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I. INTRODUCTION

Human activity recognition (HAR) has been a focused re-

search area due to its diverse applications in human-computer

interaction [1], surveillance [2] and health care [3]. The main

goal of HAR is to identify actions performed by one or more

humans in a temporal sequence of observations. The increased

computational power together with the availability of public

datasets have enabled the training of large networks, such

as multi-stream 3D Convolutional Neural Network (CNN)

architectures [4], significantly boosting action recognition per-

formance.

Child action recognition (CAR) has important applications

in safety monitoring [5], development assessment [6], and

others. However, children are largely underrepresented in both

pose estimation datasets [7] and HAR datasets. This can

be explained by the fact that data from adult activities can

be used in many more applications than data from children

activities. Moreover, some of the largest annotated human

activity datasets rely on user uploaded videos to public plat-

forms [8], [9], in which the presence of children is limited due

to privacy concerns.

RGB modality being one of the oldest and most used

method of acquiring motion information, many deep learning

techniques on HAR have achieved best accuracy on RGB

benchmark datasets like UCF101 and Kinetics600 [8], [10].

Among those state-of-the-art methods, Long-Term Recurrent

Convolutional Network (LRCN) architecture was selected as

the best approach in this study for the HAR [11] due to

it’s capability in handling variable length input and learning

complex video sequences.

While RGB modality has been the prominent approach for

HAR, different non-RGB approachs have also come into play

in the past decade with the revival of deep learning. Veeriah et

al. [12] introduced a modified LSTM approach where HOG3D

was used to extract features from the image and they were used

as the input to the model. Fernando et al. [13] introduced novel

feature extraction methods and a ranking machine approach

to learn a hierarchical representation of actions from video

frames. These approaches have been used with HAR datasets

such as Kinetics-400 [14] and have achieved comparable

results [15], [16].

Human pose estimation through 2D keypoint estimation is

another feature extraction approach that has been popularised

recently due to emergence of libraries such as OpenPose [17],

and BlazePose [18] where the resultant features resemble the

human skeleton, often referred as the skeleton modality. While

skeleton modality approaches with LSTM [19] and temporal

convolution models (TCN) [20] have outperformed other non-

RGB approaches, graph convolution (GCN) approaches such

as ST-GCN [16], 2s-AGCN [15] have surpassed both these

approaches. ST-GCN being the first GCN implementation for

HAR, in this research, we use it for skeleton modality imple-

mentations. OpenPose was used for pose estimation since [7]

shows that in child pose estimation, OpenPose performs better

than other methods even when truncations and occlusions are

present.

Most of the CAR research done with skeleton modality

are based on RGB+D datasets but there are few using RGB

datasets and pose estimation techniques. An LSTM based

model for stereotypical action recognition of children for ASD

detection is introduced in [21], and [22], [23] recognized gross

motor actions of 4-5 years old children with OpenPose as the

pose estimator. Authors in [21] have introduced methods to

overcome truncation and occlusion issues resulting in an over-

all 90% accuracy. For tracking, they have utilized the distance

of corresponding skeleton joints in frame sequence. A CNN

approach has been used in [22] achieving 82% accuracy, where

tracking was done using a particle filter algorithm and skeleton

standardization was applied such that the output looks as if the

camera angle and skeleton size remain the same. Improving

this further the authors have introduced a model similar to

TCN in [23], where an improved standardization and a novel

data augmentation were utilized to achieve ≈99% accuracy.

All these CAR implementations in skeleton modality have

used data captured in constrained environments, hence they

work with stabilized skeleton sequences. Since our interest is

in unconstrained environments, we are using annotated subsets

from Kinetics-400 and Kinetics-600 datasets in this research.

Most of the datasets used in CAR research are either private



datasets as in [21]–[23] and the openly available ones such

as [24], [25] contain only the skeleton data. While there are

handful of datasets available such as [26], [27] they contain

only a small number of videos. With the release of our

annotated dataset along with the benchmark results detailed

in the results section, we provide opportunities for further

research on annotated public datasets.

As evidenced through the inferior performance of C3D and

Resnet50+LSTM models in [28], the skeleton modality has

outperformed RGB modality on datasets created in constrained

environments [19]. But it’s performance on unconstrained

environment based datasets [14] is inferior to RGB modality as

shown by ST-GCN and PoseC3D models in [16], [29]. While

these datasets are mostly adult based datasets, [16] hypothesize

that this performance degradation is due to information loss

of object/scene interaction and shows through a Kinetics-

400 subset called Kinetics-motion that when the activities

are highly motion oriented, skeleton modality achieves per-

formance similar to RGB modality. Motivated by this insight,

in this research we attempt to achieve comparable results on

unconstrained skeleton modality child activity datasets.

With the changes done to the model architecture, Open-

Pose V2 (2019) has improved accuracy by 7% compared to

OpenPose V1 (2016) [17]. OpenPose outputs the locations

of skeleton joint along with a confidence value that give a

measure about the reliability of the inferred joint. We attempt

to see if there is any correlation between accuracy of models

and the average confidence values.

Based on the above literature study and the gaps identified,

in this paper we provide the following main contributions.

• To the best of our knowledge this is the first GCN based

CAR implementation done on extracted 2D skeleton

sequences from unconstrained environment videos

• We show that when pre-trained with large datasets, ST-

GCN on skeleton modality achieves on par accuracy with

LRCN on RGB modality.

• We show there is no strong correlation between con-

fidence value of skeleton sequences and the class-wise

accuracy of the model.

• We provide the annotated dataset along with detailed

guideline to continue further research1.

The rest of the paper is organized as follows. The

implemented model architectures and datasets are discussed

in Section II. Experimental setups used in each case

and the evaluation methods are discussed in Section III.

The performance of different approaches and comparison

of models are discussed in Section IV while Section V

concludes with future research directions.

II. METHODOLOGY

A. Datasets

Due to the scarcity of public child datasets, an annotated

child dataset was created using an eight class subset of

1Dataset and other resources: github.com/sankadivandya/KS-KSS-Dataset

Kinetics-600 dataset. Based on the appearance of the main

performer of the action, each video was labeled as child or

adult. Kinetics-600 dataset was chosen since the activities

are already classified and time stamped and since the videos

are taken from YouTube, they belong to real-world scenarios.

Eight classes that were selected are detailed in Table I. They

were selected based on the similarity to Child-Whole Body

Gesture (CWBG) dataset [24]. Majority of selected classes

are motion oriented actions since we are interested in such

actions as detailed in Section I.

1) Kinetics-600 Subset (KS): Kinetics-600 contains

≈480,000 (mostly-adult) activity videos with an average

duration of 10 seconds taken from YouTube. While the

dataset contains 600 different activities with 600 videos per

class on average, they vary from atomic actions like ”Squat”

to hierarchical activities like ”Playing poker”. Composition

of the annotated kinetics-600-Subset is given in Table I. Four

protocols were introduced for the model development and

random 75% train set, 25% test set splitting was done.

• KS-Full: Child data of all eight classes included.

• KS-Large: Only the five classes with highest child data

percentage are included (i.e. first five rows of Table I).

• KS-Balanced: Child data of same five classes as above

but random sampling of 250 videos per class was done

to create a balanced dataset.

• KS-Small-C: Only child data of three classes with lowest

child data percentage are included (i.e. last three rows of

Table I).

• KS-Small-A: Same three classes as in KS-Small-C, but

contains only adult data.

TABLE I: Child-Adult video distribution of KS

Class Name Child Data Adult Data Child Percentage

Hopscotch 643 135 83%
Clapping 386 157 71%
Bouncing on trampoline 534 315 63%
Baseball throw 293 256 53%
Climbing tree 438 390 53%
Cutting watermelon 27 723 4%
Squat 16 974 2%
Pull ups 59 704 8%

2) Kinetics-Skeleton Subset (KSS): Kinetics-skeleton is

a benchmark dataset used in HAR research that contains

OpenPose-COCO extracted skeleton data of Kinetics-400

dataset. Due to the high computational cost associated with

OpenPose extraction, this already extracted skeleton dataset

was used in preliminary model building with Kinectics-400

and for the pre-training of ST-GCN model. Since majority

of the Kinetics-400 data are shared data with Kinetics-600,

implementations on child data were also done according to

the following protocols using the shared-annotated data.

We introduce KSS protocols with the same naming con-

vention (e.g., KSS-Full for full 8 subset implementation of

kinetics-skeleton child data). KSS-Balanced protocol contains

110 samples per each of the 5 class.



Fig. 1: ST-GCN Model Architecture

B. CAR on Skeleton Modality

TensorFlow based ST-GCN model implementation from our

work [30] is taken as the base for this research. While the

number of layers were kept same, number of filters was

taken as a parameter that was determined in the first stage

of the implementations. Feature vector in each node contains

x, y pixel coordinates and the confidence value resulted in

OpenPose. Since we are considering multi-person scenarios

in our model, we run two ST-GCN models parallely on each

skeleton features but the convolution weights are shared among

each model (Figure 1). The Global Average Pooling layer

stacked on top of GCN layers combine the outputs for two

skeletons in each video resulting in a single vector which is

used as the input to the fully connected (FC) classifier.

Though tracking of skeletons is important in multi-person

scenarios, as the actions considered are mostly single-person,

we used a basic tracking mechanism in calculating the min-

imum Euclidean distance of skeletons in this paper. After

normalizing the x, y feature values, centralization was done

with changing the origin of coordinate system to the center of

image. Camera movement was simulated as detailed in the ST-

GCN paper [16] through affine transformations like rotation,

translation and scaling. For videos with less than 10 seconds

duration, zero padding was implemented. Zeros were assigned

for missing joints and sorting of skeleton sequence in a multi-

person scenario was also implemented.

1) Learning Methods: Model training was first done with-

out any pre-trained data as detailed in Section IV-A2. To im-

prove the model performance, it was pre-trained with kinetics-

skeleton dataset which can be considered as a special case of

propagation approach detailed in [30]. Furthermore, both fea-

ture extraction (FX) and fine-tuning (FT) methods [30] were

implemented using kinetics-skeleton as the source dataset.

Applying the best performance FT method [30], only the last

GCN layer was kept trainable.

2) Skeleton Structures: OpenPose provides two pose esti-

mation models called BODY 25 (i.e., OpenPose 2019 version)

and COCO (i.e., OpenPose 2016 version). The BODY 25

is faster than COCO in extraction process and, its accu-

racy is also improved by 7% as detailed in [17]. COCO-

skeleton (Gcoco) contains 18 vertices(V1) and BODY 25-

Fig. 2: Skeleton structures from OpenPose

skeleton (Gbody) contain 25 vertices(V2) and since V1⊂V2

in Gcoco = (V1, E1) and Gbody = (V2, E2), Gcoco skeleton

structure could be used with the BODY 25 extracted data.

Thus, skeleton extraction was done for the full kinetics600

subset using BODY 25 model.

Since kinetics-skeleton is created with COCO model and

graph structure has to be same in all data, we used Gcoco

for KSS pre-trained model based implementations. Figure 2

compares the skeleton structures for a frame taken from a

”climbing tree” class video and the black colour represent

the skeleton in kinetics-skeleton dataset, blue for the COCO

skeleton and red for the BODY 25 skeleton.

3) Confidence Evaluations: For each joint (Jn), OpenPose

outputs a 3 element vector containing [xn, yn, Cn] where Cn

denotes confidence value and Cn ⊂ [0, 1] . Though Cn can

be used as a heuristic to analyse the effect of occlusion and

truncation in videos misidentified skeletons and unusual poses

can’t be analysed. We calculate the average confidence of

entire skeleton video for each person visible in the video.

The calculation is further improved by removing skeleton-

less frames and taking only the visible joints for the average.

Extending these calculations to all sequences of a class,

correlation of ’class-wise accuracy’ and ’class-wise average

confidence’ variables were analysed using visualization, Pear-

son correlation and Spearman’s correlation values.

C. CAR on RGB Modality

Action recognition in the original LRCN architecture used

CNN and LSTM and was pre-trained on a subset of ImageNet

dataset [11]. The LRCN approach used in this study was based

on [31]. It was initially trained and tested with the UCF101

dataset [8] for a selected subset of 55 classes.

III. EXPERIMENTS

This section discusses the stages followed in conducting the

quantitative analysis including pre-processing of the datasets,

and the experimental settings.



A. Implementation Details

1) ST-GCN: The ST-GCN architecture was kept the same

as in [16] in all implementations since early experiments with

number of filters and layers didn’t result in consistent improve-

ments. A ’piece-wise constant decay’ function was used as the

learning rate scheduler where the learning rate was reduced

with a rate of 0.1 after a given number of steps, while the

initial learning rate and the other hyper-parameters were varied

in each implementation. In vanilla implementations with KS

dataset, base learning rate was 0.001 and for transfer learning

(TFL) implementations it was 0.1. Though the learning rate

was same for TFL implementations, it was varied with each

vanilla implementation for KSS. Stochastic Gradient Descent

(SGD) as the optimizer, categorical cross entropy as the loss

function, and a batch size of 4 were used with number of

epochs being either 30 or 50 in all implementations.

2) LRCN: The LRCN implementation applied in this re-

search used the same parameters tested for UCF101 [31].

In the data preprocessing stage, sampling rate was 10, FPS

of videos were 25, and the number of frames extracted was

15 for preprocessing of each video. The main configurable

parameters of the model architecture were, the learning rate

initially set to 0.0005, number of epochs 100, and the batch

size was 16.

B. Evaluation methods

Top-1 accuracy as the main evaluation method together with

confusion matrices were used to analyse the class-wise perfor-

mance. Box-and-whisker plots were used to compare different

learning methods in skeleton modality implementations and

confidence interval calculations and visualization were done

to compare different model performance.

IV. RESULTS AND DISCUSSION

Initial implementations were done to determine the primary

configurations of the ST-GCN model. Then the secondary

configuration (i.e., graph structure, pre-processing etc.) were

selected for best performance and the resultant configurations

were used throughout the rest of the implementations. Paral-

lelly, kinetics-skeleton implementation was done on ST-GCN

to validate the model and to use as a pre-trained model.

A. Skeleton Modality Results

1) Preliminary Implementations: Since all the 8 interested

activities are supposed to be done by a single person, per-

formance was compared between one-person implementation

(1-person Model) and two-people implementation (Standard

Model) on KSS Full dataset. Implementation was further

extended by discarding the confidence value (Section II-B3)

from joint feature vectors (2D only Model). Since the standard

model outperforms the 1-person model (Table II), 2 people

per frame was chosen for number of people per frame config-

uration value. Though disregarding confidence feature values

improves the accuracy (Table II), 2D+confidence (i.e., standard

model) feature vector was chosen as the default configuration

TABLE II: Preliminary Implementation

Implementation Top-1 Accuracy Top-5 Accuracy

Standard Model 66.61 -
1-person Model 63.29 -
2D only Model 68.34 -

Kinetics-skeleton [original] 30.7 52.8
Kinetics-skeleton 21.16 41.7

since the improvement is marginal and we need to compare

different key point extraction based models.

Full implementation of kinetics-skeleton was done but the

data of the 8 classes were not used. Since that only account

for 0.6% of kinetics-skeleton dataset, effect of this on model

performance should be minimum. Original hyperparameters

were used where it was possible but some (e.g., batch size)

were not used due to computational limitations. This or

the differences in pre-processing may have lead to the low

performance in Table II.

For further comparison, implementations were done on the

skeleton structure and between adult and child subsets as well.

For these implementations, a balanced 4 class subsets were

used with 98 samples per class. A modified graph structure

instead of OpenPose-COCO graph structure where hip joints

are connected to corresponding shoulder joints rather than the

neck joint (Table III-Modified structure) was experimented

which resulted in better performance. Thus, we attempted

this configuration with the kinetics-skeleton pre-trained model

which resulted in a sharp improvement of accuracy, both in

child and adult dataset implementations (Table III-Modified

pre-trained). Hence later implementations were attempted with

kinetics-skeleton pre-trained implementations as well.

TABLE III: Secondary Implementation

Implementation Child Dataset Adult Dataset

OpenPose-COCO structure 63.26 46.93
Modified structure 61.22 56.12
Modified pre-trained 86.73 84.69

Random frame selection [w = 150] 55.10 43.87
Random skeleton movement 61.12 61.22
Combined approach [w = 150] 62.24 58.16
Sub-sampling approach 50.0 44.89

Experiments with final pre-processing stage were also done

to select the best configuration. Authors of original ST-GCN

paper [16] had implemented random frame selection process as

well as random skeleton movement process, thus we first im-

plemented them separately. Random frame selection was done

with a window size (w) of 150 and gradually increased to 250,

but the best results we achieved (w = 150) were below the

performance of ”Modified structure” approach (Table III). As

the best performance was achieved when both processes were

combined (Table III-Combined approach), it was considered

as the default configuration. In addition, a new sub-sampling

approach with frame dropping was also implemented, but due

to low performance it was not added to the final pre-process

stage.

For KS based implementations, comparisons were done

between different skeleton structures (Table IV). Feet related



joints were removed from Gbody resulting in Gbody∗ skeleton

structure with 19 vertices (V3). Considering the overall perfor-

mance, Gbody was used for the vanilla implementations while

Gcoco was used with pre-trained model implementations.

TABLE IV: Skeleton Structure Selection

Skeleton structure KS-balanced KS-Full

Gbody , |V2| = 25 69% 75%
Gbody∗ , |V3| = 19 67% 74%
Gcoco , |V1| = 18 66.45% 74%

2) Vanilla implementation on Child data: Implementations

were done on both KS and KSS protocols and the models

were not pre-trained on any other dataset. Results in Table V

suggest a general improvement in accuracy when moving

from a KSS protocol to a KS protocol. This improvement

could be due to the higher number of data samples per

class in KS or due to the improvement of graph structure

as demonstrated by the results in Table IV. When comparing

the class-wise accuracy between KS/KSS-Balanced protocols,

performance of each class has increased, yet there is no relative

improvement between classes.’Clapping’ class perform the

best while ’baseball throw’ perform the worst. Result also

suggest there is no strong connection between confidence

value and accuracy given that ’climbing tree’ class performs

second best even though the average confidence value is the

lowest and ’hopscotch’ performs second worst even though

the average confidence is the highest.

TABLE V: Vanilla Implementation Results

From Scratch Full Large Balanced Small-C Small-A

KS 75.29 77.83 69.32 69.23 92.34
KSS 60.68 64.88 59.43 86.95 -

3) Kinetics-Skeleton Implementation: Class-wise evalua-

tion of the kinetics-skeleton implementation introduced in

Section IV-A1 was done and the results are given in the

Table VI for the 8-class subset. Class index refers to the

class index of the Table I. ‘Position’ refers to the place each

class take when all 400 classes are ordered in descending

order in terms of class-wise accuracy. Confidence value is

calculated per person in video and since there are only 2 people

maximum, both of these values are given in this row.

Higher accuracy and position attained by classes with in-

dices 7, 6, 0, and 2 (Table I) can be explained as a result

of motion-oriented nature of those actions. Considering the

distribution of all Kinetics-skeleton 400 classes in accuracy

vs confidence (Figure 3), all four classes are above average.

Relatively bad performance of other 4 classes is difficult to

attribute to a single cause. Considering 4 and 5 classes, it

may be due to truncation/occlusion present in the videos as

evidenced by the confidence values but same reasoning is not

true for the low performance of 1 and 3 classes.

Visualized distribution of all 400 classes in Figure 3 implies

there is no strong correlation but if the average confidence

values is close to zero, then there is a higher chance of

resulting in a low accuracy. Quantitative analysis resulted

Fig. 3: Accuracy vs Confidence Comparison

in 0.533 for Pearson correlation indicating only a moderate

positive relationship and 0.564 for Spearman’s correlation.

Analysis on other implementation also resulted in similar

results and conclusions.

TABLE VI: kinetics-skeleton results for 8 classes

Class Index 0 1 2 3 4 5 6 7

Accuracy 48% 14.58% 36% 4% 8% 0.00% 48% 74%
Position 32(2) 210(5) 79(4) 321(7) 276(6) 373(8) 34(3) 5(1)
Confidence .40/.12 .35/.18 .39/.11 .39/.16 .19/.03 .06/.01 .40/.12 .32/.05

4) Transfer Learning Implementations: Initial implemen-

tations with propagation approach resulted in considerable

accuracy improvement for both KS and KSS implementations.

This can be attributed to the Kinetics-skeleton dataset size and

diversity. FX and FT approaches using Kinetics-skeleton as

the source dataset resulted in marginal differences compared

to propagation approach. But in our previous work [30], both

FX and FT outperformed propagation approach and this could

be either due to increased diversity in source dataset in this

implementation compared to the NTU dataset used as the

source dataset in [30] or simply due to the presence of negative

TFL in these implementations. Further experiments are needed

to validate these claims.

To analyse these approaches in detail, KSS-Full protocol

class-wise results for each approach was visualized using

a box-and-whisker plot in Figure 5. Resultant probability

value from ST-GCN model’s final softmax-activation based

dense layer was used as the sample probability to develop

the probability distribution of each class. Transfer Learning

approaches class-wise gain over vanilla approach is evident

through the median values of box plot. Based on the median

values, propagation approach performs better than other TFL

methods even though the difference is small. When compar-

ing the distribution variance of each approach, propagation

approach has a considerably low variance in ‘pull ups’ class

and the large five classes with the exception of ‘baseball

throw’ class. Since all these distributions can be interpreted

as combinations of correctly classified sample distribution

and misclassified sample distribution, the high variance of



TABLE VII: Transfer Learning Results

Implementation Full Balanced Large Small-C

KS Propagation 84.3 83.38 86.03 76.92

KSS
Propagation 81.26 87.68 87.92 82.60
Fine-Tuning 80.47 89.85 86.51 82.60
Feature Extraction 79.15 89.13 87.92 86.95

‘throw baseball’ can be explained as a result of considerable

contribution of misclassified sample distribution. While the

class-wise accuracy improvement of 5 and 6 classes are negli-

gible, with propagation approach, upper quartile has increased

considerably, implying there is a room for improvement if

more data is present.

Fig. 4: Probability Distribution of Skeleton Modality

Implementations

B. RGB Modality Results

RGB implementations were carried out on the same dataset

protocols as given in Section II-A. The performance compari-

son between different datasets shows a good accuracy in RGB

implementation except for KS-Small-C dataset due to low

number of samples( Table VIII). When compared to the other

datasets, the balanced dataset achieves the best accuracy for

both KSS and KS protocol implementations. Furthermore, the

use of pre-trained ResNet-152 in LRCN enhanced the model’s

training efficiency and prevented overfitting for lower number

of samples.

TABLE VIII: Comparison of RGB modality and Skeleton

modality

Dataset Modality Full Balanced Large Small-C

KS
RGB 86.62 88.64 87.02 73.07

Skeleton 84.3 83.38 86.03 76.92

KSS
RGB 82.57 86.23 79.72 78.26

Skeleton 81.26 89.85 87.92 86.95

C. Model Comparison

Since LRCN model is pre-trained on the ImageNet dataset,

comparison of ST-GCN vanilla implementation with LRCN

is not sensible. Instead we compare the pre-trained ST-GCN

model based implementations (i.e., propagation approach) with

the pre-trained LRCN implementation. Between the KS/KSS

protocol based implementations, the differences are marginal

as detailed in Table VIII. While the LRCN performs better than

TABLE IX: Comparison of Models

Model Kinect Camera OpenPose Model RGB Model

Accuracy 70.56 84.3 86.62

ST-GCN in KS-Balanced protocol, the opposite is true regard-

ing the KS-Small protocol. Comparing the KSS protocols, ST-

GCN performs better than LRCN in both KSS-Balanced and

KSS-Small-C protocols. Since the differences are marginal,

we argue that performance of both models are comparable.

A class-wise sample probability comparison was done with

confidence interval (CI) of 95% for KSS-Balanced protocol.

Result in Figure 5 suggest that LRCN performs better in

‘hopscotch’ and ‘climbing tree’ classes but ST-GCN performs

better in all others. Thus, even though in terms of Top-1

accuracy , ST-GCN performs better, these results also show

that overall performance is similar. In some instances upper

limit of CI goes beyond 1 as a result of Gaussian assumption

in CI calculation.

In order to compare 2D Skeleton and RGB modality results

with similar classes of 3D data, for KS/KSS-Full protocol, 8

similar class implementations using the CWBG dataset were

done with the ST-GCN model used in [30] and the best result

was achieved with FT approach. The 3D result is shown

as ‘Kinect-Camera’ in Table IX along with best results we

achieved in this work.

Fig. 5: Performance of Models with Confidence Interval

V. CONCLUSION AND FUTURE WORKS

Inspired by the superior performance of skeleton based

models in HAR research, we carry out an in-depth analysis of

CAR on pose-based GCN. This analysis is further extended

with a comparison of RGB modality and Skeleton modality in

CAR. Though the average class-wise confidence values show

that unconstrained nature of videos severely limit the pose

estimation process, in this research we show that ST-GCN

model is able to achieve comparable performance to LRCN

model.

Based on our results on KS/KSS-Full protocol, LRCN

performance over ST-GCN suggest a limitation of GCN when



truncation and occlusion are present in videos. ST-GCN per-

formance over LRCN on KS/KSS-Small-C protocol suggests

a better discrimination ability of GCN when presented with

small number of classes. On KS/KSS-Balanced protocol both

models perform equally well suggesting similar potential of

LRCN and ST-GCN model architectures.

While the average confidence value intuitively quantify

the ‘visibility’ of the skeleton sequence, Pearson correlation

coefficient value of 0.53 between class-wise accuracy and

average confidence value suggest that in addition to the

average confidence value, presence of other latent variables

affect skeleton modality performance.

Despite the pose differences in adults and children, these

results suggest that when the actions are motion oriented,

skeleton modality can perform on par with RGB modality, thus

opening future research directions in optimal skeleton-graph

creation, pose estimation improvements in complex scenarios

and developing ensemble of multiple modalities.
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