University of York, York YO10 5DD, UK. E-mail: ijsf1@york.ac.uk

 [†] Electronic supplementary information (ESI) available: Experimental details (including characterisation data for all compounds) and X-ray data for 5d and 5i, including cif files. CCDC [CCDC NUMBER(S)].
 For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c0cc02043e

Scheme 1 Proposed targets and sequential direct arylation/Suzuki–Miyaura approach (R = 2'-deoxyribose).

to these substrates. This sequential coupling approach would provide a divergent synthetic route to differently substituted 30 8-biaryl-2'-deoxyadenosines (*via* I).

For the synthesis of target **I**, the use of diiodobenzene was dismissed as our prior findings indicated that double C–H arylation occurs.^{8a} However, we rationalised that an aromatic coupling partner possessing two sites with different chemical reactivity towards Pd^0 might provide an elegant solution. Therefore, as a first step towards the selective synthesis of the intermediate compounds, we evaluated iodobromobenzenes and iodochlorobenzenes as direct arylation substrates (Scheme 2). Using our established direct arylation conditions,^{8b} 40 both 4-bromo and 4-chloro-iodobenzene reacted with 2'-deoxyadenosine to give compounds **1** and **2** in 54% and 97% yields, respectively.

Scheme 2 Direct arylation of 2'-deoxyadenosine. *Reagents and conditions*: (i) ArI (2.0 eq.), Pd(OAc)₂ (5.0 mol%), CuI (3.0 eq.), piperidine (0.4 eq.), Cs₂CO₃ (2.5 eq.), DMF, 80 °C, 15 h (R = 2'-deoxyribose; Z = H or F).

- 1 3-Fluoro-4-bromoiodobenzene was a robust substrate giving 3 in 53% yield, whilst 3-chloro-iodobenzene provided 4 in 87% yield.
- With the 8-haloaryl-2'-deoxyadenosines (1–4) in hand we 5 focussed on the Suzuki–Miyaura coupling methodology. We employed a Pd : TPPTS (tris-(3-sulfophenyl)phosphine trisodium salt = TPPTS) water soluble catalyst system. A slightly modified version of Shaughnessy's protocol was employed, specifically Pd(OAc)₂ (1.25 mol%), TPPTS (2.5 mol%), Na₂CO₃
- 10 (2.0 eq.), MeCN : H₂O (2 : 1), 80 °C, 1.5 h (hereafter Conditions A).^{9a,b} Interestingly, the employment of a catalyst preformation/preactivation step {Pd(OAc)₂, ligand, solvent and heating} led to a poor catalyst system resulting in incomplete reaction (Table 1; numbers in parentheses). This
- 15 has implications for product isolation as it has a similar polarity to the starting material. The addition of the precatalyst and ligand with the solid reagents to a dry vessel (under an argon atmosphere) prior to addition of the solvent mixture worked most effectively (Table 1, all other yields).
- 20 The coupling of arylboronic acids with bromo analogue **1** using Conditions A proceeded well. Both electron-rich and electron-deficient arylboronic acids were efficient coupling partners (entries 1, 3, 5–7 and 9, Table 1). It is not surprising that chloro analogue **2** failed to serve as a substrate using
- 25 Conditions A. Indeed, the difference in reactivity of C-Cl and C-Br bonds is apparent in the high yield observed for 5e (81%, entry 5). We identified Buchwald's bulky electronrich phosphine Xphos (2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl = Xphos) as an enhancing ligand.
 30

				i leia/) o		
	Entry	Ar	Cpd	Conditions A (from 1)	Conditions B (from 2)	
45	1	4-MeOC ₆ H ₄	5a	71 $(38)^a$	88	
	2	$4 - MeC_6H_4$	5b	_ ` ´	72	
	3	C ₆ H ₅	5c	89 $(74)^a$	91 [81] ^b	
	4	$4 - FC_6H_4$	5d	_ ` ´	92	
	5	$4-ClC_6H_4$	5e	81 ^{<i>c</i>,<i>d</i>}	_	
	6	3,5-F ₂ C ₆ H ₃	5f	82	94 ^e	
50	7	4-CF ₃ C ₆ H ₄	5g	77	88	
	8	$3-CF_3C_6H_4$	5h	_	79	
	9	$4 - AcC_6H_4$	5i	89 ^c	76	
	10	$4-CHOC_6H_4$	5j	_	84	
	11	2-Furyl	5k	_	71	
	12	2-Thienyl	51	_	52^{f}	
55	13	3-Thienyl	5m		63	

^{*a*} Using a preformed catalyst (see main text for details). ^{*b*} Using PhBF₃K as a substitute for PhB(OH)₂. ^{*c*} 3 h reaction time. ^{*d*} Residual boronic acid starting material remaining. ^{*e*} 2 h reaction time. ^{*f*} 18 h reaction time.

Reactions were conducted using standard 'in-house' conditions, namely $Pd(OAc)_2$ (5 mol%), XPhos (10 mol%), aq. Na_2CO_3 (2 M), 80 °C, 3.5 h (hereafter Conditions B). Nine substituted biphen-4-yl-2'-deoxyadenosines were generated in good yields (entries 1–4, 6–10, Table 1) and three heteroaromatics were also coupled successfully (entries 11–13, Table 1). Using PhBF₃K as a substitute for PhB(OH)₂, a slightly lower yield of **5c** (entry 3, Table 1) was obtained with Conditions B. The structures of compounds **5d** and **5i** were determined by single crystal X-ray diffraction; **5d** is shown as a representative 10 example in Fig. 2.

The crystal structure of **5d** shows that this nucleoside adopts a *syn*-C2'-*endo* conformation and exhibits an intramolecular H-bond, consistent with related 8-aryl-2'-deoxyadenosines.^{8b}

The Suzuki–Miyaura couplings using **3** (Conditions A) 15 provided the 8-(2-fluoro-biphen-4-yl)-2'-deoxyadenosines **6a** and **6b** in good yields (Table 2, entries 1 and 2). 8-(Biphen-3-yl)-2'-deoxyadenosines **7a–c** were accessible from **4** and ArB(OH)₂ using Conditions B (Table 2, entries 3–5). Finally, the chloro-substituted analogue **5e** was subjected to Conditions B to give 20 terphenyl analogue **8** in 76% yield (Scheme 3).

Fig. 2 Crystal structure of compound 5d (using arbitrary numbering).

 Table 2
 Suzuki–Miyaura couplings of 3 and 4 with arylboronic acids

40

Scheme 3 Synthesis of terphenyl derivative 8.

10

Table 3 Photophysical properties of 8-substituted-2'-deoxyadenosines in DMSO at 25 $^\circ\mathrm{C}$

15	Cpd	$\lambda_{\rm max}/{\rm nm}$	$\epsilon \times 10^4/\mathrm{M}^{-1}~\mathrm{cm}^{-1}$	$\lambda_{\rm em}/{\rm nm}$	Stokes shift/cm ⁻¹	Φ		
15	5a	309	3.13	400	7362	0.65		
	5b	305	2.26	409	8337	0.68		
20	5c	304	2.07	414	8740	0.69		
	5d	304	2.30	412	8623	0.69		
	5f	307	1.71	434	9532	0.72		
	5g	307	1.75	440	9846	0.75		
	5h	304	1.76	427	9475	0.77		
	5i	314	2.02	491	11 481	0.27		
	5j	318	2.53	399	6384	0.10		
25 30	5k	320	2.71	407	6680	0.70		
	51	322	2.25	419	7190	0.59		
	5m	307	2.14	403	7759	0.64		
	6a	310	2.21	408	7748	0.60		
	6b	304	1.89	420	9085	0.69		
	$7a^a$	275	3.30	393	10918			
	7 b ^{<i>a</i>}	261	1.93	380	11 278			
	$7c^a$	260	1.98	383	12 352			
	8	315	3.14	424	8161	0.77		
	9 ^b	289	1.29	384	8560	0.81		
	^{<i>a</i>} Measurements determined using methanol solutions ^{<i>b</i>} Compound 0							

^a Measurements determined using methanol solutions. ^a Compound s is 8-phenyl-2'-deoxyadenosine.^{8b}

- The photophysical properties of all RONs (**5a–j**, **6a**, **6b**, **7a–c**, **8** and **9**) were determined (λ_{max} , ε , λ_{em} and Φ are listed in Table 3). A sequential increase in the UV λ_{max} and decrease in fluorescence lifetime is observed as the π -system is extended: phenyl (289 nm, 2.6 ns, **9**), biphen-4-yl (304 nm, 1.9 ns, **5c**) and
- 40 terphenyl (315 nm, 1.7 ns, 8). The biphen-3-yl derivatives (7a-c) possess unfavourable λ_{max} values which overlap with biomolecular absorption bands.¹¹ In the 5a-m series the λ_{max} values are either similar to 5c or shifted to longer wavelengths. The 8-aryl-2'-deoxyadenosines (5a-h, 5k-m, 6a, b, 8 and 9) have excellent fluorescence quantum yields (0.59–0.81).
- 45 In summary, a library of novel RONs has been synthesised using an efficient sequential direct arylation/Suzuki–Miyaura coupling approach. The spectroscopic properties of RONs can be tuned by changing the terminal aryl group, in most cases
- 50 without adversely affecting the quantum yield. Once incorporated into oligonucleotides using solid-phase synthesis, the RONs could be exploited as thymine specific base-discriminating fluorescent probes.^{10a}

EPSRC, BBSRC and Royal Society are acknowledged for $_{55}$ funding this work. Dr A. C. Whitwood and R. J. Thatcher

(York) are thanked for single crystal X-ray structural analysis. Dr A. Beeby and G. A. Rosser (Durham) are thanked for assistance with fluorescence lifetime measurements.

Notes and references

- (a) M. J. Rist and J. P. Marino, *Curr. Org. Chem.*, 2002, 9, 775;
 (b) D. M. Jameson and J. F. Eccleston, *Methods Enzymol.*, 1997, 278, 363; P. Herdewijn, *Modified Nucleosides: in Biochemistry*, *Biotechnology and Medicine*, 2008, ISBN: 978-3-527-31820-9;
 (c) Y. Tor, *Tetrahedron*, 2007, 63, 3415.
- 2 (a) W. Zhang, Y. Wang, Y. Xu and X. Qian, *Monatsh. Chem.*, 2003, 134, 393; (b) K. Yamana, R. Iwase, S. Furutani, H. Tsuchida, H. Zako, T. Yamaoka and A. Murakami, *Nucleic Acids Res.*, 1999, 27, 2387.
- 3 (a) Y. Saito, K. Hanawa, K. Motegi, K. Omoto, A. Okamoto and I. Saito, *Tetrahedron Lett.*, 2005, 46, 7605; (b) Y. Saito, K. Motegi, 15
 S. Sekhar Bag and I. Saito, *Bioorg. Med. Chem.*, 2008, 16, 107;
 (c) D. J. Hurley and Y. Tor, *J. Am. Chem. Soc.*, 2002, 124, 3749;
 (d) M. Vrábel, P. Horáková, H. Pivonková, L. Kalachova, H. Cernocká, H. Cahová, R. Pohl, P. Sebest, L. Havran, M. Hocek and M. Fojta, *Chem.-Eur. J.*, 2009, 15, 1144;
 (e) B. Das, E. Tokunaga, M. Tanaka, T. Sasaki and N. Shibata, *Eur. J. Org. Chem.*, 2010, 2878.
- 4 (a) L. Kalachhova, R. Pohl and M. Hocek, Synthesis, 2009, 105;
 (b) E. Mayer, L. Valis, R. Huber, N. Amann and H.-A. Wagenknecht, Synthesis, 2003, 2335; (c) C. Wanninger-Weiß, L. Valis and H.-A. Wagenknecht, Bioorg. Med. Chem., 2008, 16, 100.
- 5 (a) N. Greco and Y. Tor, *Tetrahedron*, 2007, 63, 3515;
 (b) D. W. Dodd, K. N. Swanick, J. T. Price, A. L. Brazeau, M. J. Ferguson, N. D. Jones and R. H. E. Hudson, *Org. Biomol. Chem.*, 2010, 8, 663; (c) C. Beyer and H.-A. Wagenknecht, *Chem. Commun.*, 2010, 46, 2230.
- 6 (a) A. G. Firth, I. J. S. Fairlamb, K. Darley and G. G. Baumann, *Tetrahedron Lett.*, 2006, 47, 3529; (b) R. Varghese, P. K. Gajula, T. K. Chakraborty and H.-A. Wagenknecht, *Synlett*, 2009, 3252; 30 (c) G. Cavigiolio, J. L. Morgan, B. H. Robinson and J. Simpson, *Aust. J. Chem.*, 2004, 57, 885; (d) Q. Xiao, R. T. Ranasinghe, A. M. P. Tang and T. Brown, *Tetrahedron*, 2007, 63, 3483.
- 7 (a) S. G. Srivatsan, H. Weizman and Y. Tor, Org. Biomol. Chem., 2008, 6, 1334; (b) S. G. Srivatsan, N. J. Greco and Y. Tor, Angew. Chem., Int. Ed., 2008, 47, 6661; (c) F. Seela, E. Feiling, J. Gross, F. Hillenkamp, N. Ramzaeva, H. Rosemeyer and M. Zulauf, J. Biotechnol., 2001, 86, 269; (d) S. G. Srivatsan, H. Weizman and Y. Tor, Org. Biomol. Chem., 2008, 6, 1334; (e) F. Seela, M. Zulauf, M. Sauer and M. Deimel, Helv. Chim. Acta, 2000, 83, 910; (f) A. Okamoto, K. Tainaka and I. Saito, Tetrahedron Lett., 2003, 44, 6871; (g) A. Okamoto, Y. Saito and I. Saito, J. Photochem. Photobiol., C, 2005, 6, 108.
- 8 (a) T. E. Storr, A. G. Firth, K. Wilson, K. Darley, C. G. Baumann and I. J. S. Fairlamb, *Tetrahedron*, 2008, 64, 6125; (b) T. E. Storr, C. G. Baumann, R. J. Thatcher, S. De Ornellas, A. C. Whitwood and I. J. S. Fairlamb, *J. Org. Chem.*, 2009, 74, 5810; An alternative adenine nucleoside arylation protocol has been developed, see: (c) I. Cerna, R. Pohl and M. Hocek, *Chem. Commun.*, 2007, 4697.
- 9 (a) E. C. Western and K. H. Shaughnessy, J. Org. Chem., 2005, 70, 3678; (b) E. C. Western, J. R. Daft, E. M. Johnson II, P. M. Gannett and K. H. Shaughnessy, J. Org. Chem., 2003, 68, 6767; (c) A. Collier and G. K. Wagner, Synth. Commun., 2006, 36, 3713; (d) N. Kohyama, T. Katashima and Y. Yamamoto, Synthesis, 2004, 2799.
- 10 (a) H. Cahová, R. Pohl, L. Bednárová, K. Nováková, J. Cvaka and M. Hocek, Org. Biomol. Chem., 2008, 6, 3657; (b) A. Collier and G. Wagner, Org. Biomol. Chem., 2006, 4, 4526; (c) M. Hocek and M. Fojta, Org. Biomol. Chem., 2008, 6, 2233.
- 11 Absorption bands at 260 and 280 nm for nucleic acids and proteins, respectively.

55

50

45

5