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Summary

The UK population is ageing. This demographic trend is challenging for existing
infrastructure and services because older people have specific daily activities and mobility
patterns. Moreover, the older population is highly heterogeneous regarding demographics,

health conditions and transportation access. While agent-based models are increasingly used in
urban planning, they generally ignore this heterogeneity in elderly populations. This paper
presents an agent-based model to support urban planning related to seniors in the West

Midlands county, UK. The model is built and validated using mainly open data. Its potential
is illustrated on the example of elderly healthcare accessibility.
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1 Introduction

Urban planning increasingly uses agent-based models (ABMs), acknowledged for their ability to
represent heterogeneous human behaviours and decisions. ABMs represent a system as a set of
heterogeneous agents, with individual attributes and behaviours, interacting in an environment. The
ABM approach applied to cities can thus represent populations at a microscopic level with accurate
demographic attributes and spatial locations, as well as phenomena emerging from individuals’
behaviours and interactions (Crooks et al., 2021). ABMs have for instance been used to help urban
planning to simulate exposure to environmental stresses (Yang et al., 2018), or to model bicycle
flows and support cycling promotion (Kaziyeva et al., 2021).

A growing matter in urban planning is the consideration of older populations. Older people - aged
65 years or over - represent a significant part of the UK population and this trends will accentuate
over the next years. From 19.2 % of the population in 2022, the elderly proportion is expected to
reach 21.7% by 2030 and 24.8 % by 2050 (Office for National Statistics, 2019). Since seniors’ daily
activities and mobility differ from the general population, they are generally regarded as a single
demographic group when ABMs are designed for urban planning. However, the elderly population is
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heterogeneous in its socio-demographic characteristics, health conditions, daily activities, mobility
patterns and transportation needs (Carney and Kandt, 2022). While some seniors are in good
health, highly mobile and can ensure their physical and social well-being, others struggle to satisfy
their basic needs. Ignoring the heterogeneity of elderly populations can increase inequalities in
seniors health and well-being. For example, the introduction of public transport in a residential
area can improve older people’s access to distant services. However, this might also foster poor land
use mix in the area. If the public transport system is not designed for people with disabilities, some
elderly populations will not benefit from it (Maynard, 2009) and might additionally face difficulties
in finding local services. To prevent increasing inequalities, urban planning needs to consider the
diverse older populations.

This paper presents an ABM to support urban planning related to older people in West Midlands
Combined Area (WMCA), UK. WMCA covers the second most populous county in England, with
almost 3 million inhabitants and 15.6% of seniors. However, the seniors’ proportion by Middle
Layer Super Output Area (MSOA) varies from 2.4% to 33.6%. WMCA is heavily urbanised, but
also includes some rural areas, between Coventry and the main conurbation (Figure 1). The county
is connected by road network, rail, bus and tram services, overseen by Transport for West Mid-
lands (TfWM). We describe the design and validation of the model using primarily open data, and
illustrate its potential for urban planning on elderly healthcare accessibility.

Figure 1: Screenshot of the OSM map of West Midlands County.

2 Method

The proposed ABM combines a synthetic population of agents with an activity-based model. All
WMCA population is modelled - not only elderly groups - in order to reproduce interactions between
individuals, i.e. in households and in the environment.



2.1 Synthetic population

A synthetic WMCA population for 2022 was generated using the open-source tool SPENSER (Lo-
max et al., 2022). SPENSER uses 2011 census data and population projections of the Office for
National Statistics (ONS) to generate a synthetic population of individuals with age, sex and eth-
nicity attributes, related into households at the Output Area (OA) level.

Besides age and sex, transportation access, health status, income, occupation and qualification have
also been identified as key determinants of seniors’ lifestyles (Carney and Kandt, 2022; Luiu and
Tight, 2021). We then used an open source extension of SPENSER (Alvarez Castro and Ford,
2022) to supplement synthetic individuals with additional attributes. Attributes were assigned
probabilistically according to age and gender distributions from census and ONS regional data.

The 2022 synthetic population is composed of 2,937,639 agents, including 444,507 seniors, each with
21 attributes related to their socio-demographics, household, transportation access and residential
geolocation (Figure 2).

Figure 2: Synthetic population attributes.

2.2 Activity-based model

An activity-based model simulate individual trips over a day or a week. In such models, the travel
demand is derived from people’s activity schedules, which allows a fine modelling of individuals’
decisions and behaviours. Agents were assigned weekly plans using National Travel Survey (NTS)
microdata from 2018 and 2019 (pre-COVID years). NTS is a household survey on people travel
and factors affecting travel, and microdata contains demographics and weekly schedules of individ-
uals.



An unconstrained statistical matching algorithm was used to match each synthetic individual with
one of the 23,888 individuals from the 2018-2019 NTS records (see Namazi-Rad et al. (2017)). Each
agent was matched to its nearest NTS neighbour using a ball-tree structure and Manhattan distance
on their common attributes, i.e. sex, age range, health condition, income range, economic activity,
qualification, driving license, bike access, car access, household size, presence of children, marital
status, and rural/urban residential area classification.

At the end of the process, each agent is associated with a NTS record and its weekly plan of
activities. Each activity is defined by its start time, duration, purpose (home, work, education,
shopping, medical, eat out, social, entertain, exercise, escort someone) and transportation mode to
get to the activity (car, ride, public transport, walk, bike), as illustrated in Figure 3.

Figure 3: Example of individual daily plan.

2.3 Environment model

The WMCA road network, public transport network, as well as buildings and facilities were ex-
tracted from OpenStreetMap OpenStreetMap contributors (2017), as shown on Figures 4 and 5.
Public transport stops, vehicles and schedules were modelled using GTFS data from TfWM API.
Facilities from OpenStreetMap were used to assign residential buildings to households, and activities
locations to agents, based on the activity purpose and trip distance from NTS data.

3 Validation and simulation

The proportion of older people by MSOA in the 2022 synthetic population reproduces well propor-
tions reported by 2021 census, as shown in Figure 6. As they age, elderly populations become more
prevalent far from urban centres, which is well reproduced.

18,148 NTS individuals were matched to the 2,937,639 agents (4,727 NTS individuals to 444,507
senior agents). An evaluation of seniors matching (Table 1) shows that more than 98% of senior
agents are perfectly matched regarding sex, economic activity, driving license ownership, car access,
bike access, and child presence in the household. More than 70% of senior agents are perfectly
matched on health, qualification and marital status. Additional evaluation have shown that 64.9%
of senior agents are matched on age within a 5-year error and 83.2% within a 10-year error. The
matching is less precise but still relevant regarding household sizes, income range and rural/urban
residential area classification. The total population matching scores are comparable to those of
seniors.



Figure 4: Model of road network (grey) and public transportation network: buses (yellow) and
tramway (orange).

Figure 5: Model of buildings and facilities. Residential buildings (red), buildings related to shops
(blue), education (yellow), transport (orange), healthcare (green), entertainment and sport (pink).



(a)

(b)

(c)

Figure 6: Proportions of older people by MSOA in the 2022 synthetic population (left) and in 2021
census (right) for age ranges: (a) 65-74 year-old, (b) 75-84 year-old, and (c) 85+ year-old.

The proposed model served as an input to MATSim, an open-source framework for ABM transport
simulations. MATSim uses an utility maximization evolutionary algorithm to produce a realistic
demand, finding traffic equilibrium as agents adapt their behaviour to the transport environment.
Each day of the week was simulated for 750 iterations with 10% of all agents due to MATSim



Table 1: Statistical matching scores for seniors in bold, and total population in brackets

Ordered classes used for % of agents % of agents
Attribute the statistical matching perfectly quasi perfectly

matched matched i.e. max
one class shift

Sex {f, m} 99.92 (99.78) -

{0-4, 5-10, 11-16, 17-20, 21-29,
Age range 30-39, 40-49, 50-59, 60-64, 49.31 (55.39) 78.92 (86.08)

65-69, 70-74, 75-79, 80-84, 85+}
Health status {very poor or poor, fair,

good or very good} 82.35 (70.73) 99.72 (98.73)

{<10k, 10-15k, 15-20k, 20-25k,
Income 25-30k, 30-35k, 35-40k, 40-50k,
range 50-60k, 60-70k, 70-75k, 75-100k,

100-125k, 125-150k, >150k} 38.03 (56.70) 67.22 (80.19)

{employed, unemployed, -
Economic student, child student, 99.98 to 100 -
activity looking after someone, long (99.94 to 99.99)

term sick, retired, inactive}
Qualification {yes, no} 77.92 (88.03) -

Driving license {yes, no} 99.5 (99.3) -

Bike access {yes, no} 98.29 (99.27) -

Car access {yes, no} 99.95 (99.79) -

Household size {1, 2, 3, 4, 5, 6, 7, 8, 9, 10+} 61.68 (61.5) 76.07 (79.9)

Children’s presence {yes, no} 99.53 (99.73) -

Marital status {single, married, couple} 71.95 (73.68) 80.64 (87.26)

{major conurbation, minor
conurbation, city and town,

city and town sparse,
Area town and fringe, town and 66.37 (73.79) 69.57(78.36)

classification fringe sparse, village,
village sparse, hamlets and

isolated dwellings, hamlets and
isolated dwellings sparse}

high computational cost. This includes 293,515 to 295,087 agents with 44,197 to 44,617 seniors
(depending on the day simulated). At each iteration, a proportion of agents try a new plan by
changing their transportation mode, route, or activity time, and when the iteration ends plans are
scored (i.e. each plan’s utility is calculated). When the simulation ends (i.e. equilibrium is reached),
it ensures each agent uses its highest-scoring plan.

Distributions of simulated seniors trips’ purpose, transportation mode, duration and distance are



close to the distributions from 2019 NTS data, as shown in Figure 7. Small differences appear,
notably the trip durations. This is partly due to the fact that even if the MATSim model is rescaled
accordingly, 10% might be insufficient to fully reproduce congestion patterns.

To illustrate the model’s potential, we analysed simulation outputs regarding elderly healthcare
accessibility. Results suggest than the mean distance travelled to healthcare facilities decreases
with age, from 7.3 miles for the 65 year olds to 4.8 miles for the 85+. This means that older
people either relocate closer to healthcare facilities or go to facilities closer to their home. Given
the seniors’ residential locations (Figure 6) and the healthcare facilities locations (Figure 8 (a)),
they might tend to use facilities closer to their home. Spatial inequalities in healthcare access thus
increase with age: those who live far from amenities and those who are not able to drive have a
more limited access to healthcare.

Figure 8 (b) highlights important disparities depending on seniors’ residential location. Coventry
has longer medical trips for older populations than other local authorities (LAs): mean distance
travelled is 7.4 miles for Coventry compared to [6;6.3] miles in other LAs. This is consistent with
2019 NTS data on travel time for hospitals (Table JTS0406), which shows that Coventry has the
poorest healthcare access in WMCA. Simulation outputs presented on Figure 8 (c) suggest that
seniors’ healthcare access inequalities are even more accentuated when considering 75+ seniors
(mean distance is 7.7 miles for Coventry compared to [5;5.7] miles elsewhere) and 75+ seniors
without car access (mean distance is 8.9 miles for Coventry compared to [4.5;6.4] miles elsewhere).
Note that the agents activities locations are estimated from the NTS trip distances, and activities
locations could be refined by considering the local infrastructure. Moreover, some trip patterns
could be an artefact of the boundary chosen, i.e. real individuals can potentially access facilities
outside the area.

Analyses regarding other trip purposes, and other characteristics (gender, health status, household
size, etc.) can be conducted with this model, to identify disadvantaged senior populations. This
could facilitate the implementation of tailored local policies, e.g. introduction of a door-to-door
shuttle service between some areas and major healthcare facilities.

4 Conclusion

We proposed an ABM of West Midlands population that considers elderly population heterogeneity.
The model is available at https://doi.org/10.5281/zenodo.7447094 and provides a useful tool
to better understand seniors’ lifestyles and mobility needs and encourage inclusive urban planning.
This analysis could be applied more widely to less mobile members of society and people with phys-
ical disabilities. Future work will further assess the importance of incorporating the heterogeneity
within senior populations. We will use the model to explore future transportation scenarios, such
as the implementation of on-demand autonomous vehicles for senior citizens.

https://doi.org/10.5281/zenodo.7447094
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Figure 7: Distributions of simulated seniors trips’ (a) purpose, (b) transportation mode, (c) duration
and (d) distance compared to 2019 NTS data.
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Figure 8: (a) Heatmap of healthcare facilities and mean medical trip distance by MSOA in simulation
for (b) all seniors, and (c) seniors aged 75+ year-old and aged 75+ year-old without car access.
MSOAs with < 3 simulated trips are shaded.
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