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Abstract

Metal powder bed fusion (MPBF) is not a standalone process, and other manufacturing technologies, such as heat treatment 

and surface finishing operations, are often required to achieve a high-quality component. To optimise each individual pro-

cess for a given component, its progression through the full process chain must be considered and understood, which can be 

achieved through the use of validated models. This article aims to provide an overview of the various modelling techniques 

that can be utilised in the development of a digital twin for MPBF process chains, including methods for data transfer between 

physical and digital entities and uncertainty evaluation. An assessment of the current maturity of modelling techniques 

through the use of technology readiness levels is conducted to understand their maturity. Summary remarks highlighting 

the advantages and disadvantages in physics-based modelling techniques used in MPBF research domains  (i.e. prediction 

of: powder distortion; temperature; material properties; distortion; residual stresses; as well as topology optimisation), 

post-processing (i.e. modelling of: machining; heat treatment; and surface engineering), and digital twins (i.e. simulation of 

manufacturing process chains; interoperability; and computational performance) are provided. Future perspectives for the 

challenges in these MPBF research domains are also discussed and summarised.

Keywords Metal powder bed fusion · Manufacturing process chains · Modelling and simulation

Abbreviations

AM  Additive manufacturing

CA  Cellular automata

CA-FD  Cellular automata finite difference

CAD  Computer-aided design

CAM  Compute aided manufacturing

EBPBF  Electron beam powder bed fusion

FE  Finite element

GUM  Guide to the expression of uncertainty in 

measurement

HT  Heat treatment

kMC  Kinetic Monte Carlo

LPBF  Laser powder bed fusion

LSP  Laser shock peening

MO  Machining operation

MPBF  Metal powder bed fusion

PDF  Probability density function

RVE  Representative volume element

SE  Surface engineering

SP  Shot peening

TRL  Technology readiness level

XCT  X-ray computed tomography

1 Introduction

The capability of metal powder bed fusion (MPBF) to 

produce complex structural components in a wide range 

of materials has the potential to remove traditional manu-

facturing constraints from product design. This can enable 

greater product performance to be achieved through the 

creation of more functional shapes, the reduction of weight, 
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and the consolidation of multi-part assemblies into single 

components.

MPBF is not without its drawbacks where key challenges 

such as poor surface finish, uncertainty and standardisation 

in part quality and certification, high processing costs, and 

process variability must be overcome [1]. In many cases, 

existing technologies can be employed to do this, such as 

post-processing methods for improving material properties, 

and digital tools for planning and optimising operations. By 

linking all of these physical and digital components together, 

it is possible to create a “digital twin”, a digital replica of a 

physical asset, process, or system that uses associated real 

data streams to communicate with and optimise its physical 

counterpart [2, 3].

Digital twins have become increasingly common in the 

industry over the last decade, with prime examples being 

digital twins for asset monitoring [4, 5]. It will ultimately be 

desirable to create a digital twin of the entire MPBF process 

chain, whereby data is passed from one process simulation 

to the next, models are updated according to machine and 

inspection data from physical sensors, and components and 

production plans are updated and optimised accordingly via 

data analytics and artificial intelligence. This would enable 

designs and processes to be optimised for a particular part 

with less reliance on costly and time-consuming physical 

trials, increasing productivity and reducing the barriers to 

new product introduction [3]. Work on digital twins in addi-

tive manufacturing has shown conceptual developments that 

can be the basis to deliver industrial impact [6–9], however, 

further work in the development of digital twins would help 

to fully realise all of the benefits of additive manufacturing 

in the industrial production environments while maximising 

productivity and cost-efficiency.

This paper reviews the state of the art for modelling the 

physics of manufacturing processes involved in MPBF pro-

cess chains, with a view to support the realisation of future 

digital twins. Areas of focus are the process models them-

selves and methods for passing data between simulations 

according to the physical process chain, as well as how this 

affects confidence in the results of the models and the propa-

gation of uncertainty. This allows the maturity of the vari-

ous modelling methods and data transfer technologies to be 

assessed through the use of Technology Readiness Levels 

(TRLs) so that roadmaps of their predicted development can 

be generated in the near future.

2  Digital twin and process chain concepts 
in MPBF

2.1  Overview of a digital twin concept

A digital twin can be described as an organised collection 

of physics-based methods and advanced analytics that is 

used to model the present state of every asset [3, 10]. By 

additionally considering the data streams of these assets and 

communicating with them, it can be considered as a digital 

counterpart to physical reality. Wherever a physical tool ser-

vices a need (for example moving people from one place to 

another, electricity provision, manufacturing a product, etc.), 

a virtual counterpart can be created to plan, optimise, and 

control it. For MBPF, a process chain digital twin would pro-

vide accurate predictions of component properties, greatly 

reducing the amount of trial-and-error physical experimenta-

tion that is required when developing new parts.

To describe the role of the simulation models in a digital 

twin, Fig. 1 shows an example of a digital twin concept for 

product and process development in MPBF. Alongside the 

digital twin is the physical environment, as well as mid-

dleware that facilitates connectivity and the transfer and 

storage of data, information, and knowledge. This can all 

be accessed by people with the necessary knowledge to 

act upon it, for example by deciding the next step of the 

product and process development. Information from the 

digital twin could also be used to inform other decisions, 

such as optimising the layout of a facility and production 

schedules, developing cost models, or adapting the post-pro-

cessing route to help combat the variable nature of MBPF 

production.

The first step in the development of a product is the 

design work, which can include simulation and other analy-

ses to optimise design performance. Once an initial design 

has been created, the product undergoes design for manu-

facture. This includes simulating the manufacturing process 

chain to determine the geometric and material changes that 

will arise when the material is subject to mechanical and/

or thermal energy inputs. The steps shown in Fig. 1 include 

an additive manufacturing (AM) build process, followed 

by heat treatment (HT), machining operations (MO), and 

surface engineering (SE). The simulation of this chain can 

generate useful knowledge for product and process develop-

ment, such as the optimal parameters for a particular process 

and potential regions of risk in the design geometry. Follow-

ing this, the part performance analyses can be conducted 

again to assess the impact of any geometry and material 

changes that may arise during manufacture.

Once there is sufficient confidence that the design meets 

the requirements for functionality and performance, physical 

manufacturing trials can be executed. The test parts may be 
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inspected for dimensional accuracy, surface quality, mate-

rial characteristics, and internal defects at each stage of the 

manufacturing process, and this data is passed back to the 

simulations so that they can be updated, validated, and iden-

tify solutions to any potential problems that may arise dur-

ing manufacture. The relevant experts then decide whether 

more improvements or iterations are needed and where 

such changes are required. An example problem could be 

an excessive distortion of the part in some locations, which 

could be addressed through further stiffening of the geome-

try in that area or by applying distortion compensation based 

on inspection or simulation results [11–13].

The final step is physical testing of the MPBF parts using 

test rigs representing in-service conditions. Further devel-

opment iterations may be needed if the functionality of the 

parts does not meet the requirements or if further quality 

improvements or cost reductions can be achieved. Once the 

designed MPBF parts and the associated processes have 

been developed, inspected and tested, the designs can be 

prototyped and further progressed for production.

The presented example shows that physics-based model-

ling and simulation could potentially provide more benefits 

in the process and product development stage if they are 

integrated in a digital twin.

2.2  Overview of process chain simulation concept

Physics-based simulation is typically used in design and 

manufacture to reduce the need for costly experimental 

work, for example by examining variables in a manufac-

turing process or a test that the final product will undergo. 

These simulations typically require material properties that 

are heavily dependent on temperature and strain rate, as well 

as they can undergo phase changes during use. For instance, 

physics-based simulations have been applied to manufactur-

ing processes, such as: forming and forging [14–18], cast-

ing [19–21], welding [22–24], metal cutting [25–27], non-

conventional machining [28, 29], additive manufacturing 

[30–33], shot-peening [34, 35] and heat treatment [36–38]. 

A new vision, in which micro-structural simulations, multi-

scale process and material models, and manufacturing pro-

cess chain simulations can be integrated into a single work-

flow, would enable material properties to be predicted and 

propagated from simulation to simulation.

Figure 2 shows a suggested manufacturing process chain 

simulation workflow. The vertical direction shows a mul-

tiscale materials computational approach, the objective 

of which is to (i) predict the microscale mechanical fields 

characterising the mesoscale based on local microstructure 

information and (ii) derive the component-level properties 

from the mesoscale behaviour. Challenges in this direction 

include the development of efficient and accurate macroscale 

continuum models that implicitly simulate the influence of 

process-induced microstructure variations on the process, 

and characterisation and classification of micro-structural 

simulation outputs into multi-scale models representing 

material behaviour. This needs to be accomplished without 

significantly compromising accuracy and also needs to be 

capable of coping with numerical discontinuities, so that the 

multi-scale build models can be used to inform subsequent 

process models.

The challenges in the horizontal direction regard data 

transfer between different micro-structural simulations, 

material models, and process simulations. This must be 

Fig. 1  An example of a digital 

twin for product and process 

development
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accomplished to predict the micro-structural defects, resid-

ual stresses, geometric distortion, fatigue life, and mechani-

cal properties of parts passing through the process chain.

The simulation workflow shown in Fig. 2 aims to reduce 

the amount of physical testing required to obtain the mate-

rial properties that are necessary for manufacturing pro-

cess simulations. Although doing so would not completely 

replace the need for obtaining physical material property 

data, building on the results of process-specific micro-scale 

models should enable more effective simulation of emerging 

materials and applications.

3  Laser powder bed fusion (LPBF)

The multiscale nature of the LPBF process means that 

behaviour over a range of length and time scales needs to be 

addressed if an entire process chain is to be realised. At the 

lowest level, interactions between the heat source and the 

powder particles are fundamental in the development of the 

melt-pool and resulting thermal fields. The solidified micro-

structures are composed of grains (of the order of tens of 

microns), fine precipitates (of a few nanometres) and voids 

(ranging from nanometres to microns in size). These factors 

will then influence the mechanical response of the material 

at the mesoscale, characterised as length scales of ~ 100 μm. 

In general, the resulting micromechanical fields will be non-

uniform at these length scales.

3.1  Micro and meso scale models

Physical modelling of the powder melting process is 

extremely challenging. To arrive at accurate results, a rep-

resentative statistical distribution of the powder particles 

within the layer of interest must first be obtained. Pow-

der size distribution impacts the packing density of the 

powder bed which has been linked with the formation of 

lack-of-fusion voids [39]. The relationship between the pow-

der size distribution and the packing density is shown in 

Fig. 3.

One method used for generating a powder bed is the rain 

model [41], whereby a falling particle searches for a local 

minimum in potential energy. The falling particle rotates as 

necessary when coming into contact with another particle, 

ultimately either settling in place at the local minimum or 

falling until reaching the global minimum. Variations of this 

method have been employed by a range of authors [42–44] 

to generate distinct powder packing characteristics based 

on experimentally measured particle size distributions. An 

alternate technique is the use of the discrete element method 

to simulate the raking of powder particles into position on 

the bed [45–48]. In this approach, the motion of the individ-

ual particles and their effects on one another are computed 

by considering the various forces that act on each particle, 

such as friction and gravity. Most of these approaches cur-

rently consider spherical particles.

Fig. 2  MPBF process chain 

simulation concept

Fig. 3  Packing density (f) reaches a maximum (f*) when the particle 

size distribution includes a mixture of small (s) and large (L) parti-

cles. Image sourced from [40]
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In addition to the powder bed, the laser beam power, point 

distance, and scan speed all have significant impacts on the 

melt-pool dynamics, spatter pattern, and sublimation of par-

ticles, and therefore the resulting porosity and surface rough-

ness of the part [49]. The heat source can be described using 

a variety of techniques, such as Gaussian expressions [50, 

51] or ray tracing that describes the absorption and reflection 

of the laser by the powder and substrate [52].

One of the main purposes of meso-scale modelling is to 

predict porosity and the cooling rates that dictate micro-

structural evolution, and thus component properties. The 

meso-scale describes phase transitions during laser melt-

ing, capturing the molten pool dynamics as a function of the 

powder, process parameters, and material [43].

The melting and solidification are achieved by scanning a 

laser beam over a randomly distributed powder bed, which in 

turn is situated over a preplaced powder layer or previously 

solidified powder layer in a multilayer scanning strategy. The 

development of porosity has been correlated experimentally 

with both top sample surface structures and the melt pool 

and flow behaviour [53], and this behaviour has been fur-

ther explained through numerical modelling [54]. Recent 

experimental analysis into the transient dynamics of powder 

spattering in LPBF has provided information on the various 

powder melting stages that dictate local flow dynamics as 

well as the effect of environmental pressure on spatter [55].

Given the stochastic nature of the process being simu-

lated, confidence in the output of powder melting models 

may be improved through running multiple simulations 

with different powder bed morphologies. Doing so enables 

the construction of probabilistic functions, for example of 

porosity against energy density, layer thickness, and beam 

scanning speeds. The output of these meso-scale models is a 

thermal history that can be used for the calculation of micro-

structure evolution and the prediction of effective material 

properties. In particular, homogenisation of microscale fields 

defined within a representative volume element (RVE) or 

unit cell provides a method for calculating the mechanical 

and thermal properties of an additively manufactured mate-

rial [56]. The advantage of such simulations is that details of 

the process-induced microstructure are explicitly accounted 

for. Such methods also enable the exploration of the sen-

sitivity of the effective properties to the presence of voids 

and unmelted particulates [57], ensuring that the effects of 

variable build quality can be considered at component level. 

For an additively manufactured material, it is likely proper-

ties would be orthotropic or anisotropic [58, 59] since build 

direction will potentially have an effect on properties. For 

a material with some random factors in its microstructure, 

such as porosity or grain orientation, many randomly gen-

erated RVEs should be analysed to capture the statistical 

variability correctly, leading to a corresponding statistical 

description of the component level properties.

Many parts have elaborated internal geometry with cel-

lular, lattice or beam structures providing high performance 

to weight ratio, and homogenisation methods can evaluate 

the effective properties of these substructures to simplify 

simulations at component level [60, 61]. Homogenization 

methods have also been used in conjunction with topology 

optimisation methods to define effective properties for topo-

logical designs created using density-based methods [62]. 

Some software vendors are already building RVE-type tools 

into their engineering simulation packages to facilitate the 

use of these approaches. Other homogenisation methods are 

limited to regular or nearly periodic geometries, but they can 

be useful for porous materials with medium to low porosity 

levels and widely separated pores. The simplest of these is 

Maxwell’s method [63] which can be used to calculate effec-

tive mechanical and thermal properties for materials with 

spheroidal pores and inclusions.

Microstructural evolution models can be grouped into 

interface tracking methods (such as phase field and level-

set) [64–67], cellular automata (CA) [68, 69] and kinetic 

Monte Carlo (kMC) [70]. The interface tracking methods 

have shown a realistic modelling of dendritic structures 

while accounting for the solute segregation, however the 

higher computational requirements often limit the applica-

tion over a large number of grain-aggregates. On the other 

side, kMC based on the Potts model captures the general 

characteristics of solidification of grains over a large number 

of grain aggregates, however, it cannot predict the range 

of solidification structures observed during LPBF such as 

cellular and dendritic domains. The CA methods based on 

finite element or finite difference schemes provide a half-way 

solution between interface tracking and kMC methods. They 

can deal with a range of computational domain sizes and 

are able to simulate cellular, dendritic and large-scale grain 

structures. The CA-FD (cellular automata finite difference) 

approach has recently been extended by Panwisawas et al. 

[43] to take into account local curvature effects as well as 

strain energy contributions and mass transport.

Despite these advances, it is still a challenge to numeri-

cally model the complexity of the LPBF over multiple 

scales. This challenge is increased by statistical variation 

and a lack of material data in the literature. The accurate 

prediction of surface roughness, mechanical and physical 

properties, fatigue life, melt-pool dynamics, and porosity 

remains a distant goal.

3.2  Component scale models

At present, macro-scale models tend to be based on empiri-

cal data (commonly using an eigenstrain formulation) and 

as such are relatively computationally efficient and have 

been demonstrated to be effective in simulating trends 

for the development of residual stresses and topological 
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deformations accompanying the LPBF process [71]. How-

ever, such models do not explicitly consider the powder 

particles and their interactions with the heat source, and 

neglect the important meso-micro scale fluid dynamics 

[72]. The biggest challenge in modelling the build of an 

entire component at the micro and meso scales is excessive 

computational time, which arises due to the large number of 

finite elements needed to represent the additive layers. To 

reduce computational time, some researchers have adopted 

the “classical welding” approach for modelling the melt pool 

and assume that the powder can be modelled as a continu-

ous solid. Although this is a significant simplification, such 

models can produce representative results after calibration 

against measured data [73]. Even with this assumption, the 

classical welding approach still requires large computa-

tional times unless additional approaches are utilised. For 

example, dynamic adaptive meshing techniques to maintain 

mesh refinement around the heat source while coarsening it 

elsewhere have been used [74, 75]. This technique requires 

temperature data to be mapped between dissimilar meshes, 

introducing further computational effort and sources of 

error.

Analytical formulations have been used to predict the 

thermal history of a moving laser [76]. Similar approaches 

have been used in modelling the welding process [77]. The 

method is extremely fast and can deliver quick solutions, 

meaning it has the potential to be used at the component 

scale. The disadvantages are that it cannot consider tem-

perature-dependent thermal properties and lacks the abil-

ity to incorporate realistic boundary conditions. Since the 

heat source beam is very small compared to the component 

and surrounding powder, the analytical thermal model is 

similar to conduction in an infinite body. Terry et al. [78] 

demonstrated that the use of an analytical thermal model 

to predict temperature evolution in an industrial impeller is 

feasible for both single and multiple laser systems. Figure 4 

is sourced from this work, and it shows the predicted tem-

perature at the top three layers of an impeller made of In718. 

The computational time required to provide this prediction 

was reported to be less than a minute. Terry et al. [78] also 

demonstrated the integration of a machine toolpath gener-

ated by a Computer-Aided Manufacturing (CAM) system 

into their model.

Another challenge in modelling the melt pool at the com-

ponent scale is the selection of an appropriate heat source 

model (surface or volumetric heat source). It is well known 

in welding modelling that volumetric heat source models 

more realistically represent the melt pool generated by laser 

melting. Surface heat sources, such as a 2D Gaussian heat 

source, lack the ability to quickly transfer energy into the 

material, which results in shallower melt pools. A common 

technique used in welding is to calibrate the heat source 

model to match the melt pool dimensions [79]. This suggests 

that a calibration step is essential to gain confidence in LPBF 

models thermal models.

At the component scale, temperature predictions are vital 

for simulating the thermal expansion and the generation of 

thermal stresses and distortion. Due to the aforementioned 

challenges in calculating temperature, predicting the residual 

stresses and distortion using conventional coupled thermo-

mechanical approaches has proven to be challenging. This 

has led to the development of different techniques for pre-

dicting mechanical behaviour. For example, researchers have 

assumed that a number of layers can be lumped together 

and assigned a given temperature, before being allowed to 

cool [80]. Other researchers applied a heat flux based on the 

energy equilibrium, rather than an initial temperature [81]. 

In both approaches, the prescribed temperature field does not 

represent the actual temperature during the process. Analyti-

cal temperature fields have also been used to induce thermal 

strains and stresses [11, 82]. This methodology has been 

validated using a radially and vertically varying temperature 

Fig. 4  Prediction of thermal history of IN718 impeller using a multi-layer analytical thermal model integrated with a gCode reader [78]
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field [82, 83]. Other researchers have adopted the inherent 

strain approach [83–85], which treats the residual strains in 

the material as a source for calculating the residual stresses 

with Hooke’s law. In the finite element model, the plastic 

strains represent the residual strains. Some researchers have 

therefore solved the thermo-mechanical problem at the 

micro scale to predict the plastic strains, before imposing 

them in a component scale model. It is typically assumed 

that the strains are uniformly distributed in a single layer. 

While the inherent strain method is usually based on the 

theory of elasticity, some researchers have found that con-

sidering plasticity improves distortion predictions [83].

Figure 5 shows a comparison of fast methods for predict-

ing distortion in LPBF [83]. It can be seen that the accu-

racy depends on the selected method. The inherent strain 

method using elastic plastic material properties shows 

the most accurate prediction of distortion distribution and 

magnitude of an impeller made of In718. The difference 

of the maximum predicted and measured surface deviation 

in the buckled blade was approximately 11%. Such predic-

tions can be used to assess the likelihood of build failures 

due to recoater collision or support failures, and can also 

help with selecting appropriate support strategies. Distor-

tion predictions can also be inverted and used to pre-distort 

the initial geometry, so that the built part distorts into the 

correct shape, rather than out of it. This concept has been 

demonstrated to be feasible and implementable on industrial 

parts [11, 86]. The main challenge is the requirement for an 

accurate initial distortion prediction; however, it has been 

demonstrated that pre-distorting the geometry using experi-

mentally measured data from a test component can deliver 

distortion compensation of approximately 75% using one 

iteration for an impeller and a blade [12], and a manifold 

[13]. Figure 6 shows an example of a distortion compensa-

tion of an impeller where the distorion was reduced from 

approximately ± 300 μm to approximately ± 65 μm.

Modelling residual stress at the component scale is 

another challenge. Most of the validations of LPBF models 

are based on distortion comparisons, although there are a 

number of studies comparing predicted and experimen-

tally measured residual stresses. For example, Yaghi et al. 

[83] compared residual stresses obtained with fast finite 

element predictive methods against experimentally meas-

ured stresses obtained by the neutron diffraction method 

for a component made of In718 as shown in Fig. 7. The 

fast-predictive methods were: (i) inherent strain method 

with elastics material model; (ii) inherent strain method 

with elastic–plastic material model; and (iii) analytical 

thermal field using temperature dependant elastic–plas-

tic material properties [11]. It can be seen that the three 

methods capture the overall behaviour of the residual 

stress distribution (tensile at the surface and compressive 

inside). The analytical temperature field method predicted 

the residual stresses most closely to the experimentally 

measured results where the difference of predicted and 

measured peak compressive stress was approximately 

9.5%. Also, Yaghi et al. [87] compared predicted stainless 

steel 316 residual stresses against data that was obtained 

using the contour and hole drilling methods. A comparison 

between the contour and finite element methods are shown 

Fig. 5  Comparison of calculated surface deviations obtained using 

various fast predictive methods and experimentally measured data, all 

aligned to the nominal geometry using the same alignment method 

[83]. Units in mm

Fig. 6  The effect of compensation on the distortion of two otherwise 

identical experimental In718 Impellers [12]. The surface deviation 

vs. nominal geometry is plotted and was measured using a structured 

light scanner. Dimensions in mm
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in Fig. 8. It was reported that the FE predicted and experi-

mentally measured residual stresses demonstrate reason-

able agreement except at the bottom right corner, where 

the predicted stresses are lower. This could be due to the 

fact that the predicted residuals stresses from the process 

models are based on a 3D geometrically circumferential 

model of the impeller, whereas the calculated stresses in 

the contour method are based on distortion measurement 

of a cross section applied into a plane strain FE model to 

calculate the residual stresses using the Hooke’s low [87].

4  Electron beam powder bed fusion (EBPBF)

Similar approaches to modelling LPBF are often used in 

the modelling of EBPBF, with considerations given to 

the different physics of the two process. In EBPBF, the 

primary energy source for powder melting is the kinetic 

energy of electrons travelling at around 0.1–0.4 times the 

speed of light [88]. Upon collision with a powder particle, 

some of this kinetic energy is converted to heat. With a 

sufficient number of collisions, the heat generated is easily 

capable of melting the metal.

A recent review of EBPBF modelling techniques high-

lighted three main approaches for modelling the EBPBF 

process [88]:

• Uncoupled thermal models, which simplify the phys-

ics and reduce the computational resources required 

by only considering the main heat transfer phenomena. 

These consist of conduction between the powder parti-

cles, conduction between the powder bed and substrate, 

and radiation from the powder into the chamber. Heat 

dissipated by viscous forces and convection in the melt 

pool are ignored [89, 90].

• Thermal-fluid models, which include the effects of flow 

convection on the temperature distributions and melt 

pool geometry [91, 92].

Fig. 7  Comparison of FE 

and experimentally predicted 

stresses for In718 [83]

Fig. 8  Comparison of FE 

and experimentally predicted 

residual stresses for stainless 

steel 316 [87]
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• Thermomechanical models, which incorporate mechani-

cal properties to predict the residual stresses induced in 

the material by the EBPBF process. This results in more 

informative models at the cost of longer run times [93].

Models can also be split according to how they treat the 

powder; some consider individual powder particles, while 

others treat the powder as a continuum. Examples of ther-

mal-fluid models include using a lattice Boltzmann approach 

to model the melting of a randomly generated powder bed 

with an electron beam [94]. Different approaches are used 

in the modelling of the heat source as well, for example 

simulating the impact of electrons on the powder bed using 

a Monte Carlo method to predict the heat flux distribution 

across the beam diameter [90].

At the component scale, EBPBF models also need to con-

sider the effect of the semi-sintered powder on the stress 

and distortion of the part, as this can affect the heat transfer 

from a component as well as the mechanical loads on it. A 

compact model of the EBPBF processes to predict shrinkage 

was developed in [95]. The model assumes that the ther-

mal stresses can be neglected because they are low due to 

the elevated temperature in the build machine, and that the 

creep rates at temperatures above 1000 °C are significant, 

leading to quick stress relief of the parts. Considering this 

assumption, the EBPBF process model can be simplified 

by assuming an initial temperature of the part equivalent 

to the temperature in the build machine and allowing it to 

cool down to room temperature using natural convection. 

Figure 9 shows a comparison between experimental and pre-

dicted distortion for Ti64 part produced on the Arcam Q20 

[96]. The results show a very similar distribution between 

predicted and measured distortion by comparing the surface 

deviations. It was reported that the maximum surface devia-

tions were less than 8% between predicted and measured 

surface deviations. It needs to be noted that creep deforma-

tions due to gravity loads have not been modelled. However, 

the proposed model showed that it can predict the overall 

distortion and it can be used for distortion compensation 

instead of using global or Cartesian scaling factors.

5  Topology optimisation models

The topology optimisation can be tracked back to over a 

hundred years ago where criteria for least-weighted layout of 

trusses was developed. In the seventies, analytical solutions 

were developed for grid-type structures. With the emergence 

of the finite element method, the topology optimisation 

started its rapid development along with the development of 

computational capabilities. The following methods emerged 

since then, including in chronological order: density-based 

methods, evolutionary procedures, bubble method, topologi-

cal derivative, level-set methods and phase field methods 

[97, 98]. Those methods have been incorporated in com-

mercial finite element solvers to tackle structural topology 

optimisations, particularly light weighting of structures. 

Choe et al. [99] benchmarked commercially available soft-

ware and the results showed that the topology optimisation 

methods subject to mechanical loads are mature enough to 

be applied to industrial designs. Dbouk [100] reviewed the 

research work conducted in the last 20 years in the topol-

ogy optimisation of heat transfer and fluid flow systems. 

They concluded that despite the advanced developments 

and advanced work in the field, the topology optimisation 

is not a robust numerical design technique for finding opti-

mal designs of thermal systems. Therefore, further work is 

required to mature and validated the numerical techniques 

before they are adopted in industry. Topology optimisation 

methods have been applied in electro-magnetisms, but those 

Fig. 9  Comparison of experi-

mental data with FE predictions 

for EBPBF shrinkage of a Ti64 

component [95]

(a) Experimentally measured devia�on

 from CAD

(b) Numerically predicted devia�on 

from CAD
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methods have not been widely adopted in industry despite 

the promising results published in the literature [101]. Com-

putation fluid dynamics methods using gradient-based algo-

rithms, stochastic algorithms and metamodeling have been 

applied to aerodynamics shape optimisation applications 

[102].

Topology optimisation algorithms that consider manu-

facturing constraints have been developed for minimum 

member size, minimum hole size, symmetry, pattern repeti-

tion, casting, milling, turning, forging, extrusion and rolling 

[103]. The inclusion of manufacturing constraints modifies 

the solution resulting in greater material volume/mass for 

the design. In additive manufacturing, particularly powder 

bed technologies, supports are used for build angles lower 

than 45°. The implementation of overhang-free topological 

designs has been demonstrated for different topology opti-

misation methods [104]. For additive manufacturing design 

application, where the use of supports is unavoidable for 

some geometries, topology optimisation methods can be 

used to generate the supports. For example, a validated pro-

cess model for a build simulation was used to predict the 

forces acting at the overhang structures in [95] based on the 

model presented in [11] where the support structures are 

modelled with spring elements to represent the stuffiness of 

the support structures in the three directions of the Cartisian 

coordinate system. The predicted forces were then applied to 

a topology optimisation model to obtain the support struc-

tures (see Fig. 10). It was found that the topology optimised 

supports were 50% lighter than conventionly generated sup-

ports using commercially available tools [95].

Additive manufacturing induces material anisotropy 

which is unavoidable despite the efforts made to be reduced. 

The material anisotropy constraint has been implemented by 

the implemented anisotropic constitutive material model in 

the finite element solution or by changing the plasticity cri-

teria [104]. Furthermore, topology optimisation techniques 

for multi-materials, microstructure control and lattices have 

been reviewed and presented as future development oppor-

tunities towards their maturation [104, 105].

In additive manufacturing process chains, post-processing 

steps (heat treatment, surface finishing, surface hardening, 

and inspection techniques) can be required to deliver the 

functional requirements of designs. Therefore, considering 

topology optimisation for additive manufacturing process 

chains can introduce further complexity due to an increased 

number of manufacturing constraints. To the best knowledge 

of the authors, the inclusion of manufacturing constraints 

considering the full additive manufacturing process chain 

has not been addressed by the research community which 

presents an opportunity for future research.

6  Post‑processing operations

6.1  Heat treatment

Heat treatment is an important step for most MPBF com-

ponents, and it can deliver improved performance through 

aging and residual stress relief. The latter is typically con-

ducted for a relatively short period of time (i.e. a couple of 

hours, depending on the material and thermal mass of the 

part). Depending on the material performance that needs to 

be achieved (for example large grains for better creep per-

formance or fine grains for better fatigue performance), the 

aging time can be significantly greater.

Modelling both processes requires the prediction of the 

thermal history in the furnace. Many furnaces operate under 

a vacuum, meaning heat is primarily transferred from the 

heating elements to the parts through radiation. Reflection 

at the part needs to be considered when modelling this radia-

tion, which can be accomplished using view factor calcula-

tions [38]. These models can accurately predict the ther-

mal history of the parts, and can therefore provide practical 

benefits. These include optimising the power in the heating 

elements to control thermal gradients, or identifying how to 

position the parts in the furnace to avoid shading and cold 

spots [106]. The predicted thermal history can also be used 

to calculate the evolution of the microstructure and support 

the development of the most appropriate thermal cycle [36]. 

One of the challenges in this type of modelling is determin-

ing the surface emissivity, which depends on the surface oxi-

dation and surface roughness. The emissivity can vary over a 

wide range, suggesting that validation using experimentally 

measured temperatures should be used to gain confidence in 

the values used [107].

Post-build stress relief modelling requires the ther-

mal history from the heat treatment process and residual 
Fig. 10  Topology optimised supports based on predicted forces from 

a process model [95]
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stresses in the component from the MBPF build process. 

Stress relief or relaxation is typically simulated with a 

creep model, which is generally empirical and describes 

the material response to temperature and stress as a time-

dependent process. Creep models are based on material 

data gathered from tests conducted at either constant load/

stress or constant elongation/strain. The strain rates for 

each of the creep tests at constant stress are obtained at 

the secondary creep region.

There is limited creep data for materials manufactured 

using powder bed fusion in the literature. What is avail-

able is often for different temperatures than those of the 

stress relief thermal cycle used for additive manufacturing. 

For example, Read et al. [108] conducted creep tests at 

constant stress for AlSi10Mg at 180 °C, while the typi-

cal stress relief thermal cycle for AlSi10Mg is heating 

up to 300 °C, holding for 2 h and cooling down to room 

temperature.

The Norton creep law is commonly used to simulate 

stress relaxation. O’Brien et al. [109] conducted a study 

where the Norton creep constants for In718 at 980 °C 

were obtained using a reverse engineering approach. The 

manufacture of a cantilever beam specimen that was built 

on a Renishaw AM250 and heat treated (by heating to 

980 °C, holding for 2.5 h at 980 °C, and cooling down 

to room temperature) was simulated using a validated 

LPBF build model and the Norton creep law approach. 

Figure  11 compares measurements from the physical 

parts with simulated distortion predictions for both the 

as-built and stress relieved parts, demonstrating the valid-

ity of the Norton creep law approach for simulating stress 

relief. O’Brien et al. [109] reported that the maximum 

measured and predicted vertical distortions after cutting 

the double cantilever beam from the baseplate after LPBF 

were between 0.84 mm and 0.87 mm respectively, which 

is less than 4% difference. They also reported that the ver-

tical displacements were less than 0.04 mm for both the 

predicted and measured vertical displacements after the 

stress relief step.

6.2  Machining operations

A disadvantage of powder bed fusion technologies is an ina-

bility to produce quality surface finishes without further pro-

cessing, particularly on overhanging structures [110]. The 

typical average surface roughness (Ra) for LPBF is in the 

vicinity of 20 µm, depending on the material, laser system, 

powder characteristics, and build angle [110, 111]. Yaghi 

et al. [87] conducted milling on an LPBF manufactured 

stainless steel 316 impeller to demonstrate the improved 

surface finish that can be achieved. Milling can also induce 

compressive residual stresses at the surface, which can be 

beneficial for fatigue life [112]. Grinding is another process 

that can be employed for improving the surface finish and 

surface integrity [113].

The modelling of conventional material removal pro-

cesses is typically done by deactivating elements of the finite 

element stiffness matrix [27, 114]. The element deactiva-

tion technique does not take into account the effect of the 

tool-workpiece interaction on the surface stresses, mean-

ing potential contributions to residual stress, distortion, 

and component fatigue life are neglected. Yaghi et al. [87] 

consider the surface stresses in their work by combining 

the bulk material removal process and the tool-workpiece 

interaction. This was achieved by imposing surface stresses 

obtained from experimental measurements, although 

Fig. 11  Results from a study 

comparing measured and 

predicted vertical distortion for 

an as-built and stress relieved 

cantilever beam for In718 [109]
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simulation-based surfaces stresses could also be imposed 

if desired.

Conventional machining processes can only be conducted 

once a build is complete, and it can therefore only be applied 

to external surfaces and any internal features that can be 

accessed by the machine tools. Given the complex geom-

etries powder bed fusion permits, conventional machining 

processes may not be capable of providing a quality surface 

finish on all surfaces of an AM part. Hybrid LPBF com-

bined with micro-milling can overcome this limitation by 

machining the internal and external surfaces as the layers 

are built up. Little research has been conducted into model-

ling hybrid LPBF and micro-milling. Afazov et al. [115] 

used the inherent strain approach for modelling LPBF and 

further developed the inclusion of the micro-milling process. 

The material removal process was modelled by deactivat-

ing elements form the stiffness matrix, in a similar fashion 

to the modelling of conventional machining. A comparison 

of predicted and experimental distortion for a hybrid LPBF 

component is shown in Fig. 12 where it can be seen that 

the predicted and experimentally measured distortion have 

similar overall distribution. In addition, the peak distortion 

deviations have the same location and pattern. The authors 

used the model to optimise a nozzle design by incorporating 

two additional applied stiffeners at the outlet where the dis-

tortion was alleviated by approximately 60% at the bottom of 

the nozzle, with the entire nozzle being within the applica-

tion specified tolerance of ± 0.2 mm.

6.3  Surface engineering

Treating the surface of LPBF parts is essential for improving 

the surface finish and/or surface integrity. A high-quality 

surface finish (with low surface roughness) improves the 

fatigue life [116], while surface treatment can also be used 

to improve surface functionality by creating an appropriate 

surface texture [117]. The most widely used technologies for 

improving the surface quality of LPBF parts are sand blast-

ing, laser polishing, linishing and mass finishing. Fatigue 

life improvements can also be achieved by applying surface 

hardening processes, such as shot-peening and laser shock 

peening.

The numerical modelling of some of the surface engineer-

ing processes can be challenging, and it may require the use 

of alternative analytical solutions. For example, the model-

ling of sand blasting can be very computationally expensive, 

since there is a need to calculate multiple particle impacts 

over large surfaces. Developing a material model capable 

of accurately capturing the abrasive phenomena involved 

in sand blasting is another challenge [118]. Linishing and 

mass finishing processes present similar challenges, and so 

analytical and empirical solutions are often utilised for pre-

diction and optimisation purposes [119].

Laser polishing can be numerically modelled by apply-

ing a volumetric heat source that produces the required melt 

pool shape [120]. This type of model can predict tempera-

ture distribution and residual stresses, however, the predic-

tion of surface roughness after melting can be very challeng-

ing. The surface roughness is therefore typically predicted 

using empirical equations, which can be developed using 

techniques such as regression or artificial neural networks 

[118]. Regression functions have also been utilised in mass 

finishing for the prediction of surface roughness [121].

Shot-peening has been modelled at the micro scale, 

including the impact of a number of shots on a small sur-

face. This type of modelling can give an understanding of 

the effect of ball diameter, momentum, impact angle, and 

surface coverage on the induced residual stresses. The main 

challenge in modelling shot-peening is developing a material 

model to account for the cyclic hardening caused by multiple 

shot impacts. Previous reviews of these models have shown 

that the combined use of kinematic and isotropic hardening 

can produce good predictions [35]. Unfortunately, micro 

scale modelling cannot be applied at the component scale 

due to the large computational requirements that would 

arise. To overcome this, micro-to-macro mathematical mod-

els have been developed to map residual stress profiles to the 

component level [122]. The mapping techniques have been 

successfully applied to aerospace components [123].

Fig. 12  Modelling of hybrid LPBF for a stainless steel 316 compo-

nent. The figure shows a comparison of experimentally measured sur-

face deviation from the nominal geometry and that predicted numeri-

cally [115]. Units in mm
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In a similar fashion to modelling shot-peening, laser 

shock peening modelling is conducted at the micro scale. 

The laser shockwave is represented by a moving pressure 

distribution that follows the toolpath of the laser. The pres-

sure distribution is calculated from the laser pulse and the 

laser power using empirical methods. Laser shock peening 

is very quick, with the laser pulse for a single shock usu-

ally less than 100 ns. This requires the use of strain rate-

dependent models such as the Johnson–Cook model and an 

explicit dynamic finite element solver [124]. The challenge 

in laser shock peening is obtaining the residual stresses after 

the explicit dynamic simulation. The stresses oscillate after 

each shock and cannot reach equilibrium, despite the use 

of infinite elements that have been used in the modelling of 

shot-peening to minimise the dilatational and shear wave 

energy reflected back into the finite element mesh. The use 

of the inherent strain approach has proven that the model-

ling of laser shock peening is possible [125]. This approach 

consists of a dynamic model predicting the plastic strains 

induced by the laser shockwaves. The plastic strains are then 

used as inherent strains in an implicit finite element solver to 

predict the residual stresses. Figure 13 shows a comparison 

between predicted and measured residual stresses for In718, 

which can then be mapped to the component level using 

a micro-to-macro scale mathematical model using the for-

mulations from [122]. The results show that the model can 

predict peaks of the residual stresses while the experimen-

tally measured residual stresses represent an average repre-

sentation of the area. Therefore, it is difficult to quantify the 

accuracy of the model.

6.4  Inspection

Inspection is discussed briefly as this is the means by which 

experimental data is obtained for use in and validation of 

models. Inspection here relates to integrity assessment of 

parts (typically by non-destructive testing means), dimen-

sional conformance analysis (deviations from nominal, etc.) 

and surface topology measurement. Such inspection may 

be conducted at multiple stages in the LPBF process chain, 

including during the build itself, and may be applied to feed-

stock, test coupons, full components or sectioned regions 

(destructive cut-ups). From the perspective of inspection 

providing an input/target output for a model of part of the 

LPBF process chain, it is important to be aware of the limita-

tions of inspection techniques (both in terms of what cannot 

be inspected, and what the likely uncertainty is) and the 

format of inspection output (given data transfer challenges).

The three groups of techniques most relevant to metal 

powder bed part inspection are structured light and laser 

line scanning, optical surface topography methods such as 

focus variation, and X-ray Computed Tomography (XCT). 

The first group relates to optical means of capturing a com-

ponent’s dimensions, which means that it requires line of 

sight access to the sample surface, and is affected by surface 

reflectivity. The output format is a point cloud, which may 

be converted to a (generally non-watertight) surface mesh. 

Optical surface topology methods are similarly limited by 

line of sight access constraints and affected by surface reflec-

tivity. The output generally is a surface height map, which 

can then be processed to obtain surface roughness metrics. 

XCT is a radiographic method for obtaining a volumetric 

model of a sample by acquiring many X-ray transmission 

images. Whilst this technique provides a fully volumet-

ric inspection that can be used for integrity, dimensional 

Fig. 13  Prediction of residual 

stresses using eigenstrain mod-

elling and experimental data for 

In718 [126]
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and topology inspections, it has numerous other limita-

tions, including on the size/density of components that can 

be inspected [127]. The inspection output is a volume (of 

greyscale voxels, equivalent to 3D pixels), which can then 

be processed to obtain a surface mesh. For all these tech-

niques estimating inspection uncertainty is challenging and 

an active area of research.

Additionally, it is worth noting that modelling techniques 

may be applied to the inspection process itself, as a means 

of technique development, inspection planning and optimi-

sation, uncertainty estimation and improving data analysis 

[128–130]. Such modelling could potentially also be linked 

into the product manufacturing process chain digital twin, 

for example with predictions on likely regions of porosity 

being fed into inspection planning models, to enable optimal 

inspections [131]. The relevant modelling techniques here 

are raycasting, for computing optical wavelength inspection 

coverage as well as the primary (simply absorbed) radia-

tion in X-ray transmission images, and Monte Carlo photon 

propagation, for modelling more complex matter interactions 

[132]. Whilst these models are well established, the latter 

type is generally slow, and producing high fidelity predic-

tions of sensor outputs following photon interaction with 

real surfaces remains a subject of research [133].

7  Data acquisition and transfer 
in manufacturing process chain 
simulation

In the digital twin and the manufacturing process chain, data 

needs to be transferred between different models that may 

have been created in different software packages. Physical 

data will also be required for boundary conditions, material 

properties, and geometric information, either as inputs or 

for validation. In general, one model will require more than 

one set of data, and a single set of data may be used more 

than once, either because the data is common across multi-

ple parts (e.g. the material powder used is all from the same 

batch), or because the model that uses the data is being used 

for multiple predictive scenarios.

7.1  Data acquisition

In order for the data to be used correctly, context about how 

the data was gathered must be stored with it. This contex-

tual information is called metadata, and it could include all 

information that would enable users to be sure that the use 

of the data is appropriate. Metadata could include time and 

date, sensor type, last date of calibration, operator name (if 

not automated), identification of the object or material being 

measured, and measurement uncertainty, amongst other 

categories. Collection and transfer of metadata are particu-

larly important for data reuse.

Many of the models in the process chains are transient, 

and so much of the data gathered will be a time series. If 

multiple time-dependent data sets are being used in the same 

model, it is important to ensure that the sensors are syn-

chronised. This is particularly important for data that are 

gathered often where the quantities being measured change 

rapidly. Calibration of sensors is vital to the digital twin 

approach: if the data are gathered from an uncalibrated sen-

sor the results cannot be relied upon. This aspect is par-

ticularly important in an industrial environment because the 

sensors are generally being used in an uncontrolled envi-

ronment, meaning factors like thermal drift, humidity, and 

vibration are more likely to affect sensor performance. Simi-

larly (as is discussed in more detail in Sect. 8) uncertainties 

associated with measurement data affect the reliability of 

the decisions made based on the digital twin, and a good 

understanding of the uncertainty associated with the data is 

required for reliable decision-making.

It is also important to draw a distinction between data to 

be used for input into models, data to be used for parame-

ter-fitting for models, and data to be used for validation of 

models. The validation data cannot be used for inputs or for 

parameter determination, otherwise the model will effec-

tively become a self-fulfilling prophecy. This requirement is 

necessary even if the data has been used in a sub-model of 

the model being validated. For instance, if a phase change 

in a material has been observed, a micro-scale model of that 

phase change has been developed based on the observations, 

and the micro-scale model has been fed into a macro-scale 

model of the process that produced the phase change, then 

observation of the phase change in the macro scale model 

cannot be regarded as validation.

7.2  Data transfer

All data transfer within the digital twin may require conver-

sion from one data format to another, as well as the inter-

polation of data between different models and meshes. For 

example, an MPBF process model will likely require a large 

mesh to capture the layers of the build, which may not be 

appropriate for simulating heat treatment if the furnace and 

the associated thermal cycles are modelled in detail. This is 

because modelling the vacuum furnace requires considerable 

memory to solve the radiation problem. For this type of anal-

ysis, the large number of surface elements required is still a 

limitation. Less refined meshes at the surfaces are therefore 

desirable for complex geometries, especially when multi-

ple components are placed in the furnace. Further down the 

chain, different meshes may be needed. For example, surface 

engineering processes that affect the surface and sub-surface 

integrity of the component require very fine meshes at the 
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surface. As a result, interpolation of simulation data from 

the previous meshes will be needed.

There are several tools available that can transfer and 

interpolate finite element data between different meshes 

and solvers, but it must be stated that errors can accumulate 

during interpolation [134, 135]. The interpolation methods 

themselves will induce some errors, while the type of data 

that needs to be interpolated may also have an effect. Values 

computed at the nodal points of the mesh (such as displace-

ment and temperature) will introduce less error during inter-

polation because they can be mapped directly. Data that is 

calculated at integration/Gaussian points (e.g. strains and 

stresses) will likely generate more errors during data trans-

fer, due to averaging that occurs as they are mapped from a 

refined mesh to a coarse one.

For example, if data needs to be transferred from an 

MPBF build process model into a heat treatment model, the 

predicted strains and stresses of the build model will need 

to be mapped to the integration nodes of the heat treatment 

model to be used as an initial condition. If the element shape 

function is used for the interpolation, the stress and strain 

values of the additive model will need to be at the nodal 

points, requiring extrapolation from the integration points. 

This is done by averaging and smoothing the data, which 

can introduce errors. If the mesh of the MPBF build pro-

cess model is more refined than the heat treatment model, 

and the peak stresses are at the surface, then the integration 

points of the heat treatment model might be too far from the 

peak stresses of the build model to accurately capture them. 

Mapping between processes further down the chain would 

involve similar steps, and it could therefore generate more 

errors [123]. Another source of error is the potential use of 

different material properties for the different models, which 

could cause rebalancing of the mapped stresses at the begin-

ning of the numerical analyses when computational stress 

equilibrium is first obtained.

Mapping stress and strain tensors from very refined to 

very coarse meshes should therefore be avoided. For the 

case of a heat treatment model where a coarser mesh may 

be required, it could be good practice to use a coarse mesh 

for the thermal analyses and a more refined mesh for the 

mechanical analyses. This would require mapping of tem-

perature data from the nodal points of the coarse mesh into 

the nodal points of the refined mesh, which should intro-

duce a lower level of error. Errors due to the use of different 

material properties can be mitigated using the multi-scale 

approach discussed in Sect. 3. This would prevent the use 

of material data from test specimens that do not adequately 

represent the actual material behaviour of the component, 

such as tensile data from a forged specimen being used to 

represent the properties of an MPBF part.

Apart from developing accurate process and material 

models, and data transfer strategies in the manufacturing 

process chains, attention should be paid to data storage, 

traceability, and reuse. This could be achieved by using an 

open, non-proprietary file format that permits data visualisa-

tion [123]. Such a file format would allow data to be passed 

more readily between different commercial software tools, 

be easily visualised and analysed when desired, and ensure 

long-term access to data. This is particularly important for 

manufacturing areas with strict data retention requirements, 

such as aerospace.

Figure 14 shows the simulation of two additive manu-

facturing process chains using data transfer and mapping 

techniques detailed in [109]. The first manufacturing pro-

cess chain consists of AM (or LPBF) followed by HT (or 

stress relief) and shot-peening (SP). The second processes 

chain applies laser shock peening (LSP) after the stress relief 

operation instead of SP. The residual stress distribution from 

both manufacturing routes has been used for the selection 

of manufacturing routes in the development of new additive 

manufacturing components and processes. Similar approach 

for LPBF manufacturing process chain of an aero-casing 

was used and demonstrated in [134]. In both research works 

[109, 136], validated process models have been applied 

to demonstrate the simulation of a manufacturing process 

chain, but the validation on the process chain has been high-

lighted as a future research.

8  Uncertainties in modelling, validation 
and data transfer

8.1  General overview

The evaluation of the uncertainties associated with model 

results provides increased confidence in those results and 

supports reliable decision-making. Uncertainty evaluation, 

and an understanding of associated sensitivity coefficients, 

can also drive process improvements by identifying the 

parameters that need to be most tightly controlled to improve 

product quality. These aspects are particularly important for 

techniques such as additive manufacturing where a complex 

process is used to create load-bearing, and potentially safety 

critical, structural parts.

Uncertainty quantification is also key to model validation: 

if model results are to be compared to measured values, the 

uncertainties should be included in the comparison to make 

the agreement quantitative and meaningful. For instance, if 

the uncertainties associated with the model results are 100 

times bigger than those associated with the measurements, 

it is highly debatable whether the model is telling you any-

thing useful even if its predictions agree exactly with the 

measurements.

A lot of the work on uncertainty evaluation in AM pro-

cesses to date has focussed on assessing process variability 
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by measuring the finished product and considering this as 

uncertainty [137–139]. Whilst this approach does not gen-

erally return enough information or understanding to know 

how to improve a process, it can provide information of the 

sort needed to validate models in a statistically meaningful 

way.

Uncertainty evaluation for model results has three main 

stages [140]:

• Identification of uncertain input quantities and quantifica-

tion via appropriate probability density functions (PDFs);

• Propagation of the PDFs through the model;

• Summarising the results statistically.

A further step that is useful in many cases is sensitivity 

analysis, which quantifies the effects of the model inputs on 

the model outputs and can therefore enable prioritisation. 

The identification and propagation steps will be discussed 

in more detail with reference to LPBF and EBPBF below.

The approach above considers only the uncertainties 

associated with the model inputs (i.e. the parameters and 

numerical values used to define a specific instance of the 

model). An additional source of uncertainty that is more dif-

ficult to quantify is model uncertainty. This source includes 

not only errors associated with discretisation and time step-

ping, which can usually be reduced if more computational 

resources are available, but also the effects of the various 

assumptions made in the model development. The effects of 

the assumptions are generally very difficult to quantify for a 

physically derived model and are usually reduced as far as 

possible through validation and improvement.

The main circumstances where model uncertainty should 

be considered in more detail are when a simplified model 

is used for reasons of computational cost. This approach is 

particularly common in MPBF simulations, where complex 

multi-physics multi-scale processes need to be simplified 

in order to be made solvable. Here the information used to 

validate the simplified model can be used to estimate the 

model uncertainty, which can then be treated as an addi-

tional source of uncertainty in the propagation step, using a 

statistical model of the error based on the results of the vali-

dation. This approach has been used in AM applications to 

evaluate uncertainty associated with the use of a multiscale 

model [141, 142].

Hu and Mahadevan [143] provide a thorough overview 

of the current state of the art regarding uncertainty evalua-

tion for AM, including identifying the uncertain and poorly-

known aspects of each stage of the manufacturing process. 

Fig. 14  Predicted principal residual stresses in the LPBF process chain of an impeller [109]. Units in MPa
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The same authors [144] also provided a similar analysis of 

the various approaches associated with material property 

prediction.

8.2  Input parameters and assigning distributions

The problem of turning knowledge about a quantity into 

a suitable probability density function is one of the more 

difficult aspects of uncertainty evaluation. Generally, the 

available knowledge will be some combination of measured 

values, experience and expertise, and results of smaller-scale 

simulations.

MPBF techniques have a very wide range of inherently 

variable input parameters. The powder will have an associ-

ated size distribution, which may change as a powder gets 

recycled, and the powder material properties (thermophysi-

cal and optical) are likely to vary from sample to sample, 

from particle to particle, and as recycling occurs. The laser 

power may be known as an average value, but the laser spot 

size and the spatial distribution of the power across the spot 

are likely to be more difficult to obtain.

Jacob et al. [145] have begun to assess the uncertainty 

associated with measurements of some of these quantities. 

Others researchers have used smaller-scale models to cal-

culate effective properties and associated uncertainties for 

input to bulk-scale models [146, 147]. Obtaining appropriate 

uncertainties for these variations is likely to be one of the 

key challenges of reliable uncertainty evaluation and hence 

reliable process control for MPBF.

Most MPBF models have more than one input quantity. 

The existence of multiple-input quantities raises the ques-

tion of whether there is correlation between the quantities. 

Some uncertainty evaluation methods require independence 

of input quantities, so it is important to identify, and if pos-

sible eliminate, any correlations. If it is possible to express 

two input quantities in terms of a set of independent quanti-

ties about which information can be gathered, this is often 

preferable to the use of correlated quantities.

Some quantities exhibit random behaviour that cannot 

be described using a single PDF. An example is a mate-

rial property such as porosity that typically varies randomly 

in space and has a correlation length associated with its 

variation. A commonly accepted approach to describe such 

quantities is the use of random fields [148]. This approach 

captures the randomness and the correlation in a way that 

can be used within a sampling method or another method 

for the solution of stochastic equations.

The aim of assigning a PDF to a quantity is to encapsulate 

all available information about the quantity without impos-

ing further constraints on the quantity. The two most useful 

tools in the assignation process are Bayes' theorem and the 

principle of maximum entropy, but other approaches can 

be used if their use can be justified. For instance, a quantity 

may have been measured so many times that construction of 

a reliable PDF directly from the measured values is possible, 

although care should be taken to check the values for drift 

or other dependencies.

Bayes' theorem is a law of conditional probability that 

also applies to continuous random variables described by 

PDFs. The significance here is that it enables a PDF that 

encapsulates existing information about a quantity to be 

updated in the light of new information, and in particular it 

allows a PDF to be assigned based on measurements or other 

evaluations of the quantity, under certain fairly widely appli-

cable assumptions. The book “Bayesian Data Analysis” by 

Gelman et al. [149] provided a comprehensive introduction 

to the use of Bayes’ theorem for practical analysis.

The principle of maximum entropy is useful for assign-

ing distributions when information that can be expressed as 

a statement about the PDF is available. Examples include 

knowledge of the mean value or other percentiles, knowl-

edge of the standard deviation, and knowledge (including 

inexact knowledge) of limits on the value of the quantity. 

Application of the principle of maximum entropy can be 

mathematically challenging, but it has already been carried 

out for many commonly available types of information. An 

extensive list of cases for which solutions have been found is 

available in Section 6.4 of the first supplement to the Guide 

to the expression of Uncertainty in Measurement (GUM) 

[140], including a description of how to sample from each 

PDF, but some of the most common cases are listed in 

Table 1 below.

Table 1  Assignation of 

distributions for different types 

of information derived using the 

principle of maximum entropy

See also Table 1 in Section 6.4 of [140]

Information available PDF derived using the principle of 

maximum entropy

Lower and upper limits a and b Rectangular: R(a, b)

Inexact upper and lower limits a ± d, b ± d Curvilinear trapezoid: CTrap(a, b, d)

Sinusoidal cycling between lower and upper limits a, b Arc sine (U-shaped): U(a, b)

Best estimate x and associated standard uncertainty u(x) Gaussian: N(x, u2(x))

Best estimate x of a non-negative quantity Exponential: Exp(1/x)
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8.3  Uncertainty propagation and sensitivity

Different methods of uncertainty propagation are suitable for 

different models. For models that are linear in their uncer-

tain quantities, and if the uncertainties are not dominated by 

the contribution of one input that does not have a Gaussian 

distribution, the method described in the GUM is likely to 

give a reliable value quickly and easily [150]. This approach 

expands the model function as a Taylor series about its mean 

value, truncates the series after the linear terms, and uses the 

results to derive an analytical expression for the uncertainty 

associated with the model output.

Many models are not linear in their uncertain input quan-

tities, meaning this simple approach is not suitable. Further, 

the approach requires the user to be able to obtain the partial 

derivative of the model result with respect to the input quan-

tity (called the sensitivity coefficient). For many models, 

this information is not available, either because the model 

has been constructed using “black box” software such as a 

finite element solver, or because the equations linking the 

inputs and the outputs are too complicated for this derivative 

to be obtained.

For nonlinear and “black box” models, sampling methods 

are preferable. These methods take samples from the PDFs 

of the uncertain inputs, evaluate the model at the result-

ing values, and construct a PDF for the output quantities 

from the evaluated results. The simplest sampling method 

is random, or Monte Carlo sampling [140]. This method can 

be analysed to calculate how many samples, M, and hence 

how many model evaluations, are required for a given level 

of accuracy in the uncertainty estimate. A value of M =  106 

can often be expected to deliver a 95% coverage interval for 

the output quantity such that this length of this interval is 

correct to one or two significant decimal digits.

This number of samples is manageable if the model takes 

a fraction of a second to run (a million seconds is about 

11.5 days), and has been applied to simple models of laser 

powder bed fusion processes [151]. Most complex models of 

thermal processes take significantly longer than this to solve. 

There has been much research into uncertainty evaluation 

using fewer samples. The available methods can broadly be 

split into smart sampling methods and surrogate models.

Smart sampling methods use non-random methods of 

selecting sampling points from the PDFs of the input quan-

tities to obtain improved accuracy for a small number of 

samples. Latin hypercube sampling [152] is widely used and 

comparatively simple to implement: the approach subdivides 

the input PDF into regions of equal probability and samples 

once within each region, thus ensuring that the sample spans 

the full range of each input quantity. Approaches such as 

importance sampling [153] use knowledge of the model to 

ensure that the sample focusses on the region of the input 

quantities that causes the greatest variability in the output 

quantity. Space-filling sequences can be created by adding 

random small perturbations to low discrepancy sequences, 

which are structured sequences that have similar distribution 

properties to uniformly distributed random variables.

Surrogate models, also known as metamodels, similarly 

take samples from the inputs and evaluate the model, but 

they then use various approaches to create a model that is 

quick to solve, accurately reproduces the results at the points 

where the full model has been evaluated, and is expected to 

be a good approximation to the full model in regions where 

the full model has not been solved [154]. These models can 

vary in complexity from simple polynomial expressions 

to more mathematically challenging approaches such as 

Gaussian processes (often known as kriging) and polyno-

mial chaos.

Gaussian process surrogate models [155] approximate 

the model output as a weighted sum of random functions, 

parameterised by a variance and a set of correlation lengths, 

are chosen so that the values of a function at two points are 

more strongly correlated the closer they are together. The 

surrogate model is generally a smooth interpolant of the 

known model results, and the use of random functions means 

that an estimate of the interpolation error at intermediate 

points is immediately available, so that areas where the error 

is large can easily be identified and further model runs can 

be carried out to reduce the error. Kriging approaches have 

been applied to AM models by several authors [156–158], 

who have provided guidance on methods for the selection of 

input values to build a reliable surrogate model.

Polynomial chaos uses the link between different families 

of orthogonal polynomials and specific PDFs, identified by 

Wiener [159], to construct an approximation to the model as 

a polynomial of the random variables representing the model 

input quantities. In many models with only a few inputs, an 

accurate surrogate can be constructed using a small number 

of model evaluations. Careful choice of input points is key to 

efficient implementation for models with a lot of inputs. Pol-

ynomial chaos has been applied to AM models for a small 

number of input parameters [146], focussing on the laser 

beam diameter and the material emissivity as these quanti-

ties are generally poorly known and difficult to control.

An alternative method of reducing the computational 

complexity of an uncertainty evaluation problem is to reduce 

the number of uncertain inputs. This can be achieved by 

focussing only on those inputs whose uncertainties have the 

most effect on the uncertainty associated with the output 

quantities. The identification of the most important inputs 

is effectively a process of sensitivity analysis. Another 

approach is to reduce problem dimensionality through prin-

cipal component analysis, which identifies linear combi-

nations of inputs that have the most effect on the output. 

Assigning a distribution to these combinations would need 
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to be done numerically, but the problem complexity would 

be reduced.

The simplest approach to sensitivity analysis is to evalu-

ate, either analytically or numerically, the partial derivative 

of the model output with respect to the model input, as sug-

gested by the GUM [140]. In general, this gives a single 

point value, which is only informative if the model is linear. 

Other approaches use a set of local numerical estimates of 

the partial derivative to calculate indices that rate not only 

the sensitivity of the model to each input variable, but also 

the sensitivity of the model results to combinations of more 

than one input variable. Sobol indices [160], which give a 

large amount of information about the input quantities but 

require multiple model evaluations, have been applied to 

AM models using a Gaussian process surrogate model [156].

8.4  Uncertainties in data transfer

Transferring data from one model to another is effectively 

altering the data through a “transfer model”. In some cases, 

this transfer model is as simple as extracting a single value 

from one model to use as an input in another model, for 

instance if a detailed model of a multi-phase material has 

been used to calculate the effective properties of that mate-

rial. In such cases, the results of the first model should be 

treated as an uncertain input to the second model, and the 

methods discussed above should be used.

In other cases, the transformation of the results of one 

model are more complicated and so need more careful con-

sideration. One of the most common processes is transfer-

ring the results of one type of finite element model to the 

inputs of another type of finite element model. This task 

generally includes several potential sources of uncertainty 

and error:

• change of formats between different software packages;

• change of physics;

• change of geometry or spatial distribution;

• change of time distribution;

The change of format is described in Sect. 7.2. Beyond 

the challenge of transferring between data formats, common 

sources of error include consistency of units and coordinate 

systems (local and global); consistency of tensor notation, 

particularly when considering stresses and strains; and con-

sistency of definition of signs on stresses and effective stress 

measures.

Changing physics often generates problems associated 

with geometry. Models that are constructed to simulate dif-

ferent physics on the same object are likely to have different 

levels of detail, for instance the key heat flow paths in an 

object are not necessarily the key load-bearing paths. Fur-

ther, some objects that are insignificant and hence neglected 

in one physics model may be crucial to another. An example 

is the use of plastic supports for some AM geometries: the 

plastic is an insulator so can be neglected in thermal analy-

sis, which is a key part of stress analyses. These kinds of 

transfer problems can be reduced via care when planning the 

analysis and ensuring good communication between differ-

ent domain experts.

Change of geometry is probably the most common prob-

lem when transferring data between models, and it has been 

discussed in Sect. 7. Change of time step causes similar 

interpolation issues, with the added complication of stability 

limitations. In many cases, an error bound for interpolations 

in time and space can be estimated, either as a constant over 

the entire model or as a map over the model geometry. The 

error could then be treated as an additional source of uncer-

tainty uniformly distributed over the interval [− C, + C] 

where C is the error bound.

Fig. 15  Methodology for 

determining the TRL rating of 

different simulations
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9  Maturation of MPBF modelling 
technologies

Technology Readiness Levels (TRLs) have proven to be an 

effective tool to communicate, design, and launch new prod-

ucts and technologies, adopt new processes, assess internal 

and external capabilities, and define technology road maps 

[161–163]. For this work, the TRL scale has been used to 

determine the maturity of MPBF modelling domains. First, 

a methodology with 5 questions (as shown in Fig. 15) was 

developed to determine the TRL of different simulation 

domains. The aim of the methodology was to provide repre-

sentative guidance for identifying where different modelling 

domains are positioned on the TRL scale.

A workshop was conducted to determine the TRL of vari-

ous MPBF simulation domains by following the proposed 

methodology. These domains were considered individually, 

i.e. without concerns about data transfer from one to another. 

The investigated domains were:

• Mechanical properties: prediction of properties that gov-

ern the mechanical behaviour of the part, such as the 

Young’s modulus.

• Physical properties: prediction of properties that govern 

the non-mechanical behaviour of the part, for example 

thermal, electrical conductivity or density.

• Micro-cracks: the ability to predict small cracks that form 

and propagate at the micro and meso scales.

• Surface roughness/texture: the surface finish quality of 

an MPBF component following a build.

• Micro-structure: the microscopic structure of the mate-

rial, including grains and precipitates, that evolves as it 

cools and solidifies.

• Porosity: the ability to predict the amount of non-material 

space in the part, such as gas pores or other voids.

• Powder distribution/raking: the morphology and distribu-

tion of metal powder as it is spread over the build cham-

ber bed.

• Melt pool temperature: the variation in the temperature 

of the molten material in the melt pool with time.

• Lack of fusion: areas of the part where the powder has 

failed to fully melt.

• Overheating: the temperature of a component and the risk 

of it becoming too high during a build.

• Geometric distortion: the deviation of the part geometry 

from that which is intended due to stresses and strains 

that arise during the build process.

• Recoater collision: the risk of the powder recoating blade 

within the machine hitting the part due to geometric dis-

tortion.

• Residual stresses: stresses remaining in the part following 

manufacture that arose as a result of the manufacturing 

process.

The results from this exercise are summarised by Fig. 16, 

which shows that component scale predictions of geometric 

distortion, recoater collision, and component scale residual 

stresses are currently amongst the more developed aspects 

of MPBF simulation. A variety of commercial tools provide 

capability in this area, and results around component scale 

distortion are relatively easy to validate. On the other hand, 

simulations of micro and meso-scale phenomena, such as the 

micro-structure, porosity, and physical and mechanical proper-

ties, were found to be at the lower end of the TRL scale. There 

is promising early-stage research in these areas, however, sig-

nificant investment, research, and development is needed in 

these domains if the full potential of simulating MPBF is to 

be realised.

10  Conclusions

An overview of modelling techniques for powder bed fusion 

process chain has been presented, with a view to identify-

ing the work required to realise future digital twins. This 

has been achieved through a review of the various compu-

tational modelling techniques from micro-scale simulations 

of powder behaviour to simulations of subsequent process 

steps such as heat treatment and surface finishing. In addition, 

methods for transferring data between different models have 

been discussed, alongside uncertainties involved in modelling 

Fig. 16  Summary of results from TRL mapping workshop. Note that 

the numbers 0–9 indicate the TRL in the spider diagram. The zero 

indicates that no work has been done in that domain. Applications—

Strengths and Weaknesses
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Table 2  Summary of concluding remarks and future perspectives

Technology Domain Concluding remarks & future perspectives

Metal powder 

bed fusion 

(MPBF)

Modelling of powder Rain models and models based on the discrete element method have been used to simulate 

powder raking and distribution of powder. Models should be advanced by incorporating 

non-spherical shapes. The benefits of the models are that they could support the design 

of the recoater blade and its operation. Another research challenge is to predict potential 

defects based on the powder distribution. This challenge would require further research 

effort by incorporating uncertainty models to describe the input randomness of the initial 

powder distribution.

Prediction of temperature Models for the prediction of the melt pool temperature are available, but the validation of 

the predicted melt pool temperature history remains a challenge. Prediction of the thermal 

history at component scale is a challenging due to high computational demands. Analyti-

cal models have been developed, as well as method to lumps layers together, but there are 

still no strong validation procedures, which could be a focus of research.

Prediction of material properties Prediction of material properties is heavily dependent on the accuracy of the predicted 

temperature field which is used for the prediction of the microstructural evolution. There 

are existing theories based on multi-scale approaches to predict the mechanical properties 

in MPBF. However, their application at component scale is still a challenge due to the 

challenges in predicting the thermal history. It is expected that more research emerges in 

this field in the near future.

Prediction of distortion Despite the fact that distortion is depended on the thermal history, macro-scale approaches 

(e.g. inherent strain method) have been successfully applied to predict distortion at a com-

ponent level. Sufficient accuracy has been demonstrated and commercial software tools 

are available. However, for distortion compensation where high accuracy is required, the 

macro-scale predictive methods for distortion might show weaknesses for some geom-

etries and materials which would require to understand the limitation of those modelling 

techniques.

Prediction of residual stresses Bulk residual stresses have been predicted with macro-scale approaches. There are evi-

dences that the prediction of residual stress field can be reliable. However, the predictions 

of residual stress distribution need to be further understood at micro-scale and how it 

affects the development of micro-structure and defects.

Topology optimisation Topology optimisation tools for mechanical loads have been widely used in light-weighting 

applications against proof and fatigue performances. Manufacturing constrains have been 

also researched and incorporated in the topology optimisation algorithms for MPBF. 

Embedding manufacturing constrains from post-processes into topology optimised algo-

rithms is an area where further research can be conducted. Optimisation of surfaces for 

fluid flow and electro-magnetisms is also an area where further research is needed.

Post-processing Heat treatment Modelling of temperature history in a furnace is possible. Stress relief models have been 

also validated and applied to MPBF. Validation of furnace models for prediction of the 

thermal history in the part could be enhanced. Rapid micro-structural changes in a stress 

field during the heating could be further research to avoid cracks due to brittleness effects.

Machining operations Modelling of machining on additively manufactured parts has been researched, including 

modelling of bulk material removal and the tool-workpiece interaction. Prediction of 

microstructural changes and material properties at the surface is an area where further 

research can be dedicated.

Surface engineering Physics-based modelling of surface finishing with conventional and non-conventional 

technologies remains a challenge due to computational demands. Empirical-based model-

ling techniques have been primarily used. Surface hardening with shot-peening and laser 

shock peening have been modelled to predict the residual stress effect. Residual stresses 

profiles have been superimposed on surfaces using mathematical models.
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the process chain. Finally, a discussion on the current matu-

rity of powder bed fusion-specific modelling domains, such 

as the prediction of residual stresses, has been presented. 

Table 2 summarises the key conclusions and it provides future 

perspectives.
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