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SASA: Super-resolution and Ambiguity-free Sparse
Array Geometry Optimization with Aperture Size

Constraints for MIMO Radar
Mingsai Huan, Junli Liang, Senior Member, IEEE, Yifan Wu, Yongkang Li, Wei Liu, Senior Member, IEEE

Abstract—To improve the performance of multiple-input-
multiple-output (MIMO) radar, various sparse arrays have been
employed. However, the angular resolution of existing non-
uniform arrays optimized by either combinatorial algorithms or
heuristic ones is limited by the Rayleigh criterion, which is strictly
related to the aperture size. Based on the angular ambiguity
function (AAF) analysis, two new models are established in this
work for directly optimizing the sidelobe level (SLL) or the
main lobe width (MLW) with the constraints of aperture size
and element spacing. The aforementioned designs result in non-
convex and nonlinear optimization problems, and solutions are
derived via the alternating direction multiplier method (ADMM).
Furthermore, considering a parametric trade-off between SLL
and MLW, a hybrid algorithm is proposed to search for the SLL-
MLW Pareto front boundary. Finally, simulations are provided
to demonstrate the high angular resolution and ambiguity-free
properties of the optimized sparse arrays.

Index Terms—MIMO radar, sparse array, angular ambiguity
function, non-convex optimization, angular resolution.

I. INTRODUCTION

M IMO radar [1] has a wide range of applications such

as autonomous driving with automotive radar [2], [3],

and assisted living [4], including monitoring of vital signs, fall

detection, gesture recognition, etc. The next-generation MIMO

radar sensors are expected to have a finer imaging capability

so that more details can be acquired from the point cloud,

which is beneficial for subsequent vehicle detection and human

motion recognition. Both automotive radar and indoor radar

demand high resolution, high dynamic range, low latency, low

hardware cost, and small size.

To improve the performance of direction of arrival (DoA)

estimation, a large number of super-resolution DoA estimation

methods have been proposed such as MUSIC [5] and IAA [6],

but it is difficult to implement some of them in practice due to

their high computational complexity. Given its low complexity

and high resolution, non-uniform arrays for MIMO radar have

received a significant amount of attention recently. They can be
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divided into two categories: thinned arrays and sparse arrays

[7].

Thinned arrays, which are usually optimized by combi-

natorial optimization algorithms, are formed by selecting a

certain number of antenna units from a uniform array, and

their element spacings are usually integer multiples of half

wavelength. For example, the Texas Instruments AWR1243P

imaging radar [8] employs a uniform array in the horizontal

direction and a minimum redundant array (MRA) [9] in

the elevation direction. The MRA enlarges the aperture size

and improves the angular resolution, but it causes angular

ambiguity and requires multiple snapshots or additional array

elements to estimate the covariance matrix. Considering that

only a few snapshots or even a single snapshot is available for

4D imaging radar after range-Doppler two-dimensional fast

Fourier transform (2D-FFT), we could use spatial smoothing

to generate multiple snapshots, but at the cost of reducing the

number of effective array elements and signal-to-noise ratio

(SNR) [2], [10]. Therefore, It is still difficult for thinned arrays

to meet the high-resolution, ambiguity-free, low-latency, and

low-cost requirements for radar products at the same time.

On the other hand, sparse arrays have arbitrarily distributed

elements on the antenna aperture. This means that the array

elements are not constrained to lay on a regular grid, so the

degrees of freedom (DoFs) for optimizing the array geometry

become greater. The advantage is that it can reduce the SLL of

the pattern, and further improve the performance of DoA esti-

mation. In 2009, nonuniform sparse antenna arrays and MIMO

techniques are employed to improve the angular resolution of

the proposed frequency-modulated continuous-wave (FMCW)

radar system [11]. Because there is no analytical solution to

determine the antenna locations that achieve a minimum SLL

for a given number of antennas, the element positions and

weights are optimized via brute force, stepwise brute force,

and particle swarm optimization (PSO) [12].

As a very effective tool for ambiguity characterization of

arbitrary antenna arrays, the ambiguity I function [13] becomes

one of the focuses in antennas and propagation field, such as

[14]–[18]. To distinguish it from the range-Doppler ambiguity

function, it is called angular ambiguity function (AAF) in this

paper. In [14] and [15], to achieve a better DoA accuracy

without angular ambiguity, the SLL of AAF and the Cramér-

Rao bound (CRB) are used as metrics to optimize the array

geometry. Considering an observation model with a random

target phase and known SNR, a constrained optimal design

method using the Weiss-Weinstein bound is proposed in [19],



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 2

while a genetic algorithm (GA) [16], [17] is used to search

for the optimal antenna placement by maximizing the area of

the ambiguity-free region defined by AAF. Furthermore, the

latter method is extended to the 2-D MIMO array in [18].

Some other methods are also proposed to jointly design the

positions and weights of the array elements [20]–[23]. We

notice that most authors still employ GA, PSO, and other

heuristic algorithms to design a non-uniform array with great

effort. Under the constraints of array element spacing, heuristic

algorithms have to filter the solutions at each iteration, which

leads to decrease in both accuracy and speed. Moreover, it is

worth noting that the SLL and MLW are usually trade-offs to

be made in the optimization, as illustrated by studies in [22],

[24]. Their objective functions often contain multiple metrics

weighted together, like αSLL + βMLW, essentially turning

the constrained optimization problem into an unconstrained

one, which can then be readily solved by heuristic algorithms.

Obviously, it involves a lot of efforts to adjust the weighting

coefficients α and β to get a more satisfactory solution. Since

the weighting method cannot precisely control one of the key

metrics, i.e. SLL or MLW, the Pareto optimal solution cannot

be found in a single optimization process [24].
Unlike the common heuristic algorithms, our previous

work [25]–[27] has demonstrated the distinct decomposi-

tion–coordination procedure and superior convergence prop-

erty of ADMM [28], and utilized the ADMM to derive

a optimal solution with a minimum SLL for beampattern

synthesis or a minimum CRLB for targets localization. The

main issue in this paper when dealing with the design of

sparse array geometry is that the optimization of the element

positions turns out to be a strongly nonlinear problem since the

variables are present in exponential terms [7]. Moreover, in the

numerical algorithm of previous studies, the MLW is usually

controlled indirectly by setting the sidelobe region [29], and

it has never been placed in the objective function due to the

complexity of non-convex optimization problems. However,

according to [30], a small MLW may be more important

than a low SLL for the performance of DOA estimation.

From the theory of antennas and array signal processing,

it is well known that the angular resolution properties are

directly related to the array aperture size according to the

Rayleigh criterion [31]. Nevertheless, for sparse arrays with

equal aperture size, the MLW may vary due to differences

in the distribution of antenna positions [32], which results

in differences in the angular resolution. Therefore, numerical

algorithms for MLW reduction with multiple constraints will

be developed in this paper.
This paper focuses on super-resolution and ambiguity-free

sparse array optimization with aperture size and element spac-

ing constraints for MIMO radar (SASA), with corresponding

solutions derived. The main contributions of this paper are as

follows:

1) To avoid angular ambiguity and improve the dynamic

range [2], a model for optimizing the SLL of the MIMO

array AAF under the constraints of aperture size and

minimum element spacing is formulated. Unlike existing

heuristic algorithms, we utilize the ADMM [28] to derive

a solution to such a non-convex and nonlinear problem

by dividing the difficult problem into several solvable

subproblems respectively with fewer variables.

2) To improve the angular resolution with a constant dy-

namic range, this paper develops a novel model for

directly optimizing the MLW of the MIMO array AAF

under the constraints of SLL, aperture size and element

spacing. Then, the non-convex and nonlinear problem

is solved iteratively based on the Lagrange multiplier

method.

3) Inspired by a two-step method for getting the fixed value

of the SLL and minimum desired first null beam width

(FNBW) [33], we try to combine the global optimization

capability of heuristic algorithms with the accuracy of

numerical optimization algorithms and make a parametric

trade-off between the SLL and MLW. As a result, a hybrid

algorithm with modified real genetic algorithm (MGA)

[34] and non-convex optimization algorithms is proposed

without setting too many parameters for the optimization

problem, with most of the results located on the Pareto

front boundary. Furthermore, it is shown that the optimal

sparse array improves the performance of DoA estima-

tion. To our best knowledge, this is the first time to show

that the angular resolution of sparse arrays with equal

aperture size may exceed that of uniform arrays when

common DoA estimation methods are employed.

The rest of this paper is organized as follows. Analysis

of the angular ambiguity function, expanded beam pattern,

antenna position constraints and problem definition are intro-

duced in Section II. The algorithms are developed in Section

III. In Section IV, simulations are provided to evaluate the

performance of the developed algorithms. Finally, conclusions

are drawn in Section V.

Notation: Vectors and matrices are denoted by boldface

lowercase and uppercase letters, respectively. ‖ · ‖ denotes the

Frobenius norm, while (·)T and (·)−1 are the transpose and

matrix inverse operators, respectively. 0m×n and In represent

the m×n zero matrix and n×n identity matrix, respectively.

ℜ{} and ℑ{} represent the real and imaginary parts with

j =
√
−1. | · | and ∠{·} are the magnitude and phase

of a complex-valued scalar, respectively. ⊙ represents the

Hadamard product. ⊗ represents the Kronecker product. �
is a type of generalized inequalities, and x � 0 means that

each element in the vector is greater than 0.

II. PROBLEM DEFINITION

A. Angular Ambiguity Function (AAF)

Consider a collocated MIMO radar system with M transmit-

ting antennas and N receiving antennas. Let t = [t1, . . . , tM ]T

and r = [r1, . . . , rN ]T describe the positions of the M trans-

mitters and N receivers, respectively. They are the electrical

lengths with respect to the free space wavelength λ0. Under

the narrow-band and far-field condition, the incident signal can

be considered as a plane wave. Then, to take into account the

radiation property of the antennas, the transmitter and receiver
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steering vectors associated with the off-boresight angle θ can

be multiplied by the complex antenna radiation pattern [16]

at(θ) = gt(θ)⊙ e−j2πt sin θ,

ar(θ) = gr(θ)⊙ e−j2πr sin θ. (1)

where gt(θ) and gr(θ) are the complex vectors of the radiation

patterns for a certain polarization of the transmitting and

receiving antenna elements in the azimuth plane [35]

gt(θ) = [gt,1(θ) gt,2(θ) . . . gt,M (θ)]T ,

gr(θ) = [gr,1(θ) gr,2(θ) . . . gr,N (θ)]T . (2)

The radiation patterns may differ from element to element

because of the mutual coupling effects. Therefore, the average

element pattern ḡ(θ) [36], which includes the information

on the mutual coupling environment, can be exploited to

approximate each element pattern in the array with high

accuracy. Then, (1) can be rewritten as

at(θ) = ḡ(θ)e−j2πt sin θ,

ar(θ) = ḡ(θ)e−j2πr sin θ. (3)

Multiple virtual channels are created in MIMO radar by trans-

mitting orthogonal waveforms [1]. The virtual array steering

vector can be expressed as the Kronecker product of the

transmitting and receiving steering vectors, i.e.,

a(θ) = at(θ)⊗ ar(θ) = ḡ2(θ)ej2πBd sin θ, (4)

where

B =
[

IM×M ⊗ 1N×1 1M×1 ⊗ IN×N

]

. (5)

The combined element position vector d is defined as

d = [tT , rT ]T . (6)

The ability of the array to discriminate between targets from

two different directions is measured by the cosine similarity

of the steering vectors corresponding to the two directions,

which is called angular ambiguity function (AAF) [13], [16],

denoted by

AAF (θi, θj) =
a (θj)

H
a (θi)

‖a (θj)‖ ‖a (θi)‖

=
1

MN

M
∑

m=1

N
∑

n=1

ej2π(tm+rn)(sin θi−sin θj), (7)

The AAF after simplification eliminates the effect of element

patterns. Although it has almost the same mathematical expres-

sion as the array factor of equal-amplitude (also referred to as

isophoric like [37]) aperiodic arrays, which can be calculated

as

ArrayFactor (θ) =
1

Ñ

Ñ
∑

ñ=1

ej2πxñ(sin θ−sin θ0), (8)

the meanings differs between them. (8) expresses the far-

field strength in θ-direction when the beam is focused in

θ0-direction for phased array systems, while the AAF plays

a main role in the overall performance of direction finding

systems. In (7), θj indicates a real DoA and θi indicates the

estimated one, or θj can be the direction of the desired signal

and θi the direction of the interfering signal. The angular

regions of interest are ΘJ and ΘI , respectively. The area

formed by ΘJ and ΘI is called the field-of-view (FoV), as

shown in the black box in Fig. 1(a). It is worth mentioning

that ΘJ and ΘI are not necessarily the same. According to

[18], the gain of an antenna does not decay sharply out of the

angular field-of-view. And some factors, such as the multipath

effect, can cause expansion of the interfering DoAs. In this

paper, the range of real DoAs is considered to be larger than

or equal to the range of estimated DoAs, i.e. ΘJ ⊆ ΘI . ΘI

can be determined according to the radiation pattern of antenna

elements and the multipath effect, and ΘJ can be determined

according to the application scenario and the unambiguous

requirement.

The |AAF | takes values from 0 to 1. When

|AAF (θi, θj)| = 1, the two directions θi and θj are

completely indistinguishable, while the array can completely

distinguish the two directions when |AAF (θi, θj)| = 0. The

amplitude of the AAF is represented by a color map, and

then the angular resolution and ambiguity-free region of the

array can be seen clearly, as shown in Fig. 1(a).

The |AAF | image is symmetric with respect to the oblique

ridged main lobe, and takes its maximum value on it, i.e.

AAF (θi, θi) = 1. As the distance between the two angles θi
and θj near the main lobe increases, the correlation between

the two steering vectors decreases gradually, and the ability

of the array to distinguish targets in these two directions

is also enhanced. Therefore, the main lobe width (MLW),

such as -3dB MLW, can be used to evaluate the angular

resolution of nonuniform arrays with equal aperture size. The

region outside the main lobe is defined as the sidelobe region.

The peak sidelobe level (SLL) in the FoV region determines

whether angular ambiguity will appear in DoA estimations or

not. In addition, SLL can also be used to evaluate the anti-

interference ability of the array, the so-called dynamic range

[2], to suppress clutter when estimating DoAs.

Fig. 1(a) also shows that the resolution of the array is

related to the DoA. When the signal comes from the boresight

direction θ = 0◦, the MLW is the narrowest, indicating that the

highest angular resolution is achieved. As the DoA gradually

deviates from the boresight direction, the MLW becomes

wider, indicating that the angular resolution decreases. In

(7), the nonlinearity of the sine function sin θ results in this

characteristic. To mitigate the impact of nonlinearity, we define

the auxiliary variables

ui = sin θi, uj = sin θj . (9)

Then, the ambiguity function can be rewritten as the function

of uj and ui,

AAF (ui, uj) =
1

MN

M
∑

m=1

N
∑

n=1

ej2π(tm+rn)(ui−uj). (10)

The corresponding FoV interval is represented by ΩJ and

ΩI . A new AAF color map is shown in Fig. 1(b). It can be

seen that the MLW is fixed, which means that the angular
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resolution will not change with different DoAs measured by

ui and uj . If the FoV of radar is set to ΘJ = [−θjmax, θjmax]
and ΘI = [−θimax, θimax], or ΩJ = [−ujmax, ujmax]
and ΩI = [−uimax, uimax], where ujmax = sin θjmax and

uimax = sin θimax, the dynamic range and resolution of the

array can be evaluated with the SLL and MLW of the AAF

in the region of ui ∈ ΩI and uj ∈ ΩJ .
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Fig. 1. The AAF of [17]; ΘJ , ΘI , ΩJ and ΩI are the regions of interest
which form the FoV.

B. Expanded Beam Pattern (EBP)

The AAF pattern is evaluated using two variables ui and

uj , which will increase computational complexity during op-

timization. Nevertheless, according to its symmetry property

in Fig. 1(b), one can define an expanded beam pattern (EBP)

as

f (u) =
1

MN

M
∑

m=1

N
∑

n=1

ej2π(tm+rn)u, (11)

where

u = ui − uj ∈ [−umax, umax],

umax = ujmax + uimax (12)

Then (11) becomes a univariate function which contains all

the information of AAF in the FoV.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-10

-8

-6

-4

-2

E
B

P
 (

d
B

)

sidelobe

region

SLL

monotonically

decreasing

mainlobe

region

Fig. 2. The EBP |f (u) | of [17]; The SLL, ub, and umax are calculated by
numerical methods, and they satisfy f(ub) = f(umax) =SLL, f ′(ub) < 0,
f ′(umax) > 0.

Setting an appropriate variable ub = sin θb, which repre-

sents the sidelobe starting point, one can define [0, ub] as a

monotonically decreasing main lobe region as shown in Fig.

2. Then the normalized angular resolution can be assessed by

measuring half of the -3dB main lobe width (HMLW) of the

EBP, which depends only on the array geometry. Furthermore,

The sidelobe region is discretized into S uniform sampling

points on the interval [ub, umax], i.e.,

ΩS =
{

us

∣

∣

∣
us = ub +

s− 1

S − 1
(umax − ub), s = 1, · · · , S

}

.

(13)

C. Element Position Constraints

In practice, the antenna arrays are limited by aperture size.

In order to mitigate the mutual coupling effect, a minimum

array element spacing also needs to be considered. In terms

of element position constraints of multistatic MIMO radar,

we consider two common cases: In one case, the transmitting

antenna and the receiving antenna are designed on the same

dielectric substrate [16], and in another case, the transmitting

antenna and the receiving antenna are designed on multiple

dielectric substrates [8]. Since the EBP depends only on the

relative position of the array elements rather than the absolute

position [15], to reduce computational complexity, the position

of the first transmitter or the first virtual element can be fixed in

the algorithm. For two different cases, two types of constraints

are given as follows:

1) Case 1: The transmitting and receiving antennas are on

the same dielectric substrate. This means that their verti-

cal coordinates are equal and their horizontal coordinates

are not. In this case, the position of the first transmitting

element is fixed, i.e.,

t1 = 0,

d = [0, t2, . . . , tM , r1, . . . , rN ]T . (14)

One can assume that all the receiving elements are

located on the right side of the transmitting elements

[16], that is, rn > tm. The constraints limit the mini-

mum spacing between transmitting antennas ∆tm, the

minimum spacing between receiving antennas ∆rn, the

minimum spacing between transmitting antennas and

receiving antennas ∆dtr, and the aperture size D. They

can be written as

s.t. tm − tm−1 ≥ ∆tm, m = 2, . . . ,M,

rn − rn−1 ≥ ∆rn, n = 2, . . . , N,

r1 − tM ≥ ∆dtr,

rN ≤ D. (15)

If we define

C =



















1 0 · · · · · · 0
−1 1 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

0 · · · 0 −1 1
0 · · · · · · 0 −1



















(M+N+1)×(M+N)

dc = [0,∆t2, · · · ,∆tM ,∆dtr,∆r2, · · · ,∆rN ,−D]T ,
(16)
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(15) can be written in a matrix-vector form:

Cd− dc � 0. (17)

2) Case 2: The transmitting antennas and the receiving

antennas are distributed on two dielectric substrates,

where their vertical coordinates are not equal and their

horizontal coordinates can be equal. In this case, the

positions of the first transmitting element and the first

receiving element are fixed, i.e.,

t1 = r1 = 0

d = [0, t2, . . . , tM , 0, r2, . . . , rN ]T . (18)

The position constraints limit ∆tm, ∆rn, the transmit-

ting array aperture size Dt, and the receiving array

aperture size Dr, and they can be written as

s.t. tm − tm−1 ≥ ∆tm, m = 2, . . . ,M,

rn − rn−1 ≥ ∆rn, n = 2, . . . , N,

tM ≤ Dt,

rN ≤ Dr. (19)

Define

C̄ =

[

C(M+1)×M 0
0 C(N+1)×N

]

,

d̄c = [0,∆t2, · · · ,∆tM ,−Dt, 0,∆r2, · · · ,∆rN ,−Dr]
T ,

(20)

(19) can be written in a matrix-vector form:

C̄d− d̄c � 0. (21)

Besides, for monostatic MIMO radar cases [38], other con-

straints can be added when M = N such as

tm = rm +∆dm or |tm − rm| ≤ ∆dm (22)

Due to space limitations, the monostatic case is not discussed

in detail in this article.

D. Problem 1 Definition: SLL Optimization

We take the Case 1 constraint (17) as an example to establish

the mathematical model for SLL optimization.

In the optimization of antenna position, d (e.g. tm and rn)

is regarded as a variable of the EBP:

f(d, u) =
1

MN

M
∑

m=1

N
∑

n=1

ej2π(tm+rn)u. (23)

On the premise of keeping the angular resolution basically

unchanged, it is desirable that there is no ambiguity in the FoV

and that the dynamic range is as high as possible. The antenna

positions need to be optimized so that the SLL of the given

sidelobe region in the FoV can be as small as possible. We

formulate the following minimax model with element position

constraints:

min
d

max
us∈Ωs

|f(d, us)|

s.t. Cd− dc � 0. (24)

E. Problem 2 Definition: MLW Optimization

The angular resolution is expected to be as high as possible

without ambiguity in the FoV. Thus, we need to optimize the

antenna positions so that the main lobe can be as narrow as

possible while the SLL does not increase.

To describe the normalized angular resolution, we define

an inverse function u3dB = |f |−1 (-3dB) as the -3dB HMLW

when |f(d, u)| decreases to -3dB in the main lobe region.

Then, the formulation for optimizing the HMLW can be

established as follows:

min
d

u3dB(d)

s.t. |fs(d)| ≤ ǫ, s = 1, · · · , S
Cd− dc � 0 (25)

where ǫ is determined by the given SLL. Since u3dB(d) is the

0 0.1
-6

-5

-4

-3

-2

-1

0

E
B

P
 (

d
B

)

Algorithm 2

Initialized

Fig. 3. Part of the EBP optimized via Algorithm 2.

inverse function of |f(d, u)|, its analytical expression cannot

be obtained. To simplify the model, assume that the initial 3dB

point is u3dB(d0), which will be optimized via Algorithm 2

to be u3dB(dT ), as shown in Fig. 3. Obviously, the following

inequality holds:

0 < u3dB(dT ) ≤ u3dB(d0) ≤ ub. (26)

By choosing an appropriate ub, it is reasonable to assume that

the optimized pattern |f(dT , u)| is monotonically decreasing

on the interval of [0, ub]. Therefore, another inequality holds:

|f(dT , u3dB(d0))|
< |f(dT , u3dB(dT ))| = |f(d0, u3dB(d0))| = −3dB. (27)

If the -3dB HMLW becomes narrower, the function value

|f(d, u3dB(d0))| will also decrease after optimization. (26)-

(27) prove that the optimization problem (25) with the objec-

tive function of u3dB(d) can be equivalently transformed into

an optimization problem with the objective function of:

min
d
|f(d, uc)|2

s.t. |fs(d)|2 ≤ ǫ2, s = 1, · · · , S
Cd− dc � 0, (28)
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where uc ∈ (0, ub) can be any point on the monotonically

decreasing interval, such as u3dB(d0) or u5dB(d0). It should

be noted that in addition to the objective function of (28),

there may be other types of objective functions used to

indirectly optimize the HMLW. For example,
∂|f |2

∂u
(d, uc)

represents the slope of the pattern at uc. If the optimized

slope decreases, the HMLW will also decrease. For another

example,
∫ ub

0
|f(d, u)|du reflects the area of the main lobe

region. If the area is reduced after optimization, the HMLW

will also be reduced. Research on other objective functions

will be carried out in our future work.

III. ALGORITHMS

In this section, we first propose two algorithms for solving

Problem 1 and Problem 2, respectively. Then, a hybrid algo-

rithm is developed for a trade-off between SLL and MLW.

A. Algorithm 1: SLL Optimization

To simplify the minimax objective function in (24), the

auxiliary variable ε is defined as the upper bound of SLL, and

f(d, us) is abbreviated to fs(d). Then, (24) can be rewritten

as

min
d,ε

γε

s.t. |fs(d)| ≤ ε, s = 1, . . . , S

Cd− dc � 0 (29)

where γ is the penalty factor of the objective function. When

the order of magnitude difference between the objective func-

tion and the constraints is too large, the penalty factor is used

to balance it. To separate the variables d and ε, the auxiliary

variables ys and the extra equality constraints are introduced,

and (29) can be rewritten as

min
d,ε,ys

γε

s.t. ys = fs(d), s = 1, . . . , S

|ys| ≤ ε, s = 1, . . . , S

Cd− dc � 0, (30)

where d has been separated from the complex inequality

constraints in (29). Our previous work [25]–[27] has demon-

strated the distinct decomposition–coordination procedure and

superior convergence property of ADMM. Therefore, we apply

the ADMM to solve (30). According to [25], the augmented

Lagrangian function with complex valued variables is con-

structed by

L(ε,y,d,λ)

= γε+

S
∑

s=1

(

ℜ[λ∗
s(ys − fs(d))] +

ρ

2
|ys − fs(d)|2

)

= γε+
ρ

2

S
∑

s=1

(

∣

∣ys − f̄s(d)
∣

∣

2 −
∣

∣

∣

∣

λs

ρ

∣

∣

∣

∣

2
)

, (31)

where λs is a dual variable and ρ > 0 is a user-defined step

size. Define f̄s(d) = fs(d) − λs

ρ
, y = [y1, · · · , yS ]T , λ =

[λ1, · · · , λS ]
T , and f(d) = [f1(d), · · · , fS(d)]T . Based on

ADMM [28], ε,d,y and λ are determined by the following

steps:

Step 1: {ε(t+1),y(t+1)} := argmin
ε,y
L(ε,y,d(t),λ(t))

s.t. |ys| ≤ ε, s = 1, . . . , S, (32)

Step 2: d(t+1) := argmin
d
L(ε(t+1),y(t+1),d,λ(t))

s.t. Cd− dc � 0, (33)

Step 3: λ(t+1) := λ(t) + ρ
(

y(t+1) − f(d(t+1))
)

, (34)

where t represents the number of iterations. Obviously, the

complex optimization problem (30) has been divided into

several simple subproblems by the above derivations (32)-

(34). Among them, the subproblem (32) for updating ε and

y and the subproblem (33) for updating d are only subject to

inequality constraints, while (34) is the update rule for the dual

variable λ. Based on the aforementioned process, Algorithm

1 is described as follows, with details given in Appendix A.

Algorithm 1 SLL-Based Array Optimization Method

Input: initialized antenna positions d, position constraints

dc, FoV umax, sidelobe starting point ub, step size ρ, La-

grangian multiplier λ, SLL upper bound εU , penalty factor

γ, maximum number of iterations T , and stop tolerance η.

while t ≤ T and max {α, β} > η do

ε(t+1) and y(t+1) are determined by (45)-(51);

d(t+1) is determined by (52) via sequential quadratic

programming (SQP);

λ(t+1) is determined by (34).

end while

Output: optimal antenna positions d and optimal SLL ε.

B. Algorithm 2: MLW Optimization

To simplify the inequality constraints in (28), the auxiliary

variable ys and the auxiliary equality constraints are intro-

duced. Abbreviating f(d, uc) as fc(d), (28) can be rewritten

as

min
d,y

γ|fc(d)|2

s.t. |fs(d)|2 − ǫ2 + y2s = 0, s = 1, · · · , S
Cd− dc � 0, (35)

where γ is the penalty factor of the objective function.

When the order of magnitude difference between the objective

function and the constraints is too large, the penalty factor

is used to balance it. The optimization problem (35) can be

solved based on the Lagrange multiplier method [39]. First,

the augmented Lagrangian function is constructed as follows:

L(y,d,µ)

= γ|fc(d)|2 +
S
∑

s=1

(

−µs[f̃s(d) + y2s ] +
ρ

2
[f̃s(d) + y2s ]

2
)

, (36)
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where µs is a dual variable, and ρ > 0 is a user-defined step

size. Define y = [y1, · · · , yS ]T ,µ = [µ1, · · · , µS ]
T , f̃s(d) =

|fs(d)|2 − ǫ2, and f̃(d) = [f̃1(d), · · · , f̃S(d)]T . In order to

eliminate ys, by ∇yL(y,d,µ) = 0, we have

ys[ρy
2
s − (µs − ρf̃s(d))] = 0, s = 1, · · · , S. (37)

As a result, ys can be expressed as a function of d.

y2s =

{

1
ρ
[µs − ρf̃s(d)] if µs − ρf̃s(d) > 0

0 otherwise

for s = 1, · · · , S. (38)

Substitute it into (36) to eliminate y, and then we have

L(d,µ) = min
y
L(y,d,µ)

=γ|fc(d)|2 +
S
∑

s=1

1

2ρ
[(min{0, µs − ρf̃s(d)})2 − µ2

s]. (39)

By substituting (38) into the multiplier update rule µ
(t+1)
s =

µ
(t)
s − ρ(f̃s(d) + y2s), we obtain

µ(t+1)
s =

{

0 if µ
(t)
s − ρf̃s(d) > 0

µ
(t)
s − ρf̃s(d) otherwise

for s = 1, · · · , S. (40)

Similarly, the stopping criterion can be obtained by substitut-

ing (38) into |f̃s(d) + y2s | ≤ η:

|max{f̃s(d),
µ
(t)
s

ρ
}| ≤ η, s = 1, · · · , S. (41)

Based on the Lagrange multiplier method, the variables d

and µ are determined by the following update rules:

Step 1:

d(t+1) := argmin
d
L(d,µ(t))

s.t. Cd− dc � 0 (42)

To determine d(t+1), the subproblem (42) is derived with given

µ(t). The constant terms in (39) can be ignored, and we have

min
d

γ|fc(d)|2 +
1

2ρ

S
∑

s=1

(min{0, µs − ρf̃s(d)})2

⇒min
d

F2(d)

s.t. Cd− dc � 0 (43)

Because the constraints are linear inequalities, sequential

quadratic programming (SQP) [39] can be used to solve

(43) with fast convergence, high computational efficiency, and

strong boundary search ability. The derivation of ∇dF2 is

given in Appendix B.

Next, with given d(t+1), the Lagrangian multiplier µ is

updated by

Step 2:

µ(t+1)
s := min{0, µ(t)

s − ρf̃s(d)}, s = 1, · · · , S (44)

Repeat steps 1-2 until t > T (T is the maximum number

of iterations) or the stop criterion (41) is met.

Algorithm 2 MLW-Based Array Optimization Method

Input: initialized antenna positions d, position constraints

dc, FoV umax, sidelobe starting point ub, a point uc on the

monotonically decreasing interval, step size ρ, Lagrangian

multiplier µ, SLL ǫ, penalty factor γ, maximum number of

iterations T , and stop tolerance η.

while (41) does not hold and t ≤ T do

d(t+1) is determined by (43) via SQP;

µ(t+1) is determined by (44).

end while

Output: optimal antenna positions d, optimized SLL ε,

optimized -3dB point uc and sidelobe starting point ub.

Based on the aforementioned discussions, the method is

summarized as follows:

Algorithm 1 and Algorithm 2 apply to different scenar-

ios. The first is used in the scenario where the power and

orientation information of interference are unclear, such as

in the mine scene of autonomous driving. In this case, the

ambiguity function needs to have a lower SLL to suppress

potential strong interference. Algorithm 2 is more suitable for

static scenarios, such as indoor radar, where the information

of interference is usually known. In order to have a higher

angular resolution, a narrower MLW becomes more attractive.

Generally speaking, there is a parametric trade-off between

MLW and SLL [22], and we expect most of the results to lie

on the SLL-MLW Pareto front boundary [24], which is the

state at which resources in a given system are optimized in

a way that one dimension cannot improve without the second

worsening [40]. Moreover, Algorithm 1 and Algorithm 2 have

difficulties in parameter selection. If the set sidelobe region in

Algorithm 1 is too large, that is, ub is too small, the optimized

SLL tends to be very high; If the SLL ǫ set in Algorithm 2

is too small, the optimization problem (28) may be infeasible.

Therefore, it is necessary to develop an algorithm that does

not require too much parameter tuning.

[34] proposes a modified real genetic algorithm (MGA)

for sparse linear array synthesis with multiple constraints.

Similarly, MGA can also be used to optimize the MIMO array

geometry described in this paper. We propose a three-step

hybrid algorithm to solve the SLL and MLW optimization

problem without a pre-given mask [41], and the specific steps

are shown in Algorithm 3.

Initial values of variables often have a great influence on the

results of non-convex and nonlinear optimization problems.

Considering the low efficiency of the commonly used random

initialization, we first use MGA to obtain some good initial

solutions and then calculate the exact solution iteratively based

on Algorithm 1 and Algorithm 2. This hybrid algorithm

benefits from the global optimization capability of heuristic

algorithms and the accuracy of numerical optimization algo-

rithms.

IV. SIMULATION RESULTS

To demonstrate the performance of the proposed methods,

simulations are performed to evaluate the properties of the

optimized sparse arrays.
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Algorithm 3 Hybrid Algorithm for Pareto Optimality

Input: number of transmitting antennas M and receiving an-

tennas N , position constraints dc, FoV umax, step size ρ1
for Algorithm 1, ρ2 for Algorithm 2, Lagrangian multiplier

λ for Algorithm 1, µ for Algorithm 2, maximum number

of iterations T , stop tolerance η, population size, crossover

rate, mutation rate, and maximum generations of MGA.

1: Step 1: According to MGA [34], the initialized antenna

positions d are synthesized to achieve a minimum SLL ε.

2: while ε(i) ≤ ε(i−1) and u
(i)
b ≤ u

(i−1)
b and u

(i)
c ≤ u

(i−1)
c

do

3: The dichotomy method is used to search for the sidelobe

starting point ub and the -3dB point uc on the monotone

decreasing interval.

4: Step 2: εU ← ε, optimize d via Algorithm 1, and

update the optimized SLL ε.

5: Step 3: ǫ← ε, optimize d via Algorithm 2, and update

the optimized SLL ε.

6: i = i+ 1.

7: end while

8: The dichotomy method is used to search for the sidelobe

starting point ub and the -3dB point uc on the monotone

decreasing interval. The variables ε(i), u
(i)
b , u

(i)
c are saved.

Output: optimal antenna positions d, optimized SLL ε,

optimized -3dB point uc and sidelobe starting point ub.

A. Numerical simulation 1 with 2T3R configuration

In the case of fewer antennas, to reduce the cost, the trans-

mitting and receiving antennas are usually placed on the same

dielectric substrate. [16] and [17] have used GA to optimize

positions of MIMO array elements. Under the constraints of

a certain SLL, aperture size and element spacing, they try

to maximize the ambiguity-free region, which is also defined

as umax in (12). Due to the different objective functions of

Algorithm 1 (A1), Algorithm 2 (A2) and GA [17], it is difficult

for a fair comparison. Moreover, when the number of antennas

is very small, e.g., 2T3R and 4T4R configurations, there are

only a few variables with so many constraints, resulting in

a very low degree of freedom for optimization, so that the

results of most algorithms can approach their respective pareto

optimality. Therefore, we can only observe small differences

in the overall performance of each algorithm, so as to see

which parameter it sacrifices at the expense of improving its

objective function.

The parameters in this experiment are consistent with

[16]. The aperture size and minimum element spacing are

D = 14.13 and ∆tm = ∆rn = ∆dtr = 1.17. As shown

in Fig. 2, the initialized parameters of A1 and A2: SLL, ub,

umax and uc can be calculated by numerical methods from

the results in [16], where umax is also consistent with the

conventional MIMO array with 0.8 wavelength virtual element

spacing (0.8 uniform). The maximum number of iterations for

both algorithms is set to T = 1000, and the stop residuals are

η = 10−6.

We use the MGA to generate 1000 initialized antenna

positions, and then use A1 and A2 to optimize each solution

TABLE I
SIMULATION 1: 2T3R RESULTS

Array Antenna Positions d SLL HMLW umax

A1 [0, 2.46, 4.80, 6.61, 8.06]T -7.02dB 0.071 1.136

A2 [0, 3.42, 4.80, 7.41, 8.93]T -6.35dB 0.053 1.118

GA [16] [0, 2.54, 4.80, 6.68, 8.12]T -6.48dB 0.069 1.118

0.8 uniform [0, 2.4, 4.8, 5.6, 6.4]T -12.43dB 0.093 1.118

obtained by MGA. Finally, we select the optimal solution

minimizing the objective function. The antenna positions of

the four arrays are shown in Fig. 4. The EBPs synthesized

by the four arrays are shown in Fig. 5. Table I gives the

antenna positions, SLLs, -3dB HMLW and FoV umax of the

four arrays. Compared with the pattern synthesized by GA

[16], results obtained by the proposed A1 and A2 have their

respective properties.

A1 achieves a lower SLL, a larger umax, and a smaller

aperture size with a small sacrifice in HMLW. By comparing

the antenna position difference between A1 and GA, it can be

seen that A1 actually provides a fine-tuning of the result of

GA. If we follow the criterion of [16], i.e., without considering

HMLW, our proposed method has a higher accuracy.

A2 achieves a much narrower HMLW at the cost of aperture

size and SLL. Due to the strong correlation between the beam

width and the second moment about the mean of the array

element positions [32], Algorithm 2 utilizes a larger available

aperture, but the result still satisfies the pre-set maximum

aperture constraint. According to [30], a small MLW is more

important for DOA estimation than a low SLL and hence the

sacrifice of A2 is justifiable.

0 2 4 6 8 10 12

x position in  units

A1 T

A1 R

A1 V

A2 T

A2 R

A2 V

GA T

GA R

GA V

0.8 uniform T

0.8 uniform R

0.8 uniform V

Fig. 4. Simulation 1: 2T3R antenna positions of Algorithm 1 (A1), Algorithm
2 (A2), GA [16], and conventional MIMO array with 0.8 wavelength virtual
element spacing (0.8 uniform), where T, R, and V denote transmitter, receiver,
and virtual array element, respectively.

B. Full wave simulation with the 2T3R result of A2

The numerical 2T3R result of A2 is implemented in a

full-wave solver (ANSYS HFSS). For this purpose, the mi-

crostrip patch antenna array is designed on a substrate (Rogers
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0.8 uniform
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Fig. 5. Simulation 1: EBPs |f(u)| of 2T3R arrays.

RO3003) with nominal permittivity εr = 3 as shown in Fig. 6.

Each MIMO element employs an eight-element standing-wave

series-fed antenna array [42] with Dolph–Chebyshev current

distribution, which is matched in the range of 77-79 GHz.

The mutual coupling between their elements can be ac-

counted for by considering the radiation pattern of each

antenna element as mentioned in (2). These patterns obtained

by HFSS simulations deviate from the average element pattern

assumed in (3) for the numerical examples. To include the

effects of mutual coupling, the AAF calculated by the radiation

patterns of all the elements obtained by the HFSS simulations

are shown in Fig. 7(b). For comparison, the numerical result

is presented in Fig. 7(a). Obviously, the two AAF images

are almost the same, which indicates that the numerical AAF

derived by average element pattern takes into account the

effect of mutual coupling and thus can approximate the real

AAF very well.

Fig. 6. Full wave simulation: The model of 2T3R MIMO antennas.

C. Numerical simulation 2 with 4T4R configuration

In the case of the 4T4R configuration, the transmitting an-

tennas and the receiving antennas are considered to be placed

on two dielectric substrates. Recently, [43] proposed a hybrid

approach for SLL and MLW reduction to numerically deter-

mine an optimal 4T4R MIMO array considering simulated

annealing and particle swarm optimization (SA-PSO). In this

experiment, we evaluate the performance of Algorithm 3 (A3)
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(a) Numerical result
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(b) Full-wave result

Fig. 7. The AAF comparison between numerical result and full-wave result.

TABLE II
SIMULATION 3: 4T4R RESULTS

Array Antenna Positions d SLL HMLW

A3
[0, 1.69, 3.56, 5.25,

0, 0.92, 2.03, 2.92]T
-19.44dB 0.057

SA-PSO [43]
[0, 1.64, 3.53, 5.08,

0, 0.88, 1.86, 2.71]T
-18.78dB 0.059

0.5 uniform
[0, 2, 4, 6,

0, 0.5, 1.0, 1.5]T
-13.15dB 0.055

and compare it with SA-PSO and conventional MIMO array

with half-wavelength virtual element spacing (0.5 uniform).

The aperture size and minimum element spacing are set to

Dt = 7.5, Dr = 7.5 and ∆tm = ∆rn = 0.15. umax = 1
is calculated by numerical methods from the results in [43].

Table II and Fig. 9 show that both the SLL and HMLW of the

array designed by Algorithm 3 are better than those of the SA-

PSO approach at the cost of a slightly larger aperture, which

still satisfies the aperture size constraints and is therefore

acceptable.

0 2 4 6 8 10 12

x position in  units

A3 T

A3 R

A3 V

SA-PSO T

SA-PSO R

SA-PSO V

0.5 uniform T

0.5 uniform R

0.5 uniform V

Fig. 8. Simulation 2: 4T4R antenna positions of Algorithm 3 (A3), SA-
PSO [43], and conventional MIMO array with 0.5 wavelength virtual element
spacing (0.5 uniform), where T, R, and V denote transmitter, receiver, and
virtual array element, respectively.
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Fig. 9. Simulation 2: EBPs |f(u)| of 4T4R arrays.

TABLE III
SIMULATION 3: 1T16R ANTENNA POSITIONS, SLLS, AND HMLWS WITH

θj = −70◦

Array Receiver Positions SLL HMLW

ULA

[0, 0.5, 1, 1.5,
2, 2.5, 3, 3.5,
4, 4.5, 5, 5.5,

6, 6.5, 7, 7.5]T

-13.15dB 0.055

Pareto -17.7dB

[0, 0.6224, 1.0222, 1.5587,
2.0444, 2.5283, 2.9740, 3.4130,
3.8366, 4.2653, 4.6769, 5.1379,

5.6209, 6.1137, 7.1143, 7.5]T

-17.70dB 0.058

Pareto -13.2dB

[0, 0.2734, 0.8006, 1.5143,
1.8076, 2.4649, 2.9678, 3.4002,
3.9951, 4.3865, 5.0222, 5.4188,

6.2469, 7.0069, 7.3500, 7.5]T

-13.20dB 0.052

D. Numerical simulation 3 with 1T16R configuration

In this experiment, a 1T16R configuration is employed to

evaluate sparse and uniform arrays with equal aperture size and

equal number of antennas. The aperture size and minimum

element spacing are set to Dr = 7.5, ∆rn = 0.15. The

1T16R array is optimized 1000 times using A3, and then the

results of SLL and HMLW are plotted in Fig. 10. The SLLs

are significantly reduced by A1 in the hybrid optimization

process, and A2 further reduces the HMLWs. It is noticed that

most of the results of Step 3 lie on the SLL-HMLW Pareto

front boundary [24]. The proposed method can make almost

every solution converge to this boundary. However, it is very

difficult to reach the boundary for heuristic algorithms without

significantly increased iterations.

Two results with an SLL of -13.2dB and -17.7dB are

selected from this boundary, and their antenna positions and

EBPs are shown in Figs. 11 and 12, respectively. Fig. 12

and Table III demonstrate that the MLW of Pareto -13.2dB

is narrower than that of the uniform linear array (ULA), and

the SLL is not higher than that of the ULA. On the other hand,

Pareto -17.7dB can achieve a lower SLL at the cost of MLW.
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Step 2: Algorithm 1
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Fig. 10. Simulation 3: Optimize 1T16R arrays 1000 times using Algorithm
3
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Fig. 11. Simulation 3: 1T16R receiver positions of A3 on the Pareto front
boundary and ULA with 0.5 wavelength element spacing
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Fig. 12. Simulation 3: EBPs |f(u)| of 1T16R arrays.
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E. Numerical simulation 4: DoA Estimation

To compare the DoA estimation performance of the three

arrays in Table III, we use the Capon method [44] to estimate

the spatial spectra corresponding to the three 1T16R arrays,

as shown in Figs. 13 and 14. Two targets with equal receiving

power are assumed to be located at −70◦ and −58◦. In Fig. 13,

the SNR is set to -7dB. The spectra show that only the sparse

array optimized via A3 with a -13.2dB SLL can distinguish the

two close targets, which illustrates that a narrower MLW can

achieve a higher angular resolution. To our best knowledge,

this is the first time to show that the angular resolution of

sparse arrays with equal aperture size may exceed that of

uniform arrays when common DoA estimation methods are

employed, such as DBF, Capon, MUSIC, OMP, IAA, etc

[2]. However, the cost is that the noise floor of the spatial

spectrum increases, i.e., the dynamic range decreases, which

is consistent with the sidelobe performance in Fig. 12. At

a higher SNR of 3dB, as shown in Fig. 14, the effect of

sidelobe on the noise floor is reduced, and the narrower MLW

makes the spectral peaks at the target locations sharper, which

means that the narrower MLW also achieves a higher angular

accuracy.
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Fig. 13. Angle finding via Capon using the three arrays mentioned in Table
III. The SNR is set to -7 dB.
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Fig. 14. Angle finding via Capon using the three arrays mentioned in Table
III. The SNR is set to 3 dB.

V. CONCLUSIONS

In this article, a new approach for super-resolution and

ambiguity-free sparse array geometry optimization in MIMO

radar has been proposed. The properties of the angular ambi-

guity function are analyzed and the problem can be simplified

into a EBP synthesis model. To obtain the optimal SLL, MLW

and Pareto front boundary, several different problems with

aperture size and element spacing constraints are formulated

and algorithms for handling different objective functions are

developed. Their performances have been investigated through

numerical and full wave simulations, which show that the

proposed methods can effectively improve the performance

of DoA estimation for sparse arrays.

It is worth noting that although the concepts in this paper

are developed for MIMO radars, due to high similarity of the

mathematical models, the modeling and algorithms presented

in this paper can also be extended to pencil beam pattern

synthesis for sparse phased arrays such as [37], which is a

more familiar problem in the field of antennas and propagation.

APPENDIX A

ALGORITHM 1

First, the subproblem (32) is derived with given d(t) and

λ(t) to determine ε(t+1) and y(t+1).

The constant terms in (31) can be ignored when d(t) and

λ(t) are given, and we have

min
ε,ys

γε+
ρ

2

S
∑

s=1

∣

∣ys − f̄s
∣

∣

2

s.t. |ys| ≤ ε, s = 1, · · · , S. (45)

When ε is provided, the optimal ys is given by

ys =

{

ε× exp(j∠f̄s) if |f̄s| ≥ ε

f̄s if |f̄s| < ε

for s = 1, · · · , S. (46)

Substituting (46) into (45), (45) is converted into an optimiza-

tion problem with a single variable ε:

min
ε

γε+
ρ

2

S
∑

s=1

Us(ε)
(

ε− |f̄s|
)2

s.t. ε ∈ [εL, εU ], (47)

where the region ε ∈ [εL, εU ] is the prior information of ε. It

is easy to see that the objective functions in (46) and (47) are

piecewise functions that depend on the value of the unit-step

functions as follows:

Us(ε) =

{

1 if |f̄s| ≥ ε

0 if |f̄s| < ε

for s = 1, · · · , S. (48)

To solve (47), ε = |f̄s| for s = 1, · · · , S are selected

as reasonable turning points on the interval [εL, εU ]. These

S turning points are listed in ascending order and marked

as {ε(t+1)
1 , · · · , ε(t+1)

K }, where K ≤ S. Thus, the in-

terval [εL, εU ] can be divided into K + 1 sub-intervals
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[εL, ε
(t+1)
1 ), [ε

(t+1)
1 , ε

(t+1)
2 ), . . . , [ε

(t+1)
K , εU ]. On each sub-

interval, the step functions Us(ε) for s = 1, · · · , S have

specific values. As a result, (47) has different expressions on

different sub-intervals. For example, for the k-th sub-interval

ε ∈ [ε
(t+1)
k−1 , ε

(t+1)
k ], (47) can be rewritten as

min
ε

Akε
2 +Bkε+ Ck

s.t. ε ∈ [ε
(t+1)
k−1 , ε

(t+1)
k ], (49)

where

Ak =
ρ

2

S
∑

s=1

Us(ε), Bk = γ − ρ

S
∑

s=1

Us(ε)
∣

∣f̄s
∣

∣ ,

Ck =
ρ

2

S
∑

s=1

Us(ε)
∣

∣f̄s
∣

∣

2

. (50)

Therefore, for the k-th sub-interval ε ∈ [ε
(t+1)
k−1 , ε

(t+1)
k ], the

optimal variable ε̂k can be obtained easily by finding the

minimum of the quadratic function, and the corresponding

minimum of Akε
2+Bkε+Ck is denoted as Qk. By selecting

the smallest one from all the K + 1 minimal values for the

K + 1 sub-intervals, such as Qi = min{Q1, . . . , QK+1}, we

determine ε(t+1) as

ε(t+1) = ε̂i, (51)

where ε̂i is the extreme point corresponding to Qi. Once ε(t+1)

is obtained, y
(t+1)
s can be derived by (46).

Next, the subproblem (33) is derived with given

ε(t+1),y(t+1) and λ(t) to determine d(t+1).
The constant terms in (31) can be ignored, and we have

min
d

ρ

2

S
∑

s=1

∣

∣

∣

∣

ys − fs(d) +
λs

ρ

∣

∣

∣

∣

2

⇒min
d

F (d)

s.t. Cd− dc � 0. (52)

This is a nonlinear optimization problem with linear inequality

constraints. Sequential quadratic programming (SQP) [39] is

one of the most effective methods for solving constrained

nonlinear optimization problems given its fast convergence,

high computational efficiency, and strong boundary search

ability. Thus, SQP is used to solve (52). Define ∇dF as the

gradient of F (d) which is derived in Appendix B.
Then, the Lagrangian multiplier λ(t+1) is updated with

given ε(t+1),y(t+1) and d(t+1) as shown by (34).
Finally, according to the ADMM stopping criterion given

by [45], if

max {α, β} ≤ η

where

α =
∥

∥

∥
f(d(t+1))− f(d(t))

∥

∥

∥

∞

= max
s

∣

∣

∣
fs(d

(t+1))− fs(d
(t))
∣

∣

∣

β =
∥

∥

∥
y(t+1) − f(d(t+1))

∥

∥

∥
, (53)

or t > T (T is the maximum number of iterations), the

calculation will stop. Otherwise, set t := t + 1, and go to

Step 1.

APPENDIX B

ON COMPUTATION OF ∇dF AND ∇dF2

In (52), the gradient of objective function is given by

∇dF =
ρ

2

S
∑

s=1

(

(−∇dfs)(y
∗
s − f∗

s (d) +
λ∗
s

ρ
)

+ (ys − fs(d) +
λs

ρ
)(−∇df

∗
s )
)

=
ρ

2

S
∑

s=1

(

(−∇dfs)(y
∗
s − f∗

s (d) +
λ∗
s

ρ
)

+ (ys − fs(d) +
λs

ρ
)(−∇dfs)

∗
)

, (54)

For different types of element position constraints, ∇dfs has

different forms.

1) Case 1:

∇dfs =
[

0 ∂fs
∂t2

· · · ∂fs
∂tM

∂fs
∂r1

· · · ∂fs
∂rN

]T

,

(55)

2) Case 2:

∇dfs =
[

0 ∂fs
∂t2

· · · ∂fs
∂tM

0 ∂fs
∂r2

· · · ∂fs
∂rN

]T

,

(56)

where

∂fs

∂tm
=

1

MN

N
∑

n=1

j2πuse
j2π(tm+rn)us , (57)

∂fs

∂rn
=

1

MN

M
∑

m=1

j2πuse
j2π(tm+rn)us . (58)

To simplify F2(d) and ∇dF2 in Step 1 of Algorithm 2, we

define step functions as

Vs =

{

0 if λs − ρf̃s(d) > 0

1 otherwise

for s = 1, · · · , S. (59)

Then, the piecewise function in (43) can be written in the form

of the step function

F2(d) = α|fc(d)|2 +
1

2ρ

S
∑

s=1

Vs(λs − ρf̃s(d))
2. (60)

∇dF2 = α∇d|fc|2 +
1

ρ

S
∑

s=1

Vs(λs − ρf̃s(d))(−ρ∇df̃s),

(61)

where

∇d|fc|2 = ∇dfc × f∗
c (d) + fc(d)×∇d(f

∗
c )

= ∇dfc × f∗
c (d) + fc(d)× (∇dfc)

∗

∇df̃s = ∇d|fs|2

= ∇dfs × f∗
s (d) + fs(d)×∇d(f

∗
s )

= ∇dfs × f∗
s (d) + fs(d)× (∇dfs)

∗. (62)

Similarly, ∇dfc can be derived by (55)-(58).
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APPENDIX C

COMPUTATIONAL COMPLEXITY

Since the computation of the analytic solution in subprob-

lem (45)-(51) does not require internal iterations, most of the

computing time is spent in the calculation of the objective

function and its gradient in SQP algorithm for the nonconvex

problems (52) and (43). For simplicity, we analyze the time

complexity of the innermost function in detail. fs (see (23))

requires about MN complex additions, which are equivalent

to 2MN additions of real numbers. Its gradient ∇dfs (see

(55)-(58)) requires about 2MN complex multiplications and

2MN complex additions, which are equivalent to 4MN

multiplications, 4MN multiplication-addition operations, and

4MN additions. Therefore, the complexity of SQP algorithm

is about O(14MNSTsqp), where S is the number of sidelobe

sampling points and Tsqp is the number of iterations of SQP.

The total complexity of Algorithm 1 and Algorithm 2 is

O(14MNSTsqpT ), where T is the number of iterations of

ADMM or Lagrangian multiplier method. Generally speaking,

the more antennas there are, the larger S is. For example,

S = 100 for 2T3R configuration and S = 500 for 1T16R

configuration. The SQP algorithm usually requires 5-50 itera-

tions to converge, and ADMM requires at least 100 iterations.

Compared with other synthesis techniques, like GA and SA-

PSO, the proposed single optimization takes longer, but our

methods have demonstrated an excellent searching capability,

and usually a single run is sufficient to find an optimal solution

with Pareto optimality, whereas other methods require at least

thousands of tests, with different initializations, to find a good

solution. It is worth mentioning that sparse array geometry

optimization is not a task that requires to be performed in

real-time: a reasonable computation time is acceptable if the

achieved results are excellent [37]. Moreover, the non-uniform

FFT technique will be exploited to accelerate the computation

in our future work.
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