
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4852  | https://doi.org/10.1038/s41598-023-31307-2

www.nature.com/scientificreports

Meta‑analysis of the normal 
diffusion tensor imaging 
values of the peripheral nerves 
in the upper limb
Ryckie G. Wade 1,2*, Fangqing Lu 1, Yohan Poruslrani 3, Chiraag Karia 2, 
Richard G. Feltbower 4, Sven Plein 5,6, Grainne Bourke 1,2 & Irvin Teh 5,6

Peripheral neuropathy affects 1 in 10 adults over the age of 40 years. Given the absence of a reliable 
diagnostic test for peripheral neuropathy, there has been a surge of research into diffusion tensor 
imaging (DTI) because it characterises nerve microstructure and provides reproducible proxy measures 
of myelination, axon diameter, fibre density and organisation. Before researchers and clinicians can 
reliably use diffusion tensor imaging to assess the ‘health’ of the major nerves of the upper limb, we 
must understand the “normal” range of values and how they vary with experimental conditions. We 
searched PubMed, Embase, medRxiv and bioRxiv for studies which reported the findings of DTI of the 
upper limb in healthy adults. Four review authors independently triple extracted data. Using the meta 
suite of Stata 17, we estimated the normal fractional anisotropy (FA) and diffusivity (mean, MD; radial, 
RD; axial AD) values of the median, radial and ulnar nerve in the arm, elbow and forearm. Using meta‑
regression, we explored how DTI metrics varied with age and experimental conditions. We included 20 
studies reporting data from 391 limbs, belonging to 346 adults (189 males and 154 females, ~ 1.2 M:1F) 
of mean age 34 years (median 31, range 20–80). In the arm, there was no difference in the FA (pooled 
mean 0.59  mm2/s [95% CI 0.57, 0.62];  I2 98%) or MD (pooled mean 1.13 ×  10–3  mm2/s [95% CI 1.08, 
1.18];  I2 99%) of the median, radial and ulnar nerves. Around the elbow, the ulnar nerve had a 12% 
lower FA than the median and radial nerves (95% CI − 0.25, 0.00) and significantly higher MD, RD 
and AD. In the forearm, the FA (pooled mean 0.55 [95% CI 0.59, 0.64];  I2 96%) and MD (pooled mean 
1.03 ×  10–3  mm2/s [95% CI 0.94, 1.12];  I2 99%) of the three nerves were similar. Multivariable meta 
regression showed that the b‑value, TE, TR, spatial resolution and age of the subject were clinically 
important moderators of DTI parameters in peripheral nerves. We show that subject age, as well as the 
b‑value, TE, TR and spatial resolution are important moderators of DTI metrics from healthy nerves in 
the adult upper limb. The normal ranges shown here may inform future clinical and research studies.

Peripheral neuropathy and nerve injury are common, affecting approximately 1 in 10 adults over the age of 40 
 years1. Given the absence of a reliable diagnostic test, there has been a surge of research related to diffusion-
weighted magnetic resonance imaging (dMRI) for the evaluation of peripheral nerves. dMRI characterises tissue 
microstructure and provides  reproducible2–5 proxy measures of nerve health which are sensitive to axon type, 
diameter, density, myelination and  organisation6–9.

The most prevalent form of dMRI in peripheral nerves is diffusion tensor imaging (DTI). This typically gener-
ates the following voxel-wise parameters; fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) 
and radial diffusivity (RD). FA is a scalar value between zero and one; an FA of zero implies isotropic diffusion 
within a voxel, whilst (in the context of peripheral nerves) a FA nearing one implies diffusion predominantly 
along a single axis (i.e., axoplasmic along nerves). MD describes the average molecular diffusion rate of the ten-
sor; AD describes the diffusion rate in the long axis and RD represents diffusion perpendicular to the long axis.
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The diffusion of water and therefore dMRI signal is affected by factors other than tissue microstructure and 
physiology. Studies in the brain have shown that dMRI outputs are dependent on scanner hardware, acquisition 
settings, preprocessing techniques, reconstruction algorithms and extraction  methods2,10–15. Recent work has 
shown similar dependence in the brachial  plexus16 and median nerve in the  hand17. Therefore, before researchers 
and clinicians can reliably use dMRI to assess the ‘health’ of the major nerves of the upper limb, there is a need 
to define the range of “normal” values and how they vary with experimental conditions. These knowledge gaps 
form the rationale for this review.

Methods
This review was registered on the PROSPERO database (CRD42021275343). It was designed and conducted in 
accordance with the Cochrane Handbook of Systematic  Reviews18 and reported in accordance with the PRISMA 
 checklist19.

Types of studies. We included studies which reported the findings of DTI of the arm, elbow or forearm in 
healthy adults. There were no language restrictions. Case reports were excluded.

Participants. This review considers adults (aged ≥ 16  years) with no known pathology (past or present) 
affecting any peripheral nerve(s) of the upper limb.

Image acquisition. The included studies must have reported the DTI parameters from any of the median, 
ulnar or radial nerve in the forearm. The forearm was defined as the anatomical region distal to the elbow joint 
and proximal to the radiocarpal joint.

Search strategy. In accordance with our search strategy (Appendix 1), PubMed and Embase were inter-
rogated using the NICE Healthcare Databases (hdas.nice.org.uk), and medRxiv and bioRxiv were searched using 
the R package  medrxivr20 from inception to the 5th January 2022. This yielded 93 hits in PubMed, 509 in Med-
line but none in the preprint archives. Later,  CitationChaser21 was used for forward and backward chasing of 452 
citations, which yielded a further 371 records on 28th January 2022.

Study selection. Three review authors (FL, YP and RGW) independently screened titles and abstracts for 
relevance, in accordance with the eligibility criteria. The full texts of potentially eligible articles were obtained 
and again independently assessed by the same authors. Disagreements were resolved by discussion.

Data extraction. Three review authors (FL, YP and RGW) independently extracted data in duplicate, after 
which a 4th review author (CK) independently performed complete data validation (i.e. triplicate extraction). 
Where bilateral or repeated (e.g., test–retest) measurements were reported, the values were averaged given that 
the variability of DTI metrics from peripheral nerves on the right and left  side22–24, intrasessional and interses-
sional variability is less than 5%25. When data were missing or unclear, the corresponding author was contacted by 
email and if no reply was received, values were back-calculated26 or extracted from graphs using  metaDigitise27. 
Some studies used the term apparent diffusion coefficient (ADC) rather than MD. By convention, MD is used to 
describe the average of the diffusion tensor eigenvalues in DTI. As all the included studies fitted DTI models to 
their data, we refer to their reported results as MD rather than ADC. Two authors provided additional informa-
tion upon  request28,29.

Outcomes. We planned to estimate the normal FA and diffusivity values (MD, RD and AD) of the major 
upper limb nerves in healthy adults. Thereafter, we planned to explore how DTI metrics varied with age, ana-
tomical location, and experimental conditions, such as the b-value(s), echo time(s) (TE), repetition times (TR), 
resolution (in cubic millimetres,  mm3) and the number of diffusion encoding gradient directions  (ND) sampled 
per shell.

When the anatomical location was described we categorised data into 3 distinct regions: (1) the arm, which 
included data distal to the shoulder joint and ~ 5 cm proximal to the elbow joint; (2) the elbow, which included 
data ~ 5 cm either side of the elbow joint; and (c) the forearm, defined as 5 cm distal to the elbow joint and 
proximal to the radiocarpal joint.

Methodological quality assessment. There is no consensus on the appropriate tool to assess the risk of 
methodological bias in observational studies of healthy volunteers, so no risk of bias assessment was performed.

Statistical analysis. The datasets generated and/or analysed during the current study (including the outputs 
of metaDigitise and additional data shared by authors) are available in the Open Science Framework repository, 
https:// osf. io/ 8yzst/. The PRISMA2020  tool30 was used to create the flow diagram. Two studies were excluded 
from the meta-analysis given that they were performed at 1.5T45 and  7T31. Data was analysed in Stata/MP v17 
(StataCop LLC, Texas) and graphs customised using  grstyle32,33. Using the meta suite, the aggregate mean FA, 
MD, RD and AD from studies were pooled to estimate the normative values, subgrouped by anatomical location 
and nerve. Restricted maximum likelihood was used to estimate the between-study variance  (tau2), with the 
Knapp and Hartung modification. Heterogeneity was quantified by  I234. Sensitivity leave-one-out meta-analyses 
were performed to identify potential outlier studies. Mixed-effects meta-regression was then used to explore het-
erogeneity with FA as the dependent variable. We selected the moderator variables in the protocol phase through 
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the production of a directed acyclic graph (http:// dagit ty. net/ dags. html? id= cgJvh 9#)35. The continuous fixed 
effects were age, resolution  (mm3), echo time (TE in ms), b-value (s/mm2) and number of diffusion encoding 
gradient directions  (ND) whilst the categorical fixed effect was the location (arm, elbow and forearm). For each 
moderator (fixed-effect), we used the minimum adjustment dataset as prescribed by DAGitty (eFigs. S1–S7). 
Thereafter, variance inflation factors (used to quantify potential multicollinearity) were  calculated36,37. Confi-
dence intervals (CI) were generated to the 95% level.

Results
Overall, 20  studies38 were included (eFig. S8).

Study characteristics. Study characteristics are detailed in eTable S1. We included data from 391 limbs 
belonging to 346 adults (189 males and 154 females [3 were of unknown sex], translating to ~ 1.2 M:1F) of mean 
age 34 years (median 31, range 20–80). The median number of authors per paper was 7 (range 5–10).

Studies were performed most commonly on Siemens (9  studies31,38–43, 43%) or Philips (9  studies29,44,44–51, 
43%) scanners with the remainder using GE (3  studies28,52,53, 14%). Nineteen studies were performed at 
 3T28,29,38–44,46–54, with one at 1.5T45 and another at  7T31. The majority of studies used single-shot echo planar 
imaging (ssEPI; 17 studies, 85%), one compared ssEPI to readout-segmented echo planar imaging (rsEPI)39 and 
3  studies28,31,40 did not specify the type of sequence. Subjects were most commonly in the “superman” position 
(i.e., prone with the shoulder and elbow extended, with the elbow positioned in the isocentre of the magnet; 17 
 studies28,29,31,38,38,39,41–43,45,46,48–52,54, 85%) whilst the others positioned individuals supine with their arm extended 
 overhead40, supine in the anatomical  position44,47 or did not report the  position53. The receiver coils used were 
most commonly flexible extremity coils (11  studies29,31,39,41–44,47,51,54, 55%) with the remainder using  head48, 
 knee38,46,50,52,  wrist28,45 or  unspecified53 coils. The receiver coils had a median 8 channels (IQR 8–12, range 2–32).

The mean TE and TR were 82 ms (range 65, 105) and 5459 ms (range 2800, 10,000), respectively. The mean 
in-plane resolution was 1.17mm2 (range 0.12–1.8). The mean slice thickness was 3.5 mm (range 2–4). This 
generated a mean voxel volume of 5.11  mm3 (range 0.06–9.72). Nine studies used parallel imaging techniques 
 (GRAPPA39–42,42,  SENSE29,29,49–51,  ASSET52, and one unspecified  method31) whilst 9  studies28,38,44–48,53,54 did not 
specify this parameter. Four studies used partial Fourier  acquisition39–41,51, one reported full k-space  acquisition52 
but the majority of  studies28,29,31,38,42–50,53,54 did not report this information. Nineteen studies captured a single 
(maximum) b-value of mean 1045 s/mm2 (range 700–1300). One  study52 captured several b-values (300, 450, 600, 
750 and 900 s/mm2) to calculate track-weighted DTI metrics via multi-shell multi-tissue constrained spherical 
deconvolution. All other studies reconstructed their data using  2nd order tensors. The median  ND was 20 (range 
6–64). Most studies did not specify the diffusion encoding  waveform28,29,31,42–51,53,54 whilst 6  studies38–41,52 used 
“monopolar” with no further explanation.

Four studies reported preprocessing their  data29,31,41,52,52. This included MC-PCA  denoising52; Gibbs ringing 
 correction52; correction of artefacts related to susceptibility, motion and eddy currents using  MRtrix352,  FSL31,41 
or  ExploreDTI55; bias correction using Advanced Normalisation  Tools52; and interpolation of slice thickness 
from 3 to 1  mm52. Two  studies42,51 had a single image reader/reporter whilst the remainder had two reporting 
clinicians/scientists28,29,31,38,38–41,43–50,52–54.

Evidence synthesis: the arm. In the arm, the normal FA of the  median40,42,43,52,  radial40,42,43,47 and 
 ulnar40–42,42,46,52,54 nerves are shown in Fig.  1. There was no significant difference in FA between the three 
nerves (p = 0.554,  I2 96%). The normal MD of the  median40,42,43,52,  radial40,42,43,47,47 and  ulnar40–43,52,54 nerves was 
1.13 ×  10–3  mm2/s (CI 1.08, 1.18; Fig. 1) with no significant difference between nerves (p = 0.95,  I2 99%). The 
normal RD of the  median40,42,52,  radial40,42 and  ulnar40–42,52 nerves was 0.70 ×  10–3  mm2/s (CI 0.73, 0.76; Fig. 1) 
with no significant difference between nerves (p = 0.80,  I2 95%). The normal AD of the  median40,42,52,  radial40,42 
and  ulnar40–42,52 nerves was 1.99 ×  10–3  mm2/s (CI 1.91, 2.08; eFigure S10) with no significant difference between 
nerves (p = 0.74,  I2 99%). Leave-one-out meta-analysis did not detect any outlier studies.

Evidence synthesis: the elbow. Around the elbow, the normal FA of the  median51,52,  radial51 and 
 ulnar38,39,41,44,46,49,51,52,54 nerves are shown in Fig. 2.

In the region of the elbow, the ulnar nerve appeared to have a 12% lower FA than the median and radial nerves 
(CI − 0.25, 0.00; p < 0.001,  I2 96%). The normal MD of the  median51,52,  radial51 and  ulnar39,41,44,46,49,51,52,54,54 nerves 
in the elbow region was 1.01 ×  10–3  mm2/s (CI 0.68, 1.34), 0.71 ×  10–3  mm2/s (CI 0.64, 0.78) and 1.11 ×  10–3  mm2/s 
(CI 1.01, 1.20), respectively (eFigure S12). The radial nerve had lower MD than the ulnar nerve (− 0.40 ×  10–3 
 mm2/s CI − 0.76, − 0.04]; p < 0.001,  I2 93%) but was similar to the median nerve. The normal RD of the 
 median51,52,  radial51 and  ulnar41,51,52 nerves around the elbow was 0.57 ×  10–3  mm2/s (CI 0.41, 0.71; eFig. S13) 
with no significant difference between the nerves (p = 0.409). The normal AD of the  median51,52,  radial51 and 
 ulnar41,51,52 nerves at the level of the elbow was 1.94 ×  10–3  mm2/s (CI 1.71, 2.17), 1.35 ×  10–3  mm2/s (CI 1.23, 
1.47) and 1.88 ×  10–3  mm2/s (CI 1.74, 2.03), respectively (eFig. S14). The radial nerve had a lower AD than both 
the ulnar nerve (mean difference 0.53 ×  10–3  mm2/s [ CI 0.25, 0.82]) and median nerve (mean difference 0.59 [CI 
0.28, 0.91]; p < 0.001,  I2 90%). Leave-one-out meta-analysis did not detect any outlier studies.

Evidence synthesis: the forearm. In the forearm, the normal FA of the  median51,52,  radial51 and 
 ulnar38,39,39,41,44,46,49,51,52,54 nerves are shown in Fig. 3 and there was no significant difference between the nerves 
(p = 0.690,  I2 96%). The normal MD of the  median29,48,50,51,53,  radial51 and  ulnar29,41,46,50,51 nerves around the elbow 
was 1.03 ×  10–3  mm2/s (CI 0.94, 1.12; eFig. S15) with no significant difference between the nerves (p = 0.409,  I2 
97%). The normal RD of the median, radial and ulnar nerves in the forearm was 0.64 ×  10–3  mm2/s (CI 0.51, 0.77; 

http://dagitty.net/dags.html?id=cgJvh9#)
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eFig. S16) with no significant difference between the nerves (p = 0.752,  I2 98%). The normal AD of the median, 
radial and ulnar nerves in the forearm was 1.91 ×  10–3  mm2/s (CI 1.77, 2.04; eFig. S17) with no significant dif-
ference between the nerves (p = 0.562,  I2 95%). Leave-one-out meta-analysis did not detect any outlier studies.

Meta‑regression. Multivariable meta regression showed that the TE, TR, b-value, spatial resolution, ana-
tomical location and age of the subject moderated DTI metrics within peripheral nerves (Table 1 and Fig. 4).

Both anisotropy and diffusivity were dependent on age whereby each decade of life reduced the FA by 0.05 
(CI 0.007, 0.02) and increased MD by 7.8 ×  10–5  mm2/s (CI 3.3 ×  10–5, 1.2 ×  10–4). Increments in the b-value of 
100 s/mm2 reduced the observed MD by approximately 0.038  mm2/s (CI 0.064–0.012) without affecting the FA. 
increments of 10 ms in the TE reduced the FA within peripheral nerves by approximately 0.056 (CI 0.079, 0.033) 
without affecting the MD. Increasing the spatial resolution by  1mm3 downwardly biased the FA by 2% (CI 3–4) 
and upwardly biased the MD by 0.02 (CI 9.1 ×  10–4, 0.04). The nerves within the forearm had a 6% higher FA 
than nerves within the arm. FA and MD appeared to be robust to  ND.
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Figure 1.  Forest plot of the normal FA of the median, ulnar and radial nerves in the arm, sorted by the echo 
time and b-value.
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Discussion
This work shows that dMRI metrics from healthy nerves in the upper limb are dependent on experimental 
conditions and age, and differ throughout the length of the limb. Importantly, we show that seemingly small 
alterations to acquisition parameters (e.g., changing the b-value by 100  mm2/s or TE by 10 ms) is associated 
with meaningful changes to DTI measurements. Equally, we show that DTI metrics from the median, ulnar and 
radial nerves are age-dependent, which has important ramifications.

Figure 2.  Forest plot of the normal FA of the median, ulnar and radial nerves around the elbow, sorted by the 
echo time and resolution.
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Our work corroborates prior dMRI studies in peripheral  nerves16,17 (and the  brain56) which demonstrate 
that nerves exhibit more isotropic diffusion with advancing age. This is expected because aging axons lose 
their integrity, axoplasmic transport is slowed and the myelin sheath deteriorates which gives way to segmental 
demyelination and axonal loss without  remyeliation57. These morphological changes lead to an increase in extra-
cellular fluid and decline in both the density and integrity of microstructures which hinder/restrict diffusion. 
On a practical level, the observation that aging nerves exhibit more isotropic diffusion is important because it 
shows that when comparing group differences or longitudinal changes in dMRI metrics, adjustment for age is 
likely to be required.

In keeping with the prior literature, this work solidifies a clinically important and unique features of the 
pattern of diffusion within the ulnar nerve. At the level of the elbow and more distally within the forearm, 
diffusion within the ulnar nerve appears to become more isotropic compared to its proximal course. This may 
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echo time and b-value.
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be a manifestation of microstructural changes due to hardships endured around the elbow, namely repetitive 
mechanical deformation as the elbow moves, cumulative external trauma from knocks (aka the “funny bone”) 
and the resistance created due to the passage through a relatively tight fibrosseous (cubital) tunnel. These fac-
tors together may contribute to systematic differences in the microstructure of the ulnar nerve which render its 
diffusion more isotropic within and beyond the cubital tunnel.

In our multivariable meta-regression model, prolongation of the TE was associated with lower estimates of 
anisotropy. Whilst we show the same lack of association between TE and MD as observed in the  brain58, the 
observation that TE downwardly biases FA in the limb does not agree with the literature in the human brain (at 
both 1.5 and 3  T58) whereby a positive linear correlation was observed between TE and the FA within white mat-
ter. However, the opposite was observed in this study, which is difficult to explain, so we offer some hypotheses. 
We observed a positive linear relationship between TE and aggregate age (β 0.40 [CI 0.21, 0.58]) which might 
explain why studies with longer TE (older participants) had lower FA. Secondly, there was a linear correlation 
between TE and b-value (r = 0.42) but the variance inflation factor for TE and b-value was 4.9 and 1.2, respec-
tively in the model with TE as the exposure. Consensus amongst the statistical community is that a correlation 
coefficient > 0.7 between predictor variables or variance inflation factors > 10 is evidence of multicollinearity and 
should lead to the exclusion of colinear variables. Our models appear to have some collinearity (not enough to 
warrant variable removal) and we feel that this might contribute but does not completely explain the relationship 
between TE and FA. Finally, FA decreasing with TE might represent differences in the  T2 of intracellular water 
and extracellular water in peripheral nerves. Compounding this is the problem of myelin’s magnetic susceptibility 
which alters the off-resonance  field59 for intra-axonal water, meaning that at longer echo times (after diffusion-
weighting) there may be phase offsets which amplify differences between intra- and extra-axonal water. Also, at 
longer echo times there may be more sensitivity to non-gaussian diffusion in peripheral nerves, which has been 
observed to start from lower b-values than in the brain (~ 700 s/mm2)60. Finally, the included studies did not 
report the diffusion time (and many other important methods), so it is plausible that the relationship between 
TE and FA was confounded by something else. Future studies should seek to: (a) fully report the parameters of 
their sequences, (b) report methods of pre- and postprocessing, and (c) make their anonymised data available 
open source to enable individual patient-data meta-analysis.

There are some important limitations to our study. Non-gaussian diffusion has been observed at b-values 
above ~700 s/mm2 and consequently, monoexponential fitting (i.e., a 2nd order tensor) may be influenced by 
restricted diffusion at higher b-values60. It is widely accepted that preprocessing of dMRI data improves the accu-
racy of metrics and  tractography61, and differences in preprocessing practices and pipelines generate important 
differences in  results2 which negatively impacts  reproducibility15. In this review, most studies failed to report 
if or what preprocessing was performed, and this may be a source of variability. Finally, few authors described 
their postprocessing methods (e.g. the size and position of regions-of-interest used to extract DTI metrics, how 
they were drawn, etc.) which is important because recent work has shown that subtle variability in the size and 
position of regions of interest have downstream effects on DTI  metrics10. Some readers may decry our decision 
to meta-analyse statistically heterogeneous data, but this was done purposively because forest plots provide 
an important graphical representation of measurement variation in relation to experimental conditions (e.g., 
b-values and  ND) and they summarise a large amount of information in an easy-to-interpret format. Furthermore, 
by making this choice we could deploy meta-regression to explore potential moderators. Ultimately, our choice 
to meta-analyse heterogenous data has provided important insight into factors which appear to moderate FA 
and diffusivity within the nerves of the upper limb.

Non-biological variability in dMRI metrics undermines the reliability of multi-site and/or longitudinal stud-
ies. Therefore, there remains a need for robust harmonisation  techniques62,63. Harmonisation is a mathematical 
approach (regression, interpolation or machine learning) which seeks to reduce the unwanted (non-biological) 
variability in dMRI datasets whilst retaining information which pertains to the underlying microstructure 
and  physiology64. A recent review of Harmonisation of  dMRI64 showed the benefits of such an approach. By 

Table 1.  Multivariable meta-regression of factors associated with FA and MD. ND = the number of diffusion 
encoding gradient directions. Note that each variable has been differently adjusted, as defined by our DAGs 
(http:// dagit ty. net/ mcgJv h9, eFigs. S11–S17).

Moderators

FA MD

Adjusted β (95% CI) Adjusted β (95% CI)

Echo time (ms) − 5.6 ×  10–3 (− 7.9 ×  10–3, − 3.3 ×  10–3) 5.5 ×  10–3 (− 5.6 ×  10–4, 0.01)

Age in years − 4.8 ×  10–3 (− 7.1 ×  10–3, − 2.4 ×  10–3) 7.8 ×  10–6 (3.3 ×  10–6, 1.2 ×  10–5)

b-value (s/mm2) 8.9 ×  10–5 (− 5.9 ×  10–5, 2.4 ×  10–4) − 3.8 ×  10–4 (− 6.4 ×  10–4, − 1.2 ×  10–4)

Location

 Arm Referent Referent

 Elbow 1.5 ×  10–3 (− 0.06, 0.06) − 0.06 (− 0.17, 0.05)

 Forearm 0.06 (2.5 ×  10–4, 0.13) − 0.10 (− 0.17, 0.05)

Repetition time (s) 7.9 ×  10–6 (− 1.4 ×  10–5, 3.0 ×  10–5) −  5.1 ×  10–5 (− 9.3 ×  10–5, − 9.6 ×  10–6)

Resolution  (mm3) − 0.02 (− 0.03, − 0.004) 0.02 (9.1 ×  10–4, 0.04)

ND 1.8 ×  10–3 (− 3.9 ×  10–4, 4.0 ×  10–3) 3.6 ×  10–3 (− 7.8 ×  10–3, 4.8 ×  10–4)

http://dagitty.net/mcgJvh9
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summarising the effects of non-biological variability in dMRI of the arm, elbow and forearm, we provide informa-
tion which may inform harmonisation efforts in the limb by quantifying the direction and magnitude of dMRI 
metric variation in relation to non-biological factors.

In conclusion, we show that dMRI metrics from healthy nerves in the upper limb are age-dependent, and that 
the b-value, echo time, repetition time and resolution are clinically important sources of variability. We provide 
summary estimates of the normal values of the median, ulnar and radial nerves in different experimental settings 
which may be of value to researchers and clinicians alike.

Data availability
The datasets generated and/or analysed during the current study are available in the Open Science Framework 
repository, https:// osf. io/ 8yzst/.

Received: 22 June 2022; Accepted: 9 March 2023

Figure 4.  Bubble plots showing the linear dependence of FA (left column) and MD (right column) on the 
maximum b-value, echo time and aggregate mean age of participants. The size of the points corresponds to the 
precision (inverse variance) of the study.

https://osf.io/8yzst/
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