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Abstract
We study a category 2 of ℤ-graded maximal Cohen-
Macaulay (MCM) modules over the 𝐴∞ curve sin-
gularity and demonstrate that it has infinite type 𝐴

cluster combinatorics. In particular, we show that this
Frobenius category (or a suitable subcategory) is sta-
bly equivalent to the infinite type 𝐴 cluster categories
of Holm–Jørgensen, Fisher and Paquette–Yıldırım. As a
consequence, 2 has cluster tilting subcategories mod-
elled by certain triangulations of the (completed)∞-gon.
We use the Frobenius structure to extend this further to
consider maximal almost rigid subcategories, and show
that these subcategories and their mutations exhibit the
combinatorics of the completed∞-gon.
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1 INTRODUCTION

Throughout cluster theory, type 𝐴 serves as a prototypical example to understand new con-
cepts. This paper formalises the connection between infinite rank type 𝐴 (completed) cluster
combinatorics and the corresponding plane curve singularity.
This builds on work by [14] Jensen, King and Su, who give a correspondence between finite

type 𝐴 cluster algebras and the corresponding hypersurface singularities. More precisely, a cat-
egory of maximal Cohen-Macaulay modules over a curve singularity of type 𝐴𝑛 encodes the
combinatorics of a cluster algebra of type 𝐴𝑛. A key aspect of this combinatorics is that it is fully
described by triangulations of a regular (𝑛 + 3)-gon. In the categorical setting, indecomposable
objects correspond to arcs in the polygon, and triangulations give cluster tilting objects. Con-
sequently, mutation is encoded by diagonal flips, with exchange sequences determined by the
ambient quadrilateral.
From a combinatorial perspective, it is natural to extend this to an∞-gon: Take a discrete set of

points on the unit circle 𝑆1 with one two-sided accumulation point. Wemay think of the points as
being indexed by the integers. The notions of arcs, triangulations and diagonal flips extend directly
from the finite case, with arcs being labelled by pairs of integers. A central challenge of this infinite
rank setting is that the exchange graph of triangulations under finite sequences of diagonal flips
is no longer connected. Combinatorially, this issue can be fixed by instead considering transfinite
mutations in the completed ∞-gon, as studied by Baur and Gratz in [3], and independently by
Çanakçı and Felikson in [7]. In the completed ∞-gon, we label the accumulation point by −∞,
and allow arcs between −∞ and any integer, called infinite arcs. In this paper, we prove that a
category associated to the type𝐴∞ curve singularity exhibits both the combinatorics of the∞-gon
and of the completed∞-gon.
Specifically, we consider the category 2 of ℤ-graded maximal Cohen-Macaulay modules over

ℂ[𝑥, 𝑦]∕(𝑥2) with 𝑥 in degree 1 and 𝑦 in degree −1. This is the Grassmannian category of infinite
rank associated to an infinite version of the Grassmannian of planes, as introduced by the authors
in [1]. We focus on this specific Grassmannian category because it is discrete, in the sense that it
has countably many isomorphism classes of indecomposables, allowing us to explicitly describe
and classify cluster tilting and related subcategories, as well as their mutations.
Constructing cluster categories with infinite type 𝐴 combinatorics is a natural problem which

has been tackled from different angles throughout the literature, starting with the pioneering
paper byHolm and Jørgensen [11]. They prove that the finite derived categoryDf (𝑆) of differential
graded (dg) modules over the dg-algebra 𝑆 = ℂ[𝑦] (with 𝑦 in cohomological degree −1) exhibits
the cluster combinatorics of the ∞-gon. We prove that a natural subcategory of 2 recovers the
Holm–Jørgensen category Df (𝑆). More precisely, we show the following.

Theorem 1.1 (Corollary 3.4). Denote by f
2
the subcategory of generically free modules in 2 (see

Definition 2.3). Then its stable category f
2
is equivalent to Df (𝑆).

In [1], we show that, in general, the category of generically free modules of a Grassmannian
category of infinite rank exhibits the combinatorics of Plücker coordinates in the homogeneous
coordinate ring of the corresponding Grassmannian. This subcategory is 2-Calabi–Yau, and as
such is an ideal setting to study rigidity and cluster tilting.
The category 2 coming from the 𝐴∞ curve singularity is a particularly well-behaved example

of a Grassmannian category of infinite rank: It has been studied as an isolated line singularity by
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2123

Siersma [20] in the 1980s and it was shown by Buchweitz–Greuel–Schreyer [5] that type 𝐴∞ and
𝐷∞ are the only hypersurface singularities of countable Cohen– Macaulay type. In particular, [5]
classifies the isomorphism classes of indecomposable MCM-modules via matrix factorisations in
both cases. In this paper, we show that there is a classification of the indecomposable objects in
2 given by arcs in the completed∞-gon. That same combinatorics was discovered in a different
set-up by Fisher in [8], who completed the Holm–Jørgensen category under homotopy colimits
to obtain a triangulated subcategory of the derived category of the dg-algebra 𝑆.
Igusa andTodorov [12] have generalised the idea of cluster categories of infinite type𝐴 in a com-

binatorial manner, by extending the notion of∞-gon. Building on this, Paquette and Yıldırım [19]
present a combinatorial completion, yielding triangulated categories now containing indecom-
posable objects corresponding to arcs starting or ending in accumulation points. In particular, in
the one-accumulation point case, the indecomposable objects in the Paquette–Yıldırım category
𝑀 are indexed in the same way as the indecomposable objects in 2 as well as in the Fisher
category. In fact, we prove the following.

Theorem 1.2 (Propositions 3.5, 3.6). There are equivalences of triangulated categories


2
≅ 𝑀 ≅ ,

where 
2
denotes the stable category of the Grassmannian category 2.

The categories 𝑀 and were constructed explicitly with the goal to obtain a categorical ana-
logue to the combinatorics of a completed∞-gon. Our result proves that these combinatorics are
not at all artificial: They actually occur in a very natural way in an algebro-geometric setting.
Furthermore, we immediately get a classification of cluster tilting subcategories in 2 and f

2
via

lifting the results [19, Theorem 4.4], [8, Theorem 5.11] and [11, Theorem 4.4] from the triangulated
category

2
to the Frobenius category2, cf. Theorems 4.11 and 4.10. Note that these classifications

can also be recovered via straightforward computations in 2, which are detailed in Appendix A.
In both 2 and f

2
, cluster tilting subcategories correspond to certain triangulations. This is

a consequence of the fact that a crossing of arcs corresponds to the non-vanishing of the Ext1-
group between the respective indecomposable objects. In the latter category, which is 2-Calabi-
Yau, the converse is also true. Interestingly, in the former category, there are extensions between
any two distinct infinite arcs. Therefore, any triangulation containing more than one infinite arc
corresponds to a category which is not rigid. However, in order to fully describe the combinatorics
of the∞-gon, we want to study all triangulations from a categorical perspective. This leads us to
considermaximal almost rigid subcategories (seeDefinition 5.4), inspired bymaximal almost rigid
objects introduced by Barnard, Gunawan, Meehan and Schiffler [4].

Theorem 1.3 (Theorem 5.5). A subcategory  ⊂ 2 is maximal almost rigid if and only if its
indecomposable objects correspond to a triangulation of the completed∞-gon.

Note that the notion of almost rigidity does not behave well under stabilisation, and relies on an
exact structure. As such, it is crucial that we work in the category 2, and not in the triangulated
categories from Theorem 1.2.
Mutation in cluster categories is designed to mirror cluster algebra combinatorics. The notion

of mutation in triangulated categories with respect to rigid subcategories has been introduced by
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2124 AUGUST et al.

Iyama and Yoshino in [13], and mutation specifically for cluster structures was studied by Buan,
Iyama, Reiten and Scott in [6]. We extend these concepts to mutation of maximal almost rigid
subcategories in 2, see Definition 5.7. This allows for mutation with respect to non-rigid subcate-
gories, as well as for themutability of an indecomposable object to vary with respect to its ambient
cluster.

Theorem 1.4 (Theorem 5.9). Let be a maximal almost rigid subcategory of 2 corresponding to
a triangulation 𝑇 of the completed∞-gon. An indecomposable object 𝑋 of is mutable if and only
if the corresponding arc 𝛾 in 𝑇 is mutable. Furthermore, the mutation of at 𝑋 corresponds to the
mutation 𝜇𝛾(𝑇) of 𝑇 at 𝛾.

In particular, the combinatorics of maximal almost rigid subcategories in 2 is precisely the
combinatorics of triangulations of the completed ∞-gon. As a direct consequence, we obtain
connectivity of the exchange graph of maximal almost rigid subcategories under transfinite
mutation.

Corollary 1.5 (Corollary 5.12). The exchange graph of maximal almost rigid subcategories of 2

is connected.

2 THE 𝑨∞ CURVE SINGULARITY

Let 𝑅 = ℂ[𝑥, 𝑦]∕(𝑥2). This is a non-reduced hypersurface ring, and Spec(𝑅) is a plane curve sin-
gularity of type 𝐴∞. This terminology should indicate that Spec(𝑅) is a ‘limit’ of singularities of
type 𝐴𝑛, which are defined as Spec(ℂ[𝑥, 𝑦]∕(𝑥2 + 𝑦𝑛+1)). The singular locus of Spec(𝑅) is one-
dimensional and this type of singularity has been studied by Siersma in the 1980s, see [20] for
more information.
Following [1], we will consider 𝑅 as a graded ring with 𝑥 in degree 1 and 𝑦 in degree −1, and

define 2 ∶= MCMℤ𝑅, which is the category of finitely generated ℤ-graded MCM 𝑅-modules.
Recall that a finitely generated module𝑀 over 𝑅 is MCM if Ext𝑖(𝑀, 𝑅) = 0 for 𝑖 ≠ 0. The category
2 is an infinite version of the Grassmannian cluster categories studied by Jensen–King–Su in the
finite setting. This category is Krull–Schmidt and Frobenius, where the projective injectives are
given by all graded shifts of add(𝑅), and thus, the stable category 

2
is a triangulated category with

shift functor given by the inverse syzygy Ω−1.

2.1 Classification of objects

From an algebraic point of view, 𝑅 is of countableMCM-type, which means that it has only count-
ably many isomorphism classes of indecomposable MCM-modules, see, for example, the book by
Leuschke andWiegand [18, Chapter 14] formore details. In particular, by a theorem of Buchweitz,
Greuel and Schreyer [5], any hypersurface ring of countableMCM-type overℂ is either of type𝐴∞

or𝐷∞, see [18, Theorem 14.16]. Surfaces of countableMCM-type have been studied by Burban and
Drozd in [2].
Throughout the paper, given a gradedmodule𝑀, wewill use𝑀(𝑗) to denote the gradedmodule

with𝑀(𝑗)𝑛 = 𝑀𝑗+𝑛.
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2125

Proposition 2.1. Let𝑀 be an indecomposable gradedMCM-module over 𝑅. Then𝑀 is determined
by a graded shift of one of the following matrix factorisations of 𝑥2.

(1) For 𝐴 = 𝑥2 and 𝐵 = 0, we get the graded matrix factorisation of rank 1

ℂ[𝑥, 𝑦](−2)
1
�→ ℂ[𝑥, 𝑦](−2)

𝑥2

��→ ℂ[𝑥, 𝑦] ,

which gives𝑀 = Coker(𝐴) = 𝑅.
(2) For 𝐴 = 𝐵 = 𝑥, we get again a graded matrix factorisation of rank 1

ℂ[𝑥, 𝑦](−2)
𝑥
�→ ℂ[𝑥, 𝑦](−1)

𝑥
�→ ℂ[𝑥, 𝑦] ,

which gives𝑀 = Coker(𝐴) = 𝑅∕(𝑥) ≅ ℂ[𝑦].
(3) For each 𝑘 ∈ ℤ>0 and 𝐴 = 𝐵 =

(
𝑥 𝑦𝑘

0 −𝑥

)
, we get a graded matrix factorisation of rank 2

ℂ[𝑥, 𝑦](−2) ⊕ ℂ[𝑥, 𝑦](𝑘 − 1)

𝐵
������→ ℂ[𝑥, 𝑦](−1) ⊕ ℂ[𝑥, 𝑦](𝑘)

𝐴
������→ ℂ[𝑥, 𝑦] ⊕ ℂ[𝑥, 𝑦](𝑘 + 1) ,

giving𝑀 = Coker(𝐴) ≅ (𝑥, 𝑦𝑘).

Proof. The matrix factorisations were determined in [5, Proposition 4.1] in the local case, that
is, instead of ℂ[𝑥, 𝑦], one considers 𝑆 a noetherian regular local ring. All these matrix factorisa-
tions are gradable, so they are also a complete set of reducedmatrix factorisations in our case. The
degrees in all cases can be calculated from thematrix presentations, using that deg(𝑥2) = 2. More-
over, in (3), the isomorphism of Coker(𝐴)with the ideal (𝑥, 𝑦𝑘) can be seen by a direct calculation
using that Coker(𝐴) ≅ ker(𝐴). □

Remark 2.2. Note that the modules in (2) and (3) satisfy𝑀(−1) ≅ Ω(𝑀). In particular, this shows
that the grading shift and suspension functor in 

2
will coincide.

Sincewemay think of the gradedmodule𝑅(𝑗) as the ideal (𝑥, 𝑦0)(𝑗), wewill consider the objects
of 2 as lying in two families: those of the form ℂ[𝑦](𝑗) and those of the form (𝑥, 𝑦𝑘)(𝑗).

2.2 The subcategory 𝐟
𝟐

Continuing to follow [1], we will be interested in a particular subcategory of 2 for which
the indecomposable objects are in bijection with the Plücker coordinates of the corresponding
Grassmannian cluster algebra. To define this subcategory, we need the following.
Let  be the graded total ring of fractions of 𝑅, that is, the ring 𝑅 localised at all homogeneous

non-zero divisors:

 = 𝑅𝑦 = ℂ[𝑥, 𝑦±]∕(𝑥2).

We consider  as a graded ring, with the grading induced by the grading of 𝑅.
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2126 AUGUST et al.

Definition 2.3. A module 𝑀 ∈ gr𝑅 is generically free of rank 𝑛 if 𝑀 ⊗𝑅  is a graded free  -
module of rank 𝑛.

We call the subcategory of 2 consisting of the generically free modules f
2
, and note that this is

an extension closed subcategory which is stably 2-Calabi–Yau by [1, Proposition 3.12]. Moreover,
we know by [1, Theorem 3.7] that the generically free modules in 2 are precisely the shifted
ideals (𝑥, 𝑦𝑘)(𝑗) for 𝑘 ⩾ 0, 𝑗 ∈ ℤ, and these correspond to Plücker coordinates in the homogeneous
coordinate ring of an infinite version of the Grassmannian of planes.
In the following sections, wewill see how both 2 and f

2
can be considered as cluster categories

of type 𝐴∞.

3 EQUIVALENCES OF CATEGORIES

In this section, we observe the close connection between 2 and other versions of infinite type 𝐴

cluster categories. The key strategy will be to link all the categories we consider to a particular
differential graded (dg) algebra.

3.1 The dg algebra ℂ[𝒚]

Consider the dg algebra 𝑆 = ℂ[𝑦] with zero differential, and with 𝑦 in cohomological degree −1.
We will show that all the categories we are studying are (stably) equivalent to (a subcategory of)
Perf (𝑆).
Since 𝑥 squares to 0 in 𝑅 = ℂ[𝑥, 𝑦]∕(𝑥2), we can view every graded 𝑅-module𝑀 as a dgmodule

over 𝑆, with differential given by the action of 𝑥, and vice versa. Note that the degrees agree:
The action of 𝑥 (respectively, the differential) increases the degree by 1, whereas the action by 𝑦

decreases the degree by 1. This yields an equivalence of categories

gr𝑅 ≅ dg𝑆,

between finitely generated ℤ-graded 𝑅-modules and finitely generated dg-modules over the dg
algebra 𝑆. A generically free indecomposable graded MCM 𝑅-module isomorphic to (𝑥, 𝑦𝑖)(𝑗) for
𝑖 ∈ ℤ⩾0, 𝑗 ∈ ℤ corresponds to the isomorphism class of the dg 𝑆-module

…
𝑥
�→ ⟨𝑥𝑦𝑖+2, 𝑦𝑖+1⟩ 𝑥

�→ ⟨𝑥𝑦𝑖+1, 𝑦𝑖⟩ 𝑥
�→ ⟨𝑥𝑦𝑖⟩ 𝑥

�→ …
𝑥
�→ …

𝑥
�→ ⟨𝑥𝑦2⟩ 𝑥

�→ ⟨𝑥𝑦⟩ 𝑥
�→ ⟨𝑥⟩ 𝑥

�→ 0 → …

with cohomology concentrated in degrees 1 − 𝑗 − 𝑖 to 1 − 𝑗. Here, the angled brackets denote the
linear span over ℂ. Any indecomposable graded MCM 𝑅-module that is not generically free is
isomorphic to ℂ[𝑦](𝑗) for some 𝑗 ∈ ℤ and corresponds to the isoclass of the dg 𝑆-module

…
0
�→ ⟨𝑦2⟩ 0

�→ ⟨𝑦⟩ 0
�→ ⟨1⟩ → 0 → …
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2127

with ⟨1⟩ in degree −𝑗 (and where 𝑥, respectively, the differential, acts trivially). The projective
graded 𝑅-modules are 𝑅(𝑗) for 𝑗 ∈ ℤ. This corresponds to the acyclic dg 𝑆-module

…
𝑥
�→ ⟨𝑥𝑦3, 𝑦2⟩ 𝑥

�→ ⟨𝑥𝑦2, 𝑦⟩ 𝑥
�→ ⟨1, 𝑥𝑦⟩ 𝑥

�→ ⟨𝑥⟩ 𝑥
�→ 0 → …

with ⟨𝑥⟩ in degree −𝑗 + 1.
Recall that a graded algebra 𝑅 is called intrinsically formal if whenever 𝐴 is a dg algebra with

𝐻∗(𝐴) ≅ 𝑅, then 𝑅 is quasi-isomorphic to 𝐴 as a dg algebra.

Lemma 3.1. The algebra 𝑆 = ℂ[𝑦] with 𝑦 in degree −1 is intrinsically formal.

Proof. Consider 𝑆 as a module over the enveloping algebra 𝑆𝑒 ≅ ℂ[𝑦] ⊗ ℂ[𝑦] ≅ ℂ[𝑢, 𝑣]. It has a
projective resolution

and thus, the projective dimension of 𝑆 over 𝑆𝑒 is 1. It follows by [15], see also [10, Proposition
4.13] that 𝑆 is intrinsically formal. □

We will repeatedly use the following strategy to show the desired equivalences of categories.

Proposition 3.2. Let  be an algebraic triangulated category with a generator𝑀 with graded endo-
morphism ring Ext∗(𝑀,𝑀) isomorphic to ℂ[𝑦] as a graded algebra with 𝑦 in degree −1. Then we
have an equivalence of categories

 ≅ Perf (𝑆).

Proof. By assumption, the graded endomorphism ring Ext∗(𝑀,𝑀) of𝑀 is isomorphic as a graded
algebra to the polynomial algebra ℂ[𝑦] with 𝑦 in degree −1. Now, by Lemma 3.1, the algebra 𝑆 is
intrinsically formal, so that

𝑆 ≅ Ext∗(𝑀,𝑀) ≅ 𝐻∗(RHom(𝑀,𝑀))

implies that RHom(𝑀,𝑀) is quasi-isomorphic to 𝑆, and thus,

Perf (𝑆) ≅ Perf (RHom(𝑀,𝑀)) ≅ ,

where the last equivalence follows from [16], see also [17, Theorem 3.8]. □

3.2 𝟐 and the Holm–Jørgensen cluster category of infinite type 𝑨

In [11], Holm and Jørgensen describe the cluster structure of the finite derived category Df (𝑆) of
dg-modules over 𝑆. We first observe the following equivalence.
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2128 AUGUST et al.

Proposition 3.3. We have an equivalence of categories


2
≅ Perf (𝑆),

where 
2
denotes the stable category of 2.

Proof. Note that 𝑀 = ℂ[𝑦] generates 
2
: For all 𝑖 ∈ ℤ, the module 𝑀(𝑖) = Σ𝑖𝑀 clearly is in its

thick closure. Moreover, for each 𝑘 ⩾ 0, we have a short exact sequence

0 → ℂ[𝑦](−1) → (𝑥, 𝑦𝑘) → ℂ[𝑦](𝑘 − 1) → 0

in 2, and so (𝑥, 𝑦𝑘)(𝑗) = Σ𝑗(𝑥, 𝑦𝑘) is also in the thick closure of 𝑀. We calculate its graded
endomorphism ring. The generator𝑀 has a complete projective resolution

Applying Hom(−,𝑀) yields the sequence

where𝑀𝑖 denotes the degree 𝑖 component of𝑀, which vanishes for 𝑖 ⩾ 1.We obtain that for 𝑖 ⩾ 0,

Ext−𝑖(𝑀,𝑀) ≅ Hom(𝑀,Ω𝑖𝑀) = Hom(𝑀,𝑀(−𝑖)) ≅ ℂ,

and 𝑓 ∈ Ext−𝑖(𝑀,𝑀) is given by multiplication with 𝜆𝑦𝑖 for some scalar 𝜆 ∈ ℂ. We obtain that

Ext∗(𝑀,𝑀) ≅ ℂ[𝑦],

with 𝑦 in degree −1, and the statement follows from Proposition 3.2. □

Recall that f
2
is the full subcategory of 2 consisting of generically free modules. The indecom-

posable objects in f
2
are the modules (𝑥, 𝑦𝑘)(𝑗) which precisely correspond to the dg 𝑆-modules

with finite-dimensional cohomology over ℂ. The following therefore follows immediately from
Proposition 3.3.

Corollary 3.4. There is an equivalence of categories

f
2
≅ Df (𝑆),

where the category Df (𝑆) denotes the derived category of dg-modules over 𝑆 with finite-dimensional
cohomology over ℂ.
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2129

This is the category studied by Holm and Jørgensen in [11]. They show that Df (𝑆) exhibits the
combinatorics of a cluster category of infinite type 𝐴: Indecomposable objects correspond to arcs
in an ∞-gon, with cluster tilting objects corresponding to suitably nice triangulations thereof.
Through the equivalence of Corollary 3.4, these descriptions will also extend to f

2
. We will return

to this in the next section.

3.3 𝟐 and completion under homotopy colimits

In [8], Fisher completed the category Df (𝑆) under certain homotopy colimits, arriving at a trian-
gulated category  ⊂ D(𝑆) with indecomposable objects corresponding to arcs in the completed
∞-gon.

Proposition 3.5. There is an equivalence of categories

 ≅ 
2
.

Proof. By Propositions 3.2 and 3.3, it is enough to show that  has a generator 𝑀 such
that Ext∗


(𝑀,𝑀) is isomorphic to ℂ[𝑦] as a graded algebra. By [8, Definition 1.5], the only

indecomposable objects in, up to isomorphism, are

{𝑋𝑖(𝑗) ∣ 𝑖, 𝑗 ∈ ℤ, 𝑖 ⩾ 0} ∪ {𝐸𝑛 ∣ 𝑛 ∈ ℤ}

where 𝑋𝑖 = ℂ[𝑦]∕(𝑦𝑖+1) and 𝐸𝑛 is the homotopy colimit of the direct system

𝑋0(𝑛)
𝑦
�→ 𝑋1(𝑛 − 1)

𝑦
�→ 𝑋2(𝑛 − 2)

𝑦
�→ 𝑋3(𝑛 − 3) → … (3.1)

in the derived category 𝐷(𝑆) of right dg-modules over 𝑆 = ℂ[𝑦]. We claim that 𝐸0 (or in fact any
𝐸𝑛) is the required generator.
To start, note that (3.1) is also a direct system in the abelian category of right dg-modules over

𝑆, where the colimit can easily be calculated as the dg-module ℂ[𝑦−1](𝑛). In particular, there is a
short exact sequence

0 →
∏
ℕ

𝑋𝑖(𝑛 − 𝑖)
1−𝑦
����→

∏
ℕ

𝑋𝑖(𝑛 − 𝑖) → ℂ[𝑦−1](𝑛) → 0

in the category of right dgmodules over 𝑆. By definition of homotopy colimits, the induced triangle
in the derived category shows that 𝐸𝑛 ≅ ℂ[𝑦−1](𝑛).
Now, [8, Theorem 2.8] shows that

Ext𝑖

(𝐸0, 𝐸0) ≅

{
ℂ if 𝑖 ⩽ 0

0 if 𝑖 > 0
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2130 AUGUST et al.

and, knowing 𝐸0 ≅ ℂ[𝑦−1], one can check the map in degree −1 is the map of complexes,

where all differentials are zero. Since this map is clearly not nilpotent in Ext∗

(𝐸0, 𝐸0), the

isomorphism of graded algebras, Ext∗

(𝐸0, 𝐸0) ≅ ℂ[𝑦], follows.

As 𝐸𝑛 = 𝐸0(𝑛), it is clear that 𝐸0 generates all the 𝐸𝑛. To show that it also generates the𝑋𝑖 , note
that there is a short exact sequence

0 → 𝑋𝑖

𝑦−𝑖

���→ ℂ[𝑦−1](𝑖) → ℂ[𝑦−1](−1) → 0

in the category of right dg-modules over 𝑆. This induces a triangle in the derived category, which
shows that 𝐸0 generates 𝑋𝑖 , and hence all of as required. □

3.4 𝟐 and a combinatorial completion

In [19], Paquette and Yıldırım present a completion of discrete cluster categories of type 𝐴. These
are, like Igusa and Todorov’s discrete cluster categories of type 𝐴, associated to a generalised
∞-gon, that is, a disc with discrete marked points on its boundary, satisfying some mild con-
vergence condition. Indecomposable objects correspond to arcs in the generalised∞-gon, that is,
two-element subsets consisting of non-neighbouring marked points, and morphisms can be read
off by the respective positioning of the arcs. Unlike Igusa and Todorov, Paquette and Yıldırım
allow the accumulation points to be marked points themselves.
We show that in the ‘one-accumulation point’ case, that is, when the marked points on the

boundary include an unique two-sided accumulation point, Paquette and Yıldırım’s construction
coincides with the stable category 

2
.

Let 𝑀 ⊆ 𝑆1 be a set of marked points on the circle with precisely one two-sided accumula-
tion point. Denote by 𝑀 the completed cluster category in the sense of Paquette–Yıldırım [19]
(denoted as (𝑆,𝑀) there).

Proposition 3.6. There is an equivalence of categories

𝑀 ≅ 
2
.

Proof. Let 𝑁 be an indecomposable object in 𝑀 corresponding to an arc 𝓁0 connecting to the
accumulation point of 𝑀. Denote by Σ the suspension in 𝑀 . Then, for all 𝑖 ∈ ℤ, the object Σ𝑖𝑁

also corresponds to an arc 𝓁𝑖 connecting to the accumulation point of𝑀, and we can go from 𝓁𝑗

to 𝓁𝑖 by rotating 𝓁𝑗 about the common endpoint following the orientation of the unit disc if and
only if 𝑗 ⩾ 𝑖. By [19, Proposition 3.4], we have

Ext𝑖(𝑁,𝑁) ≅ Hom(𝑁, Σ𝑖𝑁) ≅

{
ℂ, if 𝑖 ⩽ 0

0, else.
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2131

By the construction of 𝑀 in [19] and [12, Lemma 2.4.2], we see that for 𝑖 > 0, a morphism
𝑓 ∈ Ext−𝑖(𝑁,𝑁) factors through the 𝑖-fold product Ext−1(𝑁,𝑁) × … × Ext−1(𝑁,𝑁), and so, the
graded endomorphism ring of 𝑁 is isomorphic to ℂ[𝑦] with 𝑦 in degree −1. The statement now
follows from figure 2 in [19] and accompanying comments which show that𝑁 is a generator, and
Proposition 3.2. □

4 THE COMBINATORIALMODEL AND CLUSTER TILTING

From the set-up in [8, 11] and [19], we know that there is a combinatorial model for the categories
described in Sections 3.2–3.4 via arcs in the (completed) ∞-gon. In this section, we will extend
this model to the Grassmannian category 2 from Section 2.

4.1 The completed∞-gon

An∞-gon is a disc with a discrete set of marked points on the boundary admitting a unique two-
sided accumulation point.We obtain a completed∞-gon by adding the unique accumulation point
as a marked point. In practice, we label the marked points by ℤ (increasing clockwise around the
disc), and call the accumulation point −∞.
An arc of the completed ∞-gon is then a pair (𝑎, 𝑏) in ℤ ∪ {−∞}, such that 𝑎 < 𝑏. We call an

arc (𝑎, 𝑏) finite if 𝑎, 𝑏 ∈ ℤ, and infinite if 𝑎 = −∞. These can be illustrated as in the following
pictures:

Here, the horizontal line represents ℤ and the point −∞ sits separately above. When we talk
about the∞-gon, we only consider the finite arcs, whereas the completed∞-gon allows both the
finite and infinite arcs.
In either case, two arcs (𝑎, 𝑏) and (𝑐, 𝑑) cross if𝑎 < 𝑐 < 𝑏 < 𝑑 or 𝑐 < 𝑎 < 𝑑 < 𝑏. This notion gives

rise to the following idea: A triangulation of the (completed)∞-gon is amaximal set of non-crossing
arcs of the (completed)∞-gon.
A triangulation 𝑇 is called locally finite if for all 𝑎 ∈ ℤ, there are only finitely many arcs in

𝑇 with endpoint 𝑎. A set of arcs {(𝑎, 𝑏𝑖) ∣ 𝑖 ∈ ℕ} is called a right fountain at 𝑎, if {𝑏𝑖} is a strictly
increasing sequence. Similarly, a set of arcs {(𝑏𝑖, 𝑎) ∣ 𝑖 ∈ ℕ} is called a left fountain at 𝑎, if {𝑏𝑖} is a
strictly decreasing sequence. A fountain at 𝑎 is the union of a left fountain at 𝑎 and a right fountain
at 𝑎.
For the ∞-gon, every triangulation is either locally finite, or contains both a left and right

fountain [11, Lemma 3.3]. For the completed ∞-gon, each triangulation contains precisely one
of the following five configurations, where we note that each schematic triangle in the picture
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2132 AUGUST et al.

may contain a triangulation by finitely many arcs:

This classification follows from the following observations:

∙ [3, Lemma 1.10] If 𝑇 contains a left (or right) fountain at 𝑛 ∈ ℤ, then (−∞, 𝑛) ∈ 𝑇 — such an
infinite arc is called a wrapping arc.

∙ [3, Lemma 1.11] If (−∞, 𝑛) ∈ 𝑇, then either 𝑇 has a left fountain at 𝑛 ∈ ℤ, or there exists𝑚 < 𝑛

such that (−∞,𝑚) ∈ 𝑇. Similarly for right fountains.

See [3, Theorem 1.12] for a precise description of the triangulations.

4.2 A model for 𝟐

Using the classification of indecomposable objects in the category 2 from Proposition 2.1, we see
that they are in a natural one-to-one correspondence with the arcs of the completed∞-gon in the
following way.
For all 𝑘 ∈ ℤ⩾0 and all 𝑗 ∈ ℤ, we associate to the graded module (𝑥, 𝑦𝑘)(𝑗) the finite arc (−𝑗 −

𝑘, 1 − 𝑗) and to ℂ[𝑦](𝑗) the infinite arc (−∞,−𝑗). From now on, we freely use this identification,
and will refer to indecomposable objects in 2 as arcs when convenient.
Note that the boundary arcs (those of the form (𝑎, 𝑎 + 1)) precisely correspond to the mod-

ules 𝑅(𝑗) which are the projective-injective objects in 2. Moreover, the internal arcs correspond
to indecomposable objects of 

2
and this provides an explicit equivalence between the stable

category 
2
and the category 𝑀 constructed in [19]. As a consequence, we get the following

description of Ext groups.
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2133

Proposition 4.1. Let (𝑎, 𝑏) and (𝑐, 𝑑) be indecomposable objects in 2. Then

Ext1((𝑎, 𝑏), (𝑐, 𝑑)) ≅

⎧⎪⎨⎪⎩
ℂ if (𝑎, 𝑏) and (𝑐, 𝑑) cross
ℂ if 𝑎 = 𝑐 = −∞ and 𝑏 < 𝑑

0 else.

Proof. This is immediate from the equivalence between 
2
and 𝑀 and [19, Proposition 3.14]. Note

that the computation for finite arcs also follows from [1, Theorem C], and direct calculations can
be done using the matrix factorisations in Proposition 2.1. □

Some cases with non-zero Ext1((𝑎, 𝑏), (𝑐, 𝑑)) are schematically illustrated as follows:

Some cases where Ext1((𝑎, 𝑏), (𝑐, 𝑑)) = 0 are illustrated as follows:

Notice that the Ext1-groups for the finite arcs are symmetric in the two arguments,
corresponding to the subcategory f

2
being stably 2-Calabi–Yau.

Remark 4.2. Although we have used the equivalences from Sections 3.2–3.4 to endow 2 with
a combinatorial model, it is worth noting that this is not necessary. Indeed, in the course of this
project, we first showed that 2 had a combinatorial model by computing theExt1-groups by hand
and once we had established the model, we saw the possibility of the equivalences.

We may also read the Hom spaces from the combinatorial model. This is possible given the
explicit description of all the indecomposable objects.
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2134 AUGUST et al.

Proposition 4.3. Let (𝑎, 𝑏) and (𝑐, 𝑑) be indecomposable objects in 2. Then

Hom𝑅((𝑎, 𝑏), (𝑐, 𝑑)) ≅

⎧⎪⎪⎨⎪⎪⎩

ℂ2 if −∞ < 𝑎 ⩽ 𝑐 and 𝑏 ⩽ 𝑑

0 if −∞ = 𝑎 ⩽ 𝑐 and 𝑑 < 𝑏

0 if 𝑑 < 𝑎

ℂ else.

Proof. See Appendix A.1. □

With the knowledge of the homomorphisms contained in Appendix A, it is then also possible
to determine the short exact sequences representing the basis elements of theExt1-groups. In fact,
these representatives can be easily read off the model, as the following three lemmas show. Note
that these can be thought of as a lift of the results in [19, figures 1 and 2] to the Frobenius setting.

Lemma 4.4. Consider two crossing finite arcs (𝑎, 𝑏) and (𝑐, 𝑑) as in the following picture:

Then, we have non-split short exact sequences between these indecomposables given by

0 → (𝑎, 𝑏)
𝑓
�→ (𝑐, 𝑏) ⊕ (𝑎, 𝑑)

g
�→ (𝑐, 𝑑) → 0

0 → (𝑐, 𝑑)
𝑓′

��→ (𝑎, 𝑐) ⊕ (𝑏, 𝑑)
g′

��→ (𝑎, 𝑏) → 0.

Proof. By direct calculation. □

Lemma 4.5. Consider a crossing between an infinite arc (−∞, 𝑏) and a finite arc (𝑎, 𝑐) as in the
following picture:

Then we have non-split short exact sequences between the indecomposables given by

0 → (−∞, 𝑏)
𝑓
�→ (𝑎, 𝑏) ⊕ (−∞, 𝑐)

g
�→ (𝑎, 𝑐) → 0

0 → (𝑎, 𝑐)
𝑓′

��→ (𝑏, 𝑐) ⊕ (−∞, 𝑎)
g′

��→ (−∞, 𝑏) → 0.

Proof. By direct calculation. □
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2135

Lemma 4.6. Consider two infinite arcs (−∞, 𝑎) and (−∞, 𝑏) as in the following picture:

Then we have a non-split short exact sequence between the indecomposables given by

0 → (−∞, 𝑏)
𝑓
�→ (𝑎, 𝑏)

g
�→ (−∞, 𝑎) → 0.

Proof. By direct calculation. □

Remark 4.7. By Proposition 4.1, the short exact sequences appearing in Lemmas 4.4–4.6 are, up
to scalars, the only short exact sequences in 2 with indecomposable end terms.

Further, the graded shift on 2 (and hence also the suspension on 
2
by Remark 2.2) is easy to

see in the combinatorial model.

(1) For a module ℂ[𝑦](𝑗), the graded shift is ℂ[𝑦](𝑗 + 1), so the shift rotates the arc (−∞,−𝑗) to
(−∞,−𝑗 − 1), that is, the arc is rotated one space anti-clockwise, with the point at −∞ as a
pivot.

(2) For a module (𝑥, 𝑦𝑖)(𝑗), the graded shift is (𝑥, 𝑦𝑖)(𝑗 + 1), so the shift rotates the arc (−𝑗 −

𝑖, 1 − 𝑗) to (−𝑗 − 𝑖 − 1,−𝑗), that is, the endpoints of the arc are each moved one space anti-
clockwise.

Remark 4.8. As a consequence, it is also easy to deduce the stable Hom spaces from the
combinatorial model using Proposition 4.1 and Hom(𝑋,𝑌) ≅ Ext1(𝑋, 𝑌(−1)).

4.3 Cluster tilting subcategories

Each of the papers [8, 11, 19] classified the cluster tilting subcategories of the relevant cate-
gories, giving these categories a cluster structure. In this section, we use the equivalences of
Sections 3.2–3.4 to consider 2 and its subcategory f

2
. In all cases, however, we could have used

the explicit nature of 2 and the combinatorial model to compute the results directly.

Definition 4.9. Let  be either a triangulated or Frobenius category. A full subcategory  of  is
called:

1. rigid if Ext1

( ,  ) = 0;

2. maximal rigid if it is rigid and maximal with respect to this property, that is, if

Ext1

(𝑀,𝑀) = 0 and Ext1


(𝑇,𝑀) = 0 = Ext1


(𝑀, 𝑇)

for all 𝑇 ∈  , then𝑀 ∈  ;
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2136 AUGUST et al.

3. cluster tilting if it is functorially finite and

{𝑀 ∈  ∣ Ext1

( ,𝑀) = 0} =  = {𝑀 ∈  ∣ Ext1


(𝑀,  ) = 0}.

Proposition 4.1 makes it easy to determine the rigid subcategories in terms of certain sets of
non-crossing arcs, and in each case, the cluster tilting subcategories are classified by certain
triangulations.
For the subcategory f

2
, we have the following.

Theorem 4.10. A subcategory of f
2
is:

(1) rigid if and only if its indecomposable objects are given by a set of non-crossing arcs in the∞-gon;
(2) maximal rigid if and only if its indecomposable objects are given by a triangulation of the∞-gon;
(3) a cluster tilting subcategory if and only if its indecomposable objects are given by a triangulation

of the∞-gon which is either locally finite, or contains a fountain at some 𝑎 ∈ ℤ.

Proof. Note that every cluster tilting subcategory in the stable category lifts to one in the original
Frobenius category when we add all projective-injective objects. The result then follows directly
from [11, Theorems A and B] and the equivalence in Corollary 3.4, and the fact that projective-
injective objects correspond to boundary arcs. □

Note that the only other possible triangulations of the∞-gon, those containing a split fountain
(i.e. a left fountain at 𝑎 and a right fountain at 𝑏 with 𝑎 < 𝑏), fail to be functorially finite. When
we consider the whole category 2, there are further obstructions.

Theorem4.11. A subcategory  of2 is a cluster tilting subcategory if and only if its indecomposable
objects are given by a triangulation of the completed∞-gon containing a fountain at some 𝑎 ∈ ℤ.

Proof. This follows immediately from [19, Theorem 4.4], and the fact that a cluster tilting sub-
category in the stable category lifts to one in the original Frobenius category, when we add all
projective-injective objects, which correspond to boundary arcs. For the interested reader, we
provide a direct computation in the category 2 in the Appendix. □

5 TRIANGULATIONS ANDMUTATIONS IN THE GRASSMANNIAN
CATEGORY 𝟐

We have seen in Section 4 that the Grassmannian category 2 can be approached via the
completed ∞-gon. We now explore this combinatorics further, providing a categorical inter-
pretation of triangulations of the completed ∞-gon and comparing their categorical and
combinatorial mutations.

5.1 Mutations of triangulations

To describe mutations within the completed ∞-gon, we use the conventions from [3], except
that we identify the points +∞ and −∞, and just call it −∞ to align with our conventions from
Section 4.
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2137

Definition 5.1. Let 𝑇 be a triangulation of the completed∞-gon. An arc 𝛾 ∈ 𝑇 is calledmutable
if there exists 𝛾′ ≠ 𝛾 such that

𝑇′ = 𝑇∖{𝛾} ∪ {𝛾′}

is a triangulation. We then call the triangulation 𝑇′ themutation of 𝑇 at 𝛾 and denote it by 𝜇𝛾(𝑇).

Lemma 5.2 [3, Proposition 2.8]. An arc 𝛾 ∈ 𝑇 is not mutable if and only if it is a wrapping arc.

To summarise, there are two types of mutation:

In particular, anymutable arc in a triangulationmust belong to one of these two configurations
in the triangulation, as either of the dotted arcs.
Consider now the possible exchange graphs of triangulations of the completed ∞-gon with

vertices given by triangulations, and edges by mutations. Clearly, if we only consider finitely
many mutations, then the exchange graph is not connected. In fact, it has infinitely many
connected components. In order to connect the exchange graph, we need to consider infinite
sequences of mutations. Indeed, it turns out that we obtain connectedness using a process
called transfinite mutations, which are infinite sequences of completed infinite mutations, see
[3, Definition 6.1].

Theorem 5.3 [3, Theorem 6.9]. The exchange graph of triangulations of the completed ∞-gon is
connected under transfinite mutations.

5.2 Categorifying triangulations

To make use of transfinite mutations, and, in particular, Theorem 5.3, we need to understand
which subcategories of 2 correspond to triangulations of the completed ∞-gon, and how to
mutate them. However, Proposition 4.1 shows that any triangulation with more than one infinite
arc is not rigid and so a weaker notion is needed. For this, we use maximal almost rigid subcate-
gories of 2, the definition of which builds on the definition of maximal almost rigid modules by
Barnard, Gunawan, Meehan and Schiffler in [4].

Definition 5.4.

(1) Two indecomposable modules 𝑀 and 𝑁 in 2 are called almost compatible if they have no
non-split extensions, or if all non-split extensions between themhave indecomposablemiddle
terms.

(2) A subcategory ⊂ 2 is almost rigid if any two indecomposable modules 𝑀 and 𝑁 in are
almost compatible and if is closed under direct summands.
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2138 AUGUST et al.

(3) A subcategory ismaximal almost rigid if it is almost rigid and if for every module𝑀 not in
, the subcategory add( ∪ 𝑀) is not almost rigid.

Theorem 5.5. A subcategory  ⊂ 2 is maximal almost rigid if and only if its indecomposable
objects correspond to a triangulation of the completed∞-gon.

Proof. Consider two indecomposables𝑀,𝑁 ∈ 2. If their arcs cross, then the configuration must
be the one shown in either Lemma 4.4 or Lemma 4.5. In each case, the lemma in question shows
that there are extensions between themwith decomposable middle terms. In other words, no two
crossing arcs can correspond to almost compatible modules.
If𝑀,𝑁 do not cross, Proposition 4.1 shows that either there are no extensions between them, or

they both correspond to infinite arcs andhave a one-dimensional extension group in one direction.
In the latter case, Lemma 4.6 shows that the only non-split extension has an indecomposable
middle term. In other words, any two non-crossing arcs are almost compatible.
This shows that two indecomposable modules 𝑀 and 𝑁 are almost compatible if and only if

their corresponding arcs are non-crossing. The result follows immediately as triangulations are
maximal sets of pairwise non-crossing arcs, andmaximal almost rigid categories aremaximal sets
of pairwise almost compatible modules. □

Remark 5.6. For a subcategory, rigid implies almost rigid; however, maximal rigid does not in
general imply maximal almost rigid, as the following example illustrates.
Consider the subcategory with indecomposable objects given by arcs in the following picture.

This subcategory is maximal rigid, but not maximal almost rigid: We could add the wrapping
arc connecting the source of the right fountain with −∞, which is almost compatible with all the
depicted arcs.

5.3 Mutation

We are now going to define mutation of almost rigid subcategories in analogy to the mutation in
triangulated categories of Iyama and Yoshino [13].

Definition 5.7. Let be an almost rigid subcategory of an exact category . We call an indecom-
posable object 𝑋 of  mutable if there exists both a left add( ⧵ 𝑋)-approximation and a right
add( ⧵ 𝑋)-approximation of 𝑋.
In that case, we define

𝜇−
𝑋() = add{𝑍 ∈  ∣ there exists an exact sequence 0 → 𝐴′

𝑓
�→ 𝐴′′ → 𝑍 → 0

such that 𝐴′ ∈  and 𝑓 is a left add( ⧵ 𝑋)-approximation of 𝐴′}
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2139

and call this the left mutation of at 𝑋. Dually, we define

𝜇+
𝑋
() = add{𝑍 ∈  ∣ there exists an exact sequence 0 → 𝑍 �→ 𝐴′′

g
�→ 𝐴′ → 0

such that 𝐴′ ∈  and g is a right add( ⧵ 𝑋)-approximation of 𝐴′}

and call this the right mutation of at 𝑋.
We call the short exact sequences appearing in the definition of 𝜇− and 𝜇+ exchange sequences.

If 𝑋 is mutable, left mutation corresponds to simply replacing the indecomposable 𝑋 with the
indecomposable 𝑍 such that there is an exchange sequence

0 → 𝑋 → 𝐴′ → 𝑍 → 0

and similarly for right mutation.

Remark 5.8.

(1) The subcategory add( ⧵ 𝑋) is always almost rigid, but not in general rigid. As such, our
definition extends the framework of mutation defined in [13].

(2) Furthermore, the short exact sequences in our definition of mutation almost mirror the
exchange sequences for (weak) cluster structures as introduced by Buan, Iyama, Reiten and
Scott in [6]. However, we do not have the clear-cut distinction between coefficients and cluster
variables: We have indecomposable objects that can show up as a mutable indecomposable
in one almost rigid subcategory, but as a non-mutable indecomposable in another almost
rigid subcategory, see Example 5.10. In the language of [6], this would correspond to the
indecomposable object in question to be a coefficient in one cluster, and a cluster variable
in another.

(3) We will see in Example 5.11 why we insist both a left and right add( ⧵ 𝑋)-approximation
of 𝑋 exists. Indeed, there we consider an indecomposable 𝑋 with only a left add( ⧵

𝑋)-approximation and note that neither 𝜇−
𝑋
() or 𝜇+

𝑋
() are maximal almost rigid.

We now describe the mutable indecomposable objects in the almost rigid subcategories of 2

in terms of the combinatorial model.

Theorem5.9. Let be amaximal almost rigid subcategory of2 corresponding to a triangulation𝑇

of the completed∞-gon. An indecomposable object𝑋 of is mutable if and only if the corresponding
arc 𝛾 in 𝑇 is mutable. Furthermore, the left and right mutations of at 𝑋 coincide, and correspond
to the mutation 𝜇𝛾(𝑇) of 𝑇 at 𝛾.

Proof. Suppose that 𝛾 is a mutable arc in some triangulation 𝑇, and 𝑋 is the corresponding object
in the corresponding maximal almost rigid subcategory . Since 𝛾 is mutable, 𝑇 must contain a
configuration such as in Lemma 4.4 or 4.5, where 𝛾 is one of the dotted arcs. In particular, suppose
𝛾 = (𝑎, 𝑏) as in Lemma4.4 so that𝜇𝛾(𝑇) = 𝑇∖(𝑎, 𝑏) ∪ (𝑐, 𝑑), and consider the two exact sequences

0 → (𝑎, 𝑏)
𝑓
�→ (𝑐, 𝑏) ⊕ (𝑎, 𝑑)

g
�→ (𝑐, 𝑑) → 0

0 → (𝑐, 𝑑)
𝑓′

��→ (𝑎, 𝑐) ⊕ (𝑏, 𝑑)
g′

��→ (𝑎, 𝑏) → 0
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2140 AUGUST et al.

from Lemma 4.4. We claim that 𝑓 (resp., g ′) is a left (resp., right) add( ⧵ 𝑋)-approximation of𝑋,
and hence 𝑋 is mutable with both 𝜇+

𝑋
() and 𝜇−

𝑋
() corresponding to the triangulation 𝜇𝛾(𝑇).

Indeed, to show that 𝑓 is a left add( ⧵ 𝑋)-approximation, it is enough to show

Ext1 ((𝑐, 𝑑), 𝛾) = 0

for all 𝛾 ∈ 𝑇∖(𝑎, 𝑏). Since 𝑇∖(𝑎, 𝑏) ∪ (𝑐, 𝑑) is a triangulation, no arc 𝛾 ∈ 𝑇∖(𝑎, 𝑏) can cross
(𝑐, 𝑑), and so, this follows from Proposition 4.1. Similarly, to show that g ′ is a right add( ⧵

𝑋)-approximation, it is enough to show

Ext1(𝛾, (𝑐, 𝑑)) = 0

for all 𝛾 ∈ 𝑇∖(𝑎, 𝑏). Since 𝑇∖(𝑎, 𝑏) ∪ (𝑐, 𝑑) is a triangulation, no arc 𝛾 ∈ 𝑇∖(𝑐, 𝑑) can cross (𝑎, 𝑏)

and so this follows from Proposition 4.1.
The cases for 𝛾 = (𝑐, 𝑑) in Lemma 4.4, and the two cases in Lemma 4.5 are all similar.
So, we now show that if an arc 𝛾 is notmutable, then the corresponding object𝑋 is notmutable.

If 𝛾 is not mutable, then it is a wrapping arc by [3, Proposition 2.8]. Assume that 𝛾 is a wrapping
arc for a left fountain at 𝑛. The case for a right fountain follows symmetrically.
Since 𝛾 is a wrapping arc, there exist infinitely many finite arcs (𝑚, 𝑛) ∈ 𝑇 with 𝑚 < 𝑛. More-

over, for any such (𝑚, 𝑛), Lemma A.4 and the comments thereafter show that there is a non-zero
morphism

𝑓∶ (−∞, 𝑛) → (𝑚, 𝑛)

where 1 ↦ 𝑥. If this were to factor through another indecomposable (𝑠, 𝑡) ∈ 𝑇, then we would
have non-zero maps

(−∞, 𝑛) → (𝑠, 𝑡) and (𝑠, 𝑡) → (𝑚, 𝑛).

In particular, if 𝑠 = −∞, Lemmas A.2 and A.4 show that 𝑛 ⩽ 𝑡 ⩽ 𝑛 and hence (𝑠, 𝑡) = 𝛾. Thus, 𝑓
does not factor through any infinite arc in 𝑇∖𝛾.
If (𝑠, 𝑡) is a finite arc, then 𝑛 ⩽ 𝑡 and the map (−∞, 𝑛) → (𝑠, 𝑡) is determined by 1 ↦ 𝛼𝑥𝑦𝑡−𝑛 for

some 𝛼 ∈ ℂ by LemmaA.4. Since 𝑓 is nonzero, themap (𝑠, 𝑡) → (𝑚, 𝑛) cannot send 𝑥 to 0, and so,
LemmaA.5 shows that 𝑠 ⩽ 𝑚 and 𝑛 ⩽ 𝑡 ⩽ 𝑛. So, any left add( ⧵ 𝑋)-approximation of 𝛾must be a
finite direct sum which, for each (𝑚, 𝑛) ∈ 𝑇 with𝑚 < 𝑛, contains some (𝑠, 𝑛) ∈ 𝑇∖𝛾 with 𝑠 ⩽ 𝑚.
But there are infinitely many such (𝑚, 𝑛) ∈ 𝑇 and so this is not possible and hence 𝛾 has no left
add( ⧵ 𝑋)-approximation as required. □

Example 5.10. In the first triangulation, the infinite arc (−∞, 0) is mutable as it can be replaced
with the arc (−1, 1). In the second triangulation, the arc (−∞, 0) is not mutable.
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2141

Example 5.11. Consider the arc 𝛾 = (−∞,−1) in the first triangulation of Example 5.10. The
proof of Theorem 5.9 shows that 𝛾 has no left add( ⧵ 𝑋)-approximation, so if we naively extend
Iyama–Yoshino mutation, the left mutation would be

which is not a triangulation/maximal almost rigid. This is somewhat expected as approximations
are key tomutation. However, what is perhapsmore surprising is that even though a right approx-
imation does exist (it is given by (−∞, 0)), the result under right mutation is the same as the left
mutation and so is not maximal almost rigid. This is why we restrict mutation to objects which
have both a left and right approximation.

By virtue of Theorem 5.9, the concepts of infinite, completed and transfinite mutations of the
completed ∞-gon from [3] can be directly extended to the mutation of maximal almost rigid
subcategories of 2.
We can define the exchange graph ofmaximal almost rigid subcategories of 2 as the graphwith

vertices corresponding to maximal almost rigid subcategories, and with edges given by transfinite
mutations.

Corollary 5.12. The exchange graph of maximal almost rigid subcategories of 2 is connected.

Since our notion of mutation restricts to Iyama–Yoshino mutation in the cluster tilting setting,
Theorem 5.9 also shows that the mutation of these subcategories (where possible) is controlled by
the combinatorics of the completed∞-gon.
In summary,we see that the category2 arising from the𝐴∞ curve singularity naturally exhibits

cluster combinatorics induced from both the∞-gon and its completion.

APPENDIX A

We continue to use our convention of identifying indecomposable objects in 2 = MCMℤ(𝑅) by
arcs in the completed∞-gon.

A.1 Hom-calculations
Wedescribe the homomorphisms in2. Overall, we have the following description ofHom-spaces.

Proposition A.1. Let (𝑎, 𝑏) and (𝑐, 𝑑) be indecomposable objects in 2. Then

Hom𝑅((𝑎, 𝑏), (𝑐, 𝑑)) ≅

⎧⎪⎪⎨⎪⎪⎩

ℂ2 if −∞ < 𝑎 ⩽ 𝑐 and 𝑏 ⩽ 𝑑

0 if −∞ = 𝑎 ⩽ 𝑐 and 𝑑 < 𝑏

0 if 𝑑 < 𝑎

ℂ else.
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2142 AUGUST et al.

F IGURE A . 1 Hom𝑅((−∞, 𝑏), (−∞, 𝑑)) ≅ ℂ.

We now tackle Proposition A.1 case by case, and give an explicit basis of the Hom-space
in each case. Recall from Section 4.2 that the module (𝑎, 𝑏) is, up to isomorphism, given by
(𝑥, 𝑦𝑏−𝑎−1)(−𝑏 + 1) if (𝑎, 𝑏) is finite and ℂ[𝑦](−𝑏) if (𝑎, 𝑏) is infinite.

Lemma A.2. The spaces of homomorphisms between infinite arcs are given by:

Hom𝑅 (ℂ[𝑦](𝑗), ℂ[𝑦]) =

{
ℂ if 𝑗 ⩾ 0

0 otherwise.
(A.1)

In the case where there is a map, 1 ↦ 𝜆𝑦𝑗 for some 𝜆 ∈ ℂ.

Proof. Any such morphism is determined by where 1 ∈ ℂ[𝑦](𝑗) is mapped to, and to be a degree
zero morphism, it must map to an element of degree −𝑗. If 𝑗 < 0, the only possibility is 0, and
when 𝑗 ⩾ 0, this is 𝜆𝑦𝑗 for 𝜆 ∈ ℂ. □

We can restate Lemma A.2 as follows: Let (−∞, 𝑏) and (−∞, 𝑑) be indecomposable objects in
MCMℤ(𝑅). Then

Hom𝑅((−∞, 𝑏), (−∞, 𝑑)) ≅

{
ℂ if 𝑏 ⩽ 𝑑

0 else,

where any existing map is determined by 1 ↦ 𝜆𝑦𝑑−𝑏 for some 𝜆 ∈ ℂ. The case where non-trivial
morphisms exist is depicted in Figure A.1.

Lemma A.3. The spaces of homomorphisms from a finite arc to an infinite arc are given by:

Hom𝑅

(
(𝑥, 𝑦𝑖)(𝑗), ℂ[𝑦]

)
≅

{
ℂ if 𝑗 ⩾ −𝑖

0 otherwise.
(A.2)

In the case where there is a map, 𝑥 ↦ 0 and 𝑦𝑖 ↦ 𝜆𝑦𝑖+𝑗 for some 𝜆 ∈ ℂ.

Proof. Any such morphism g is determined by where 𝑥 and 𝑦𝑖 are mapped to. Moreover, as 𝑥

annihilates ℂ[𝑦] = 𝑅∕(𝑥), g must satisfy

𝑦𝑖g(𝑥) = 𝑥g(𝑦𝑖) = 0,

and thus g(𝑥) = 0. Now, to be a degree zeromorphism 𝑦𝑖 mustmap to an element of degree−𝑖 − 𝑗,
which is precisely one of the form 𝜆𝑦𝑖+𝑗 if 𝑗 ⩾ −𝑖 and zero otherwise. □
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2143

F IGURE A . 2 Hom𝑅((𝑎, 𝑏), (−∞, 𝑑)) ≅ ℂ.

F IGURE A . 3 Hom𝑅((−∞, 𝑏), (𝑐, 𝑑)) ≅ ℂ.

Lemma A.3 can be restated as follows: Let (𝑎, 𝑏) and (−∞, 𝑑) be indecomposable objects in
MCMℤ(𝑅), with (𝑎, 𝑏) a finite arc. Then

Hom𝑅((𝑎, 𝑏), (−∞, 𝑑)) ≅

{
ℂ if 𝑎 ⩽ 𝑑

0 else,

where any existing map is determined by 𝑥 ↦ 0 and 𝑦𝑏−𝑎−1 ↦ 𝜆𝑦𝑑−𝑎 for some 𝜆 ∈ ℂ. In other
words, there are morphisms if the finite arc starts at or to the left of the infinite arc, as depicted in
Figure A.2.

Lemma A.4. The space of homomorphisms from an infinite arc to a finite arc is given by:

Hom𝑅

(
ℂ[𝑦](𝑗), (𝑥, 𝑦𝑖)

)
≅

{
ℂ if 𝑗 ⩾ −1

0 otherwise.
(A.3)

In the case where there is a map, 1 ↦ 𝜆𝑥𝑦𝑗+1 for some 𝜆 ∈ ℂ.

Proof. Any such morphism g is determined by where 1 ∈ ℂ[𝑦](𝑗) is mapped to. Moreover, as 𝑥

annihilates ℂ[𝑦] = 𝑅∕(𝑥), then 𝑥g(1) = g(𝑥 ⋅ 1) = 0, and thus, 𝑥 must map to an element in (𝑥).
If 𝑗 < −1, then the only option is zero. If 𝑗 ⩾ −1, then 1 ↦ 𝜆𝑥𝑦𝑗+1 for some 𝜆 ∈ ℂ. □

Lemma A.4 can be restated as follows: Let (−∞, 𝑏) and (𝑐, 𝑑) be indecomposable objects in
MCMℤ(𝑅), with (𝑐, 𝑑) a finite arc. Then

Hom𝑅((−∞, 𝑏), (𝑐, 𝑑)) ≅

{
ℂ if 𝑏 ⩽ 𝑑

0 else,

where any existing map is determined by 1 ↦ 𝜆𝑥𝑦𝑑−𝑏 for some 𝜆 ∈ ℂ. In other words, there are
morphisms if the finite arc ends at or to the right of the infinite arc, as shown in Figure A.3.
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2144 AUGUST et al.

F IGURE A . 4 Hom𝑅((𝑎, 𝑏), (𝑐, 𝑑)) ≅ ℂ2.

F IGURE A . 5 Hom𝑅((𝑎, 𝑏), (𝑐, 𝑑)) ≅ ℂ.

Lemma A.5. The spaces of homomorphisms between finite arcs are given by

Hom𝑅((𝑎, 𝑏), (𝑐, 𝑑)) ≅

⎧⎪⎨⎪⎩
ℂ2 if 𝑎 ⩽ 𝑐 and 𝑏 ⩽ 𝑑

ℂ if 𝑎 ⩽ 𝑐 and 𝑑 < 𝑏 or 𝑐 < 𝑎 ⩽ 𝑑

0 else; i.e. if 𝑑 < 𝑎.

Proof. Recall that a map from (𝑎, 𝑏) to (𝑐, 𝑑) is precisely a degree zero homomorphism

g ∶ (𝑥, 𝑦𝑏−𝑎−1)(1 − 𝑏) → (𝑥, 𝑦𝑑−𝑐−1)(1 − 𝑑)

and any such map is determined by g(𝑥) and g(𝑦𝑏−𝑎−1). Since g is degree-preserving, there
must exist 𝛼, 𝛽, 𝛾, 𝛿 ∈ ℂ such that g(𝑥) = 𝛼𝑥𝑦𝑑−𝑏 + 𝛽𝑦𝑑−𝑏−1 and g(𝑦𝑏−𝑎−1) = 𝛾𝑥𝑦𝑑−𝑎 + 𝛿𝑦𝑑−𝑎−1.
Moreover,

𝑦𝑏−𝑎−1(𝛼𝑥𝑦𝑑−𝑏 + 𝛽𝑦𝑑−𝑏−1) = 𝑦𝑏−𝑎−1g(𝑥) = g(𝑥𝑦𝑏−𝑎−1) = 𝑥g(𝑦𝑏−𝑎−1) = 𝛿𝑥𝑦𝑑−𝑎−1,

and thus, 𝛽 = 0 and 𝛼 = 𝛿. It follows that the Hom space is at most two-dimensional.
Note that 𝛾 can be non-zero if and only if 𝑥𝑦𝑑−𝑎 ∈ (𝑥, 𝑦𝑑−𝑐−1)(1 − 𝑑)which is if and only if 𝑎 ⩽

𝑑. Further, 𝛼 = 𝛿 can be non-zero if and only if both 𝑥𝑦𝑑−𝑏 and 𝑦𝑑−𝑎−1 lie in (𝑥, 𝑦𝑑−𝑐−1)(1 − 𝑑).
The first is satisfied if and only if 𝑏 ⩽ 𝑑while the second holds if and only if 𝑑 − 𝑎 − 1 ⩾ 𝑑 − 𝑐 − 1,
or equivalently, 𝑎 ⩽ 𝑐.
It follows that the morphisms can be described as follows.

1. If 𝑎 ⩽ 𝑑, then there are maps determined by 𝑥 ↦ 0, 𝑦𝑏−𝑎−1 ↦ 𝛾𝑥𝑦𝑑−𝑎 for each 𝛾 ∈ ℂ.
2. If 𝑎 ⩽ 𝑐 and 𝑏 ⩽ 𝑑, then for each 𝛼 ∈ ℂ, there is a map taking 𝑥 ↦ 𝛼𝑥𝑦𝑑−𝑏 and 𝑦𝑏−𝑎−1 ↦

𝛼𝑦𝑑−𝑎−1.

Notice that if condition (2) is satisfied, then so is (1), and these are precisely the conditions for the
space of homomorphisms to be two-dimensional in the above. When (1) is satisfied but (2) is not,
this gives the case where the space of homomorphisms is one-dimensional, and when neither are
satisfied, all homomorphisms are 0. □

Some of the cases from Lemma A.5 are depicted in Figures A.4–A.6.
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2145

F IGURE A . 6 Hom𝑅((𝑎, 𝑏), (𝑐, 𝑑)) = 0.

A.2 Cluster tilting subcategories
If 𝑇 is a cluster tilting subcategory of 2, then it is also maximal rigid. By Proposition 4.1, its inde-
composable objects must therefore correspond to a maximal set of mutually non-crossing arcs
containing at most one infinite arc.
As a consequence, the maximal rigid subcategories  of 2 are of the following form.

(1)  corresponds to a triangulation of the completed∞-gon that is locally finite. In this case, it
contains only finite arcs.

(2)  corresponds to a maximal set of non-crossing finite arcs containing a split fountain, that
is, a left fountain at 𝑎 and a right fountain at 𝑏 with 𝑎 < 𝑏 together with a unique infinite arc
given by either (−∞, 𝑎) or (−∞, 𝑏).

(3)  corresponds to a triangulation of the completed∞-gon containing a fountain at 𝑎, and thus
also containing the arc (−∞, 𝑎).

We will now provide an alternative proof of Theorem 4.11 using the calculations from
Appendix A.1. Note first that Case (2) in the above list of maximal rigid subcategories is not
cluster tilting: Assume that the infinite arc (−∞, 𝑎) lies in  . Then (−∞, 𝑏) lies in {𝑀 ∈  ∣

Ext1

(𝑀,  ) = 0}, but not in  , which thus is not cluster tilting. The case where (−∞, 𝑏) ∈ 

follows symmetrically. We now rule out Case (1).

PropositionA.6. Let  in2 be amaximally rigid subcategory given by a locally finite triangulation
𝑇. Then  is not pre-covering, and thus, not functorially finite.
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2146 AUGUST et al.

Proof. Let 𝛾 be an infinite arc. In particular, 𝛾 is not in 𝑇. Then by Lemma A.3 and [9, Lemma
3.7], there exist infinitely many arcs 𝛼𝑖 ∈ 𝑇 such thatHom(𝛼𝑖, 𝛾) ≠ 0. Assume for a contradiction
that there is a (minimal)  -pre-cover 𝑓∶ 𝛼 → 𝛾, where 𝛼 =

∑𝑛
𝑖=1 𝛼𝑖 for 𝛼𝑖 ∈ 𝑇. Assume that 𝛼𝑛 =

(𝑎, 𝑏) is the longest arc in {𝛼1, … , 𝛼𝑛}, that is, 𝑏 − 𝑎 is maximal.
Now, by [9, Lemma 3.7] and since 𝑇 is locally finite, there exists an arc 𝛽 = (𝑐, 𝑑) ∈ 𝑇 such that

𝑐 < 𝑎 < 𝑏 < 𝑑. Then there exists a non-zero morphism from (𝑐, 𝑑) to 𝛾 by Lemma A.3, because
there are morphisms from 𝛼𝑖 to 𝛾 for all 1 ⩽ 𝑖 ⩽ 𝑛. For any map ℎ from 𝛽 to an 𝛼𝑖 , the image lies
in the ideal generated by 𝑥𝑦 (up to some shift). But then the composition 𝑓◦ℎ has to be 0.
So, any maximal rigid category containing a leapfrog is not pre-covering, and therefore not

cluster tilting. □

Let  be any Frobenius category. In order to apply results from [11] directly, we first observe
that we can lift pre-covers, and symmetrically pre-envelopes, from the stable category  to . We
denote by

𝜋∶  → 

the canonical projection functor.

Lemma A.7. Let  be a subcategory of the stable category  containing all projective-injective
objects. Let 𝑀 be an object in , and assume that 𝜋(𝑀) has a 𝜋( )-pre-cover (respectively,
𝜋( )-pre-envelope) in . Then𝑀 has a  -pre-cover (respectively,  -pre-envelope) in .

Proof. We only show the claim for pre-covers, and the proof for pre-envelopes follows symmetri-
cally. Assume 𝜋(𝑓)∶ 𝜋(𝑇) → 𝜋(𝑀) is a 𝜋( )-pre-cover in . The map 𝜋(𝑓) is induced by a map
𝑓∶ 𝑇 → 𝑀 in . Since is Frobenius, every object in  has a projective pre-cover. Let𝑝∶ 𝑃𝑀 → 𝑀

be a projective pre-cover of𝑀.
We show that the map [

𝑓 𝑝
]
∶ 𝑇 ⊕ 𝑃𝑀 → 𝑀

is a  -pre-cover of𝑀 in . Since  contains all projective-injective objects, 𝑇 ⊕ 𝑃𝑀 is an object in
 . Suppose nowwe have an object 𝑇′ in  with amap g ∶ 𝑇′ → 𝑀. Since 𝜋(𝑓) is a 𝜋( )-pre-cover
in , there exists a map 𝜋(ℎ)∶ 𝜋(𝑇′) → 𝜋(𝑇) such that the following diagram in  commutes:

Consider the following lift of this diagram in 
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CLUSTER STRUCTURES FOR THE 𝐴∞ SINGULARITY 2147

We have [
𝑓 𝑝

] [ℎ
0

]
= 𝑓ℎ.

Now 𝜋(g) = 𝜋(𝑓ℎ), so g = 𝑓ℎ + 𝛿, for some 𝛿∶ 𝑇′ → 𝑀 factoring through a projective-injective
object 𝑄 in . We have the commutative diagram

where the dashed arrow exists because 𝑝∶ 𝑃𝑀 → 𝑀 is a projective pre-cover. Therefore, 𝛿 factors
through 𝑃𝑀

Consider the commutative diagram

in . We have [
𝑓 𝑝

] [ℎ

𝛿′

]
= 𝑓ℎ + 𝑝𝛿′ = 𝑓ℎ + 𝛿 = g .

Therefore, g factors through the map
[
𝑓 𝑝

]
, which shows the claim. □

Proposition A.8. Let  in 2 be a maximal rigid subcategory containing a fountain. Then  is
functorially finite.

Proof. Let 𝑇 be the triangulation of the completed∞-gon corresponding to  . We assumewithout
loss of generality that 𝑇 has a fountain at 0. Pre-covering and pre-enveloping for finite arcs in 

2

was shown in [11] and follows in our situation from Lemma A.7, by lifting their pre-covers and
adding the infinite arc. It remains to show that any infinite arc in the completed ∞-gon has a
pre-cover and a pre-envelope in  . Let thus 𝛾 = (−∞, 𝑙) be an infinite arc. We assume that 𝑙 > 0,
the case 𝑙 < 0 follows symmetrically, and the case 𝑙 = 0 is trivial, given that (−∞, 0) ∈ 𝑇.
By Lemma A.7, it suffices to work in the stable category 𝐶

2
. Let 𝐹 = {(0, 𝑏) ∈ 𝑇 ∣ 𝑏 ⩾ 0} ∪

{(−∞, 0)}. By Proposition 4.1 and Remark 4.8, there are only finitely many arcs 𝛼 ∈ 𝑇 ⧵ 𝐹 hav-
ing stable non-trivial morphisms from or to 𝛾. Thus, we are done if we can show that there is an
𝐹-pre-envelope and an 𝐹-pre-cover of 𝛾.
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2148 AUGUST et al.

Pre-cover. By Lemmas A.2 and A.3, all stable morphisms from 𝐹 to 𝛾 factor through (−∞, 0),
which thus provides a pre-cover.
Pre-envelope. Note that there is no map from 𝛾 to the unique infinite arc (−∞, 0) in 𝐹. Thus,

we only need to consider finite arcs. Let 𝐹⩽𝑙 =
⨁

{(0, 𝑏) ∈ 𝑇 ∣ 𝑏 ⩽ 𝑙} and set 𝑀 =
⨁

𝛼∈𝐹⩽𝑙
𝛼. By

Lemma A.4 and the explicit description of morphisms after Lemma A.5, all morphisms from 𝛾 to
arcs in 𝐹 factor through𝑀. □
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