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Abstract—This paper presents an implementation on child
activity recognition (CAR) with a graph convolution network
(GCN) based deep learning model since prior implementations
in this domain have been dominated by CNN, LSTM and other
methods despite the superior performance of GCN. To the best
of our knowledge, we are the first to use a GCN model in
child activity recognition domain. In overcoming the challenges of
having small size publicly available child action datasets, several
learning methods such as feature extraction, fine-tuning and
curriculum learning were implemented to improve the model
performance. Inspired by the contradicting claims made on
the use of transfer learning in CAR, we conducted a detailed
implementation and analysis on transfer learning together with
a study on negative transfer learning effect on CAR as it hasn’t
been addressed previously.

As the principal contribution, we were able to develop a ST-
GCN based CAR model which, despite the small size of the
dataset, obtained around 50% accuracy on vanilla implementa-
tions. With feature extraction and fine tuning methods, accuracy
was improved by 20%-30% with the highest accuracy being
82.24%. Furthermore, the results provided on activity datasets
empirically demonstrate that with careful selection of pre-train
model datasets through methods such as curriculum learning
could enhance the accuracy levels. Finally, we provide prelimi-
nary evidence on possible frame rate effect on the accuracy of
CAR models, a direction future research can explore.

Index Terms—Child Action Recognition, Graph Neural Net-
works, Transfer Learning, Feature Extraction, Fine Tuning,
Curriculum Learning

I. INTRODUCTION

Human Action Recognition (HAR) methods based on skele-

ton data have been widely investigated and received consid-

erable attention due to high accuracy achieved on benchmark

datasets such as NTU RGB+D [1] and Kinetics [2]. Recently

most of the methods that achieve the state-of-the-art (SOTA)

accuracy on benchmark datasets have been based on graph

convolutional network (GCN) deep learning methods [3]–[5].

This accuracy increment can be attributed to many factors such

as view invariance, robustness to occlusion and segmentation

of the skeleton.

Spatial Temporal Graph Convolutional Network (ST-

GCN) [3] architecture was the first to utilize graph neural

networks for skeleton-based human activity recognition and

had achieved the SOTA results outperforming CNN and LSTM

based models [3], [6]. Furthermore, it has been used with

small and distinct datasets in different scenarios including fall

detection [7], [8], hand sign detection [9], [10] and others [11],

[12].

Child activity recognition (CAR) has important applica-

tions in video game development [13], early detection of

autism [14], [15], safety monitoring [16], object-play behavior

assessment [17] and many others. As most of the HAR models

are based on adult datasets and as previous studies in motion

style transfer [13] and pose estimation [18] have shown that

due to differences in size, anatomy, and motion, these models

can’t be used for CAR, it is required to develop robust and

well generalized CAR models.

Early CAR models as well as small dataset based CAR

models have utilized signal processing methods along with

classical machine learning methods [19], [20]. Deep Learn-

ing (DL) methods have been used lately with image based,

skeleton based and wearable sensor based approaches through

CNN [21], [22], LSTM [23], [24] and other methods [25],

[26]. As GCN based models have not been applied in the past

on CAR, we direct this research to fill that gap.

Though there are claims made on the availability of public

datasets for CAR [27]–[30], few of those were not accessible

due to non-availability and few were not capturing the whole

body. Most of the existing DL research on CAR have not used

the limited public datasets but has demonstrated the results

on private datasets. Addressing this research gap, we have

considered two standard Kinect camera based child activity

datasets named Kinder-gator [31], Child-Whole-Body-Gesture

(CWBG) [32] and a standard motion capture system based

dataset named kinder-gator 2.0 [33] and we present the first

evaluation of CWBG dataset on a SOTA DL model.

Though transfer learning (TL) can be used to overcome

the limited dataset challenge in public datasets, [18], [25],

[26] suggest that TL from adult to child is a challenging

task resulting in undesirable performance. While there is a

TL implementation with ST-GCN architecture [7] in HAR,

it lacks a detailed study of different TL approaches and TL

performance on ST-GCN architecture.

Based on the literature study and the gaps identified, in this

paper we provide the following main contributions,



Fig. 1: ST-GCN model and feature extraction pipeline

• To the best of our knowledge, this is the first implementa-

tion of a GCN based model for child activity recognition.

• We provide the first benchmark results on a publicly

available child activity dataset using ST-GCN model.

• Our research shows that comparable results can be

achieved through transfer learning with ST-GCN model

and demonstrate performance and comparative analysis

with different learning approaches.

• A pre-train dataset selection method is introduced in this

research to improve transfer learning and reduce negative

transfer learning based on curriculum learning concept.

The rest of the paper is organized as follows. The models

and methods used in the ST-GCN based implementations

are discussed in Section II. Pre-processing process used with

each dataset and the experimental setups used in each case

are discussed in Section III. The performance of learning

methods and the best results achieved by each method on

different protocols are discussed in Section IV while Section V

concludes with future research directions.

II. METHODOLOGY

Based on the ST-GCN original paper [3] and on the official

ST-GCN PyTorch implementation [34], a TensorFlow based

model was implemented and further experiments were carried

out based on this model with NTU RGB+D dataset used for

the pre-training models.

Two approaches were applied to quantitatively evaluate the

ST-GCN model on the available child activity datasets:

• Standard Deep Learning: Train the ST-GCN model on the

child activity datasets directly and do the hyperparameter

tuning to attain a suitable model,

• Transfer Learning: Use a pre-trained ST-GCN model to

leverage the learnt feature representations.

A. Learning Methods

1) Standard Deep Learning: Under this approach, ST-GCN

model was directly trained with child activity datasets. Due to

the small size of these datasets, the original ST-GCN model

with 256 channels in each of 10 ST-GCN layers could appear

to contain excessive capacity. Since excessive capacity result

in over-fitting [35], model tuning was also attempted with

different number of filters as detailed in Section IV-A.

2) Transfer Learning: Lack of acceptable scale datasets

generally results in poor performance of deep learning models.

As all the openly available child activity datasets are small

in size, developing improved learning methods was essential.

Several TL approaches such as fine tuning [36]–[38], and

feature extraction [39]–[41] have been used in the subsequent

implementations to improve the performance of the model.

a) Fine Tuning Method: Fine tuning of the pre-trained

ST-GCN model was done using several methods as detailed

in TL literature [42], [43].

1) Frozen layer approach - Fine tuning n top ST-GCN

layers, where 1 ≤ n < 10.

2) Hybrid approach - In the original ST-GCN model in

Fig. 1, n top ST-GCN layers were randomly initialized

where 1 ≤ n ≤ 10.

• Hybrid-Frozen : Combines feature extraction and

standard deep learning together. Bottom 10−n ST-

GCN layers were kept frozen.

• Hybrid-FineTuned : Combines fine tuning and stan-

dard deep learning together. Bottom 10−n ST-GCN

layers were fine tuned.

3) Propagation approach - Fine tuning all ST-GCN layers.

Since ST-GCN contains only a single layer classifier, initial

experiments were done with a single randomly initialized

dense layer. Experiments were later done with the FC clas-

sifiers with up to 4 dense layers. A dropout layer was used

as a regularization method when overfitting occurred. Hyper-

parameter tuning was also applied to get the best accuracy.

b) Feature Extraction Method: Inspired by [44], [45],

the feature representations were extracted from feature maps

of the ST-GCN model (Fig. 1). The original ST-GCN model

was then supplemented with either a flattening layer or a global

average pooling (GAP) layer as the intermediate layer between

the ST-GCN model and the classifier. Fusion of feature maps

was done with consecutive maps from two and three layers

of ST-GCN. Enhancing this approach further, dimensionality

reduction techniques such as principle component analysis

(PCA), truncatedSVD were employed. Experiments were done

with support vector machine (SVM), logistic regression as well

as feed forward neural network (FFNN) as the classifier.

3) Curriculum Learning: To improve the efficiency of

both Standard Deep Learning and TL, Curriculum Learning

(CL) [46] was applied, where the model was trained starting

from easy samples and gradually exposing to more challenging

samples. While there are several variants in implementing CL,

our implementation contained Scoring and Pacing functions as

in [47]:

• Scoring Function: gives the probability of level of dif-

ficulty of each sample, calculated by training the model

with 10% of epochs.



• Pacing Function: decides the number of samples used in

each epoch enabling us to add the samples based on the

descending order of the values generated by the Scoring

Function. This was implemented as a step function with

varying number of steps.

B. Activity Datasets

A preliminary research was done on the existing child

activity datasets and found that all three publicly available

datasets, Kinder-Gator [31], Kinder-Gator 2.0 [48] and CWBG

dataset [32] were depth sensor based and were available only

in skeleton modality. In order to overcome the challenge in

limited data sets, we used existing adult skeleton mode activity

data sets, Kinect v2 based NTU-120 and NTU-60 for building

the pre-trained models. NTU-120 was taken as the main

dataset, which contains 850 videos with an average number

of frames ranging from 76 to 300. Actions are performed by

106 participants above 10 years of age.

To improve the TL and to reduce the negative TL effect [49],

several subsets of NTU were identified.

1) Large Scale Datasets:

• NTU-120: The full NTU RGB+D-120 dataset was used

with a different dataset splitting method as detailed in

Section III-A than the one proposed in [50]. With this

approach, we were able to remove any potential bias

resulting from an unbalanced data distribution.

• NTU-60: We used the full NTU RGB+D dataset along

with 11 interaction classes.

• NTU-51: Out of the datasets of NTU-60, in order to min-

imize ambiguities in activity identification, 9 interaction

classes were removed resulting in 49 single action classes

and 2 interaction classes.

2) Curriculum Learning Inspired Datasets: While there are

other methods [51], [52], we used a simplified CL inspired

approach to select better classes. Best classes are chosen

by analysing the confusion matrices of NTU-60/120 based

STGCN models.

• NTU-44: Out of those sorted, 44 classes were selected. To

reduce ambiguities introduced from spatial and temporal

symmetrical classes, we kept only one such class in this

subset.

• NTU-22: Enhancing the approach taken for NTU-44

further, a more discriminative dataset of 22 classes was

introduced. Classes were selected by analysing the NTU-

44 confusion matrix.

3) NTU Frame Rate Adjusted (NTU-FRA): Since the

CWBG dataset is recorded with an approximate 10FPS frame

rate, we introduced three down-sampled data sets.

• NTU-44-FRA : Selected each of the 3rd frame in every

sequence in NTU-44 subset.

• NTU-60-FRA : Selected each of the 3rd frame in every

sequence in NTU-60 subset.

• NTU-120-FRA : Selected each of the 3rd frame in every

sequence in NTU-120 subset.

C. Skeleton Structure

As the NTU dataset was created with Kinect v2 and CWBG

dataset was created using Kinect v1, output skeleton structure

generated in NTU and CWDG are different to each other.

Transfer learning when applied to convolution based models

usually takes a input as a grid structure similar to images.

Thus, when the target domain data samples differ in size from

source domain, resizing with standard interpolation techniques

can be utilized. But with graph structure, structural change has

to be taken into consideration and knowledge transferability

in GCN based models is still not fully developed [53]. Thus

we use 20 shared joints with removal of 5 joints from NTU

source dataset.

D. Child Dataset Protocols

The CWBG dataset is released for the study of child gesture

elicitation and contains 1312 sequences from 30 children

between the ages of 3 - 6 with an equal gender distribution.

• CWDG-Full: Contains 15 classes and is used to test the

performance of entire dataset.

• CWDG-Similar: Contains 10 classes, removing most dis-

similar classes. This group contains challenging classes

even for a human (Table I - column Challenging).

• CWDG-Dissimilar: Contains 10 classes including most

dicriminative (Table I - column Discriminative).

III. EXPERIMENTS

This section discusses the stages followed in conducting the

quantitative analysis including: pre-processing of the datasets,

and the experimental settings.

A. Data Pre-Processing

In the first stage of data pre-processing, noisy data such

as empty sequences and pseudo-skeleton sequences were re-

moved. If a class belongs to a human-human interaction, then

the action of the person with the most activity movements

was selected in both NTU-60 and NTU-120 datasets whereas

these ambiguous actions were removed in NTU-51, NTU-44,

and NTU-22 datasets.

In the next stage, following process was followed for all the

data sets.

• Fixed the frame size to 300, increasing feature visibility.

• First order information was extracted by translating each

skeleton such that the spine joint position in each frame

is the origin of coordinate system (i.e., [0,0,0]).

• Rotated the skeleton around spine joint such that person

is looking towards positive x-axis and spine is parallel to

z-axis.

In the final stage, dataset was split into train and validation

subsets according to the cross subject method [1] for NTU-

60 and CWDG based datasets. For additional classes other

than NTU-60 in NTU-120 based activity datasets, training and

validation was split randomly 70% to 30%.



TABLE I: Challenging and Discriminative Child Whole-Body

Gesture (CWBG) Dataset classes

Challenging classes Discriminative classes

Draw a circle Hands up
Draw a square Crouch
Draw a flower Jump
Angry like a bear Applaud

B. Implementation Details

1) Standard Deep Learning: Standard deep learning ap-

proach was implemented with original ST-GCN model without

any changes to the architecture and other hyper-parameters

were also kept same except for the learning rate scheduler.

Further implementations were done to change the model

capacity by adjusting the number of filters in each layer but

the ratio of filter number between layers was kept at the same

value as in original ST-GCN model. New layer filter number

was changed by R, R = F̄n/Fn, where n refers to ST-GCN

layer number (1 ≤ n ≤ 10) while F̄ refers to new model

filters and F to the original model filters.

2) Transfer Learning:

a) Pre-trained model: The approach used for imple-

menting ST-GCN in this research differs with the previous

implementations in a number of ways.

• Since use of dropout and batch normalization together

result in degrading results [54], dropout layers were not

used as outlined in [3].

• The implemented TensorFlow based ST-GCN uses an

equal weighting system for the graph rather than a

trainable weight mask as in [3], since the mask weights

are intrinsic to the dataset used for training. Hence those

weights won’t be adaptable in TL.

Training was done for 30 epochs, with a batch size of

4, using stochastic gradient descent (SGD) optimizer. The

learning rate was initialized to 0.1 and was dropped to 0.01 and

further to 0.001 using the piece-wise constant decay scheduler.

b) Fine Tuning: To evaluate fine-tuning approach, exper-

iments were done using the NTU-44 dataset based pre-trained

model. In frozen layer approach, FC layer as in Fig. 1 was

replaced with a randomly initialized dense layer.

For the comparison of fine tuning approach on three main

CWBG dataset protocols, implementations were done on all

activity dataset based pre-trained models. Hyper-parameter

tuning was done on each to achieve the best accuracy keeping

other parameters constant.

c) Feature Extraction: All feature extraction approach

evaluations were done using the NTU-44 dataset with same

hyper-parameters as in fine-tuning evaluation. Performance

evaluations were done based on the output layer, use of GAP

layer, use of dimension reduction methods and the fusion of

feature maps.

On implementing the SVM classifier, linear kernel function

with L1 regularization constant set to 1 was applied. For

the logistic regression implementation, multi-nominal logistic

(a) NTU 120 and CWBG (b) NTU 44 and CWBG

Fig. 2: NTU and CWBG dataset visualization

regression classifier was used with L2 regularization constant

kept at 1. For the FFNN based classifier, experiments were

done with different combinations of layers and nodes and for

the evaluation results single layer classifier was used.

While the performance analysis was carried out with all

three classifiers, based on the best performance, only FFNN

classifier was used for the comparative analysis.

3) Curriculum Learning: Curriculum learning was imple-

mented with feature extraction and fine tuning methods on

the NTU-FRA dataset based pre-trained models as well as

with standard deep learning approach. For pacing function, a

non-uniform step function was used such that latter steps last

longer (i.e., more epochs) than the previous steps. Same batch

size and optimizer was used but learning rate was changed to

account for the training behavior resulted from step function

used as the pacing function.

Frame rate effect on the performance was evaluated by

dropping the frames of NTU-44/60/120 datasets to match

the CWBG dataset’s frame rate. Experiments were done by

taking the moving average of joint position vectors with sliding

window of 5 time periods and 3 time periods in order to see

if the noisy data of NTU had affected the performance of the

model.

IV. RESULTS AND DISCUSSION

On the the ST-GCN model implementation, accuracy of

78.7% was achieved on the NTU RGB+D dataset. While the

original authors of [3] achieves 81.5% accuracy on the cross-

subject protocol, the change of accuracy(-2.8%) could be ex-

plained through the changes done on the ST-GCN architecture

as detailed in Section III-B2a.

Visualization of NTU-120 and CWBG datasets as well as

NTU-44 and CWBG datasets through t-distributed Stochastic

Neighbourhood Embedding (t-SNE) (Fig. 2) shows overlap-

ping distributions, confirming the potential use of TL to

increase the accuracy as shown in [51].

A. Standard Deep Learning

In the vanilla ST-GCN model implementation with CWBG

datasets, when the training accuracy converges to an optimal

value, test datasets reach an accuracy in the range of 40%-

55% (Table II). Such low accuracy is expected on a limited

dataset such as CWBG, yet ST-GCN over performed Random



TABLE II: Standard Deep Learning Top-1 Accuracy

Child Datasets CWDG-Full CWDG-Similar CWDG-Dissimilar

Method

Vanilla ST-GCN 41.71 47.84 53.18
Vanilla Curriculum Learning 40.65 44.36 51.46

ST-GCN R = 1/32 39.64 42.29 47.19
ST-GCN R = 1/2 39.12 50.16 47.57
ST-GCN R = 2 27.46 44.71 57.68

Random 6.67 10 10

TABLE III: Currriculum Learning based feature extraction

results on activity datasets

Accuracy NTU-44-FRA NTU-60-FRA NTU-120-FRA

CWDG-Full 58.62 53.74 25.65
CWDG-Similar 63.53 62.14 33.56
CWDG-Dissimilar 79.03 76.78 44.57

accuracy in multitudes. Given that model capacity is extremely

high (≈3M parameters) compared to dataset size, over-fitting

should happen according to classical machine learning the-

ory [35]. But the results from smaller capacity model im-

plementations (for R=1/32, ≈5k parameters and for R=1/2,

≈700k parameters) in table II shows that rather than increasing

the accuracy, smaller capacity slightly decreases the accuracy.

This suggests that the low accuracy in the vanilla ST-GCN

model is not due to over-fitting. These results are consistent

with the existing research done on over-parameterized neural

networks and the resultant high generalization accuracy [55],

[56]. Another implementation done on a higher capacity model

(for R=2, ≈12M parameters) shows this indeed is the case.

Hence we can conclude vanilla ST-GCN results are the optimal

results on all CWBG protocols.

B. Feature Extraction Results

Gradual increase in accuracy as the the output ST-GCN

layer number reaches 10 in Fig, 4b is analogous to the

conventional CNN model behaviour in feature extraction [57],

thus confirming the existence of a hierarchical feature rep-

resentation in ST-GCN architecture which is the fundamental

requirement for TL applicability. Furthermore, similar increase

of accuracy is present in the flatten layer implementation

(Fig, 4a) as well as in feature map fusion implementation

(Fig, 4c). Compared to the SVM and LogReg classifier feature

extraction accuracy (around 65%-75%), when an untrained ST-

GCN model is used, same classifiers give a lower accuracy

(around 25%-30%) (Fig. 4b), thus empirically proving that

the resultant feature accuracy is indeed due to the pre-trained

model’s feature representations rather than the classifier.

SVM and logistic regression results can be considered as

the upper bound of feature extraction accuracy. While 1-layer

FFNN performs on par with SVM and LogReg on top ST-

GCN layers, its poor performance on bottom ST-GCN layers

suggests that feature maps are more linearly separable as layer

number increases and this is to be expected in a model that

learns hierarchical feature representation [57].

As detailed in Fig 4d and Figs 4a, 4c, even though di-

mensionality reduction and the use of flattening layers do not

(a) CWBG-Dissimilar protocol (b) CWBG-Similar protocol

Fig. 3: Feature Extraction Performance on NTU-44 based

Model

TABLE IV: Feature extraction results on child datasets

Accuracy NTU NTU NTU NTU NTU NTU NTU NTU

60 120 51 44 22 44-FRA 60-FRA 120-FRA

CWDG-Full 47.98 52.69 49.48 51.26 47.41 57.77 52.85 59.33
CWDG-Similar 56.26 56.07 54.9 61.17 52.94 67.31 61.96 63.14
CWDG-Dissimilar 70.04 73.03 73.03 74.16 67.79 79.10 77.15 82.24

increase accuracy, feature map fusion contributes to accuracy

improvement slightly.

C. Fine Tuning Results

In evaluating performance between the two Hybrid and the

Frozen approaches II-A2a, either of the Hybrid approaches

always outperformed the fine tuning approach irrespective of

the number of layers in the ST-GCN model (Table V). In order

to compare the standard fine tuning approach and the Hybrid

approach on the child datasets, Hybrid-Frozen and Vanilla

Fine-Tuned models were chosen as the models in Table VI.

D. Curriculum Learning Results

Vanilla curriculum learning in Standard Deep Learning

approach did not result in a significant accuracy improvement

(Table II). When CL is applied to feature extraction method

(Table III), implementations on NTU-44-FRA and NTU-60-

FRA results in similar accuracies as in original feature extrac-

tion results, yet there is either little improvement or no im-

provement. With NTU-120-FRA, the results are significantly

worse than the original feature extraction results. Based on the

model loss, there is significant overfitting and with the pacing

function we used, it can’t be avoided. These results suggest

that even though with CL some improvement can be achieved,

it is difficult to tune the model to achieve those results and with

more challenging datasets like NTU-120, it is even extremely

difficult.

TABLE V: Layer-wise Fine Tuning Implementation

Fine-Tuning ST-GCN layer number
Approaches 4 5 6 7 8 9

Hybrid-Fine-Tuned 74.91 76.78 76.4 77.53 76.03 74.91
Hybrid-Frozen 76.78 77.9 75.66 74.53 76.03 75.28
Vanilla Fine-Tuned 74.96 75.28 73.41 74.53 71.54 72.28



(a) Flattening layer approach (b) Results on ST-GCN layer output

(c) Feature map fusion approach (d) Dimensionality reduction approach

Fig. 4: Feature extraction performance with different configurations

TABLE VI: Fine-tuning comparison on child datasets

Accuracy NTU NTU NTU NTU NTU NTU NTU NTU

120 60 51 44 22 44-FRA 60-FRA 120-FRA

V
a
n

il
la CWDG-Full 58.03 52.33 54.66 56.74 52.07 57.25 55.44 57.51

CWDG-Similar 66.27 63.92 58.43 63.14 58.43 62.35 66.67 60.78
CWDG-Dissimilar 76.78 69.66 68.54 75.28 67.04 74.91 76.4 76.78

H
y
b

ri
d CWDG-Full 58.55 57.25 55.3 55.7 51.55 54.14 55.44 58.29

CWDG-Similar 65.88 63.92 61.38 63.92 57.65 63.14 65.49 65.1
CWDG-Dissimilar 77.53 78.28 76.4 76.4 70.79 76.03 78.65 78.28

E. Comparative Results

Out of all the comparative results, the highest accuracy is

shown with CWBG-Dissimilar protocol (Tables II, III, IV, and

VI). This result is further corroborated through the generated

confusion matrices and two such resultant confusion matrices

for feature extraction approach are given in Fig. 3.

Strong correlation is evident in the classes with labels 5-7

(Fig. 3 - (b)) representing the first three classes in Table I

(column Challenging). Action visualization demonstrates

label 1 class corresponding to ”angry like a bear” doesn’t

result in considerable skeleton movements, explaining the

misclassification. Better accuracies are observed for the more

distinct classes of Fig. 3 - (a), endorsing that ST-GCN model

achieves an acceptable accuracy in child action recognition.

Detailed feature extraction implementations were done on

final layer output without dimensionality reduction and with

GAP layer (Table IV). Best accuracies are achieved by NTU-

120-FRA based model for CWBG-dissimilar protocol and

CWBG Full protocol while for the CWBG similar, NTU-60-

FRA achieves the best accuracy. When 30FPS based activity

datasets are compared, best accuracy for CWBG similar and

CWBG dissimilar protocols are achieved by NTU-44, demon-

strating our curriculum inspired dataset based model is suitable

for TL just as large dataset based models. But the results

on NTU-22 shows that when this approach is taken to an

extreme with small number of classes, the resultant model’s

performance degrades.

Comparison of fine-tuning models was done with n = 1 as

detailed in II-A2a. Results on vanilla fine-tuned models in Ta-

ble VI suggest that unlike in feature extraction method, largest

activity dataset (i.e., NTU-120) based model outperform all

the other models including the NTU-44. Even when 30FPS-

activity datasets and 10FPS-activity datasets are considered

separately, this finding still holds. Comparison results on

Hybrid-Frozen models in Table VI also confirms this interpre-

tation. CWBG-Full protocol and CWBG-Dissimilar protocol

perform better on the Hybrid-Frozen approach while CWBG-

Similar protocols performs better with the Vanilla Fine-Tuned

approach. Contrary to the other implementations [42], we

achieved marginal improvement of Hybrid-Frozen approach

over the vanilla Fine-Tuning approach.



TABLE VII: Benchmark results of CWBG protocols

Top-1 Accuracy CWBG-Full CWBG-Similar CWBG-Dissimilar

All activity datasets 59.33 67.31 82.24
30FPS-activity datasets 58.55 65.88 78.28

To provide the benchmark results, performance of CWBG

protocols accross the learning methods was compared based

on two criterion. One considering all the activity dataset based

models and the other considering only the 30FPS-activity

dataset based models (Table VII). While all the 30FPS-activity

dataset results were derived from fine-tuning approach, the all

activity dataset results were derived from the feature extraction

approach. Furthermore, when each NTU-FRA result in Ta-

ble IV is compared with it’s corresponding 30FPS NTU result,

there is a significant increase in accuracy but such increase is

not present in Table VI. These observations provides clear

indication of frame rate effect in feature representation and

further experiments are needed to evaluate its implications.

V. CONCLUSION AND FUTURE WORKS

This paper presents a CAR model based on GCN architec-

ture and a detailed analysis with different learning methods.

With the ST-GCN implementation, despite the small size of

CWBG dataset, acceptable accuracies of 47.84% and 57.68%

were achieved on CWBG-Similar and CWBG-Dissimilar, pro-

viding the first GCN based CAR model results and demon-

strating the applicability of GCN in CAR.

Applying TL approaches such as feature extraction and fine-

tuning, we were able to improve these accuracies to 65.88%

and 78.28% on 30FPS-activity datasets and to 67.31% and

82.24% on all activity datasets. These results corroborate TL

approaches like feature extraction and fine-tuning can improve

accuracy in CAR despite contrary claims made by previous

research.

Superior performance of NTU-44 based model over other

30FPS based models in feature extraction gives strong ev-

idence of CL inspired dataset selection process use in TL

but NTU-22 performance suggest there needs to be a balance

between dataset size and dataset classes.

These results suggest several future research directions such

as analysis of frame rate effect in TL, detailed study of

CL parameter selection and effective methods to achieve a

trade off between parameters to avoid negative TL. Moreover,

to achieve scalability in practical implementations, a robust

approach for TL with different skeleton structures is also

essential.
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