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ABSTRACT Coronavirus disease 2019, commonly known as COVID-19, is an extremely contagious disease

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Computerised Tomography (CT)

scans based diagnosis and progression analysis of COVID-19 have recently received academic interest. Most

algorithms include two-stage analysis where a slice-level analysis is followed by the patient-level analysis.

However, such an analysis requires labels for individual slices in the training data. In this paper, we propose a

single-stage 3D approach that does not require slice-wise labels. Our proposed method comprises volumetric

data pre-processing and 3D ResNet transfer learning. The pre-processing includes pulmonary segmentation

to identify the regions of interest, volume resampling and a novel approach for extracting salient slices.

This is followed by proposing a region-of-interest aware 3D ResNet for feature learning. The backbone

networks utilised in this study include 3D ResNet-18, 3D ResNet-50 and 3D ResNet-101. Our proposed

method employing 3D ResNet-101 has outperformed the existing methods by yielding an overall accuracy

of 90%. The sensitivity for correctly predicting COVID-19, Community Acquired Pneumonia (CAP) and

Normal class labels in the dataset is 88.2%, 96.4% and 96.1%, respectively.

INDEX TERMS COVID-19 diagnosis, transfer learning, 3D ResNet, CT scans, region-of-interest.

I. INTRODUCTION

Coronavirus disease 2019, commonly known as COVID-19,

is an extremely contagious disease [1], [2] caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Since the first case was reported in December 2019 it has led

to an ongoing pandemic claiming millions of lives, adding

colossal pressure to healthcare systems globally [3] and a

huge negative impact on the world economy. Despite the

vaccination efforts in full force and many countries have

cancelled public COVID rules, vanquishing COVID-19 and

achieving herd immunity are still theoretically unreachable

in the foreseeable future [4], [5] due to its possible rein-

fection rate [6], [7]. Recently, many countries have encoun-

tered COVID resurgence [8], [9]. Accordingly, there is a

significant demand for rapid and accurate testing for the

virus. The current gold standard for detecting the virus is the

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

reverse-transcription polymerase chain reaction (RT-PCR)

test. However, there are several limitations of the RT-PCR

tests such as a false negative rate and long reaction time

[10]. Hence, supplementary diagnosis approaches based on

imaging and artificial intelligence (AI) technology could be

utilised [11].

Deep learning-based AI technology has gained tremen-

dous success in computer vision. Powered by the hardware

advancements in Graphical Processing Units (GPUs), deep

learning algorithms have attained state-of-the-art accuracy

in learning deep and complex visual features since the Ima-

geNet Large Scale Visual Recognition Challenge in 2012

[12]. Since then, deep learning has gained widespread popu-

larity and achieved promising performance in medical imag-

ing applications such as diagnostic classification, lesion and

tumour segmentation or localisation [13], [14].

As imaging data became available, there has been an

interest in applying deep learning to understand Computer-

ized tomography (CT) scan images for diagnosis and further

28856 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 11, 2023



S. Xue, C. Abhayaratne: RoI Aware 3D ResNet for Classification of COVID-19 Chest CT Scans

analysis of COVID-19 infections. More details and a review

of these works are presented in Section II. CT scans are

regarded as one of the most conventional medical imaging

techniques vital in identifying viral pneumonia effectively

[15]. A CT scan generates cross-sectional slices of the bones,

blood vessels and soft tissues inside the human body to

visualise the pathogenesis of the infection and thereby aid the

diagnosis of the disease. Despite the fact that CT images are

vastly digitised and they have led many researchers to publish

work in this field, CT images require laborious studying and

labelling by experienced radiologists. This has resulted in a

lack of CT datasets with high-quality labels since the corre-

lated annotation work can be very expensive [16]. Therefore,

developing deep learning models for raw CT image analysis

can be a promising supplementary diagnostic approach that

not only improves the prognostic accuracy but also reduces

the workload of radiologists.

Conventional CT-scans classification methods primarily

employ a two stage-approach: slice classification followed

by the final overall classification. However, training a slice

classifier requires slice-wise labels of the CT data. As men-

tioned above, labelling slices could be manually tedious and

time-consuming work. For this reason, high-quality labelled

slice-wise data are not always available publicly. This has

a huge negative impact when new data sets emerge and

the trained models are needed urgently as in the case of

the COVID-19 pandemic. Hence, our study considers the

scenario where slice-wise annotated training data are not

available. In this paper, we propose a single-stage full 3D

convolution neural network (CNN) approach that does not

require slice-wise annotations for lung CT scan classification.

Preliminary results of our work were presented in [17], which

proposed a 3DCNN-based approach to solve this problem for

the first time in the literature.

Our study includes an efficient method to identify the

region-of-interest (RoI) to use as the input to the 3D convolu-

tion neural network (CNN) and modify the CNN to support

the use of RoI in all layers of the network. We then utilise 3D

Gradient-weighted Class Activation Mapping (Grad-CAM)

to add explainability to the prediction by displaying the class

activation regions in the 3D CT scan volume. Furthermore,

we also present a comprehensive ablation study to investigate

the contributions of various methodological parameters to the

model performance. In this paper, we demonstrate our work

by considering the 3D ResNet models [18] as the 3D CNN.

The main contributions of our work are as follows:
• Proposal of a framework for CT scan classification with-

out slice-wise annotations;

• Proposal of an algorithm for extraction of salient slices

to support the 3D RoI;

• proposal of RoI-aware 3D ResNet architecture for sup-

porting the slice-wise RoI in the deep learning network;

and

• Evaluation of the proposed method for depths of 3D

ResNet models (18, 50 and 101) and various ranges of

RoI.

Although in general there have been many published

papers using deep learning for CT image analysis, very few

papers proposed reproducible methods that follow the best

practice for deep learning models and justify their applicabil-

ity in real-world in-vivo scenarios [19]. To address the latter,

our study proposes a tailor-made pre-processing technique

instead of using external segmentation resources. Following

reproducible research principles, we describe the design steps

in detail, provide all experimental settings and make the code

and the trained model available publicly1

The rest of the paper is organised as follows: Section II

reviews the latest related work that uses deep learning for fast

COVID-19 detection. Section III elaborates on our proposed

single-stage fully-automatic framework. Section IV presents

the experimental results and evaluates the overall model per-

formance. Finally, Section V presents the conclusion and

future research prospects.

II. RELATED WORK

This section reviews the related work on the deep

learning-based classification of chest scans for detecting

COVID-19. These methods are reviewed based on two crite-

ria: the data type and the model (deep learning network) type.

The data types are mainly either 2D or 3D. In general, 2D

data can either be chest X-Ray or CT scan images that contain

several individual planar images without spatial information

corresponding to a volume. 3D data are typically CT scans.

They consist of a sequence of slice images with correspond-

ing spatial information to form a 3D volume. There are

mainly two drawbacks of utilising 3D CT data. Firstly, data

with high-quality slice-wise annotations are limited as they

require laborious efforts from experienced radiologists. Sec-

ondly, chest CT scans can often include tissues that are irrele-

vant to diagnosis, hence requiring computationally expensive

pre-processing steps, such as, segmentation.

Commonly used model types can be categorised into

3 groups: 2D models; 2D models followed by 1D models

(2D+ models); and 3D models. The 2D models merely learn

the planar features of 2D data whilst the latter two model

types can learn the volumetric features of 3D data. Table 1

provides a summary and intuitive comparison of the related

work in terms of 4 aspects: the data modality type; the use

of slice-wise annotation; the inclusion of a pre-processing

segmentation step; and the model type used.

Following the above description of data types and model

types, the remainder of this section reviews the related work

under three catgories: 1) 2D models on 2D data; 2) 2D+

models on 3D data; and 3) 3D models on 3D data.

A. 2D MODELS ON 2D DATA

Recent works that used 2D models on 2D data showed sat-

isfactory classification accuracy [20], [21]. COVNet [20],

1https://github.com/lestrance/RoI-Aware-ResNet. Our method is applica-
ble to any CT volumetric dataset without requiring slice labels so that it
can be deployed subsequently to use without further retraining or with full
retraining or with transfer learning the model using other CT datasets.
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TABLE 1. An Overview of Related Work (compared in terms of the data
modality type, the usage of slice-wise annotation, the inclusion of a
segmentation step and the model type).

a fully-automatic framework for COVID-19 diagnosis from

2D chest CT images, used 2DResNet-50 [33] as the backbone

network for feature extraction. COVNet used 4352 chest CT

scans from 3322 patients aiming at distinguishing COVID-19

from other pneumonia. The results showed 90% sensitivity

and 96% specificity for COVID-19 detection.

In [21], Oh et al. introduced a deep transfer learning

approachwith limitedX-Ray data. This work firstly feeds raw

data into a segmentation network to extract the lung contour

followed by patch-wise training based pre-trained ResNet-18

model [33]. The final prediction is determined by fusing patch

decisions. The results showed an overall accuracy of 88.9%

and a sensitivity of 92.5%.

B. 2D+ MODELS ON 3D DATA

In 2D+models for 3D data, firstly a 2D convolutional neural

network (CNN) is trained to classify 2D slices of the 3D

CT volume followed by combining the slice-wise predictions

to yield patient-wise predictions [22], [23], [24], [25], [26],

[27], [28], [29], [30], [31]. The latter is usually achieved by

employing another 1D Recurrent Neural Network (RNN),

such as, Long Short term Memory (LSTM). A review of the

recent 2D+ models for 3D data is presented in this section.

Wu et al. proposed a deep learning-basedmulti-view fusion

approach [22]. They used 2DResNet-50 [33] as the backbone

network to extract planar features from 3 angles of the CT

volume. The dataset was collected from two cooperative

hospitals in China including 368 COVID cases and 127 CAP

cases. Experiments mainly compared the model performance

between the single-view model and the multi-view fusion

model, the results illustrated that the multi-view fusion model

yielded better accuracy (76%) and covid sensitivity (81.9%).

Likewise, another work employed a segmentation network to

extract annotated infected regions from the pulmonary CT

followed by inputting the segmented regions to a pre-trained

2D ResNet-18 to categorise into 3 classes: COVID-19;

Influenza; and Healthy [23]. This method achieved an overall

accuracy of 86.7%.

Moreover, authors in [24] developed a deep learning

framework called AI-Corona, which employed many CNNs,

such as DenseNet, ResNet, Xception and EfficientNet as

the backbone network. A total of 2124 CT slices were

used to train the model and the experimental results yielded

an accuracy of 96.4% and COVID sensitivity of 92.4%.

Purohit et al. proposed a LeNet-based deep learning model

which employed a multi-image representation approach to

augment the data [25]. The augmentation method utilised an

image sharpening process to enhance edge features. Experi-

mental results showed that the model trained with augmented

images achieved an accuracy of 95.38% for 3D CT scans.

Authors in [26] proposed a weakly supervised 2D+model

that can reduce the requirements of annotated data. Notice-

ably, 450 3D chest CT volumes were utilised for training

and 60 annotated 3D CT volumes were utilised for lung

segmentation [34]. A multi-scale learning scheme was used

to localise the lesions of the infection. An overall accuracy

of 87.4% was achieved. Similarly, in COVID-FACT [27], a

2-stage fully-automated framework comprising a pre-trained

U-Net called R231CovidWeb [35] for segmentation and a

Capsule network (CapsNet [36]) for capturing the spatial

information. COVID-FACT achieved an accuracy of 90.82%,

a sensitivity of 94.55%, a specificity of 86.04% and an AUC

score of 0.97.

Another 2D+ model attained an overall accuracy of 90%

by utilising a two-stage binary classification approach [28].

The first classifier was trained to distinguish the normal

samples from the infected with either COVID-19 or CAP. The

second classifier differentiates the COVID-19 cases from the

CAP cases. The backbone networks utilised in stages one and

two are DenseNet [37] and EfficientNet [38], respectively.

Another 2D+ model presented a two-stage learning strategy

inspired by CapsNet [29]. In this method, firstly a slice clas-

sifier was trained using ResNet-50 as the backbone network

based on two datasets, COVIDx-CT and COVID-CT-MD

followed by a BiLTSM [39] network for final classification.

Their model achieved an overall accuracy of 88.89%.

Moreover, an ensemble learning approach was proposed

in [30]. This method first used a FixMatch semi-supervised

approach to train a slice-level classifier followed by the

AdaBoost algorithm [40] to train a sequence classifier to

obtain the final prediction. CNR-IEMN [31], another 2D+

model, proposed a two-stage learning scheme, that includes

a multi-task learning strategy using 4 trained CNNs for

slice-level classification followed by the XGboost [41] clas-

sifier to get the final diagnosis. This method achieved a very

good COVID-19 sensitivity of 91.4%.

C. 3D MODELS ON 3D DATA

The approaches using 2D+ models for 3D data demon-

strated good patient-level prediction results. But they require
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FIGURE 1. Comparison between 2D+ and 3D CNN for medical images classification.

high-quality slice-wise annotated data and well-trained third-

party segmentation networks for their success. Similarly, 2D

models are capable of recognising planar features and mak-

ing frame-based predictions for most computer vision tasks.

Nonetheless, 2D models cannot directly encode the volumet-

ric patterns of 3D CT scan images without combining multi-

view 2D convolution with another 1D network like LSTM.

For 2D+ methods, slice-wise labels are required to train the

network. Additionally, the input data need to be fed 3 times

by different axial views in order to learn the volumetric fea-

tures. On the contrary, using a 3D model is advantageous for

learning the volumetric features of 3DCT images for efficient

patient-level diagnosis using a simple and straightforward

framework. An intuitive comparison of 2D+ and 3D models

for medical imaging classification is shown in Fig. 1.

To the best of our knowledge, only two studies on 3D

models for classifying CT chest scans have been reported

in the literature. These include the method proposed by

Yang et al. [32] and the preliminary results of our work [17].

In [32], Yang et al. proposed a 3D model-based approach

consisting of a multi-step learning scheme. In this method,

a pre-trained U-Net is used to segment the lung slices as a

pre-processing step, followed by feeding in the segmented

lung images into a 3D CNN for classification. The next step

includes training 5 models to distinguish COVID-19 from

CAP in the slices. In the final step, the patient-level prediction

is obtained by combining predictions in the previous two

prediction steps. This method has achieved good sensitivity in

detecting COVID-19 and Normal patients but distinctly low

sensitivity in CAP. The comparison of the performance of the

related work with respect to our proposed method is shown

in Section IV.

III. THE PROPOSED METHOD

Our proposed method comprises two parts: 1) Volumet-

ric data pre-processing and 2) feature extraction and

classification using RoI aware 3D ResNet transfer learn-

ing. Fig. 2 illustrates the overall algorithmic pipeline of

the proposed method. For pre-processing, we propose a

novel approach for 3D volumetric data, as discussed in

Section III-A. In the second stage, the pre-processed CT

images are fed to a modified RoI aware 3D ResNet network

for transfer learning to extract features from the CT volumes

followed by a tri-class classifier fully connected layer. The

process of the second stage is explained in Section III-B.

A. DATA PRE-PROCESSING

As mentioned, the first stage of our proposed method is data

pre-processing. The main purpose of data pre-processing is

to extract the Region-of-Interest (RoI) from the volumetric

data to discard the irrelevant features that might affect the

model performance. Moreover, slices that are not likely to be

conducive to the diagnosis are discarded thereby improving

the model classification accuracy. Furthermore, all volumes

are re-scaled throughout the whole process to make them

compatible with the network input requirements. The whole

procedure of data pre-processing includes 3 steps: 1) Pul-

monary segmentation; 2) Volume resampling and 3) Salient

slices extraction. The following subsections present the algo-

rithmic details:

1) PULMONARY SEGMENTATION

Pulmonary segmentation is a critical step for most CT

scan-based deep learning algorithms as it attempts to extract

the RoI. Considering that pneumonia is an inflammation of

the tissue in one or both lungs caused by a bacterial or viral

infection, merely within the region of the thoraxes is where

the abnormality should be detected. Therefore, this step is

aimed at discarding irrelevant organs and tissues that might

not be conducive to pneumonia diagnosis, thereby reducing

the false positive rate and meanwhile compressing the volu-

metric image by zeroing irrelevant pixels.

VOLUME 11, 2023 28859
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FIGURE 2. An overview of the 2-stage pipeline of our proposed method. Stage-1 includes data pre-processing while stage
2 includes feature extraction and training/classification.

The complete procedure of pulmonary segmentation is

illustrated in Fig. 3. Before the segmentation, all volumes are

extracted from the given Digital Imaging and Communica-

tions in Medicine (DICOM) [42], [43] format files. The pixel

intensity of the original data is measured by the Hounsfield

Unit (HU), ranging from 0 to 3000. Then the pixel intensity

values are normalised to the range from 0 to 1. To illustrate,

given a 3-dimensional volume Vi, then the linear normalisa-

tion is executed as follows:

Vn = (Vi − m)
M ′ − m′

M − m
+ m′, (1)

where m and M represent the original minimum and maxi-

mum pixel value ofVi;m
′ andM ′ denote the normalised min-

imum and maximum pixel value of Vn. Thus the normalised

grey scale volume is denoted by: Vn→ {0, . . . , 1}.

After normalisation, the next step is pulmonary segmenta-

tion. Firstly, the contrast of the input slice image is enhanced

by saturating the top and bottom 1% pixel values. This

aims to improve the segmentation accuracy since natural

contrast is critical for segmentation. After that, the volume

is binarised using a threshold. Next, the computer vision

operations, such as, inverting, border clearing and hole filling

are performed sequentially to obtain the corresponding mask

images. Finally, as highlighted in Fig. 3, image subtraction is

performed using the mask image.

This produces the segmented RoI containing the sheer

segments of the thorax. It can be seen that the segmented

slices have discarded all irrelevant tissues except for the

thorax. It is also observed that from the 3D perspective, the

shape of the segmented lung is inclined to a real lung, as it

is ‘‘squeezed’’. Hence, the segmented volume needs further

processing before inputting to the network.

2) VOLUME RESAMPLING

The second part of pre-processing the raw data is resampling

the normalised volume Vn. This resampling step aims to

generate more slices for each volume, so that the volume is

more solid for further preprocessing operations. Noticeably,

there are two critical parameters in the resampling step: Pixel

Spacing (s1), and Slice Thickness (s2), which specifies the

axial resolution of the CT /MRI scan. In the resampling stage,

an input volume V (s1, s2) with dimensions of [X , Y , Z ] is

considered with the corresponding 3D meshgrid as follows:

V(s1, s2) = meshgrid(x′, y′, z′), (2)

where x′, y′ and z′ represent the 1-dimensional input arrays

of coordinates to build the 3D meshgrid, as determined by:

x′ = s1x, (3)

y′ = s1y, (4)

z′ = s2z, (5)

where x, y and z represent vectors off all-ones with the length

X , Y and Z , respectively. Next, a new 3D meshgrid VR is

defined to denote the resampled volume:

VR = meshgrid(x′n, y
′

n, z
′

n), (6)

where x′, y′ and z′ represent the 1-dimensional input arrays

of coordinates the 3D meshgrid, as follows:

x′n = s1xn, (7)

y′n = s1yn, (8)

z′n = s2zn, (9)

where xn and yn denote vectors with the linearly spaced values

of k1, with the length X and Y , respectively. Similarly, zn
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FIGURE 3. Pulmonary Segmentation Process. Note that each row denotes partial slices of the volume from the top to the bottom.

FIGURE 4. Three examples of volume resampling visualisation.

denotes a vector with the linearly spaced values of k2 with a

length of Z . The parameters k1 and k2 represent the rescaling

multiplier parameters corresponding to s1 and s2, respec-

tively. Note that the value of k1 and k2 are randomly initialised

and then the optimal values are experimentally acquired.

Examples of a resampled volume are shown in Fig. 4.

3) SALIENT SLICES EXTRACTION

After the pulmonary segmentation, the sheer lung segment is

extracted. It can be experimentally observed that not every

Algorithm 1 Slices With Salience Extraction

1: Input: VR, the input volume with dimensions of

M , N , K ; Vm(i) , the binary segmented mask for the

slice i; t , the saliency thresholding value.

2: Output:Vs, the volume with salient features; l′a, the col-

umn vector of the slice-wise lung areas of the volume.

Require: t ∈ [0 1]

3: for i = 1 : K do

4: la(i)←
∑

(Vm(i))
MN

.

5: end for.

6: Normalising: l′a←
la

Max(la)
.

7: Thresholding: l′a← [l′a ≥ t].

8: kt ← index of the first slice s.t. l′a ≥ t .

9: Kn← length(l′a).

10: Vs← VR{M ,N , [kt : (kt + Kn)]}.

11: Return Vs, l
′

a.

slice is conducive to pathological diagnosis. Therefore, it is

imperative to extract the slices with salient abnormalities to

improve the classification accuracy without comprisingmuch

volumetric information. This step is critical in handling the

scenario of not having slice-wise labels.

We propose a generic method that can extract slices with

salience. Given a resampled volume, VR, with dimensions

M × N × K , the first step is to generate a column of binary

masks containing pixels of 0 and 1. The area of the lung is

VOLUME 11, 2023 28861
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FIGURE 5. An overview of the extraction procedure of slices with salience regions. Note that the first and the
second column denote partial slices of the given volume from the top to the bottom and its corresponding
segmented mask, respectively. The third column denotes the normalised area vector l′a() in Algorithm 1. The
parameter t refers to as the threshold value for the salience region. Whilst the red dotted line box denotes the
slices with saliency and the blue dotted line boxes denote slices without saliency thus to be discarded. Hence,
the slices within the red dotted line box are utilised to generate the volume with saliency, which corresponds to
the output Vs as shown in Algorithm 1.

calculated by the proportion of 1s in the mask. The column

of lung area la can be normalised by dividing the maximum

area value. Next, the normalised lung area column l′a is cut

off by a customised threshold value, t . Thus, by applying the

threshold t , it returns a column of indices of slices with salient

features, denoted by l′a(). The final step is to reconstruct the

output volume Vs by using slices with salience regions. This

process is summarised in Algorithm 1.

Fig. 5 shows the mechanism of extraction of the slices with

salience. Fig. 6 shows examples of volumes with salience

corresponding to four different threshold values.

B. FEATURE EXTRACTION AND CLASSIFICATION

Feature extraction and classification stage is driven by the

3D ResNet model [18]. We start with the pre-trained 3D

ResNet, incorporate RoI aware adaptations and perform

transfer learning to train the final model using the training set

and the augmented data to develop the final classifier. The

following sections present the second stage of the proposed

work in detail.

1) 3D ResNet

In 2D ResNet models [33], convolution layers have been

designed to extract features from 2D images. Only the planar

features can be computed and learned by a 2D network. How-

ever, with regard to 3D medical image-based applications,

the model is required to capture volumetric representations

from the data. To this end, we used 3D convolution layers

for the study to extract volumetric features from the chest

CT scans. 3D ResNet is realised by extending the filters of

2D ResNet to the third dimension. In this study we have

considered 3D ResNet-18, 3D ResNet-50 and 3D ResNet-

101 [18]. The basic information of the 3D ResNets used in

this work is listed in Table 2.

In the network, a non-linear activation function follows the

convolution layer to generate a featuremap. The non-linearity

of the activation layer grants the neural network to learn

complex representations. In this study, the ReLU activation

function is employed. ReLU applies an element-wise activa-

tion by setting all negative values to zeros. A pooling layer

is utilised to down-sample the feature maps while retaining

the most salient features. The functionality of the 3D pooling

layer can be achieved by integrating a 3D window of pixels

and calculating its average or maximum for average pooling

or max-pooling, respectively. In this work, max-pooling was

used as the first 3D pooling layer and average-pooling was

used at the beginning of the classifier stage.

2) RoI AWARE 3D ResNet ARCHITECTURE

Although the input volumes have been segmented, the 3D

convolution and pooling operations on the whole input data

volume can result in extracting features from that are outside

the RoI. Hence, it is necessary to incorporate the pulmonary

segmentation based RoI on the feature maps of the interme-

diate layers. To achieve this, we propose a novel adaptation

of the 3D ResNet architecture that supports the use of the
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FIGURE 6. Examples of volumes with different saliency thresholding
values. Coloured regions indicate the range of slices with salience
information whilst the achromatic areas represent slices to be discarded.
The range of slices shrinks as t is set to be larger.

TABLE 2. 3D CNNs utilised in this research.

features learned by the network are within the RoI. Fig. 7

shows the adapted ResNet architecture to achieve RoI aware

3DResNet considering 3DResNet-18. Note that the structure

of the other 2 networks, 3D ResNet-50 and ResNet-101,

is similar to that of 3D ResNet-18, but with more layers.

Firstly, the binary volume mask, Vm, is generated by bina-

rising the volume input Vs with a threshold value p, as deter-

mined by:

Vm(x, y, z) =

{

1 Vs(x, y, z) ≥ p,

0 Vs(x, y, z) < p.
(10)

Then, the activation layer outputs Va(Lj) for a corresponding

activation layer, L for the layer index j, within the neural

network are element-by-element multiplied with the corre-

sponding volume mask, V ′

m as follows:

V ′

a(Lj) = V ′

m ⊙ Va(Lj), (11)

where V ′

m denotes the resized volume mask, Vm and ⊙

denotes element-by-element multiplication. Since the convo-

lution and pooling operations downsample the volume, it is

not advisable to apply the RoI on the feature maps from rel-

atively deep layers in case significant features are discarded.

Note that in this case, only the first 4 activation layers were

chosen for applying the RoI awareness in the network.

3) TRANSFER LEARNING AND DATA AUGMENTATION

Since the pre-trained 3D ResNets available in the MATLAB

add-ons library are pre-trained usingMRI brain images, it has

not learnt any hierarchical features of chest CT images. Hence

we set all parameters in the convolution base to be trainable

allowing transfer-learning using the chest CT images. Finally,

the convolution layers are followed by a custom-made ternary

classifier that classifies the CT chest scans into three classes

(Covid-19, normal and CAP).

Since the training set is small, in order to improve learning,

several data augmentation approaches can be considered.

Data augmentation used in this work includes 1) resampling

volumes with different k1 and k2; 2) random cropping; 3)

random rotation; and 4) random vertical flipping. Since the

last step of data pre-processing is to determine the range of

slices with salience, only 2D-based augmentation approaches

were considered in this case in order to retain the range

of salience unaffected. This means that the 2D slices are

augmented before the construction of 3D volumes.Moreover,

as the volumetric data are considerably large, the augmented

data ought to be generated along with the original data before

the experimental stage to reduce the computational cost in the

training stage.

IV. PERFORMANCE EVALUATION

This section introduces the experimental setup and the dataset

used for this study and presents the performance evaluation of

the proposed RoI aware 3D ResNet transfer learning model.

All algorithms were implemented using MATLAB R2020b

on a PC with AMD Ryzen 3900X CPU on 32GB RAM, the

GPU used for training the model is RTX 2080Ti with 11 GB

VRAM.

A. DATASET

The dataset utilised in this work, referred to as the ‘‘COVID-

CT-MD’’ [44], was available to the participants of the

ICASSP-21 COVID-19 SPGC. It comprises volumetric chest

CT scans of 231 patients positive for pneumococcal infection

and 76 normal people. Among the 231 patients, 171 of them

tested positive for COVID-19 infection and 60 are diagnosed

with community acquired pneumonia (CAP). Note that these

CT scans were conducted from April 2018 to May 2020.

The mean age of patients is 50 ± 16. It includes scans from

183 male and 124 female participants. It is worth mentioning

that diagnosis of COVID-19 infection is derived from pos-

itive real-time reverse transcription polymerase chain reac-

tion (rRT-PCR) tests, the test results are confirmed by an

experienced thoracic radiologist. The rest of the cases were
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FIGURE 7. RoI aware 3D ResNet-18 architecture.

TABLE 3. Gender and age distribution in COVID-CT-MD [44].

TABLE 4. The statistical parameters(mean and standard deviation) of the
Exposure values in COVID-CT-MD [44].

confirmed based on clinical parameters and CT scans in the

previous study. Additionally, a subset of 55 COVID-19 and

25 CAP cases was annotated by the radiologist with binary

slice-wise labels as infected and non-infected. Table 3 shows

the gender and age distribution in the dataset.

All volumetric images are saved in DICOM format [42],

[43], with a reconstruction matrix with the size of 512× 512.

The models of CT scope scanners used for this study are

SIEMENS and SOMATOM. It is worth mentioning that the

radiation exposure dose varies for each volume due to differ-

ent CT acquisition settings. The mean and standard deviation

of the exposure values are shown in Table 4.

B. DATA PRE-PROCESSING PARAMETERS

As demonstrated in Section III-A, there are several unspeci-

fied parameters in the data pre-processing stage. Thus, before

conducting the experiments it is required to determine these

parameters. In the volume resampling stage, values of s1 and

s2 can be retrieved from the original DICOM files of each

volume. k1 and k2 are themultiplier for s1 and s2, respectively.

Hence in this case, k1 is set to be [1.7 2.3] and the k2 mul-

tiplier is set to be [0.45 0.65], as acquired experimentally.

The main purpose of the resampling multipliers is to let

the dimensions of the resampled volume match the desired

dimensions of the network input. For example, given a vol-

ume V with dimensions of [512 512 176], with k1 and k2 to

be 2.0 and 0.6, the dimensions of the resampled volume VR
are [256 256 293].

After the resampling stage, the volumes are trimmed with

a range of slices with salient features. As previously shown

in Fig. 5, a critical threshold value t is used to determine the

range. Therefore, in this study we selected 3 different values

for t being 0.6, 0.7 and 0.8, thereby creating 3 training sets

for the ablation study. In the experimental stage, datasets with

different t are trained independently hence the results can

reveal the optimal t that yields the best model performance.

Several examples of volumes with slices of saliency by dif-

ferent t are shown in Fig. 6. For the ROI-aware 3D ResNet,

the threshold value p is set to be 0.1 as previously mentioned

in Equation.10.

C. EXPERIMENTAL SETUP

In transfer learning a small proportion of shallow layers in

the convolution base of the pre-trained network tends to be

frozen. These frozen layers remain untrainable and thus will

not be initialised with random weights. Usually, it is not

necessary to retrain the entire network since the convolution
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TABLE 5. Classification layer for transfer learning.

base of the pre-trained model has already learned generic

features for most computer vision tasks. Nonetheless, in this

study, we trained the network from scratch as the original

dataset does not include CT images. This means all layers in

the convolution base of the 3DResNet are trained andweights

are updated accordingly in the training process. In addition

to the convolution base, we also construct the classification

phase thereby classifying the extracted features, the layout is

explicitly illustrated in Table 5.

The model hyper-parameters are defined as follows. In this

work, all models are trained with an initial learning rate of

10−4 for 60 epochs in total. Each epoch contains 314 itera-

tions so the total iterations are more than 18K . Note that the

learning rate degrades by 0.2 for every 20 epochs to improve

the overfitting problem. Adam optimiser is used to update the

model weights during training. It is also worth mentioning

that due to the limit of GPU VRAM, the mini-batch size is

set to be 2.

During the ICASSP-21 SPGC competition, only the train-

ing dataset was available to the participants. Hence to evalu-

ate the performance of the proposed method, we used 5-fold

cross validation. For that, the training dataset is split into

5 folds and each experiment uses 4 of them for training and

1 for testing, with this repeated for all 5 combinations to get

the overall performance metrics. As the test dataset became

available after the competition period, we also report the

performance for the test set with the model trained using the

overall training set in this paper.

D. EVALUATION METRICS

The primary function of this developedmodel is to predict the

given CT scan with a diagnostic class, the most intuitive cri-

terion is the overall accuracy (AC), which can be determined

by the ratio of correctly predicted assessments to all testing

assessments as follows:

AC(%) =
TP+ TN

TP+ TN+ FP+ FN
× 100, (12)

where TP, TN, FP and FN represent the number of true-

positive, true-negative, false-positive and false-negative pre-

dictions, respectively. In addition to overall accuracy, two

other measures, Sensitivity (SEN) and Specificity (SPE), are

used. They are defined as follows:

SEN(%) =
TP

TP+ FN
× 100, (13)

SPE(%) =
TN

FP+ TN
× 100. (14)

E. ABLATION STUDY RESULTS

For the ablation study in this research, we have considered the

3 variables: 1) ResNet variants; 2) RoI-based modification to

the backbone network; 3) the threshold value t for extracting

salience slices. The main objective of the ablation study is

to investigate how different settings affect the model perfor-

mance and which combination yields the best classification

accuracy. We employ both 5-fold cross validation and of the

competition test set, as detailed in Section IV-C to evaluate

the performance of the model in these ablation studies.

Table 6 shows the explicit ablation study results using

the 5-fold cross validation for 18 experiments corresponding

to ablation study variable combinations. We have compared

three threshold values, t = 60%, 70% and 80% and three

backbone networks, ResNet-18, ResNet-50 and ResNet-101

and their corresponding RoI aware modified versions. It can

be seen that the RoI aware modified 3D ResNet-101 with

t = 80% yielded the highest overall accuracy of 89.6%.

It also shows the best sensitivity for COVID-19 and Normal

classes and the highest specificity for CAP and COVID-19

classes. It achieved 100% sensitivity for the class of Normal

patients, which is an encouraging finding because it means all

patients with and without a disease are correctly diagnosed.

The corresponding confusion matrices for the 18 exper-

iments are shown in Fig. 8. Confusion matrices show the

model performance in terms of showing a heatmap corre-

sponding to the percentages of predicted labels with respect to

the actual labels. They show a high percentage (darker shade)

of diagonal cells and a low percentage (lighter shades) off-

diagonal cells, confirming the high performance of the mod-

els. The superior performance of the RoI aware modified 3D

ResNet-101 with t = 80% is also evident in the correspond-

ing confusion matrix which shows the highest percentages in

the diagonal elements and the lowest percentages in the off-

diagonal elements.

Furthermore, the models trained with the complete training

set are tested with a second dataset (the competition test set)

and the corresponding results for the ablation study combi-

nations are shown in Table 7. Here also, it can be seen that

the RoI aware 3D modified ResNet-101 with t = 80% has

resulted in the highest overall accuracy of 90%. It resulted

in the highest sensitivity for all three classes, with 96.1%

sensitivity achieved for the Normal class. It also shows the

highest specificity for COVID-19 and CAP classes. The cor-

responding confusion matrices are illustrated in Fig. 9. The

superior performance of the proposed ROI-Aware ResNet-

101 with saliency threshold value t = 80% is evident

from the corresponding confusion matrix, as it shows the

highest percentages in the diagonal cells and the lowest
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TABLE 6. Ablation Study Results for the 5-fold cross validation using the training set (Bold font values correspond to the highest value of the column).

percentages in the off-diagonal cells compared to other con-

fusion matrices.

F. 3D GRAD-CAM

In this work, we also show the 3D gradient class activation

maps (Grad-CAMs) in order to add the explainability for

the classifier predictions. The algorithm to generate the 3D

Grad-CAMs is illustrated in Fig. 10. The final activation layer

is used for generating score maps. Then the scores map is

resized and normalised to generate the pixel labels that indi-

cate the infection area. Finally, the volume is visualised with

the highlighted pixel labels. Thus, the highlighted area indi-

cates the salience regions of the chest volumes corresponding

to the class label. This visualisation approach would be a

promising technique to assist radiologists with their labelling

work. Nonetheless, to develop a robust and applicable model

for real-world applications, a substantial amount of patient

data is required for further research.

G. DISCUSSION

As can be seen from Table 6 and Table 7, 3D ResNet-101

based models have resulted in the best model performance in

overall classification accuracy compared to its shallower vari-

ants 3D ResNet-18 and 3D ResNet-50. Moreover, it appears

that volumes with t = 80% yielded superior accuracy and

sensitivity compared to those volumes with t = 60% and t =

70%. For 5-fold cross validation, the highest overall accuracy

is 89.6% and achieved by the RoI awaremodified 3DResNet-

101 on volumes with t = 80%, this model also achieved the

highest sensitivity for COVID-19 and Normal for 88.0% and

100%. Whilst the highest sensitivity of CAP is 81.6% and

achieved by both 3D ResNet-50 and the RoI aware modified

3D ResNet-50 on volumes with t = 80%. For specificity, the

maximum percentages of CAP and COVID-19 are 84.2% and

96.2% respectively and are achieved bymodified ResNet-101

on volumes with t = 80%. The highest specificity for Normal

is achieved by both ResNet-18 and modified ResNet-18 on

volumes with t = 80%.

For the competition test set in Table 7, the highest over-

all accuracy is 90.0%, achieved by the RoI aware modi-

fied 3D ResNet-101 on volumes with t = 80%. Note that

this model also attained the highest values in most other

metrics. The best sensitivity values achieved in detecting

CAP, COVID-19 and Normal are 96.4%, 88.2% and 96.1%,

respectively. The best specificity values achieved are 80.0%,

91.7% and 97.1%, respectively. The models in this work

exhibited relatively low sensitivity in detecting CAP and

COVID-19 in comparison with Normal. This problem could

be because the symptoms of pneumonia in CAP and COVID-

19 are similar in many aspects. Hence, the given data are

insufficient to develop a model that can consistently dis-

tinguish COVID-19 from CAP. In summary, our both eval-

uation methods demonstrated that the RoI aware modified

3D ResNet-101 with t = 80% yielded the best model

performance.

Table 8 compares the performance of the best model in this

work to those of the related works. Our proposed method

in this work has achieved the best overall accuracy and
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FIGURE 8. Confusion Matrices showing model performance using 5-fold cross validation for various saliency threshold values
(t = 60%, t = 70% and t = 80% in columns 1-3, respectively), for different 3D networks (3D ResNet-18, 3D ResNet-50 and 3D ResNet-101,
in rows 1,3 and5 respectively) and their RoI-Aware modified versions (the proposed method) in rows 2, 4 and 6, respectively.

comprehensively better performance compared to our previ-

ous work in [17].

Furthermore, it is evident that the threshold value, t of

slices with salience is the most impactful component of

the model performance. Models with t = 70% increased

the overall accuracy by approximately 5% compared to

that of models with t = 60% and the models with

t = 80% increased nearly by 7% compared to that of
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TABLE 7. Model performance evaluation using the competition test set (Bold font values correspond to the highest value of the column).

models with t = 70%. Hence, the proposed algorithm

for the extraction of slices with salience is proven to be

effective in discarding irrelevant slices, thereby, increasing

the classification accuracy. However, it must be mentioned

that the concept of salience slices is merely experimentally

acquired in this study and not acknowledged by any medical

practitioners.

Moreover, it must be emphasised that although the RoI

aware modified 3D ResNet architecture merely improved

the model performance by a limited share, the modified

network is effective in increasing the localisation accuracy

of the 3D Grad-CAMs. In Fig. 11, several examples of the

comparison between the 3D Grad-CAMs by 3D ResNet

and RoI aware modified 3D ResNet are shown. It can be

seen that for the same input volume, the activation area of

the RoI aware modified 3D ResNet is within the thorax,

whereas the unmodified 3D ResNet exhibits a leakage of

the activated area out of the lung regions. As aforemen-

tioned, the excitation areas of 3D Grad-CAMs can be utilised

as an auxiliary visualisation technique for radiologists to

localise the possible infected areas of the lung. Since the

RoI aware modified network is advantageous in rendering

and retaining the excitation within the thorax, we envisage

that the modified network is preferable to yield localisation

accurately.

Finally, it can be seen that compared to our early work

[17], the classification accuracy and sensitivity have been

improved after optimising the data pre-processing approach

and using a larger extent of data augmentation. It must be

noted that the COVID-CT MD dataset is the only publicly

available data set available at the time of writing of this

paper. As stated in [19], the common drawback of using

deep learning for CT is that few studies are able to demon-

strate good reproducibility. Our proposed method is imple-

mentable and reusable for any subsequent datasets. We have

demonstrated this by using the model trained on the first

dataset for classifying another dataset (Table 7 and Fig. 9),

without further retraining. Similarly, transfer learning can be

used in extending the model into newly emerging datasets.

In addition, the utilisation of 3D Grad-CAMs based on the

RoI-aware ResNet architecture provides the explainability of

the classification and enhances the wider applicability of the

study in real-world scenarios.

H. LIMITATIONS OF THE STUDY

The main limitation of the proposed method is that even

the optimum model cannot fully discriminate COVID cases

from CAP. We speculate that could be because SARS-CoV-2

shares similar pathologies with other viral pneumonia.

In addition, the severity of infection is unknown as it could

cause a failure for deep learning classifiers to differentiate

COVID from CAP according to [45].

Another limitation of the study is that for the mod-

ified ResNet architecture, we can merely add up to 4

RoI-Aware layers due to the memory limit of the worksta-

tion. We envisage that there could be a further improve-

ment to the overall accuracy if more RoI-Aware layers are

applied.
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FIGURE 9. Confusion Matrices showing model performance using the competition test dataset for various saliency threshold values
(t = 60%, t = 70% and t = 80% in columns 1-3, respectively), for different 3D networks (3D ResNet-18, 3D ResNet-50 and 3D ResNet-101,
in rows 1,3 and5 respectively) and their RoI-Aware modified versions (the proposed method) in rows 2, 4 and 6, respectively.

Furthermore, we have employed 3D Grad-CAM to visu-

alise the area that activated the diagnostic prediction, which

could be a promising auxiliary approach for radiologists to

localise the infection. Nonetheless, it needs to be mentioned

that since the excitation area is based on the pre-processed

volumes so it is not applicable to retrieve and visualise the
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FIGURE 10. 3D Grad-CAMs to illustrate the salient regions corresponding to different class labels. The series of cubes represent the output
feature tensors from the last activation layer of the network. The red cube corresponds to the tensor of features that excited the final
decision the most. The excitation area is created by binarising the rescaled tensor to 0 and 1. The final 3D Grad-CAMs are generated by
combining the excitation with the volume. Note that the volumes here refer to the pre-processed volume used for training.

TABLE 8. The overall performance comparison of the proposed method with related works.

FIGURE 11. Comparison of the 3D CAM of ResNets and ROI-Aware ResNets. The left and right columns illustrate
the 3D Grad-CAM of ResNet without and with the modification of RoI-Aware layers, respectively. The highlighted
areas indicate the activation of the corresponding networks. Note that the first and second rows show the same
volume by different views.
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excitation area within the original volume, meaning less

plausibility to validate the predicted excitation area. Thus,

to justify the RoI-aware 3D Grad-CAM predicted areas,

larger-scale data and the expertise of qualified radiologists

(for verification) are required to make the localisation more

accurate and robust.

I. CODES AVAILABILITY

The software codes developed for the work presented in this

paper are available in the GitHub repository, RoI-Aware-

ResNet.2

V. CONCLUSION

In this paper, we have proposed a novel deep learning strategy

for COVID-19 volumetric CT scan classification that does

not require slice-wise annotation. We achieved this by intro-

ducing an RoI aware modified 3D ResNet architecture. Our

proposed scheme includes CT volumetric data pre-processing

and RoI aware modified 3D ResNet for feature learning

followed by diagnostic classification. Our approach mainly

solved the problem of the need for high-calibre slice-wise

annotations for the development of deep learning models for

the classification of volumetric CT scans.

As can be seen from the results, the RoI-aware modified

3D ResNet-101 with the saliency threshold t = 80% yielded

the best overall accuracy of 90.0%. The highest sensitivity

for detecting COVID-19, CAP and Normal are 88.2%, 96.4%

and 96.1%, respectively. The highest specificity for detect-

ing COVID-19, CAP and Normal are 91.7%, 80.0% and

97.1%, respectively. Our proposed method shows excellent

diagnostic accuracy and outperforms the existing methods.

It outperforms the existing 3D model by 10%, confirming the

potential of the 3D deep learning networks. It is encouraging

to see the excellent performance of the 3D approach that does

not require slice-wise annotations for model training.
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