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Purpose: Tensor-valued diffusion encoding can probe more specific features of
tissue microstructure than what is available by conventional diffusion weight-
ing. In this work, we investigate the technical feasibility of tensor-valued diffu-
sion encoding at high b-values with q-space trajectory imaging (QTI) analysis,
in the human heart in vivo.
Methods: Ten healthy volunteers were scanned on a 3T scanner. We designed
time-optimal gradient waveforms for tensor-valued diffusion encoding (linear
and planar) with second-order motion compensation. Data were analyzed with
QTI. Normal values and repeatability were investigated for the mean diffusivity
(MD), fractional anisotropy (FA), microscopic FA (μFA), isotropic, anisotropic
and total mean kurtosis (MKi, MKa, and MKt), and orientation coherence (Cc).
A phantom, consisting of two fiber blocks at adjustable angles, was used to
evaluate sensitivity of parameters to orientation dispersion and diffusion time.
Results: QTI data in the left ventricular myocardium were MD = 1.62±
0.07 μm2/ms, FA = 0.31± 0.03, μFA = 0.43± 0.07, MKa = 0.20± 0.07, MKi =
0.13± 0.03, MKt = 0.33± 0.09, and Cc = 0.56± 0.22 (mean± SD across sub-
jects). Phantom experiments showed that FA depends on orientation dispersion,
whereas μFA was insensitive to this effect.
Conclusion: We demonstrated the first tensor-valued diffusion encoding and
QTI analysis in the heart in vivo, along with first measurements of myocardial
μFA, MKi, MKa, and Cc. The methodology is technically feasible and provides
promising novel biomarkers for myocardial tissue characterization.
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1 INTRODUCTION

Cardiac diffusion MRI (dMRI) is an emerging method
for noninvasive characterization of the myocardium with-
out the need for contrast agents. Currently, the most
common dMRI method is DTI.1 It has been applied in
a range of pathologies including hypertrophic cardiomy-
opathy,2,3 dilated cardiomyopathy,4 infarction5 and amy-
loidosis,6 and remodeling following aortic stenosis7; the
typical hallmark of pathology in the myocardium is an
increase in mean diffusivity (MD) and decrease in frac-
tional anisotropy (FA). DTI characterizes the diffusion
process using a single diffusion tensor that represents the
average diffusion features of tissue in each imaging voxel.
Therefore, it cannot account for non-Gaussian diffusion
that may result from restrictions, disordered structural
anisotropy, or tissues with heterogeneous density.8,9 Fur-
thermore, it has poor sensitivity and specificity whenever
tissue is heterogeneous or complex, leading to a limited
capability to detect and distinguish processes that involve
multiple cell populations with different orientations and
features.10,11

The presence of non-Gaussian diffusion in the
myocardium has been demonstrated in preclinical inves-
tigations, such as in fixed mouse, pig,12 rat,13,14 dog,15 and
rabbit hearts.16 More sophisticated signal models can more
accurately describe the non-Gaussian diffusion observed
in tissue. Proposed methods include the stretched expo-
nential model in ex vivo rat hearts,17 and diffusion kurtosis
imaging (DKI) in ex vivo porcine hearts.18 McClymont
et al. systematically compared various signal models,
including stretched exponential, DKI, bi-exponential,
truncated Gaussian, gamma and beta models, and showed
that in the high b-value regime (> 2 ms/μm2) the beta
distribution model fit best to the data.14 It was observed
that, unlike MD, diffusion kurtosis and skewness along
the second and third eigenvectors of the diffusion tensor
were able to discriminate sham from hypertrophic hearts,
offering potential biomarkers of cardiac microstructure.

Measuring the effects of microscopic anisotropy and
multi-Gaussian diffusion offers the potential for greater
specificity than the methods described previously. This
can be achieved by performing diffusion encoding at
high b-values along multiple directions per shot, such
as by using double diffusion encoding19 or arbitrary
gradient waveforms.20,21 This approach is often called
“tensor-valued diffusion encoding,” as the diffusion
encoding is no longer fully described by a vector (direc-
tion and magnitude) but rather requires a tensor to also
capture its shape. For example, Lasič et al. proposed a com-
bination of linear and spherical b-tensor encoding that
could probe the microscopic FA (μFA), which describes
the diffusion anisotropy without being confounded by

orientation dispersion.20 Moreover, the relation between
μFA and FA reflects the degree of orientation dispersion
that could also inform on cardiac health and disease.20 In
particular, the microscopic orientation coherence (Cc) can
be used to as a descriptor of the coherence of the under-
lying microscopic structures.21 Several preclinical studies
that go beyond DTI have been performed to examine the
heart ex vivo. These include double diffusion encoding
for measuring μFA,22 oscillating gradients for examining
time-dependent diffusion,23 non-Gaussian signal models
for quantification of diffusion kurtosis,14 compartmental
models,24 time-dependent diffusion for estimation of bio-
physical properties,12,25 and tensor-valued encoding26 for
assessing microscopic diffusion anisotropy.

Tensor-valued diffusion encoding, in particular, can
be a highly efficient probe of microscopic anisotropy and
multi-Gaussian diffusion, and has found application in
various organs in brain and body imaging.27–32 By using
numerical optimization of the gradient waveforms,33,34

b-tensors of arbitrary shape and high b-value per unit
time can be produced, such as linear, planar, and spheri-
cal b-tensor encoding (LTE, PTE, and STE), and analyzed
using the q-space trajectory imaging (QTI) framework.21

By performing diffusion weighting with multiple b-tensor
shapes, parameters such as MD, FA, μFA, Cc, as well as the
isotropic, anisotropic, and total mean kurtosis (MKi, MKa,
and MKt) can be estimated.9,20,21

Given the proposed approach, we argue that car-
diac QTI will likely enable higher specificity in diffu-
sion MRI measurements than DTI and DKI. Previously,
MK was shown to be better than DTI in distinguishing
hypertrophic from normal myocardium in an ex vivo rat
model.14 Decomposing MK into anisotropic and isotropic
components using QTI may provide greater insight into
the underlying microstructural changes in hypertrophy.
FA is influenced by diffusion anisotropy and orientation
dispersion, both of which are ubiquitous in the heart
and cannot be distinguished by FA alone. QTI provides
the opportunity to disentangle these two features, with
μFA and CC providing separate measures of diffusion
anisotropy and orientation dispersion, respectively.

Distinguishing anisotropy and orientation disper-
sion is relevant in myocardium where heterogeneous
micro-environments, intravoxel rotation of car-
diomyocytes, and branching of cardiomyocytes are
routinely observed, and to which current DTI meth-
ods have poor specificity. For example, heterogeneous
micro-environments may be found at the subepicardial
and subendocardial borders where voxels contain both
cardiomyocytes and blood, as well as at interfaces of nor-
mal and diseased myocardium. There is a transition in
cardiomyocyte orientation from left to right-handed ori-
entation that manifests as a transmural variation in helix
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152 TEH et al.

F I G U R E 1 Schematic microscopic (subvoxel) and macroscopic (voxel) tensors corresponding to underlying histology illustrated by
layers of (left to right) coherently organized cardiomyocytes (e.g., in healthy myocardium), dispersed cardiomyocytes (e.g., in the presence of
intravoxel rotation); multiple populations of cardiomyocytes (e.g., at the right ventricle insertion points); and randomly organized
cardiomyocytes (e.g., in cardiomyocyte disarray). Histology slide (random configuration) adapted from Nichols et al.36 FA, fractional
anisotropy.

angle, and a degree of intravoxel rotation of cardiomy-
ocytes that depends on the voxel size.35 There are instances
of branching and multiple population of cardiomyocytes at
the right-ventricle insertion points. Furthermore, random
cardiomyocyte orientation can be observed in instances
of cardiomyocyte disarray in disease such as hypertophic
cardiomyopathy.2

To illustrate the added information from QTI, we
demonstrate the correspondence among macroscopic
(voxel) tensors derived from DTI, microscopic (subvoxel)
tensors derived from b-tensor encoding, and histology in
Figure 1. It shows that voxels populated by highly aligned
cardiomyocytes will yield high FA and μFA. Whenever the
alignment of cardiomyocytes is reduced, such as multi-
ple cardiomyocyte populations with distinct orientations,
the FA is reduced, whereas μFA is unchanged. Finally, if
the cardiomyocyte orientations are random, the FA tends
toward zero, whereas the μFA is still high. Thereby, the
effect of actual loss of diffusion anisotropy can be disen-
tangled from the effect of orientation coherence.

Although greater specificity for cardiac dMRI is
sought, there are considerable challenges associated with
the use of both conventional and tensor-valued diffusion
encoding at moderate to high b-values in the beating heart.
Chief among them are cardiac and respiratory motion,
short transversal relaxation times (T2), and the need for
higher b-values than required for DTI.8,20,37 Furthermore,
nonlinear b-tensor encoding (e.g., PTE and STE) generally
has a lower efficiency than conventional LTE, meaning
that it requires slightly longer encoding times to reach a
given b-value.34,38 It is likely that these challenges have
stymied the in vivo application of non-Gaussian diffusion
MRI in the heart. To meet these challenges, we previously
developed techniques for tensor-valued diffusion encod-
ing with motion compensation to arbitrary order, and we
used these techniques at relatively low b-values in heart
in vivo.39,40 In the work by Szczepankiewicz et al., we
developed numerical gradient waveform optimization to
achieve efficient encoding with arbitrary b-tensor shapes
while simultaneously ensuring motion compensation and
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negligible effects from concomitant gradients, thereby
enabling an experimental design that is compatible with
clinical scanners and scan times.40 In this work, for the
first time, we demonstrate tensor-valued diffusion encod-
ing at high b-values41 along with a QTI analysis in the
human heart in vivo. We validate our measurements using
a novel multicompartment phantom and examine baseline
parameter values and parameter repeatability in a cohort
of healthy volunteers.

2 THEORY

QTI is a theoretical framework that can probe the diffu-
sion process and underlying tissue microstructure based
on tensor-valued diffusion encoding.21 It can be consid-
ered an extension of DKI,8 as it estimates the covariance
tensor, which also contains the kurtosis tensor. Impor-
tantly, tensor-valued diffusion encoding involves the use
of multiple b-values and b-tensors with various shapes,
rather than diffusion weighting in a single direction as
applied in conventional diffusion encoding. This facilitates
the separation of microscopic diffusion anisotropy from
heterogeneous isotropic diffusivities,9,10,20,21 which is not
possible with conventional diffusion encoding. The analy-
sis yields a set of DTI, DKI and QTI parameters, of which
we will use the MD, FA, μFA, MKi, MKa, MKt, and Cc.

Here, we give an overview of the basic theory of QTI
and its relation to tensor-valued diffusion encoding, but we
encourage the reader to pursue a more detailed descrip-
tion in the work by Westin et al.21 Briefly, we assume that
the tissue in each voxel can be approximated by a distri-
bution of diffusion tensors, where each diffusion tensor
represents a part of the tissue where the diffusion is Gaus-
sian and nonexchanging. In this multi-Gaussian system, a
truncated cumulant expansion can be performed, to yield
the following signal representation21:

S(B) ≈ S0 exp
(
−B ∶ D + 1

2
B⊗2 ∶ C

)
(1)

where B is the b-tensor; D is the average diffusion ten-
sor; B⊗2 is the outer product of the b-tensor with itself;
C is the fourth-order diffusion covariance tensor; and “:”
denotes the double inner product. Parameters such as MD
and FA are computed from the diffusion tensor, whereas
the covariance tensor is needed to calculate the μFA, MKi,
and MKa. To highlight how the MK parameters affect
the signal, we may simplify this expression by consider-
ing the powder-averaged signal (arithmetic average over
directions). Then, Equation (1) can be written in terms
of the conventional b-value and the b-tensor shape (bΔ),
according to Refs. 9,27 and 34:

S(b) ≈ S0 exp
(
−bMD + 1

6
b2MD2 (MKi + b2

ΔMKa
))
.

(2)

This expression shows how heterogeneous isotropic diffu-
sivities, MKi, and microscopic diffusion anisotropy, MKa,
both contribute to the b2 term, and that the contribution
from the latter is modulated by the shape of the b-tensor.
Finally, we note that the total kurtosis can be calculated
according to MKt = MKi+MKa.9,20

3 METHODS

We first sought to demonstrate the effects of orientation
dispersion on DTI and QTI measurements in a refer-
ence phantom with known microstructural properties, as a
form of validation. We then optimized the gradient encod-
ing waveforms for in vivo cardiac QTI and applied these in
a cohort of healthy volunteers to obtain baseline measure-
ments and repeatability of QTI parameters.

3.1 Fiber Phantom Experiments

To demonstrate the contrast between FA and μFA, a
fiber phantom with variable orientation dispersion was
designed and fabricated. Hollow fibers were prepared
using co-electrospinning of polycaprolactone shell solu-
tion and polyethylene oxide core solution.42 The introduc-
tion of the surfactant polysiloxane into the polycaprolac-
tone fibers improved their surface wettability, permitting
the use of water as a diffusate for improved safety relative
to a previous iteration using cyclohexane, and matching
of physiological properties.43 Fiber strips were cut into
squares with sectional areas of approximately 1.0 cm,2
immersed in water, and sonicated to remove air bubbles.
A custom holder with two mating hollow cavities for the
fibers was designed and 3D printed. The fiber squares were
layered and filled the cavities to form two fiber blocks. The
phantom was sealed in a glass tube with an outer diameter
of 20 mm. Rotation of the two mating fiber blocks cre-
ated a region at the interface such that an MRI slice can
cover both regions; therefore, voxels in the regions contain
two fiber populations with user controllable directions. All
preparations were performed while submerged in water to
minimize introduction of air bubbles.

The phantom is depicted in isometric and
cross-sectional views (Figure 2). A representative scan-
ning electron microscopy image taken from a sample
of the same fiber strip that was used to make a phan-
tom is shown. A densely packed microstructure with
irregular hollow cross-sections was observed. The pore
diameters were measured from three scanning electron
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154 TEH et al.

F I G U R E 2 (Left) Vertical cross section and 3D view of phantom consisting of two blocks of hollow fibers that are rotated from interblock
angle = 0◦ (parallel; as shown) to 90◦ (perpendicular) with respect to one another (black arrows). Slice locations 1–3 are shown in yellow. (Top
right) Scanning electron microscopy image of fiber cross section at ×1000 magnification. (Bottom right) Histogram of pore diameters with
3-μm bins up to 30 μm. All pores with diameters greater than 30 μm were grouped in a single bin, which accounts for the high area fraction.

microscopy images acquired from different regions of the
fiber strip, and the histogram analysis indicates a pre-
ponderance of fibers with pore diameters ranging from
9 to 15 μm.

Data were acquired on a Biospec 7T MRI scanner
(Bruker BioSpin MRI, Ettlingen, Germany) with a 1.5 T/m
gradient system with rise time < 100 μs. Multishot 2D
diffusion-weighted spin-echo EPI data were acquired with
a product DTI sequence, and a custom free waveform
sequence44 available at https://osf.io/t9vqn, which enables
tensor-valued diffusion encoding. Imaging was performed
with FOV = 20× 20 mm,2 matrix = 64× 64, slice thick-
ness = 3 mm, number of shots = 4, number of slices = 3,
number of diffusion-encoding directions = 15, band-
width = 150 kHz, nontriggered, and Gmax was adjusted to
achieve required b-values. A higher resolution was used
compared with the in vivo study to exclude partial-volume
effects in the phantom. The DTI sequence parameters were
TR= 3000 ms, TE= 60 ms, diffusion duration (𝛿)= 1.7 ms,
time between onset of gradient pulses (Δ) = [5, 10, 20, 30,
40] ms, b= 1.0 ms/μm2, number of non-diffusion-weighted
images = 2, and acquisition time = 20.5 min. The QTI

sequence parameters were TR = 4000 ms, TE = 60 ms,
diffusion-encoding waveform duration= 20 ms, b= [0, 0.1,
0.5, 1.0, 2.0] ms/μm2, and acquisition time = 40 min.
The gradient waveform was configured to yield spherical
b-tensor encoding, using the q-space magic angle spinning
(qMAS) design,45 repeated identically before and after the
refocusing pulse. Additionally, a linear b-tensor encoding
waveform was extracted from a single axis of the qMAS
waveform. The waveforms were characterized by the mean
frequency (in hertz) of the power spectrum of the dephas-
ing vector q(t) = 𝛾∫ t

0 g
(

t′
)

dt′.46

The conventional data were used to estimate diffu-
sion tensors, MD, and FA by nonlinear least-squares fit-
ting with code available at https://github.com/vigente/
gerardus. The tensor-valued encoding data were used to
estimate MD, FA, and μFA by linear fitting of the QTI21

signal representation, as implemented in the multidi-
mensional diffusion MRI framework available at https://
github.com/markus-nilsson/md-dmri.47 A central circu-
lar mask with radius of 5 voxels was defined in the cen-
tral slice. This mask was propagated across slices and
image volumes with different interblock rotations. MD,
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FA, and μFA were averaged across each region of interest
(ROI), and mean values were reported for each slice and
interblock angle.

3.2 Healthy Volunteer Experiments

To investigate baseline QTI values in the clinical set-
ting, data were acquired in 10 healthy volunteers
(age = 22± 3 years, 3 male and 7 female) on a Prisma
3T MRI scanner (Siemens Healthineers, Erlangen, Ger-
many). The average heart rate for study participants was
70.4± 8.6 beats per minute (mean± SD across 9 subjects).
Volunteers provided written consent, and the study was
performed following ethical approval.

Tensor-valued diffusion encoding was performed
with a prototype single-shot spin-echo sequence
(version 1.24; https://github.com/filip-szczepankiewicz/
fwf_seq_resources)48 with EPI readout and reduced
FOV imaging. The scan was cardiac-triggered, and
the subject was scanned free-breathing without res-
piratory gating. The QTI sequence parameters were
linear and planar b-tensor encoding (waveform design
is described subsequently); TR = 5 RR-intervals;
TE = 118 ms; resolution = 3.5× 3.5× 10 mm3 in 5 slices;
FOV = 320× 111 mm2; b = [0.1, 0.4, 0.7, 1.1, 1.5] ms/μm2

for [10, 20, 30, 40, 50] rotations, respectively; partial
Fourier = 7/8; bandwidth = 1510 Hz/px; trigger delay
∼ 10% of end systole (ms), where end systole (ms) was
measured based on cine MRI data; and total acquisition
time= 25 min based on a heart rate of 60 beats per minute.
The resolution was lower than in typical cardiac DTI
experiments, to compensate for lower SNR caused by the
higher b-values used. Partial volume with unsuppressed
blood may lead to signal contribution from blood at low
b-values, and this effect may be enhanced in the presence
of motion compensation. We therefore used a nonzero
low b-value (b = 0.1 ms/μm2) to mitigate the signal con-
tribution of flow and perfusion. The non-self-balanced
waveform design (i.e., relatively high q[t] at the time of the
refocusing pulse) meant that crushers were not needed for
any of the used b-values. Therefore, crushers were always
turned off and did not degrade the motion compensation
as observed in previous work using self-balanced gradi-
ents.39 The acquisition order of b and diffusion-encoding
directions were pseudo-randomized to minimize the duty
cycle and avoid signal drift effects.49 Data were acquired
during systole. The QTI experiment was repeated in the
same session to investigate repeatability (N = 9). ECG data
were exported from the scanner (N = 9). Cardiac triggers
were extracted using open-source software TAPAS,50 and
average heart rate was calculated across the scan session
in each subject.

Data postprocessing included denoising51 and Gibbs
ringing removal52 performed in MRtrix,53 as well as motion
and eddy current correction with extrapolated reference
images54 performed in Elastix.55 Distortions due to hetero-
geneous B0 were not performed. All acquired images were
used in the reconstruction. QTI parameters were estimated
using the same approach as for the phantom experiments.
Four ROIs in the septal, anterior, inferior, and lateral wall
of the left ventricle in one mid-myocardial short-axis slice
were manually defined. Parameter maps, including MD,
FA, μFA, MKa, Mki and MKt, were reported in each region
as mean± SD across subjects. Repeatability in the param-
eter maps was assessed by Bland–Altman analysis,56 and
mean± 1.96 SD was reported across subjects and regions.

To detect potential effects of time-dependent diffu-
sion, DTI parameters based on two waveforms for LTE
were compared. The two waveforms were derived from
the PTE waveform and selected to represent the longest
and shortest diffusion times, denoted as LTE (long td) and
LTE (short td), respectively (see Section 3.3). All other
acquisition parameters were identical as described previ-
ously. The highest b-value was 0.7 ms/μm2, bounded by
the low efficiency of the LTE (short td) waveform, and
the lowest b-value was 0.4 ms/μm2 to mitigate the effects
of perfusion and to maximize the effects of restrictions.
DTI signal representations were fitted separately to LTE
(long td) and LTE (short td) data sets using nonlinear
least-squares fitting. Average MD and FA were calculated
in the four ROIs. A two-sample t-test was applied to test
the null hypothesis that the MD and FA had equal means,
using a significance threshold of 0.05. The parameter dis-
tributions and averages of MD and FA were plotted using
data pooled across ROIs and subjects (N = 9). At longer
diffusion-encoding times, water molecules can travel far-
ther and sense more restrictions to diffusion, such as cell
membranes and organelles, thereby reducing the appar-
ent diffusivity. As cardiomyocytes are highly anisotropic
in shape, there is a greater tendency for water molecules
to sense restrictions along the short axis of the cell rather
than its long axis. This leads to relatively low apparent dif-
fusivity and potential diffusion-time dependency along the
short axis of the cardiomyocyte. We expect that effects of
diffusion time and restriction will manifest as a lower MD
and higher FA when using LTE (long td) as compared with
LTE (short td).23

3.3 Gradient waveform design for in
vivo cardiac QTI measurements

Gradient waveforms were generated in the open-source
optimization framework by Sjölund et al.34 found at
https://github.com/jsjol/NOW, using the extensions
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F I G U R E 3 (Top to bottom) Effective diffusion-encoding gradient waveforms for b-tensor encoding, zeroth to third-order gradient
moments; and encoding power spectrum for (left to right) planar b-tensor encoding (PTE), linear b-tensor encoding (LTE) (long td), and LTE
(short td) corresponding to intermediate, low, and high mean frequencies, respectively. Waveforms were compensated for up to second-order
motion, and residual M3 can be seen at the end of the waveforms (see inset). Encoding power spectrum (in hertz) is defined as the Fourier
transform of q(t).38 There is a clear distinction in the encoding power spectrum between LTE (long td) and LTE (short td), while PTE contains
contributions from both LTE waveforms. The three colors (red, gray, and blue) correspond to orthogonal directions. Other sequence features
were omitted for clarity. Waveforms were generated using a modified NOW toolbox.34

for concomitant gradient compensation33 and moment
nulling.40 All waveforms were motion-compensated up
to second order (position, velocity, and acceleration) by
imposing that the magnitude of the motion-encoding
vector of order n, mn = 𝛾∫

TE
0 tng(t)dt, is equal to zero.40

The encoding times were 43.4 ms before and after the
refocusing pulse, and the waveforms were allowed to be
asymmetric to boost the encoding efficiency.

To minimize the required encoding time, and there-
fore achieve minimal TE and maximal SNR, we per-
formed a combination of linear and planar b-tensor
encoding as opposed to combining linear with spheri-
cal b-tensor encoding. To avoid peripheral nerve stim-
ulation (PNS), the maximal slew rate of the gradient
waveforms was limited to 100 T/m/s, and the PNS level
was predicted using the SAFE model57 implemented
in MATLAB (https://github.com/filip-szczepankiewicz/
safe_pns_prediction).38 The maximum predicted magni-
tude of PNS based on the scanner limits was 72%, 21%,
and 51% for PTE, LTE, (long td) and LTE (short td), respec-
tively. To achieve diffusion-time matching between LTE
and PTE, without compromising the encoding efficiency
of the waveform, the LTE waveform was defined from the
PTE waveform. Briefly, this is done by selecting the wave-
form that points along the eigenvector of the largest eigen-
value of ∫ TE

0 g(t) ⋅ g(t)dt, where g(t) is the effective gradient

waveform.58 This ensures that the LTE waveform has iden-
tical diffusion-time characteristics to the PTE along at least
one direction, while not suffering from poor encoding
efficiency. We denote this encoding as LTE (long td). Addi-
tionally, to cover the full range of diffusion-time dynamics
of the PTE, we created an LTE waveform that had a short
diffusion time by selecting the waveform that is orthogonal
to the first. We denote this encoding as LTE (short td).

The waveforms for PTE, LTE (long td), and LTE
(short td) are shown in Figure 3. The two LTE wave-
forms are based on the two orthogonal waveforms
that constitute the PTE waveform. The nominal tra-
jectories of zeroth to second-order moments terminate
effectively at zero, meaning that the waveforms are
motion-compensated up to acceleration, whereas the
third-order moments are not nulled. However, due to
interpolation and limited numerical precision at the scan-
ner, the first and second-order moments are nonnegligi-
ble in practice. The magnitude of the first, second, and
third-order motion encoding from the diffusion-encoding
waveforms were 6.8× 10−1 s/m, 7.8× 10−2 s2/m, 13 s3/m
(PTE; b = 1.5 ms/μm2); 8.3× 10−1 s/m, 9.7× 10−2 s2/m, 16
s3/m (LTE long td; b = 1.5 ms/μm2); and 3.3× 10−1 s/m,
3.8× 10−2 s2/m, 6.5 s3/m (LTE short td; b = 0.7 ms/μm2);
respectively. These moments can be equally expressed as
magnetic field gradient moments in units of Ts(n+1)/m by
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F I G U R E 4 Dependence of mean diffusivity (MD; black lines), FA (black lines), and microscopic FA (μFA; red lines) on interblock
angle and (left to right) slice positions 1 to 3 (mean± SD across voxels). Diffusion times (ms) given for pulsed gradient spin-echo (PGSE)
experiments, and mean frequencies of the power spectrum of q(t) given for PGSE and q-space magic angle spinning (qMAS) experiments.
MD increases and FA decreases as the diffusion time is decreased. FA decreases with increasing interblock angle in Slice 2, simulating
increased fiber orientation dispersion. In contrast, μFA remains relatively insensitive to interblock angle, highlighting the strength of μFA as
a metric of anisotropy that is not biased by orientation dispersion.

dividing by the proton gyromagnetic ratio. Figure 3 also
shows orthogonal projections of the encoding power spec-
trum of the dephasing vector q (t), where the peaks appear
at 14 Hz for LTE (long td), 25 Hz for LTE (short td), and
a combination of the two frequencies for the PTE wave-
form. Other constraints include enforcing the L2-norm of
the gradient amplitude as a function of time (< 80 mT/m),
slew rate (< 100 T/m/s), b-tensor shape (Frobenius dis-
tance error < 0.5%), and concomitant gradient balance
(Maxwell index < 100 [mT/m]2 ms).

4 RESULTS

The DTI data in the phantom demonstrated
time-dependent diffusion across all slices, where shorter
diffusion times (higher mean frequencies) yielded higher
MD and lower FA (Figure 4; Figures S1 and S2). The
qMAS-derived LTE data had the highest mean fre-
quency of 51 Hz, and generally the highest MD and
lowest FA. In Slices 1 and 3, fibers were always fully
aligned, and MD and FA were insensitive to interblock
angle. In Slice 2, an increasing interblock angle caused

the FA to decrease, while MD was unaffected. Finally,
the μFA was the same across all slices and remained
approximately constant for all interblock angles (i.e.,
it was unaffected by the subvoxel distribution of fiber
directions).

Cardiac QTI measurements were completed success-
fully in all 10 volunteers. An example of a midventricular
short-axis slice is shown alongside the signal attenua-
tion across b-values and diffusion-encoding directions in
an ROI in the septal wall (Figure 5). At low b-values,
b< 0.5 ms/μm2, the signal from LTE and PTE is sim-
ilar, as expected from theory. However, as the b-value
increases, the contrast between PTE and LTE becomes
increasingly pronounced; this is the hallmark of micro-
scopic diffusion anisotropy.10,20,59 Images of the logarithm
of the powder-averaged signal when using PTE and LTE
illustrate the diffusion contrast and overall image quality.
The relative difference between PTE and LTE generally
increases with b-value, corresponding to the divergent sig-
nal attenuation curves, which is a hallmark of microscopic
diffusion anisotropy.10,20 However, there were regions in
the inferior wall at b = 0.1 ms/μm2 with large differences
that may be artefactual.
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158 TEH et al.

F I G U R E 5 (Top) Normalized signal-attenuation curves showing divergence between linear (red; bΔ = 1) and planar (black; bΔ = −0.5)
tensor encoding, particularly at higher b-values. Data are reported in an example region of interest (ROI) in the myocardium of 1 healthy
volunteer. Signals were averaged across the ROI and used to fit a covariance model. Data were acquired in five shells and plotted with offsets
in b for better visualization of data and fitting. (Middle) Powder average of PTE and LTE log signal images, sorted by b-value. (Bottom)
Relative difference images between PTE and LTE show that contrast generally increases with b-value. MKa, anisotropic mean kurtosis; MKi,
isotropic mean kurtosis.

Example QTI parameter maps are depicted in
Figure 6 alongside average values in four ROIs in the
left-ventricular myocardium. These baseline values in
healthy volunteers are summarized in Table 1. Overall,
regions with higher MD corresponded to regions with
lower FA and vice versa. μFA was uniformly higher than
FA. Measures of FA, μFA, MKa, and MKt were lower in
the inferior wall compared with other regions.

Bland–Altman plots illustrate an overall good
repeatability based on test–retest data and QTI analysis
(Figure 7). The test–retest difference in QTI parame-
ters (mean± 1.96 SD across subjects and ROIs) were
ΔMD = −0.01± 0.31 μm2/ms, ΔFA = −0.02± 0.08,
ΔμFA = −0.03± 0.16, ΔMKa = −0.03± 0.17,
ΔMKi = 0.04± 0.14, and ΔMKt = 0.01± 0.27.

Histograms of MD and FA for LTE (long td) and LTE
(short td) are presented in Figure 8. Both the mean MD and

mean FA were higher in the former, with mean MD = 1.61
versus 1.50 μm2/ms and mean FA = 0.37 versus 0.32,
respectively. Both parameters were significantly different
(p< 1× 10−7); however, in the case of MD, the direction
of the effect was opposite to what is expected from an
interaction between restrictions and diffusion time.

5 DISCUSSION

We report the first measurements of μFA and MK in the
human heart in vivo. We observed that μFA>FA, which
indicates the presence of intravoxel orientation disper-
sion10,20,21 and is consistent with the known transmu-
ral variation in cardiomyocyte orientation. Both μFA and
MK were lower in the myocardium than in brain white
matter, where they have been reported as 0.74 and 0.93,
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TEH et al. 159

F I G U R E 6 (Top) Example cardiac q-space trajectory imaging (cQTI) maps and (bottom) values in a middle short-axis slice in the
left-ventricular (LV) wall (N = 10). MD (in μm2/ms), FA, μFA, MKa, MKi, total mean kurtosis (MKt), and microscopic orientation coherence
(Cc) shown. Mean± SD are reported across subjects. The measurements were more consistent across the septal, anterior, and lateral walls. In
the inferior wall, higher MD and lower FA, μFA, and MKa were observed, which may be associated with susceptibility effects near the
posterior vein.

T A B L E 1 Cardiac q-space trajectory imaging parameter values in a middle short-axis slice in the left-ventricular wall (N = 10).
Mean± SD across subjects.

Parameters Septal Anterior Inferior Lateral Average

MD (μm2/ms) 1.53 ± 0.12 1.61 ± 0.22 1.71 ± 0.21 1.65 ± 0.14 1.62 ± 0.07

FA 0.38 ± 0.04 0.34 ± 0.08 0.23 ± 0.04 0.30 ± 0.02 0.31 ± 0.03

μFA 0.46 ± 0.10 0.46 ± 0.11 0.33 ± 0.06 0.46 ± 0.10 0.43 ± 0.07

MKa 0.23 ± 0.11 0.24 ± 0.12 0.11 ± 0.05 0.23 ± 0.10 0.20 ± 0.07

MKi 0.11 ± 0.04 0.16 ± 0.10 0.12 ± 0.07 0.14 ± 0.07 0.13 ± 0.03

MKt 0.33 ± 0.12 0.39 ± 0.13 0.22 ± 0.10 0.37 ± 0.15 0.33 ± 0.09

Cc 0.74 ± 0.26 0.56 ± 0.22 0.49 ± 0.15 0.46 ± 0.14 0.56 ± 0.22

Abbreviations: Cc, orientation coherence; FA, fractional anisotropy; MD, mean diffusivity; MKa, anisotropic mean kurtosis; MKi, isotropic mean kurtosis; MKt,
total mean kurtosis; μFA, microscopic fractional anisotropy.

respectively.21 This may reflect the larger cell diameter and
higher permeability of cardiomyocytes relative to axons.
The relatively low MKi reflects low intravoxel variation in
isotropic diffusivity,9 which is expected for tissue with low
microstructural heterogeneity in healthy myocardium.

As diffusion time effects have been observed in pre-
vious work in vivo,39 it is reasonable to assume that
they may be present in the QTI data as well. To min-
imize potential bias, we implemented a version of PTE
that shares the frequency content of LTE along one axis.
Time-dependent diffusion typically manifests as a reduc-
tion in MD as diffusion-encoding times become longer.39

This is because as diffusion-encoding times increase, there
is a greater likelihood of water molecules encountering
membranes or organelles that restrict diffusion. In this

study, we observed LTE with long td had a higher MD
than LTE with short td, suggesting that diffusion time was
not a dominant effect. This could be due to the neces-
sarily long diffusion-encoding waveforms in the clinical
setting for cardiac QTI, leading to smaller relative differ-
ences in encoding power of LTE with short td and long
td. Consider also human cardiomyocytes on the scale of
about 141 μm in length and 19 μm in width.60 Assum-
ing hollow cylinders with MD = 1.6 μm2/ms, we would
expect that the intermediate diffusion time (where some
water molecules feel the effects of restriction) would be
about 1.6 s and 28 ms, respectively. Based on the applied
waveforms, we expect to be measuring primarily free dif-
fusion along the cardiomyocyte long axis, and intermedi-
ate diffusion (i.e., between free and restricted diffusion)
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160 TEH et al.

F I G U R E 7 Bland–Altman plots showing agreement in cQTI between Scans 1 and 2 within ROIs. Mean difference± 1.96 SD are given
by black and red lines, respectively (N = 9). These data can serve as a benchmark for future improvement, and can be valuable when
planning future studies.

F I G U R E 8 MD and FA histograms for LTE (Long td) and LTE (Short td). Mean MD = [1.61, 1.50] μm2/ms and mean FA = [0.37, 0.32],
respectively (vertical lines). Data were pooled across subjects (N = 9) and ROIs.

along the cardiomyocyte short axis. This suggests that
time-dependent diffusion effects may be more pronounced
in the presence of even longer diffusion-encoding times.
Further investigation is required to identify the conditions
in which diffusion time effects may have a greater impact.

There is also potential for differences in MD aris-
ing from different acquisition/postprocessing methods. In
recent DTI studies, Das et al.2,61 reported average myocar-
dial MD of between 1.46 and 1.47 μm2/ms, which was 11%
to 12% lower than in our data. In cardiac DTI, MD is rou-
tinely underestimated by a degree, as diffusion kurtosis is

not accounted for as has been in this study, and this may
help put the MD results in context.

Phantoms are an invaluable tool for validation of new
methods and applications. Previous hollow fiber phan-
toms have been used to evaluate methods for assessing
time-dependent diffusion62 and μFA.63 Here, we designed
and built a novel phantom that combines hollow fibers
with pore-size distribution more closely matching car-
diomyocytes, and with a rotating mechanism for simu-
lating fiber dispersion. The results demonstrate confirma-
tion that, unlike FA, MD and μFA are insensitive to fiber
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TEH et al. 161

dispersion. Furthermore, we observed that MD increased,
and FA decreased, with mean frequency of the power spec-
trum of q(t), demonstrating clear diffusion time effects in
contrast to the in vivo data. This difference may appear due
to the longer diffusion times used at the clinical scanner (a
consequence of the relatively low gradient system perfor-
mance in human MRI systems) and may be indicative of
a higher permeability in myocardium compared with the
plastic used in the phantom.64,65 Here, we were limited by
the size of the phantom; therefore, a preclinical scanner
with high gradient performance was used. Further devel-
opment of more sophisticated phantoms, coupled with
evaluation on clinical scanners, will add further insight.

Tensor-valued encoding in the heart in vivo is challeng-
ing for several reasons. Most prominently, cardiac motion
necessitates a motion-compensated diffusion encoding;
otherwise, the irregular movement of the heart causes
signal dropout.66,67 Constraining the motion encoding
reduces the encoding efficiency and extends the required
encoding time.38,40 Coupled with a relatively short T2 com-
pared with brain, the SNR is relatively low. Simulations
of brain parenchyma suggest that there is an upward bias
and lower precision in MKa, MKi, and MKt at low SNR.48

uFA appears to be more accurate and precise at low SNR,
but a similar positive bias and lower precision are observed
when the true value of uFA is low. Further investigation
is needed to determine potential bias in the myocardium
at varying SNR. These issues were addressed by tailor-
ing acceleration-nulled PTE gradient waveforms that had
an efficient LTE subset,40 in combination with large vox-
els, denoising, and Gibbs-ringing removal. Nevertheless,
the encoding power spectra of the dephasing vector q (t)
in LTE and PTE were not matched exactly, which may
cause a bias in QTI parameters.38,62,68 Other considera-
tions include the following. First, we observed potential
bias in parameters (higher MD and lower FA, μFA, and
MK) in the inferior wall due to susceptibility artifacts near
the posterior vein. This may be ameliorated by acquiring
additional data with reversed phase encoding.69,70 Sec-
ond, the slice-selection gradients were neglected in the
experimental design and analysis but are known to con-
tribute to motion encoding.71 Third, the sample size was
small and consisted of young healthy volunteers with rel-
atively steady heart rates. Including a larger cohort of
patients would be more representative of the clinical set-
ting. Fourth, the acquisition time was relatively long due
to the extensive sampling scheme. Improvements in scan
time would be key for application of cardiac QTI in the
clinic. This may be achievable by using a parsimonious
acquisition protocol and adapted analysis.27,72–74 Fifth, as
with cardiac diffusion MRI in general, there may be a small
number of images in which the motion compensation
performs suboptimally, such as caused by severe subject

motion. This effect was mitigated by extensive sampling
of q-space, with 150 q-samples per waveform. In addition,
outlier rejection methods could be used to exclude “bad”
data, although such methods would require further refine-
ment and validation. In future work, we will refine the
sampling protocol and postprocessing for optimal spatial
resolution to achieve acquisition times that are compat-
ible with clinical research times. Fifth, there is a degree
of slice-to-slice variation that is related to the heteroge-
neous local motion properties and changing curvature of
the heart. This can, for instance, lead to motion-induced
signal loss and greater partial-volume effects near the apex.
In this study, we reported data from a single slice only. Fur-
ther work will be needed to evaluate slice-to-slice variation
and to identify strategies for its mitigation.

6 CONCLUSIONS

We have demonstrated, for the first time, the technical fea-
sibility of QTI in the human heart in vivo along with nor-
mal values and a quantification of the measurement repro-
ducibility. Despite its many challenges, the measurement
was facilitated by enabling tensor-valued diffusion encod-
ing at high b-values. We observed that μFA>FA, which
indicates the presence of intravoxel orientation dispersion
and the relatively low MKi, suggests a limited microstruc-
tural heterogeneity in healthy myocardium. Validation in a
custom hollow-fiber phantom showed that μFA was insen-
sitive to orientation dispersion, and that MD and FA were
sensitive to diffusion time effects. Furthermore, we found
no clear evidence that restrictions and diffusion time was a
confounding factor, which may be linked to higher perme-
ability in comparison to the phantom. These first in vivo
measurements of μFA, mean kurtosis, and microscopic
orientation coherence highlight the potential for improved
specificity in characterizing the myocardial microstruc-
ture, with exciting opportunities for application in the
healthy and diseased myocardium.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Mean diffusivity (MD) maps in the fiber phan-
tom. Data are shown in the central slice where fiber popu-
lations overlap, at different mean frequencies of the power
spectrum of q(t) and interblock angles. Parameter values
were reported in a central region of interest with radius of 5
voxels (red outline). MD is seen to decrease with increasing
diffusion encoding time.
Figure S2. Fractional anisotropy (FA) and microscopic
FA (μFA) maps in the fiber phantom. Data are shown in
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the central slice where fiber populations overlap, at differ-
ent mean frequencies of the power spectrum of q(t) and
interblock angles. FA maps are given in Rows 1 to 6 and
μFA in the bottom row. FA is seen to increase with increas-
ing diffusion encoding time and decrease with increas-
ing interblock angle. μFA remains relatively insensitive to
interblock angle.
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