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Beyond RMSE: Do machine-learned models of road

user interaction produce human-like behavior?

Aravinda Ramakrishnan Srinivasan1∗, Yi-Shin Lin1, Morris Antonello2, Anthony Knittel2, Mohamed Hasan3,

Majd Hawasly2, John Redford2, Subramanian Ramamoorthy2,4, Matteo Leonetti5, Jac Billington6,

Richard Romano1, and Gustav Markkula1∗

Abstract—Autonomous vehicles use a variety of sensors and
machine-learned models to predict the behavior of surrounding
road users. Most of the machine-learned models in the literature
focus on quantitative error metrics like the root mean square
error (RMSE) to learn and report their models’ capabilities.
This focus on quantitative error metrics tends to ignore the more
important behavioral aspect of the models, raising the question
of whether these models really predict human-like behavior.
Thus, we propose to analyze the output of machine-learned
models much like we would analyze human data in conven-
tional behavioral research. We introduce quantitative metrics to
demonstrate presence of three different behavioral phenomena
in a naturalistic highway driving dataset: 1) The kinematics-
dependence of who passes a merging point first 2) Lane change
by an on-highway vehicle to accommodate an on-ramp vehicle
3) Lane changes by vehicles on the highway to avoid lead vehicle
conflicts. Then, we analyze the behavior of three machine-learned
models using the same metrics. Even though the models’ RMSE
value differed, all the models captured the kinematic-dependent
merging behavior but struggled at varying degrees to capture
the more nuanced courtesy lane change and highway lane change
behavior. Additionally, the collision aversion analysis during lane
changes showed that the models struggled to capture the physical
aspect of human driving: leaving adequate gap between the
vehicles. Thus, our analysis highlighted the inadequacy of simple
quantitative metrics and the need to take a broader behavioral
perspective when analyzing machine-learned models of human
driving predictions.

Index Terms—Machine-learned models, naturalistic driving,
behavioral analysis, highway driving

I. INTRODUCTION

Roadways are used by traffic actors with varying capabili-

ties: motor vehicles and vulnerable road users such as pedestri-

ans and cyclists. The motor vehicles can be further categorized

depending on their capabilities according to the Society of

Automotive Engineers (SAE) [1]. Vehicles of different levels

of autonomy are going to coexist in the roadways before fully

automated driving (SAE Level 5) takes over every vehicle
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on the roadways. This presents an interesting and challenging

task for vehicles with increased driving automation: they have

to coexist with humans both as drivers and other vulnerable

road users. Thus, the autonomous driving system needs to

learn human road user behaviors to be an effective and safe

participant in their interactions with humans. The need for

understanding human road user behaviors is also evident from

some of the early accidents [2]–[4] caused by vehicles with

increased autonomous capabilities. Managing to interact safely

and appropriately with human road users also has the added

benefit of improving the public’s perception of autonomous

driving technologies if they are more human-like/human-

interpretive [5], [6].

Generally, autonomous vehicles use machine-learning algo-

rithms’ to detect and predict other road users trajectories. A

quantitative metric like the root mean square error (RMSE)

is used to report the accuracy of machine-learning algorithms’

prediction [7]–[10]. The RMSE measures the average displace-

ment error between the predicted trajectories and their corre-

sponding ground truth. This can be either the average error

over the entire prediction horizon, reported as mADE, mean

average displacement error in literature [11]–[14] or average

of momentary error at different time points in the prediction

horizon, reported as mFDE, mean final displacement error in

literature [11]–[14]. A model with the lowest error is generally

considered the better alternative. In cases where the algorithm

predicts a probability distribution over a set of maneuvers with

spatial trajectory uncertainty, the preferred quantitative metric

is the negative log likelihood (NLL) along with RMSE values.

The NLL is a measure of how close the predicted probability

distribution is to the ground truth, the lower the NLL value

the closer is the fit to ground truth. Another approach in this

context is to use classification-based metrics such as mean

average precision (mAP) and miss rate (MR) [11], [13], [14].

The strength of all these high-level quantitative metrics is

that they allow straightforward model comparison. However,

by reducing the complexity of human road user behavior to

a single number, they necessarily sacrifice detail and lose the

qualitative aspect of behavior, leaving several questions open,

such as: How low an average trajectory prediction error is low

enough? What if a model is getting good prediction scores on

these metrics by optimizing some aspects of behavior which

are not very important to human acceptance and safety while

completely missing some aspects that are? Below, we provide

an overview of relevant literature in this area, before defining

the specific objectives of this paper.
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A. Literature review

In a typical roadway, different road users have to interact

with each other. These interactions have been formally defined

as situations where the behaviors of at least two of the involved

road users can be interpreted as being influenced by a space-

sharing conflict between them [15]. In order to facilitate safe

interaction between autonomous vehicles and human road

users, there have been attempts to model road user behaviors

from different perspectives, ranging from modeling pedestrian

crossing decisions [16], [17] to attempting derivation of a

driver model from recorded human driven trajectories [18].

One way to predict road user behaviors is to formulate

trajectory prediction as time-series model. Recurrent neural

networks (RNNs) have been used to model time series data.

Long Short-Term Memory (LSTM) is an RNN model that

has been used to predict pedestrian trajectories while taking

into account the neighbor agents’ trajectories [7]. Deo and

Trivedi improved this idea by adding a convolution based

social pooling (CSP) layer in order to preserve the spatial

relationship between vehicles for predicting human driven

vehicles trajectories [8]. This CSP-LSTM network architecture

has since become a benchmark for newer models [9], [10],

[19], where the RMSE is used to quantify and compare the

prediction accuracy. Other architectures based on graph neural

networks (GNN) [19], [20] proved to be competitive and

further reduced state-of-the-art trajectory errors metric like

RMSE, improving over convolution-based architectures.

Another way to model the trajectory prediction task is

to consider it as a classification problem. One of the best

performing models with this approach utilized a map-based

approach to generate candidate trajectories along with prela-

beled interacting agents from the dataset as input to the

classifier. The classifier outputs the trajectory prediction with

highest classifier confidence [12]. Like previous trajectories

prediction models, they also showcased the performance with

high-level average quantitative metrics like mADE, mFDE.

A comprehensive literature review of deep-learning based

trajectory prediction algorithms is presented by Mozaffari et

al. [21].

Recently, there have been works focused on behavioral

analysis of the machine-learned prediction models. Zgonnikov

et al. [22] conducted an interdisciplinary workshop focused

on how human robot interaction (HRI) can be improved

by utilizing human behavior modeling. The importance of

understanding the behaviors of the artificial intelligence (AI)

including machine learning (ML) algorithms since they are

becoming ubiquitous was argued in [23]. Herman et al. [24]

concentrated on the requirements of pedestrian behavior pre-

diction with autonomous driving as the underlying application.

Siebinga et al. [25] highlighted the need to validate the

underlying driver models in the interaction-aware controllers

(IACs). They proposed a two stage behavioral validation of

the underlying human driver behavior model on which the

autonomous driving algorithm rely to be aware of, and plan

for, human driver intentions and behaviors. The first stage was

tactical behavior analysis which included maneuvers like lane

changes, car following; and the second stage was operational

safety analysis: whether the maneuvers were executed in a

safe manner. Karle et al. [26] present an extensive review of

scenario understanding and motion prediction.

B. Problem definition

Despite the recent interest in a more behavioral under-

standing of ML models, an important question remains open:

Are average trajectory error metrics (like RMSE, mFDE,

mADE, NLL, etc.) a good way of comparing different models’

behavioral competence? To answer that question, we need

to both measure an average trajectory error metric and do

the behavioral analysis for multiple machine-learned models.

Thus, for a comprehensive behavioral analysis of existing

and new machine-learned models, first behaviors need to be

quantitatively defined and observed in naturalistic driving.

Then, all machine-learned models can be compared fairly by

examining whether the same behaviors can be observed in

their predictions. This, in addition to the average trajectory

error metrics comparison, can give a clear picture regarding

the models’ behavioral capabilities.

However, taking a more behavioral perspective forces one

to engage with the high complexity of human road user

behavior which otherwise gets hidden behind the high-level

metrics. A very large number of human road user interaction

phenomena have been identified in empirical research [15],

[25], [27]. In this work, we have constrained our analyses to

highway driving, to keep a feasible scope. Highway driving

has naturally occurring interesting interactions where two or

more road users end up affecting each other’s decision, such as

the merging scenarios where vehicles on the highway and on-

ramp interact in order to facilitate a safe passage for everyone

involved. Additionally, highway driving scenario was preferred

because of ready availability of existing data and models.

The highway merging scenario has been the subject of

research from a white box (non machine-learned) perspective

extensively [28], [29]. These models suggest that when a

vehicle involved has a clear kinematic lead over another

one, the vehicle with kinematic lead will pass the merging

point first. In situations where the kinematic lead is ambigu-

ous (Figure 5), it is dependent on other factors like social

convention, competition, or cooperation between the drivers

involved to determine who will pass the merging location first.

Similar behavior has been observed in interaction between

pedestrian(s) [30].

Another interesting behavior that has been studied and

modeled in detail is the lane change behavior of the high-

way vehicle in order to accommodate the on-ramp vehicle

(Figure 6) [31]. The lane change by the highway vehicle in a

merging situation can be attributed to different goals like the

highway vehicle preference to keep its speed [32], the merging

vehicles’ aggressive driving style leading the highway vehicle

to switch lane for safety, or the merging vehicle waiting for a

suitable gap to emerge and merge into the traffic safely [28].

In this paper, following the precedence set in our previous

work [33], we are interested in identifying and analyzing the

“courtesy” lane changes by the highway vehicle(s) to facilitate

safe merging for the on-ramp vehicle(s).
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Finally, the lane change behavior of vehicles not in the

outermost lane of the highway into the highway to maintain

their kinematic edge or to accelerate (Figure 7) is another

interesting behavior which has been of interest and modeled

by researchers [34]–[37]. To the best of our knowledge, none

of these three phenomena (tendency of kinematically leading

vehicle to pass the nominal merging point first during merging

situations, tendency of on-highway vehicle(s) to make “cour-

tesy” lane change in order to accommodate on-ramp vehicle(s),

and tendency of on-highway vehicles to switch lanes into the

highway to preserve/improve their kinematic edge) have been

explicitly analyzed either in naturalistic trajectory data or in

machine-learned trajectory prediction models.

In summary, the primary goal for this work is to explore a

new quantitative method that takes into account the qualitative

behavioral aspects of human driving behavior for comparison

of different machine-learned models. This should augment the

existing traditional quantitative metrics, like RMSE, to provide

a better comparison metric to fairly analyze the predictions

of machine-learned models. In order to achieve this, we

mathematically define the above-mentioned three behaviors

and other details of our analysis method. First, we observe the

behaviors in the naturalistic driving data. Next, we train the

machine-learned models with the same dataset and observe the

behavioral patterns exhibited with the same analysis method.

This allows for a fair appraisal of the machine-learned models’

behavioral capabilities. We have previously presented an early

version of this work in a conference paper [33] where we

performed qualitative tests of a single machine-learned model

for two behavioral phenomena. In this paper, we introduce

tests for one additional behavioral phenomenon, extend our

qualitative analyses with quantitative metrics as well as a

behaviorally informed safety analysis. Moreover, we apply our

behavioral analysis on two additional machine-learned models,

allowing us to also demonstrate how our method can be used

for model comparison.

II. EXPERIMENTAL METHODS

A. Dataset

The driving trajectories from the Next Generation SIMula-

tion (NGSIM) dataset [38] include both highway driving and

urban driving. We used only the highway driving trajectories.

The highway driving portion consists of data collected at two

different highway locations in USA, the US101 and I80 high-

ways. The same dataset has been used for training the CSP-

LSTM machine-learned model in [8]. The two new machine-

learned models (details in Section II-B2 and Section II-B3)

are previously unpublished and in order to facilitate a fair

comparison between CSP-LSTM and them, we trained all

three models with the same dataset and with the 70-10-20

(training-validation-test) split recommended in the publicly

available CSP-LSTM code [8].

There was a total of 1,268 unique vehicles on the I80 and

1,667 unique vehicles on the US101 in the test and validation

set. Out of these, 147 and 111 vehicles used the on-ramp

to enter the highway, respectively. A total of 419 and 653

lane changes were made from outermost highway lane into

Fig. 1. CSP-LSTM network architecture block diagram

the highway (during merging scenario) in US101 and I80

highways, respectively. An aggregate of 1180 and 1635 lane

change into nominal faster lane by highway driving vehicles

(excluding the ones already accounted for in merging scenario)

were made in the respective highways. For the CSP-LSTM

model, we verified that our trained network achieved similar

RMSE performance to that reported in [8]. In this paper, all

the presented behavioral comparisons were made between the

naturalistic trajectories and the machine-learned models output

for only the validation and the test splits of the dataset.

B. Machine-learned models

In this section we provide a brief summary of the three

machine-learned models. The space constraint prevented us

from providing full details about the machine-learned models

and thus should not be considered as comprehensive definition

of them. Since the focus of this paper is to investigate

the possible benefits of more behaviorally oriented model

comparison rather than advance the state of the art in trajectory

prediction, the specific choice of machine-learned models is

less important here; they merely serve as three examples of

different approaches to the trajectory prediction task.

1) Convolutional Social Pooling - Long Short Term Memory

neural network (CSP-LSTM): The CSP-LSTM model archi-

tecture for vehicle trajectory prediction task was introduced by

Deo and Trivedi [8]. A flow chart of the different components

involved is presented in Fig. 1. The CSP-LSTM model is fed

a fixed 3 seconds at 2.5 Hz trajectory input of the vehicle

of interest (ego vehicle), along with the trajectories of the

neighboring vehicles within a 13×3 grid where the ego vehicle

is centered in the grid. The trajectories of neighboring vehicles

are encoded and the spatial relation between them is preserved

through the utilization of the convolution layer. It is trained

on the human-driven trajectories and it outputs 5 seconds

prediction (at 2.5 Hz). The error between the prediction and

the actual trajectories are back propagated to train the model.

2) Interactive Prediction from Basis Trajectories (IPBT):

The IPBT method consists of a series of processing steps:

goal and motion profile likelihood estimation, generation of

candidate paths and motion profiles, estimation of candidate

trajectories, collision estimation between agent proposals, and

revised trajectory estimation. An overview of the IPBT model

is shown in Fig. 2.
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Fig. 2. Interactive Prediction from Basis Trajectories (IPBT) block diagram

First, goal likelihood estimation is performed using inverse

planning [39], [40], by comparing the historic trajectory of a

vehicle against a number of proposed paths towards goals from

a historic time step. Additionally, motion profile likelihood

estimation is performed by generating a number of proposed

motion profiles from a historic vehicle kinematic state, and

comparing the historic motion against the proposed motion

profiles. Goal and motion profile likelihood estimation are used

to influence the estimates of future paths and motion profiles,

based on shared parameters like common goal or speed target.

This is implemented based on a multi-layer perceptron (MLP)

network.

Next, candidate paths are generated from the map by fitting

splines between the start position and the goal via way-

points. The map is a topological representation of the driveable

region, a set of evenly spaced way-points along lane mid-lines.

Candidate motion profiles are produced by identifying target

kinematic states from the road layout, the surrounding agents

and from a number of behavior parameters, and fitting speed

profiles between the initial and target states using splines.

Trajectories are generated from the basis set of candidate paths

and motion profiles using a weighting function implemented as

a convolutional neural network. This uses the goal and motion

profile likelihood estimation, historic agent states, and future

candidate path and profiles to produce predicted trajectories

as a weighted combination of the candidate paths and motion

profiles. The model also outputs spatial uncertainty for each

time step and prediction mode, represented with an elliptical

(2D) Gaussian.

Finally, to produce predictions based on interactions be-

tween agents, collisions between the predicted modes of the

various agents are assessed and used to produce a refined

prediction. Refinements are introduced through multiple levels

of prediction, which receive inputs of initial predictions and

produce subsequent agent predictions that consider the inter-

actions between the predicted actions of the various agents. In

this way the interactive prediction model produces estimates

of trajectories, spatial uncertainty and mode probability for

each agent that take into account the expected behaviors of

other agents, to produce predictions that are influenced by

interactions.

3) Bayesian Inverse Planning with Kinematic Models (BIP-

KM): This model performs multi-modal prediction by taking

a Bayesian inverse planning approach [39]. Similar to IPBT, in

Fig. 3. Bayesian Inverse Planning with Kinematic Models (BIP-KM) block
diagram

order to predict the future states of an agent, the model begins

by hypothesizing a map features-based collection of goals. It

then calculates a physically feasible plan for how the agent

might reach any given goal and it assesses the likelihoods by

comparing the plans to the agent’s past observations from per-

ception. Finally, a joint distribution over goals and trajectories

is inferred by inverting the planning model using Bayesian

inference, integrating the likelihood with the prior. In contrast

to deep neural network-based predictors such as [8], [41],

[42] and IPBT, this approach forms an interpretable algorithm.

Relying on maps, physics-based models and trajectory genera-

tion algorithms, it generalizes to new environments and situa-

tions without additional training data while satisfying physical

realism guaranteed by construction. The model parameters

have a physical meaning and they can be tuned on data sets

without sacrificing interpretability. In contrast to other neural

network based methods such as CSP-LSTM or [41], [42], and

in contrast to other inverse planning implementations such

as [43], [44] or IPBT, this implementation predicts each agent

independently for reduced computational requirements and

simplicity. Traffic context, i.e. the motion and relative spatial

configuration of neighboring agents, or future interactions with

other agents are not considered.

An overview of the method is shown in Fig. 3. The model

involves five components: 1) goal and path extraction, 2) mo-

tion profile prediction, 3) trajectory generation, 4) likelihood

estimation and 5) Bayesian inference. Given a detected pose

and a topological map that describes the geometry of roads and

lanes, goals are extracted by exploring all lane graph traversals.

For example, in highway situations, goals will correspond to

staying in the lane, changing to a neighboring lane, entering

the highway or exiting it. For each goal, reference paths can

be extracted from the lane mid-lines and combined with target

motion profiles to generate trajectories. In this implementa-

tion, a single goal-directed trajectory is generated for each

goal/reference path, using the pure pursuit controller [45],

which can enforce a bicycle model and kinematic limits, e.g.

maximum steering and accelerations. The target acceleration

profile relies on a decaying acceleration model since a constant

acceleration model can be more accurate than a constant

velocity model in the short term but less accurate in the

long term [46]. The likelihood of each goal and trajectory

is estimated by comparing each trajectory with the observed
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(a) (b)

Fig. 4. Schematics for behavior comparison between (a) naturalistic and (b)
machine-learned trajectories prediction. Note: the trajectories for neighboring
vehicles are same in both

agent state. The Bayes rule is finally used to update the

beliefs over the set of goals and trajectories by multiplying

the likelihood with the prior to give the posterior, the model’s

prediction, while accounting for goal changes over time.

C. Behavioral analysis

Fig. 4 shows a graphical representation of the behavioral

comparison. We have used a one-dimensional trajectory to

depict the schematic for ease of visual understanding. In

reality, both the longitudinal and lateral positions of the

vehicles were used for training the machine-learned models

and in the behavioral analysis. All the machine-learned models

were given a trajectory input of 3 seconds from the appropriate

time stamp for the vehicle of interest. The vehicle of interest

is all the highway vehicles in the outermost lane of the

highway and the vehicles in the merging lane of the highway

in the case of merging scenario and all other vehicles on the

highway (individually) in the case of highway lane change

scenario. All the machine-learned models outputted 5 seconds

trajectory predictions for the vehicle of interest. The most

likely predicted trajectory was used for the behavioral analysis.

We divide the highway driving into two scenarios: merging

lane driving and rest of the highway driving since they involve

quite different interaction dynamics.

Humans judge collision conflicts by primarily relying on

first-order motion information [47] and can gauge the time-to-

arrival (TTA) of objects advancing towards them [48]. On the

basis of these findings, we hypothesized that, with first-order

kinematics, it is possible to observe many primary behavioral

patterns during vehicle-vehicle interactions.

1) Merging scenarios: First, the vehicles involved in the

merging scenario and the corresponding merging time, tm, are

extracted from the trajectory dataset. The merging time, tm, is

the time when the merging vehicle completed its transition

into the highway lane from the on-ramp. We examine the

kinematic history of the vehicle on the on-ramp and the vehicle

on the outermost highway lane with a look-back window, τ .

The look-back window, τ , helps us understand why the merge

happened the way it happened, i.e. to see kinematic snapshots

of the vehicles involved in the interaction at different time

points in the past and understand why the interaction played

out the way it did. All three machine-learned models involved

in this study are capable of producing 5 seconds of future

trajectory given 3 seconds of past trajectory as input (both ego-

vehicle and neighboring vehicles). Since the machine-learned

models predictions were for 5 seconds, the look-back window

was fixed from 1 second up to 5 seconds at 1 second intervals

Fig. 5. A graphical example of Bias for kinematically leading agent to pass
the merging point first

Fig. 6. A pictorial representation of “courtesy” lane change by highway
vehicle in merging scenario along with an illustration of safety box for
collision aversion analysis

from the merging time, tm, for all the interacting pairs of

vehicles.

For both the vehicle on-ramp and the highway vehicle,

the interacting pair, we find their distance to merging point

at a given look-back time, tl = tm − τ , and compute the

instantaneous velocities of the vehicle from the naturalistic

driving data. Let vm
t ,d

m
t and vh

t ,d
h
t represent the instantaneous

velocity and distance to the merging point for the on-ramp

vehicle (merging vehicle, xm) and the highway vehicle (xh)

respectively at any given time, t. We can then compute the lead

time for the merging vehicle with respect to time to arrival of

the highway vehicle at the merging point for a given look-

back time with the formula Tτ =
dh

tl

vh
tl

−
dm

tl
vm

tl

. This lead time for

the merging vehicle was used to analyze the merging behaviors

in the naturalistic data and the machine-learned models with

the exact same procedure.

a) Bias for kinematically leading agent to pass first:

The bias for kinematically leading agent to pass the merging

point first is illustrated in Fig. 5. From our definition, when the

lead time, Tτ is positive it indicates the merging vehicle has

a kinematic lead over the highway vehicle at that particular

time and vice versa in case of negative lead time. In a scenario

with two vehicles interacting, we expect that whichever agent

has a clear lead, when Tτ is sufficiently large, the agent with

the lead would always pass the merging point first [28], [29].

Also, when the lead is not sufficient, more precisely as Tτ

approaches zero, this pattern should break down.

b) Courtesy lane change to yield: Fig. 6 depicts a

hypothetical lane change by the highway vehicle. In the

illustration, it is assumed that the highway vehicle changed

lane in the look-back time, tl = tm−τ , until the merging time,

tm, to facilitate the on-ramp vehicle merging into the highway

to make our analysis depiction clearer. In our analysis, we

counted all lane changes that happened in that window in

the naturalistic and ML predicted trajectories since these lane

changes can be considered as a potential courtesy lane change

to accommodate the merging/on-ramp vehicle(s). We expect

the frequency of lane changes to increase when there is space-

sharing conflict. In other words, if the lead time for the
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Fig. 7. An illustration of highway lane changes into nominal faster lane

Fig. 8. A depiction of safety box for collision aversion analysis. A vehicle
is augmented with 0.3 meters of additional space in all direction and it is
considered an unsafe interaction if any other vehicle encroaches into this
space.

merging vehicle, Tτ is close to zero we expect the probability

of lane change by the highway vehicle to increase in order to

accommodate the merge and also to avoid collision.

2) Highway driving scenario - lane changes within high-

way: For vehicles driving on highways, we are interested in

lane change scenarios where the highway vehicle is switching

into the nominal faster lane. We consider the primary interact-

ing agent with a given vehicle at any time point to be the one

in front of it to keep the behavioral analysis tractable. Thus,

the instantaneous time to collision, Tttc, between ego-vehicle

(xe) and the vehicle immediately in front (x f ) is of interest.

The instantaneous positions and velocities (de
t ,d

f
t ,v

e
t ,v

f
t ) of

both vehicles can be obtained from the naturalistic data. Thus,

the instantaneous time to collision Tttc can be computed with

the formula Tttc = (d f
t − de

t )/(v
e
t − v

f
t ). The time to collision

for each vehicle was used to analyze the highway lane change

behavior in both the naturalistic data and the machine-learned

models with the exact same procedure.

The most likely cause for within-highway lane changes can

be the desire to avoid imminent collision or deceleration [34],

[36]. Fig. 7 shows an imaginary highway lane change. We

use the time to collision Tttc measure between the vehicle of

interest and the vehicle immediately ahead of it to analyze the

lane change behavior within highway driving. It is expected

that when the time to collision Tttc approaches zero the

frequency of lane changes will increase.

3) Collision aversion behavior: Finally, we are interested

in the collision avoidance behavior of predicted trajectories

in comparison to the naturalistic data which the machine-

learned models are trained on. We extended the bounding

box of individual vehicle dimension with an additional safety

margin of 0.3 meters (1 feet) in all directions for all vehicles

at all time instances as illustrated in Fig. 8. We obtain the

safety statistics by counting the number of times a bounding

box for a given vehicle is intersected/overlapped by another

vehicle’s bounding box. In the naturalistic trajectory statistics,

all the vehicles’ instantaneous positions are from the recorded

naturalistic data. In the machine-learned models’ statistics, the

ego vehicle’s instantaneous position is from machine-learned

models’ prediction and rest of the vehicles’ instantaneous

position is from the naturalistic driving data. All vehicles

at all timestamp are considered individually as ego vehicle

TABLE I
TRAJECTORY ERROR ON THE NGSIM TEST SET

Evaluation
Metric

Prediction
Horizon (s)

CSP-LSTM IPBT BIP-KM

RMSE (m)

1 0.5693 1.1579 0.5868
2 1.2575 1.9652 1.5540
3 2.1010 2.9808 2.8134
4 3.1674 4.2165 4.3747
5 4.4872 5.6221 6.2149

for the counting statistics. We expect the machine-learned

models to perform at different levels since the models rely on

different motion models, especially CSP-LSTM and BIP-KM

do not enforce physical safety while IPBT assesses collisions

to account for interactions explicitly. Overall, we expect the

human drivers to only very rarely exhibit this type of near-

collision behavior. In other words, we expect the human

drivers to be collision averse.

III. RESULTS & DISCUSSION

A. RMSE

The root mean square error (RMSE) at different time points

in the predicted trajectories is presented in TABLE I. All the

evaluations, both RMSE and behavioral analysis, are based on

the most likely trajectory, ignoring other trajectories. Using

average trajectory error metrics like RMSE is a traditional way

to compare machine-learned models, and it is used to justify a

model’s capability or improvement over existing models. The

RMSE for the CSP-LSTM model is comparable to the one

reported in the original paper [8]. CSP-LSTM obtains lower

RMSEs with differences when compared with IPBT and BIP-

KM ranging from 1.75 cm to 1.73 m. Differences can vary

across time steps. For example, BIP-KM has lower RMSEs

than IPBT for shorter prediction horizons (1, 2, 3 seconds) and

IPBT has lower RMSEs than BIP-KM for longer prediction

horizons (4 and 5 seconds). Differences are often in the order

of centimeters; for example, when comparing CSP-LSTM with

BIP-KM at 1 and 2 seconds predictions, the differences are

1.75 cm and 29.65 cm respectively, or when comparing IPBT

with BIP-KM at 3 and 4 seconds predictions, the differences

are 16.74 cm and 15.82 cm. Aggregate metrics like RMSE

can hide important patterns, especially in unbalanced dataset

containing rare events, and the resulting differences can be

very difficult to interpret. As we will see in the rest of this

section, an analysis rooted on behavioral metrics gives a more

in-depth insight into the model capabilities. The high-level

metric does not capture nor describe behavioral differences

among the machine-learned models.

B. Bias for kinematically leading agent to pass first in merging

scenarios

In Fig. 9, a positive lead time for the merging vehicle for

a certain look-back time (τ) before the merge indicates that

the merging vehicle had kinematic edge over the highway

vehicle at that time instance, while negative lead time for

the merging vehicle indicates the opposite. In the naturalistic

data, we can observe a pattern of kinematically leading agents

always passing the merging point first. This is in line with our
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(a) (b)

Fig. 9. Merging lane - Bias for kinematically leading agent to pass first in (a)
US101 highway (b) I80 highway. All the models have captured this behavior
similar to the pattern exhibited in naturalistic driving.

expected human behavior. It is also evident from the tightly

overlapping curves in Fig. 9 that all the models are able

to capture this first-order kinematic dependent behavior. We

computed coefficient of determination, R2, to check how well

the machine-learned models trajectory predictions captured the

behavior observed in the naturalistic driving. A R2 value of 1

indicates that the model has captured the behavior exactly as

in the naturalistic driving, and 0 or negative values indicate

complete failure. All the models, in both the highways (US101

and I80), have a R2 value greater than 0.99. This indicates

that the bias for kinematically leading agent to pass first

behavior has been captured accurately from the naturalistic

driving by all 3 models. Even though average trajectory error

metrics can lead to the conclusion that some models are

better than others, from the bias for kinematically leading

agent to pass first behavioral perspective, all the 3 models are

performing equally, including BIP-KM which predicts each

agent independently. This is in contrast to comparison based

on just average quantitative metric, which does not allow us

to determine whether the models are capturing this behavioral

phenomenon.

C. Courtesy lane change to yield in merging scenarios

In the “courtesy” lane change to yield in merging situation

behavior, we are interested in the lane changes that happened

when there was potential space-sharing conflict and otherwise

(no conflict situations) (Fig. 10). When the vehicle merging

on to the highway and the highway vehicle on the outermost

lane are within ±1 second with respect to their arrival at

the merging location we deem it as a space-sharing conflict

situation. We did a Fisher’s exact test to determine whether

there was significant difference in the frequency of lane change

behavior between situations with and without space-sharing

conflicts. In other words, when there is an emerging space-

(a) (b)

Fig. 10. Merging lane - “courtesy” lane changing behavior statistics. Com-
parison between the trends in space-sharing conflict situation and non space-
sharing conflict situation in (a) US101 Highway and (b) I80 Highway. The
vertical bar in the US101 τ = 5s indicates statistically significant difference (p-
value 0.0367) between the lane change in space-sharing conflict situation and
other situations based on Fisher’s exact test. The models struggle at varying
degree to capture this more nuanced behavior.

sharing conflict, we expect the probability of lane change by

highway vehicle to increase. We found that the lane change

behavior in US101 highway by human drivers with a look-

back window of 5 seconds was significantly different (p-value

0.0367) between the space-sharing conflict situations and other

situations, Fig. 10(a). This is not captured by any of the

three machine learned models. They did not return a statistical

significance between the space-sharing conflict lane changes

and non space-sharing conflict situation lane changes. It is

worth noting that predicting longer horizons is difficult for

all predictors. Even though the look-back window (τ) was 5

seconds it does not mean that the lane change happened a

long time into the predicted future, it just means that there

was a long-range (in distance) interaction between the two

vehicles. The highway vehicle performs a lane change when

there is still almost 5 seconds left until the merge conflict,

and none of the models seem capable of learning this long-

range interaction. I80 does not have this statistical significance

at any time stamp in the naturalistic driving since it was a

more congested highway leading to less opportunity for a lane

change.

Additionally, we can see in Fig. 10 that the human lane

changes generally increased with increasing look-back window

in both the highways, but none of the models is able to fully

capture this pattern. As shown in Fig. 10, the models have

different lane change prediction capabilities, not faithfully

captured when using high-level average error metric like

RMSE. In both highways, CSP-LSTM captures very few lane

changes, always less than IPBT and BIP-KM. The behavior

is captured or missed at various degrees by the models. For

example, IPBT seems to capture it very well in I80 for shorter
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(a)

(b)

Fig. 11. Merging lane - collision aversion summary statistics within lane
changing behavior based on bounding box fitted onto each vehicle in (a)
US101 highway and (b) I80 highway. The y-axis is the percentage of total
interaction that were deemed unsafe (bounding box overlapping) when vehicle
did change or did not change lane in the respective models. Since y values
are below 1.0 %, the y-axis is truncated for clarity.

horizon (τ <= 4 s) in space-sharing conflict situations. In

general, for all methods, longer horizons look difficult. The

high-level average error quantitative metric does not reflect the

lane change behavior in detail like this. To humans, courtesy

lane changing is a salient and important behavior pattern. The

measure of differences between the predicted trajectories and

the actual trajectories is not sufficient to determine whether

this lane changes behavior to accommodate merging vehicles

has been captured explicitly. This discrepancy in capturing the

“courtesy” lane changes clearly shows the need for models

which take into account human behavioral aspect.

Next, we checked the safety of the predicted trajectories

with respect to all the other vehicles’ recorded naturalistic

driving trajectories (Fig. 11). In particular, we compared the

collision aversion behavior of humans versus the machine-

learning models predictions. Since the CSP-LSTM predictions

were based on the local coordinates and the other two models,

IPBT and BIP-KM predictions were based on the global

coordinates from the NGSIM dataset [38], we have reported

the collision aversion behavior with respect to both coordinate

systems1. Collision or safety statistics is generally presented

as secondary results and not discussed in detail in machine-

learning literature [14], [49]. Here, we instead discussed this

1There will be slight difference between the local coordinates and global
coordinates in the naturalistic driving. This is due to the fact that the NGSIM
dataset provider’s algorithmic coordinate conversion is not exactly a one-to-
one mapping [38].

metric directly and as a follow-up to our behavioral analysis.

We are interested in the safety performance of the models both

when they recommended lane change and when they did not

compared to the naturalistic driving.

The number of unsafe interactions in US101 highway

(Fig. 11(a)) is of lesser magnitude than the I80 highway

(Fig. 11(b)) in naturalistic driving. This could be attributed

to the fact that I80 was the more congested highway and

thus there were more chances for vehicles to be within each

other’s designated safety space. In Fig. 11, neither the lane

change predictions of the models (top half of the graphs) nor

the no lane change predictions (bottom half of the graphs) of

the models could match the naturalistic data in terms of total

number of detected unsafe interaction. CSP-LSTM performed

poorly in the more congested highway, I80 (Fig. 11(b)). In

US101 highway, the BIP-KM model recommended generally

less lane changes than IPBT model (Fig. 10(a)) and in I80

highway, the BIP-KM model recommended generally more

lane changes than IPBT model (Fig. 10(b)). Nevertheless,

the collision aversion behavior of BIP-KM was equivalent to

IPBT model in most cases (Fig. 11(a), 11(b)). This shows that

BIP-KM has captured implicitly to some extent the collision

aversion behavior in merging scenarios. Overall, the collision

aversion analysis within merging scenarios reinforces the con-

clusion that the models have struggled to capture the physical

and interactive aspect of “courtesy” lane change behavior.

D. Highway lane change behavior

The highway lane change behavior is a behavior of interest

from a behavioral modeler’s perspective. When the time to

collision between an ego vehicle and the vehicle in front is

positive, it means the ego vehicle is catching up with the

vehicle in front and, if no action is taken by either vehicle,

it can lead to collision in the near future. In this situation

we expect the probability of lane change by the ego vehicle

to increase. On the other hand, a negative time to collision

indicates the vehicle in front faster than the ego vehicle at

that instance. In this scenario, we expect less lane change

by the ego vehicle since there is no collision risk with the

vehicle in front. In Fig. 12, we can see that the highway

lane change by vehicles into the nominal faster lanes (from

outermost to innermost lane in the direction of travel) is

following the expected pattern in the naturalistic driving. In

US101 highway, the less congested highway, with increasing

time window (left to right in the Fig. 12(a)) and relatively

low time to collision we can see an uptick in lane changes

by the highway vehicles. In I80 highway (Fig. 12(b)), the

more congested highway, a steady amount of lane changes

is exhibited in the naturalistic driving regardless of the time

window. This lane change behavior, in I80 highway, could be

due to the physical feasibility of lane changes being relatively

low in a congested highway.

Fig. 12 shows the highway vehicle lane change behavior

from the naturalistic driving reproduced in the models predic-

tion at different extent in both the highways. This is evident

from the R2 values. In US101 highway (Fig. 12(a)), CSP-

LSTM and BIP-KM reproduce the behavior considerably for
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(a)

(b)

Fig. 12. Highway Driving - lane changing into the nominal faster lane behavior statistics in (a) US101 highway and (b) I80 highway. The models again
struggle to capture the lane change behavior in highway driving similar to the merging scenario “courtesy” lane changes.

all time windows. But, IPBT depicts a steady lane change

characteristics across all time windows in US101 highway

similar to the naturalistic driving highway lane change behav-

ior in I80 highway. In I80 highway (Fig. 12(b)), CSP-LSTM

and IPBT are the better performing model across different

time windows compared to the BIP-KM predictions. The plots

show that, in congested scenarios, BIP-KM tends to assign

higher probabilities to lane changes than the other models.

One possible explanation for failure of all the models in I80

highway except time window 1 second could be that in a

congested highway, the interactions involved before and after

a lane change to maintain kinematic advantage or to avoid

safety related incidents are more complex compared to a non-

congested highway.

The machine-learned models either captured the behavior

as a constant independent of the time window or repeated the

pattern learned in one highway to another which is not true

in the ground truth data. Overall, all the models struggled at

varying degrees, and our behavioral analysis helps showing

behavioral differences that cannot be deduced directly with

high-level average trajectory error metrics (RMSE, mFDE,

mADE).

We performed collision aversion analysis for all the vehicles

driving on highways excluding the ones already accounted

for in the merging scenario. Recall that unsafe interaction is

defined as coming within 0.3 meters of another vehicle in

any direction. Also, an unsafe interaction can happen due to

a vehicle getting within the safety margins of the vehicle in

front (due to lane change/no lane change by the vehicle), or

getting within the safety margins of the vehicle in adjacent

lanes (due to self or other vehicle’s lane change or no lane

change). Similar to merging scenarios, there is discrepancy be-

tween US101 and I80 highway’s collision aversion behavior in

naturalistic trajectories (Fig. 13). This again can be attributed

to the congested nature of I80 compared to US101 highway.

(a)

(b)

Fig. 13. Highway driving - collision aversion statistics within lane changing
behavior based on bounding box fitted onto each vehicle in (a) US101 highway
and (b) I80 Highway. The y-axis is the percentage of total interaction that were
deemed unsafe (bounding box overlapping) when vehicle did change or did
not change lane in the respective models. Since y values are below 1.0 %, the
y-axis is truncated for clarity.
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Comparing safety statistics between the naturalistic driving

and the machine-learned models’ predictions, the models’

prediction generally perform worse across all three models.

Overall none of the models outperform or match the human

collision aversion behavior in the highway driving. The insight

into models’ highway lane change behavior prediction and

subsequent collision aversion characteristic cannot be obtained

by just a high-level metric comparison. In general, our analysis

and results point towards the usefulness of behavior-oriented

holistic approach to evaluation and comparison of machine-

learned trajectory predictors.

IV. CONCLUSION AND FUTURE WORKS

The aim of this work was to investigate the extent to which

machine-learned models capture human-like traffic behavior

in a highway driving scenario. We started with highway driv-

ing as our behavioral benchmark, hypothesized a number of

different human interaction phenomena that could be present

in naturalistic highway driving and developed mathematical

analysis methods that allowed us to confirm the presence of

the expected human behavioral patterns in the naturalistic

driving dataset (NGSIM). We then applied the exact same

analysis methods to the trajectories predicted by three different

machine-learned models trained with that dataset. All three

models were trained with the same subset of the data, and the

behavioral analysis of human data and model prediction was

done using the validation and the test subset of the dataset.

Recapping our results and discussion in brief: Section III-B

showed that the three machine-learned trajectory prediction

methods are comparable despite making different assump-

tions/approach to solve the problem. Section III-C and III-D

showed that models have different lane change prediction

capabilities and they struggle capturing the interactive aspect

of the lane change behavior. Also, they can exhibit different

behaviors in the two highways with different congestion levels.

This indicates that the tested machine-learned models are able

to capture some behaviors, like kinematically leading agent

passing the merging point first, but struggle to capture behav-

iors that are arguably more nuanced, like courtesy lane changes

and lane changes to maintain a kinematic edge. These model

shortcomings could be either due to their formulation or lack

of explicit focus on capturing these behavioral phenomena, as

evidenced in [25].

Our results demonstrate that it is hard to tell from just a

high-level quantitative error metric like RMSE in what ways

a model’s behavior is human-like or not. Analyzing the output

of our behavioral metrics can aid model development too.

The main takeaway from our findings is not in the specific

results obtained for this dataset and these models, but rather

that these findings allow us to conclude that the question

asked in the Introduction, ”How low an average trajectory

error is low enough?” is fundamentally ill-posed. We need

behavioral analysis of the trajectory predictions to report about

the behavioral competence of a given model. Thus, we argue

for a richer, behavior-anchored quantitative analysis on top

of traditional quantitative metrics, to understand a model’s

behavioral capabilities from a human perspective. Our work

also opens new interesting questions about how these behavior-

anchored quantitative metric(s) can be integrated into machine-

learning of behavior models, for example as part of the loss

function, as additional regularization parameters, or by guiding

the design of the model itself by better knowledge of human

behavior.

Another promising future research direction is to include

different kinds of traffic actors and driving environments to

test the behavioral competence of the machine-learned models

in a wider range of conditions. As we had mentioned in

our problem formulation, we restricted ourselves to highway

driving to keep our problem definition feasible. We have

now shown that even in the restricted behavioral space, the

tested models do not perform adequately from a behavioral

perspective.
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[46] S. Lefèvre, C. Sun, R. Bajcsy, and C. Laugier, “Comparison of para-
metric and non-parametric approaches for vehicle speed prediction,” in
2014 American Control Conference. IEEE, 2014, pp. 3494–3499.

[47] G. Markkula, J. Engström, J. Lodin, J. Bärgman, and T. Victor, “A
farewell to brake reaction times? kinematics-dependent brake response
in naturalistic rear-end emergencies,” Accident Analysis & Prevention,
vol. 95, pp. 209–226, 2016.

[48] D. N. Lee, “A theory of visual control of braking based on information
about time-to-collision,” Perception, vol. 5, no. 4, pp. 437–459, 1976.

[49] J. Gu, Q. Sun, and H. Zhao, “Densetnt: Waymo open dataset motion pre-
diction challenge 1st place solution,” arXiv preprint arXiv:2106.14160,
2021.

Aravinda Ramakrishnan Srinivasan received the
B.Tech. degree in electronics and communication
engineering from the SASTRA University, Tiru-
malaisamudram, Tamil Nadu, India, and the M.S.
and Ph.D. degrees in mechatronics and mechani-
cal engineering from the University of Tennessee,
Knoxville, TN, USA. Before joining the Human
Factors and Safety group at Institute for Transport
Studies, University of Leeds, UK as research fel-
low, he was a postdoctoral research fellow at the
Lincoln Centre for Autonomous Systems, University

of Lincoln, UK. His research interests include machine-learning, artificial
intelligence, autonomous vehicles, and robotics applications in everyday life.

Yi-Shin Lin . received the B.S. degree in psychology
from National Taiwan University, Taipei, Taiwan, in
2002, the M.A. degree in psychology from the City
University of New York, New York City, U.S.A., in
2007 and the Ph.D. degree in experimental psychol-
ogy from University of Birmingham, Birmingham,
U.K. in 2015. From 2015 to 2018, he was a post-
doctoral researcher with Tasmania Cognition Lab,
University of Tasmania, Australia. He joins the Insti-
tute for Transport Studies, the University of Leeds,
in 2020. His research interests cover three-facets:

Human cognition, traffic psychology, and research methods. These include
decision theory, high-performance computing, simulation-based numerical
methods, computational modeling, Bayesian inference, and road safety.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

Morris Antonello is a Lead Research Engineer at
Five AI, Edinburgh. He received a PhD in Informa-
tion Science and Engineering from the University of
Padova in 2018. He was a visiting researcher at the
Technische Universität Wien in 2016. He is inter-
ested in motion prediction and planning, computer
vision and their applications in autonomous vehicles
and robotics.

Majd Hawasly is a Scientist at the Qatar Computing
Research Institute at Hamad Bin Khalifa University,
Qatar. Before that, he was a Lead Research Scientist
in the Motion Planning and Prediction Applied Re-
search team at Five. He received his PhD from the
School of Informatics at the University of Edinburgh
in 2014. After that, he was a postdoctoral research
fellow at the University of Leeds.

Anthony Knittel completed a PhD in cognitive
science and computer vision from the University
of New South Wales, and has researched game-
playing topics at the Center for the Mind, and
computer vision for human motion recognition at
Canon Information Systems Research Australia. He
is currently working on motion prediction related
topics for autonomous vehicles at Five and Bosch.
He is interested in autonomous systems and how
they can be informed by human cognitive processes.

Mohamed Hasan is a Machine Learning Scientist
at Gaist Solutions, UK. Before Gaist, he was a
Research Fellow at the University of Leeds. He
received a PhD in Robotics Engineering from Egypt-
Japan University of Science and Technology and
was a post-doc at Osaka University. His research
interests include robot manipulation planning, visual
localization and mapping, and motion planning of
autonomous vehicles.

Matteo Leonetti is a Lecturer in Autonomous
Systems at King’s College London. Before King’s,
he was a lecturer at the University of Leeds. He
received a PhD in Computer Engineering from
Sapienza University of Rome and was a post-doc at
the Italian Institute of Technology and the University
of Texas at Austin. His research interests include
reinforcement learning, planning and reasoning, and
autonomous robots.

John Redford is CTO and a co-founder of Five
AI, a start-up recently acquired by Bosch, which
is dedicated to developing safe autonomous driving
systems. He has more than 35 years of software
development experience spanning autonomous vehi-
cles, machine learning, signal processing, processor
architecture and operating systems. Previously he
has held positions including Distinguished Engineer
and Director Engineering at Broadcom, Co-founder
and VP Software of Element 14, and CTO of Acorn
Computers. He holds an MA in Mathematics from

the University of Cambridge.

Subramanian Ramamoorthy is a Professor of
Robot Learning and Autonomy in the School of
Informatics at the University of Edinburgh, where
he is also Director of the Institute of Perception,
Action and Behaviour, and founding Member of
the Executive Committee for the Edinburgh Centre
for Robotics. He is a Turing Fellow at the Alan
Turing Institute and Member of the UK Computing
Research Committee convened by BCS and IET.
He received his PhD in Electrical and Computer
Engineering from The University of Texas at Austin

in 2007. He has been a Member of the Young Academy of Scotland at
the Royal Society of Edinburgh, and has held Visiting Professor positions
at the University of Rome “La Sapienza” and at Stanford University. His
research investigates learning, adaptation, and control mechanisms that enable
autonomous robots to cope with the uncertain and the unknown, such as when
working in human-centred environments. Between 2017-2020, he served as
Vice-President – Prediction and Planning – at Five AI, a UK based company
developing a technology stack for autonomous vehicles. He continues to be
involved with the company as a Scientific Advisor.

Jac Billington is an Associate Professor in Psy-
chology at the University of Leeds. She completed
a PhD in neuroscience at the University of Cam-
bridge in 2007 and subsequently worked for six
years as a postdoctoral research fellow at Royal
Holloway, University of London. Her research focus
is in understanding how people extract information
from the surrounding environment for the purpose
of voluntary action and successful self-motion. She
is particularly interested in the neuroscientific under-
pinnings of such behaviours.

Richard Romano has over thirty years of experi-
ence developing and testing AVs and ADAS con-
cepts and systems which began with the Automated
Highway Systems (AHS) project while he directed
the Iowa Driving Simulator in the early 1990’s. He
received his BASc and MASc in Engineering Sci-
ence and Aerospace Engineering respectively from
the University of Toronto, Canada and a PhD in Mo-
tion Drive Algorithms for Large Excursion Motion
Bases, Industrial Engineering from the University of
Iowa, USA. In addition to a distinguished career in

industry he has supervised numerous research projects and authored many
journal papers. In 2015 he was appointed Leadership Chair in Driving
Simulation at the Institute for Transport Studies, University of Leeds, UK.
His research interests include the development, validation and application of
transport simulation to support the human-centered design of vehicles and
infrastructure.

Gustav Markkula received the M.Sc. degree in
engineering physics and complex adaptive systems
and the Ph.D. degree in machine and vehicle systems
from Chalmers University of Technology, Gothen-
burg, Sweden, in 2004 and 2015, respectively. He
has more than a decade of research and development
experience from the automotive industry, and is now
Chair in Applied Behaviour Modelling at the Insti-
tute for Transport Studies, University of Leeds, UK.
His current research interests include quantitative
modeling of road user behavior and interaction, and

virtual testing of vehicle safety and automation technology.


