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Abstract

In practice, signals received by an array may be a mixture of coherently distributed (CD) and incoher-

ently distributed (ID) sources, due to some complicated multipath/scattering effects. To localize mixed

CD and ID sources, a method based on the generalized array manifold (GAM) is developed in this work.

Firstly, source enumeration and source type classification are achieved by jointly employing the minimum

description length (MDL) criterion, the covariance matrix difference technique and the second-order s-

tatistics of associated eigenvalues. Secondly, with the source enumeration result, the nominal direction

of arrival (DOA) of ID sources is estimated by the rank-reduction principle based one-dimensional (1-D)

spectral search, where shift invariance of the GAM associated with ID sources is considered. Thirdly,

the oblique projection technique is adopted to separate the CD sources from ID ones, and then the

nominal DOA of CD sources is estimated via the sparsity-cognizant total least-squares (S-TLS) method.

Finally, with aid of the nominal DOA estimates, the corresponding angular spreads are calculated. An

analysis of the proposed method is discussed and the approximate Cramér-Rao bound (CRB) is derived.

Simulations are provided to demonstrate the performance of the proposed method.

Keywords: Antenna arrays, mixed source localization, coherently distributed (CD) sources,

incoherently distributed (ID) sources.

1. Introduction

Source localization or direction of arrival (DOA) estimation for user terminals (UTs) is a key problem

in wireless communications, radar, sonar, radio astronomy and seismic exploration [1], [2]. To tackle
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the problem, many methods have been proposed in recent years, such as the multiple signal classifica-

tion (MUSIC)-based method [3], the estimating signal parameters via rotational invariance technique

(ESPRIT)-based method [4] and the sparse recovery based method [5], etc. However, they are mainly

focused on the point source model, whose fundamental assumption is that the source signal arrives at

the array through one single path and the energy of each source is concentrated to a single direction of

the array.

However, in wireless communication systems, the multipath phenomenon caused by reflection and

scattering always exists. Hence, the distributed source model which can characterize the impacts of

multipath is more appropriate [6], [7]. In general, the distributed sources can be classified into two

types: coherently distributed (CD) sources and incoherently distributed (ID) sources, which correspond

to slowly time-varying and rapidly time-varying channels, respectively. For a CD source, the signal

components arriving from different angles within the extension width are coherent (fully correlated).

While for an ID source, these components are uncorrelated. A number of methods focusing on the

localization of pure CD or pure ID sources have been presented [8]-[28], and most of them are established

on the well-known subspace framework. These activities can be summarized as follows:

1) For pure CD sources, the signal components from different paths are completely correlated, and

the dimension of the signal subspace is equal to the number of actual sources/UTs, which is the same

as in the point source model. Therefore, many traditional subspace-based approaches for point sources

can be easily extended to the case of CD sources. In [8] and [9], the distributed signal parameter

estimator and the dimension reduction MUSIC (DRNC-MUSIC) estimator were proposed, which are

the generalization of the classical MUSIC method; in [10]-[12], the ESPRIT, the unitary ESPRIT and

the ESPRIT-Like approaches were presented with closed-form expressions. The propagator method and

the beamspace propagator method were developed in [13] and [14], respectively, which provide a simple

way for source localization of CD sources. Except for the subspace-based techniques, the beamforming

estimator [15] and sparse reconstruction [16], [17] based approaches were also investigated in literature.
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2) For pure ID sources, the signal components from different paths are completely uncorrelated,

which directly yields that the dimension of the signal subspace is larger than the number of actual

sources/UTs, and thus the source localization problem becomes complicated. Instead of exploiting

the traditional subspace technique, Meng and Stoica et al. developed the quasi-signal/noise subspace

technique and further proposed the dispersed signal parameter estimator [18], which provides a suitable

way to tackle the problem of ID source localization. Following [18], many extensions have been proposed.

The covariance matching estimation method and the weighted subspace fitting method were introduced

in [19] and [20], respectively. The search-free Root-MUSIC method was proposed in [21], the ESPRIT

and Sequential ESPRIT based methods were proposed in [22]-[24], and the beamspace-based methods

were investigated in [25] and [26]. In addition, several ID source localization methods following other

theoretical frameworks were also presented, examples including the sparse Bayesian learning based

method [27] and the maximum likelihood (ML) based method [28].

Note that all the existing methods mentioned above consider only one type of distributed sources

(either ID sources or CD sources) and assume that the distributed source type is known a priori.

However, in certain scenarios, such as in wireless communications with complex and diverse regional

environments, multiple types of sources may coexist [29]-[31]. For instance, in over-the-horizon scattering

communications, the radio waves are scattered because of coherent reflection from the stable layer, and

the signals received by the array appear in the form of CD sources. While due to scattering of radio

waves by the inhomogeneity of the space medium, the received array signals will appear as an ID source.

After over-the-horizon transmission, signals received by the array may be a mixture of CD and ID

sources. As a result, the performance of the methods developed for one type of sources could degrade

substantially. To our best knowledge, little attention has been paid on dealing with this issue. Under

such a circumstance, developing an appropriate method to achieve satisfactory DOA estimation under

the coexistence of CD and ID sources is of great necessity. Motivated by this, a mixed CD and ID source

localization method built on the generalized uniform linear array (ULA) manifold is proposed in this
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paper. Different from the existing methods, our method is general, which is not only suitable for pure

CD or pure ID sources, but also for mixed CD and ID sources. To be specific, the main contributions

of this paper are listed as follows.

• As opposed to existing works for pure CD and pure ID sources, a mixed CD and ID source

model based on GAM is considered, which is general and better suited for the actual complicated

multipath scenarios. Based on this model, a new solution jointly utilizing the shift invariance of the

ID GAM, the oblique projection operator and the sparsity-cognizant total least-squares (S-TLS)

method [32] has been developed. It is shown that the shift invariance of the ID GAM combined

with the rank deficient principle can yield unambiguous nominal DOA estimation of ID sources.

Meanwhile, the oblique projection operator together with the S-TLS method has also been verified

to be a more effective way to estimate DOAs of CD sources than some existing methods.

• An efficient source enumeration scheme jointly exploiting the minimum description length (MDL)

criterion, the covariance matrix difference technique and the second-order statistics of associated

eigenvalues is introduced, which can yield effective estimation of both the number of CD sources

and that of ID sources, and hence provides a solid starting point for the subsequent source local-

ization process. To the best of our knowledge, it is the first time to apply such a scheme for source

enumeration, and is also an effective solution we developed for estimation of the number of mixed

distributed sources.

• An analysis in terms of maximum number of detectable distributed sources, estimation accuracy,

computational complexity and capacity for localizing distributed sources in different scenarios is

provided. Moreover, an approximate Cramér-Rao bound (CRB) is also derived.

The rest of this paper is organized as follows. In Section 2, the signal model for mixed CD and

ID sources, as well as the major assumptions is provided. In Section 3, the proposed mixed source

localization method is presented in detail. In Section 4, an analysis of the proposed method is provided,
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Figure 1: Geometry of the considered uniform linear array.

and the approximate CRB is derived. Simulation results are given in Section 5, and conclusions are

drawn in Section 6.

Notations : Lowercase (uppercase) boldface symbols represent vectors (matrices). The superscripts

(·)T , (·)H , (·)∗, (·)†, (·)−1 and (·)1/2 stand for the transpose, the conjugate transpose, the conjugate,

the pseudo-inverse, the inverse and the square root operations, respectively. E{·}, diag{·}, blkdiag{·},

det[·] and vec(·) denote the statistical expectation, the diagonalization, the block diagonalization, the

determinant and the vectorization, respectively. ⊗ and ⊙ are the Kronecker and the Hadamard-Schur

products, respectively. IM stands for an M ×M identify matrix, ΠM an M ×M exchange matrix, ⌈·⌉

the ceiling operation, and δ(·) the Kronecker delta function.

2. Mixed CD and ID Signal Model

Suppose that K uncorrelated1 narrowband sources (containing K1 ID sources and K2 = K−K1 CD

sources transmitted by UTs) impinge on a ULA with M sensors, as shown in Fig. 1. Let d denote the

distance between adjacent sensors, which equals half of the wavelength λ. The received signals by the

ULA can be expressed as

y(t) = yI(t) + yC(t) + n(t), (1)

1Uncorrelated signals means that different source signals are uncorrelated, while coherently distributed sources means

that the signal components of a source from different paths are coherent.
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where yI(t) and yC(t) correspond to the received data of ID and CD sources at time index t, respectively,

and n(t) is the additive white Gaussian noise with zero-mean and variance σ2
n.

For ID sources, the received signals yI(t) is given by [22]

yI(t) =

K1
∑

k=1

sk(t)

Nk
∑

i=1

γk,i(t)a(θk,i(t)), (2)

where a(θk,i(t)) = [ejx1u sin(θk,i(t)), . . . , ejxMu sin(θk,i(t))]T , θk,i(t) = θk+θ̃k,i(t) with θk and θ̃k,i(t) representing

the nominal DOA and the angular deviation of the ith path for the kth UT, respectively. In particular,

θ̃k,i(t) is a real-valued random process with zero mean and standard deviation σθk , which is referred

to as the angular spread. u = −2π/λ and xm is the coordinate of the mth element; γk,i(t) denotes

the complex-valued path gain corresponding to the ith path from the kth UT, and Nk the number of

multipaths.

By exploiting the GAM of ID sources and the first-order approximation of Taylor expansion under

a small angular spread, yI(t) can be approximately written as [22]

yI(t) ≈

K1
∑

k=1

[a(θk)vk,0(t) + d(θk)vk,1(t)], (3)

where d(θk) = ∂a(θk)/∂θk, and

vk,0(t) = sk(t)

Nk
∑

i=1

γk,i(t), (4)

vk,1(t) = sk(t)

Nk
∑

i=1

γk,i(t)θ̃k,i(t). (5)

For CD sources, the signal model yC is given by [33], [34],

yC =
K
∑

k=K1+1

sk(t)

Nk
∑

i=1

γk,i(t)a(θk,i(t)) =
K
∑

k=K1+1

Nk
∑

i=1

a(θk,i(t))sk,i(t), (6)

where sk,i(t) stands for the complex amplitude of the ith path from the kth CD source at the receiving

array side.

According to the large number theorem, when the number of multipaths Nk of a CD source is large

enough, DOA will exhibit continuous distribution within certain spatial range, which implies that yC
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can be expressed as [35]

yC =
K
∑

k=K1+1

∫

a(θ)sk(θ, t; θk, σθk)dθ, (7)

where sk(θ, t; θk, σθk) represents angular signal density of the kth CD source, with θk and σθk denoting

its nominal DOA and angular spread, respectively. Due to coherence of the signal components of CD

sources from different paths, the angular signal density can be represented as [8]-[10]

sk(θ, t; θk, σθk) = sk(t)ρ(θ; θk, σθk) (8)

Subsequently, it can be derived that

yC =
K
∑

k=K1+1

sk(t)c(θk, σθk), (9)

where c(θk, σθk) =
∫

a(θk)ρ(θ; θk, σθk)dθ denotes the generalized steering vector with ρ(θ; θk, σθk) being

the probability density function of the angular spread. With a small angular spread, an approximative

expression of c(θk, σθk) is given by

c(θk, σθk) ≈ a(θk)⊙ g(θk, σθk), (10)

whose mth element is

[c(θk, σθk)]m ≈

∫

ejxmu(sin θk+θ̃ cos θk)ρ(θ̃; θk, σθk)dθ̃

= ejxmu sin θk

∫

ejxmuθ̃ cos θkρ(θ̃; θk, σθk)dθ̃ = [a(θ
k
)]m[g(θk, σθk)]m, (11)

where [a(θk)]m = exp(jxmu sin θk). In general, ρ(θk, σθk) is assumed to be of uniform or Gaussian

distribution [8-10]. Thus, it can be further derived that

[g(θk, σθk)]m =















sin(xmσθk
/d)

xmσθk
/d

, uniform,

e−(xmσθk
/d)2/2,Gaussian.

(12)

In matrix form, (1) becomes

y(t) ≈ ASI1(t) +BSI2(t) +CSC(t) + n(t) = DV(t) + n(t), (13)
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where D = [A,B,C], V(t) = [SI1(t),SI2(t),SC(t)]
T , and

A = [a(θ1), . . . , a(θK1
)],B = [d(θ1), . . . ,d(θK1

)], (14)

C = [c(θK1+1, σθK1+1
), . . . , c(θK , σθK )], (15)

SI1(t) = [v1,0(t), v2,0(t), . . . , vK1,0(t)]
T , (16)

SI2(t) = [v1,1(t), v2,1(t), . . . , vK1,1(t)]
T , (17)

SC(t) = [sK1+1, sK1+2, . . . , sK(t)]
T . (18)

Throughout the paper, we make the following assumptions:

• The angular deviation θ̃k,i(t) and the complex-valued gain γk,i(t) are temporally white and inde-

pendent with zero-mean and covariance

E{θ̃k,i(t)θ̃k̃,̃i(t̃)} = σ2
θk
δ(k − k̃)δ(i− ĩ)δ(t− t̃), (19)

E{γk,i(t)γ
∗
k̃,̃i(t̃)} =

σ2
γk

Nk

δ(k − k̃)δ(i− ĩ)δ(t− t̃). (20)

• The UTs are located in a small angle scattering environment, i.e., the angular spreads {σθk}
K
k=1

are rather small.

• The signals are uncorrelated, and narrowband with zero mean and covariance E{s(t)sH(t)} =

diag{p1, . . . , pK}, where pk is the power of the kth signal.

• The transmitted signals, angular deviations, path gains and noise are mutually uncorrelated.

• The number of UTs K satisfies K ≤ ⌈M/2⌉ − 2, and the number of multipaths Nk is large,

∀k ∈ [1, K].

Based on (13) and the above assumptions, the array covariance matrix can be expressed as

R = E{y(t)yH(t)} = DΛDH + σ2
nIM

= AΛI1A
H +BΛI2B

H +CΛCC
H + σ2

nIM ,

(21)
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where

Λ = blkdiag{ΛI1 ,ΛI2 ,ΛC}, (22)

ΛI1 = diag{P1, . . . , PK1
}, (23)

ΛI2 = diag{P1σ
2
θ1
, . . . , PK1

σ2
θK1

}, (24)

ΛC = diag{pK1+1, . . . , pK}, (25)

and Pk = σ2
γk
pk, k = 1, . . . , K1. In case ofN samples,R is normally calculated by R̂ = 1

N

∑N
t=1 y(t)y

H(t).

In the following, we demonstrate how to utilize R̂ to achieve mixed CD and ID sources localization.

3. Proposed Method

3.1. Source Enumeration

Estimation of the number of sources where ID and CD sources coexist is required prior to performing

DOA estimation. Based on the MDL criterion [36], the number of sources can be estimated by

ˆ̄K = argmin
K̄

(M − K̄)N log





1
M−K̄

∑M
i=K̄+1 l̂i

∏M
i=K̄+1 l̂

1

M−K̄

i



+ vK̄ , (26)

where K̄ is the assumed number of sources, vK̄ = 1
2
K̄(2M − K̄) logN with N denoting the number of

samples, l̂1, . . . , l̂M are eigenvalues in descending order of the sampled covariance matrix R̂. It can be

seen from (13) and (21) that the GAM can be regarded as a virtual point source model composed of

2K1+K2 sources, due to the scattering characteristic of ID sources. As it has been widely demonstrated

in literature that MDL is an effective criterion for source enumeration using the point source model, it

has been adopted here, and when ˆ̄K is correctly detected, it will be equal to 2K1 +K2, which is larger

than the actual number of sources K. Therefore, we here designate ˆ̄K as the virtual number of sources.

Next, the covariance difference technique and the second-order statistics of associated eigenvalues

are exploited to further obtain the estimation of actual number of ID and CD sources. The covariance

difference technique is an efficient tool for distinguishing two covariance matrices that hold different
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structures, and has been applied in the localization of uncorrelated and coherent signals [37], DOA

estimation in Toeplitz colored noise [38], and classification of mixed far-field and near-field sources [39],

etc. However, to the best of our knowledge, it is the first time to apply it for source enumeration, and is

also an effective solution we developed for estimation of the number of mixed distributed sources. For

ULA, it can be observed that R1 = AΛI1A
H and the noise covariance matrix has a Hermitian Toeplitx

structure, while R2 = BΛI2B
H and R3 = CΛCC

H are only Hermitian, which provides a feasible way to

eliminate the information of ID sources according to the difference in matrix structure. For the Toeplitz

matrix, we have

R1 = ΠMRT
1ΠM , (27)

σ2
nIM = ΠM(σ2

nIM)TΠM , (28)

which directly yields that the covariance difference matrix RD can be expressed as

RD = R−ΠMRTΠM

= R2 −ΠMRT
2ΠM +R3 −ΠMRT

3ΠM .

(29)

Since RT
2 = R∗

2 and RT
3 = R∗

3, RD can be rewritten as

RD = BDΛ̄I2B
H
D +CDΛ̄CC

H
D , (30)

where BD = (B,ΠMB∗),CD = (C,ΠMC∗), Λ̄I2 = blkdiag{ΛI2 ,−ΛI2}, and Λ̄C = blkdiag{ΛC ,−ΛC}.

It can be found that there is neither any component of R1 nor sensor noise in RD.

Performing eigenvalue decomposition (EVD) on RD yields

RD = UΣUH =
M
∑

i=1

liuiu
H
i , (31)

where U = [u1, . . . ,uM ] and Σ = diag{l1, . . . , lM} with l1 ≥ · · · ≥ lK > lK+1 = · · · lM−K = 0 >

lM−K+1 ≥ · · · ≥ lM . If li is an eigenvalue of RD, i.e.,

RDui = [R−ΠMRTΠM ]ui = liui, (32)
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then

ΠM [ΠMRΠM −RT ]ΠMui = liui. (33)

Based on the properties of ΠMΠM = IM and R∗ = RT , it can be obtained that

RDΠMu∗
i = [R−ΠMRTΠM ]ΠMu∗

i = −liΠMu∗
i , (34)

which implies that the eigenvalues of RD will appear symmetrically, i.e., l1 = −lM , · · · , lK = −lM−K+1.

For the sake of simplicity, only the first M̄ = ⌈M/2⌉ eigenvalues are utilized for source enumeration.

Define ∆li = li − li+1(i = 1, . . . , M̄ − 1), whose corresponding second-order statistics βi is given by

βk =
1

M̄ − k

M̄−1
∑

i=k

[

∆li −
1

M̄ − k

M̄−1
∑

j=k

∆lj

]2

, (35)

where k = 1, . . . , M̄ − 1. With βk, we further construct the decision function for source enumeration as

T (k) =















βk+1

βk
, βk > 0,

+∞, βk = 0.

(36)

According to (36) and the properties of eigenvalues of RD, it can be obtained that T (k) satisfies

T (k) =































c > 0, k = 1, . . . , K − 1,

0, k = K,

+∞, k = K + 1, . . . , M̄ − 2.

(37)

Subsequently, the number of sources K is estimated by

K̂ = argmin
k=1,...,M̄−2

{T (k)} . (38)

With the estimated ˆ̄K and K̂, the number of ID sources K1 and CD sources K2 are finally estimated

as

K̂1 =
ˆ̄K − K̂, K̂2 = 2K̂ − ˆ̄K. (39)

For clarification, the scheme is summarized in Algorithm 1, where χ̂ denotes the estimate of χ with

N samples.
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Algorithm 1 Source Enumeration of Mixed ID and CD Sources

1: Calculate the covariance matrix R̂ = 1
N

∑N
t=1 y(t)y

H(t).

2: Estimate the virtual number of sources ˆ̄K by the MDL criterion via (26).

3: Construct the covariance difference matrix R̂D via R̂D = R̂−ΠMR̂ΠM .

4: Perform EVD on R̂D to obtain M eigenvalues, and then choose the first M̄ elements after placing

them in a descending order.

5: Calculate ∆l̂i = l̂i − l̂i+1, i = 1, . . . , M̄ − 1, and β̂k by β̂k = 1
M̄−k

M̄−1
∑

i=k

[

∆l̂i −
1

M̄−k

M̄−1
∑

j=k

∆l̂i

]2

, k =

1, . . . , M̄ − 2.

6: Construct the decision function T̂ (k), and further obtain the estimation of K by K̂ =

argmin
k=1,...,M̄−2

{T̂ (k)}.

7: Obtain the number of sources estimation of ID and CD sources through (39).

3.2. Nominal DOA Estimation of ID Sources

With the estimation result of the number of sources, we now focus on the nominal DOA estimation

of ID sources. In detail, we divide the whole array into two overlapped subarrays with equal number of

sensors. Subarray1 contains the first M − 1 sensors, while subarray2 contains the last M − 1 sensors.

Under this division, the GAMs of these two subarrays are given by

D1 = [A1,B1,C1], D2 = [A2,B2,C2], (40)

where

An = [an(θ1), . . . , an(θK1
)],Bn = [dn(θ1), . . . ,dn(θK1

)],

Cn = [cn(θK1+1, σθK1+1
), . . . , cn(θK , σθK )], n = 1, 2.

It can be seen that

a2(θk) = Φk1a1(θk), d2(θk) = Φk2d1(θk), (41)

where

Φk1 = diag
{

ejdu sin θk , . . . , ejdu sin θk
}

, (42)
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Φk2 = diag

{

x2

x1

ejdu sin θk , . . . ,
xM

xM−1

ejdu sin θk

}

. (43)

Meanwhile, with a small angular spread, c2(θk, σθk) will be approximate to Φk1c1(θk, σθk). In what

follows, the relationship between d1(θ) and d2(θ) is exploited for nominal DOA estimation of ID sources.

Based on estimation result of the number of sources, we implement EVD on R to yield

R = EsΣsE
H
s + EnΣnE

H
n , (44)

where Σs and Σn are the diagonal matrices with the largest K +K1 and the remaining M −K −K1

eigenvalues, respectively. Es and En are the corresponding M × (K +K1) -dimensional signal subspace

and M × (M −K −K1)-dimensional noise subspace, respectively.

Es can be partitioned as

Es =









Es1

dMT









=









d1T

Es2









, (45)

which satisfies Es = DT, Es1 = D1T and Es2 = D2T, where T is an invertible (K +K1) × (K +K1)

matrix, dM and d1 stand for the last row and first row of D, respectively.

With Es1 and Es2, further define a new matrix as

Ξ(θ) = Es2 −Ψ(θ)Es1 = (D2 −Ψ(θ)D1)T = PT, (46)

where

Ψ(θ) = diag

{

x2

x1

ejdu sin θ, . . . ,
xM

xM−1

ejdu sin θ

}

, (47)

and the kth column pak(θ), the (k+K1)th column pdk (k ∈ [1, K1]), and the (k̄+2K1)th column pck̄(θ)

(k̄ ∈ [1, K −K1]) of P are respectively given by

pak(θ) = [Φk1 −Ψ(θ)]a1(θk), (48)

pdk(θ) = [Φk2 −Ψ(θ)]d1(θk), (49)

pck(θ, σθ) = c2(θ, σθ)−Ψ(θ)c1(θ, σθ). (50)
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It can be seen that only pdk(θ) will be zero when θ = θk, since Ψ(θk) = Φk2 for k = 1, . . . , K1, which

implies that Ξ(θ) is rank deficient and the determinant of ΞH(θ)Ξ(θ)) is zero, provided that θ = θk and

K +K1 ≤ M . Further notice that the above rank-deficiency feature no longer holds for nominal DOA

of CD sources, which means that we can achieve unambiguous nominal DOA estimation of ID sources

{θ̂k}
K1

k=1 by finding K1 peaks of the following spatial spectral function

ηI(θ) = max
θ

{det[ΞH(θ)Ξ(θ)]}−1. (51)

3.3. Nominal DOA Estimation of CD sources

To classify mixed ID and CD sources efficiently and further achieve a good DOA estimation of CD

sources, the oblique projection technique [40]-[42] is exploited here. Specifically, with the DOA estimates

of ID sources {θ̂k, k = 1, . . . , K1}, the ID array manifold matrix can be estimated by

Γ = [Â, B̂] = [a(θ̂1), . . . , a(θ̂K1
),d(θ̂1), . . .d(θ̂K1

)]. (52)

Let Eop = Γ(ΓHR†Γ)−1ΓHR† be an oblique projection matrix with range space Γ and null space C,

which has the following properties

EopΓ = Γ, EopC = 0. (53)

Then, we apply Eop to y(t) as follows

z(t) = (IM − Eop)y(t) = CSC(t) + (IM − Eop)n(t). (54)

It can be seen from (54) that the signal part of z(t) only contains the information of CD sources,

whose covariance matrix is Rz = E{z(t)zH(t)}. To achieve satisfied nominal DOA estimation of CD

sources, the S-TLS method is exploited here, which not only holds the advantage of super resolution,

but also robustness to noise and small perturbations.

By subtracting noise component from Rz, we have

R̄z = Rz − σ2
n(IM − Eop)(IM − Eop)

H . (55)
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Vectoring R̄z yields

r = vec(R̄z) =
K
∑

k=K1+1

c̄kPk = C̄p, (56)

where c̄k = vec(c(θk, σθk)c
H(θk, σθk)), C̄ = [c̄K1+1, . . . , c̄K ], and p = [PK1+1σ

2
θK1+1

, . . . , PKσ
2
θK
].

Under the sparse perturbed model, r can be rewritten as

r = (A′ + F)p = (Φ+ FG)pG, (57)

where āk = vec(a(θk)a
H(θk)), A′ = [āK1+1, . . . , āK ], and F is an M2 × (K − K1)-dimensional per-

turbed matrix caused by angular spread; Φ, FG and pG are the sparse representations of A′, F and p,

respectively, which are formed on a uniform grid of points describing candidate nominal DOAs {θi}
G
i=1.

Taking the finite sample effect into account, r can be further expressed as

r+ e = (Φ+ FG)pG. (58)

Subsequently, the S-TLS problem for perturbed model can be formulated as

{p̂G, F̂G, ê}S−TLS := arg min
pG,FG,e

∥[FG e]∥2F + ϱ∥pG∥1

s. t. r+ e = (Φ+ FG)pG, (59)

where ϱ stands for the penalty parameter.

Eliminating e through substituting the constraint into the cost function, (59) can be reformulated

as

{p̂G, F̂G}S−TLS := arg min
pG,FG

∥r− (Φ+ FG)pG∥
2
2 + ∥FG∥

2
F + ϱ∥pG∥1. (60)

Note that formulation (60) is a nonconvex problem; however, one can adopt the well-known iterative

block coordinate descent algorithm [43] to transform it into two convex ones. The first convex problem

at iteration i is given by

pG(i) = argmin
pG

∥r− (Φ+ FG(i))pG∥
2
2 + ϱ∥pG∥1, (61)
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which is established on the given FG(i) and solved efficiently via the convex-type software package CVX

[44]. With p̂G(i) available, the second convex problem becomes

FG(i+ 1) = argmin
FG

∥r− (Φ+ FG)pG(i)∥
2
2 + ∥FG∥

2
F , (62)

whose closed-form solution can be easily obtained by

FG(i+ 1) = (1 + ∥pG(i)∥
2
2)

−1[r−ΦpG(i)]p
T
G(i). (63)

Run steps (61) and (63) alternately until convergence is achieved. Finally, the nominal DOAs of CD

sources can be obtained by finding the indexes of K −K1 non-zero peaks in pG.

Remark 1 : Based on the convergence properties of the block coordinate descent algorithm, the

solutions obtained by (61) and (63) will converge monotonically to a stationary point. On the other

hand, it has been verified in [32] that the S-TLS solver can yield accurate reconstruction even with

perturbations present in both Φ and r, which implies that the adopted approach is a good choice for

nominal DOA estimation of CD sources. Moreover, the penalty parameter ϱ is important to guarantee

the recovery performance, which can be properly selected by the L-curve method [45] or the cross-

validation scheme [46].

Remark 2 : One can also exploit computationally efficient approaches, such as ESPRIT [10] and

unitary ESPRIT [11] for nominal DOA estimation of CD sources, which are also applicable from a

theoretical point of view. However, due to influence of the oblique projection operator, the rotation

invariance structure between two subarrays cannot be matched perfectly. As a result, a satisfied perfor-

mance cannot be achieved, as shown later by simulation results.

3.4. Angular spread estimation

Based on the subspace theory and the nominal DOA estimates of CD sources, the angular spreads

[σθk ]
K
K1+1 associated with CD sources are estimated by

σ̂θk = min
σθk

[cH(θ̄, σθ)UnU
H
n c(θ̄, σθ)]

−1, (64)
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Algorithm 2 Mixed CD and ID Source Localization Approach

1: Calculate the covariance matrix R̂ and implement source enumeration according to Algorithm 1.

2: Perform EVD on R̂ to obtain the signal subspace Ês, and further partition it into Ês1 and Ês2.

3: Construct Ξ̂(θ) according to (46), and then obtain the nominal DOA estimation of ID sources from

(51).

4: Form the oblique projection matrix Eop after reconstructing Γ.

5: Obtain z(t) and covariance matrix R̂z =
1
N

∑N
t=1 z(t)z

H(t).

6: Construct R̄z and further vectorize it to obtain r and Φ.

7: Initialize with FG(0) = 0M2×G

for i = 0, 1, . . . , κ do

Update pG(i) via (61).

Update FG(i+ 1) as in (63).

end for

8: Obtain nominal DOAs of CD sources by finding the indexes of non-zero peaks in pG.

9: Estimate [σ̂θk ]
K
k=K1+1 via (64).

10: Reconstruct Λ̂ by (65), and then estimate [σ̂θk ]
K1

k=1 via (66).

where Un is the noise subspace matrix of Rz or R̄z.

With all estimated nominal DOAs and angular spreads of CD sources, Λ̂ is calculated by

Λ̂ = D̂†(R̂− σ̂nIM)(D̂H)†, (65)

where D̂ = [Â, B̂, Ĉ] is the estimation of GAM, σ̂n is the average of the M−K−K1 smallest eigenvalues

of R̂. Therefore, angular spread of ID sources according to (24) and (25) can be obtained by

σ̂θk =

√

[Λ̂]2k,2k

[Λ̂]2k−1,2k−1

, k = 1, 2, . . . , K1, (66)

The proposed mixed CD and ID source localization method is summarized in Algorithm 2.
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4. Discussion and Cramér-Rao Bound

4.1. Discussion

The proposed solution is discussed from four different aspects, i.e., maximum number of detectable

sources, estimation accuracy, computational complexity and capability for localizing distributed sources

in different scenarios.

4.1.1. Maximum Number of Detectable Sources

The maximum number of detectable sources of the proposed approach is mainly affected by three

operations: i) source enumeration; 2) nominal DOA estimation of ID sources; 3) nominal DOA estimation

of CD sources, where the required number of sensors satisfies M̄ − 2 ≥ K, M ≥ K +K1 and M ≥ K2,

respectively. By conducting simple intersection operation, we can easily conclude that M̄ − 2 ≥ K. In

other words, the proposed method can detect K = M̄ − 2 mixed distributed sources using a ULA of M

sensors.

4.1.2. Estimation Accuracy

In general, the DOA estimation accuracy of the associated methods increases as the number of

sensors, the number of snapshots and signal-to-noise ratio (SNR) increase. Except for these parameters,

the performance of the proposed approach is also affected by the angular spread. For ID sources, a

first-order Taylor expansion of the array manifold is used. When angular spread is sufficiently small, the

GAM will be a good approximation to the true array manifold, and thus a satisfactory nominal DOA

estimation performance will be provided. However, with the increase of angular spread, its estimation

accuracy will degrade due to model mismatch. For CD sources, a first-order Taylor approximation is

also utilized, which implies that the estimation accuracy decreases as the angular spread increases. On

the other hand, the S-TLS algorithm is adopted. According the stable recovery theory [47], the mean

square error (MSE) of p̂G is proportional to ∥FG∥
2
F , and if angular spread is small enough, ∥FG∥

2
F will

be small and a good nominal DOA estimation result will be obtained; otherwise, the performance will
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degrade. As a result, the proposed approach is more suitable for mixed source localization with small

angular spread, which is consistent with most of the existing methods for dealing with distributed source

localization.

4.1.3. Computational Complexity

Regarding the computational complexity, we consider the major part, including covariance matrix

construction, EVD, and the sparse recovery process. The proposed approach constructs two M × M -

dimensional covariance matrices and implement their EVDs. In addition, sparse recovery is performed

iteratively It times under G spatial grids. Therefore, the resulting number of multiplications required for

the proposed method is in order of O{2M2N + 8
3
M3 + ItG

3]}, which is higher than that of the ESPRIT

[10], [22] and the beamspace [25] based methods (whose main complexity is O{M2N+ 4
3
M3}). However,

the proposed method is a general one and can provide an improved estimation accuracy.

4.1.4. Capability for Localizing Distributed Sources

From the procedure of the proposed method, it can be seen that our method is suitable for any types

of distributed sources. In detail, when K̂2 = 0, the sources are all ID, and the proposed method will

reduce to the rank-reduction based method; when K̂1 = 0, the sources are all CD, and the proposed

one will reduce to the S-TLS method. Moreover, As explained in the Section 3.2, the rank-deficiency

feature of Ξ(θ) only holds for nominal DOA of ID sources, which implies that only ID sources will

exhibit peaks from the spatial spectrum function (51) even if some of ID and CD sources have same

DOAs. On the other hand, due to the application of the oblique projection operator, the signal part

of z(t) only contains the information of CD sources, which means that the subsequent S-TLS problem

only yields DOA estimation of CD sources regardless of whether ID and CD sources have same DOAs.

That is, the proposed method is also capable of mixed distributed sources localization where some of

CD and ID sources have the same nominal DOAs, as shown later by computer simulations.
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4.2. Approximate Cramér-Rao Bound

So far, the Cramér-Rao Bound (CRBs) for localization of distributed sources are all established

on pure ID or pure CD sources. In this section, we derive the approximate CRB for the considered

problem where ID and CD sources coexist. Consider the unknown parameters vector ξ = [µT ,νT ]T ,

where µ = [θT ,σθ
T ]T = [θ1, . . . , θK , σθ1 , . . . , σθK ]

T is the parameters of interest, and ν = [PT , σ2
n]

T =

[p1, . . . , pK , σ
2
n]

T is the remaining parameters. Under the condition of large Nk and small angular spread,

the array covariance matrix R can be approximately expressed as [48]

R ≈

K1
∑

k=1

pkRi(θ, σθ) +
K
∑

k=K1+1

pkRc(θ, σθ) + σ2
nIM , (67)

where

Ri = a(θk)a
H(θk)⊙Gi(θk, σθk), (68)

Rc = c(θk, σθk)c
H(θk, σθk), (69)

and Gi(θk, σθk) is a matrix, whose (p, q)th elements is

[Gi(θk, σθk)]p,q =















sinc(2
√
3x̄p,q cos θkσk

λ
), uniform,

exp
{

−
(ux̄p,q cos θkσθk

)2

2

}

,Gaussian.

(70)

where x̄p,q = (xp − xq), p, q ∈ [1,M ]. Such an approximation is widely used in literature [22], [48], which

is a convenient way to derive an appropriate CRB.

The CRB of ξ can be calculated by

CRB(ξ) =
1

N

[

(

∂r

∂ξT

)H

(R−T ⊗R−1)
∂r

∂ξT

]−1

, (71)

where

r = ri + rc + σ2
n · vec(IM) (72)

ri =

K1
∑

k=1

[pka
∗(θk)⊗ a(θk)]⊙ vec(Gi(θk, σθk)), (73)

rc =
K
∑

k=K1+1

pk[c
∗(θk, σθk)⊗ c(θk, σθk)]. (74)
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Through partitioning, we have

(R−T/2 ⊗R−1/2)

[

∂r

∂µT

∂r

∂νT

]

def

= [W V], (75)

where the lth column of W and V are respectively given by

[W(:, l)]K1

l=1 = (R−T ⊗R−1)
∂ri
∂θk1

, (76)

[W(:, l)]Kl=K1+1 = (R−T ⊗R−1)
∂rc
∂θk2

, (77)

[W(:, l)]K+K1

l=K+1 = (R−T ⊗R−1)
∂ri
∂σθk1

, (78)

[W(:, l)]2Kl=K+K1+1 = (R−T ⊗R−1)
∂rc
∂σθk2

, (79)

[V(:, l)]Kl=1 = (R−T ⊗R−1) · vec(IM), (80)

[V(:, l)]2Kl=K+1 = vec(R−1), (81)

where k1 = 1, . . . , K1, k2 = K1 + 1, . . . , K.

Subsequently, we can obtain

CRB−1(ξ) = N









WHW WHV

VHW VHV









. (82)

Based on (82), the CRB concerning the parameters of interest is finally obtained via

CRB(µ) =
1

N

[

WHΠ⊥
VW

]−1
, (83)

where Π⊥
V = I−V(VHV)−1VH .

5. Numerical Simulations

In this section, numerical simulations are carried out to evaluate the performance of the proposed

method. The ESPRIT [22], the beampsace [25] based methods for ID sources, the DRNC-MUSIC [9]

with known angular spread and the ESPRIT method [10] for CD sources are selected for comparison.
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Additionally, the approximate CRB for the considered scenarios is also calculated for comparison. In

the simulations, all the incident signals are assumed to be of equal power and binary phase shift keying

(BPSK) modulated, and the variance of the ray gain and the number of paths are fixed at σγk = 1 and

[Nk]
K
k=1 = 50, respectively. The search step for the 1-D spectral search of (51) is 0.1◦, the spatial grids

for S-TLS method are initialized with 1◦ interval in the range of −90◦ to 90◦ , and then refined with 0.1◦

interval around the estimated angles. In addition, the PDF of angular spread is Gaussian, and the SNR

is defined as SNR = 10log10(pk/σ
2
n). The root mean square error (RMSE) obtained by 500 Monte-Carlo

trials is used to measure the performance of the proposed method, which is defined as

RMSE =

√

√

√

√

1

500K

K
∑

k=1

500
∑

c=1

(β̂k,c − βk)2, (84)

where β̂k,c is the estimate of βk in the cth simulation.

In the first simulation, the normalized spatial spectrum output is presented by the proposed approach,

where four scenarios are considered. Scenario 1 : Two pure CD sources with nominal DOAs θ1 = −10◦

and θ2 = 15◦; Scenario 2 : Two pure ID sources with nominal DOAs θ1 = −10◦ and θ2 = 15◦; Scenario

3 : One ID source with nominal DOA θ1 = −10◦, and two CD sources with nominal DOAs θ2 = 10◦ and

θ3 = 20◦; Scenario 4 : One ID source with nominal DOA θ1 = −10◦ and two CD sources with nominal

DOAs θ2 = −10◦ and θ3 = 20◦. All the angular spreads are fixed at σθ = 1.5◦; the number of sensors

M , the number of snapshots N and SNR are set to 10, 200 and 15 dB, respectively. It can be seen from

Fig. 2 that the proposed method is not only suitable for dealing with pure CD and ID sources, but also

mixed CD and ID sources. Meanwhile, it also works for mixed source localization where some of CD

and ID sources have the same nominal DOAs.

In the second simulation, the source enumeration performance of the proposed method is examined,

whose probability of correct detection curves at different SNRs, different number of sensors and snapshots

are shown in Fig. 3. The probability of correct detection is defined as Pc = Ic/500, where Ic stands for

the number of correct source enumerations in 500 independent Monte-Carlo trials. One ID source and
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Figure 2: Normalized spatial spectrum obtained by the proposed approach, M = 10, N = 200, SNR=15 dB, and σθ = 1.5◦.

(a) Two CD sources with θ1 = −10◦, θ2 = 15◦. (b) Two ID sources with θ1 = −10◦, θ2 = 15◦. (c) One ID source with

θ1 = −10◦ and two CD sources with θ2 = 10◦, θ3 = 20◦. (d) One ID source with θ1 = −10◦ and two CD sources with

θ2 = −10◦, θ3 = 20◦.

one CD source with their parameters {θ1 = −10◦, σθ1 = 1◦} and {θ2 = 15◦, σθ2 = 1◦} are considered. In

Fig. 3(a), SNR is fixed at 10 dB, whereas M varies from 10 to 20 and N from 50 to 150. In Fig. 3(b),

N is fixed at 100, and M varies from 10 to 20 and SNR from 8 dB to 12 dB. From the simulation result,

we can observe that the proposed method can provide an effective source number estimation result. In

particular, when M ≥ 12, N ≥ 100 and SNR≥ 10 dB, the probability of correct detection is higher

than 90%. Based on this simulation, and also for the sake of simplicity, we assume that the number of

sources has been correctly estimated in subsequent simulations.

In the third simulation, the performance is evaluated with respect to SNR. The parameters of two

incident signals for the proposed method are the same as in the second simulation. For reasonable
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Figure 3: Probability of correct detection by the proposed source enumeration scheme for one ID source with θ1 = −10◦

and one CD source with θ2 = 15◦, σθk1
= σθk2

= 1◦. (a) Different number of sensors and snapshots. (b) Different SNRs

and number of sensors.

comparison, two ID sources (whose location information is the same as that of the proposed one) are

considered for the ESPRIT [22] and beamspace [25] based methods, since they cannot deal with mixed

distributed sources. Once the nominal DOA of ID sources is estimated and the component of ID sources

is eliminated by oblique projection, the DRNC-MUSIC [9] and ESPRIT [10] based solutions proposed

for CD sources are also employed for comparison. The simulation result with M = 12 and N = 200 is

shown in Fig. 4. It can be seen that the proposed one outperforms the other methods for nominal DOA

estimation of both ID and CD sources in the whole SNR region. For angular spread estimation of ID

sources, the proposed method performs better than the beamspace method, and also better than the

ESPRIT method [22] when SNR≤8 dB. For angular spread estimation of CD sources, the new method

again provides a lower RMSE than the ESPRIT method in [10].

In the fourth simulation, the performance of the proposed method is examined for different number

of snapshots N , and the results are shown in Fig. 5. The simulation configuration is the same as in the

third simulation, except that SNR is fixed at 8 dB, while N varies from 50 to 300 in a step of 50. From

Fig. 5, it can be seen that the RMSE of all methods decreases as N increases, and again the proposed

one outperforms the compared ones. In addition, it can be seen from Fig. 5(a) that there is a clear gap
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Figure 4: RMSE of nominal DOA and angular spread estimation with respect to SNR, with M = 12, N = 200, θ1 = −10◦,

θ2 = 15◦, and σθ1
= σθ2

= 1◦. (a) Nominal DOA estimation of ID sources. (b) Nominal DOA estimation of CD sources.

(c) Angular spread estimation of ID sources. (d) Angular spread estimation of CD sources.

between the RMSEs of the proposed method and the CRB. This can be explained as follows: For the

nominal DOA estimator of ID sources, it can be regarded as a pure ID source localization problem in

the presence of CD source interference, and such an interference directly yields that the RMSE of the

proposed method cannot follow the CRB well.

In the fifth simulation, the performance is studied for different values of sensor number M . The

simulation conditions are again the same as in the third simulation, except that the SNR is fixed at 8

dB, and M varies from 10 to 20. Fig. 6 shows the RMSEs of the nominal DOA and angular spread

estimates versus M , where the performance of the proposed method improves as M increases, and its

trend matches well with that of the CRB. As a comparison, the performance of the ESPRIT method
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Figure 5: RMSE of nominal DOA and angular spread estimation for different number of snapshots, with M = 12, SNR=8

dB, θ1 = −10◦, θ2 = 15◦, and σθ1
= σθ2

= 1◦. (a) Nominal DOA estimation of ID sources. (b) Nominal DOA estimation

of CD sources. (c) Angular spread estimation of ID sources. (d) Angular spread estimation of CD sources.

[10] for nominal DOA estimation of CD sources, as well as other compared methods for angular spread

estimation degrades as M increases in certain ranges of the number of sensors. Such a phenomenon can

be explained as follows. We have clarified that the ESPRIT method proposed for CD sources in [10]

is employed for comparison after eliminating the components of ID sources by the oblique projection

technique. However, due to the limited number of snapshots and application of the oblique projection

operator, there will be perturbations in the observation model z(t), resulting in the rotation-invariant

structure between two subarrays not being perfectly maintained. In particular, the impact of such

perturbations may increase with the increase of M and SNR, especially for a relatively small number

of snapshots. As a result, the RMSEs of the relevant parameters of the ESPRIT method increase, as
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Figure 6: RMSE of nominal DOA and angular spread estimation for different number of sensors, with N = 200, SNR=8

dB, θ1 = −10◦, θ2 = 15◦, and σθ1
= σθ2

= 1◦. (a) Nominal DOA estimation of ID sources. (b) Nominal DOA estimation

of CD sources. (c) Angular spread estimation of ID sources. (d) Angular spread estimation of CD sources.

shown in Figs. 6(b) and 6(d) (also shown in Figs. 4(b) and 4(d)). In addition, also affected by the

limited number of snapshots, the estimation performance for angular spreads by the beamspace based

method also decreases as M increases to a certain extent, which coincides with the results in Fig. 3(d)

of [25].

In the sixth simulation, the performance is tested for different angle separations. M , N and SNR are

set to 12, 200 and 4 dB, respectively. The nominal DOA θ1 of one ID source is fixed at −10◦, whereas

that θ2 of one CD source is changed from −4◦ to 11◦ in a step of 3◦, with σθ1 = σθ2 = 1◦. The RMSE

curves are shown in Fig. 7, from which we can see that the performance of all estimators improves with

the increase of angle separation. Moreover, it can be further observed that the proposed method can
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Figure 7: RMSE of nominal DOA estimation versus angle separation, with M = 20, N = 200 and SNR=4 dB. (a) Nominal

DOA estimation of ID sources. (b) Nominal DOA estimation of CD sources.

Figure 8: RMSE of nominal DOA estimation versus angular spread, with M = 20, N = 200, SNR=8 dB, and θ1 = −10◦,

θ2 = 15◦. (a) Nominal DOA estimation of ID sources. (b) Nominal DOA estimation of CD sources.

obtain a good estimate when angle separation is greater than 9◦, showing its robustness against closely

spaced sources compared with other methods.

In the seventh simulation, the performance of the proposed method is assessed with respect to angular

spread. M , N and SNR are set to 20, 200 and 8 dB, respectively. One ID source with nominal DOA

θ1 = −10◦, and one CD source with nominal DOA θ2 = 15◦ are considered, and the angular spreads of

two sources are equal and vary from 0.5 to 3. As can be seen in Fig. 8, for CD sources, the RMSE of

nominal DOA estimation of the proposed method decreases with the increase of angular spread, while
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Figure 9: Validation of maximum number of detectable sources for the proposed method, with M = 12, N = 200, and

SNR=20 dB, two ID sources from θ1 = −40◦ and θ2 = −10◦, and two CD sources from θ3 = 20◦ and θ4 = 50◦. (a) Result

of source enumeration; (b) normalized spatial spectrum.

for ID sources, the overall trend of nominal DOA estimation of all methods goes up as the angular

spread increases, provided that angular spread is larger than 1◦, which is consistent with the discussion

in Section IV. On the other hand, it is necessary to point out here that the performance of the proposed

method is also affected by other parameters, and when the angular spreads of ID sources are rather

small, the expectations of the diagonal elements of Λ̂ formulated in (19) are small. Thus, the impact of

noise becomes the dominant factor, which finally yields that the RMSE of nominal DOA estimation of

ID sources decreases as the angular spread increases, when angular spread is smaller than roughly 1◦.

In the last simulation, we further validate the capacity of the proposed method in terms of the

maximum number of detectable sources. Four distributed sources containing two ID sources from

θ1 = −40◦ and θ2 = −10◦, and two CD sources from θ3 = 20◦ and θ4 = 50◦ are considered with

M = 12, N = 200, SNR=20 dB, and σθk = 1◦, k = 1, 2, 3, 4. A value of one is used to indicate that

the number of sources has been correctly detected in the pth simulation, where p ∈ [1, 10]; otherwise,

it is zero. As can be seen in Fig. 9, the proposed method can detect M̄ − 2 = 4 distributed sources

successfully using a ULA of M = 12 sensors, which is consistent with the analysis in Section 4.1.1.
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6. Conclusion

In this paper, a novel source localization method for mixed ID and CD sources has been proposed

based on the GAM under the small angular spread assumption. As a general solution, it can be applied

for localization of different types of distributed sources. First, an efficient source enumeration scheme

was developed, suitable for number estimation of mixed CD and ID sources as well as classification of

source types. With the aid of source enumeration result, the rank-reduction principle based 1-D spectral

search and the S-TLS method were respectively exploited for nominal DOA estimation of ID and CD

sources. Numerical simulations show that the proposed method has outperformed some representative

methods considered, and more importantly none of those existing methods can deal with the most

general case of the problem.
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