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Preface

The International Conference on Process Mining (ICPM) was established three years
ago as the conference where people from academia and industry could meet and discuss
the latest developments in the area of process mining research and practice, including
theory, algorithmic challenges, and applications. Although the ICPM conference series
is very young, it has attracted innovative research of high quality from top scholars and
industrial researchers.

This year the conference took place in Bolzano, Italy and included co-located work-
shops that were held on October 24, 2022. The workshops presented a wide range of
outstanding research ideas and excellent paper presentations. In addition, the resulting
workshop programs were complemented with keynotes, round-table panels, and poster
sessions, providing a lively discussion forum for the entire community. ICPM 2022 fea-
tured eight workshops, each focusing on particular aspects of process mining, either a
particular technical aspect or a particular application domain:

— 3rd International Workshop on Event Data and Behavioral Analytics (EDBA)

— 3rd International Workshop on Leveraging Machine Learning in Process Mining
(ML4PM)

— 3rd International Workshop on Responsible Process Mining (RPM) (previously
known as Trust, Privacy and Security Aspects in Process Analytics)

— 5th International Workshop on Process-Oriented Data Science for Healthcare
(PODS4H)

— 3rd International Workshop on Streaming Analytics for Process Mining (SA4PM)

— 7th International Workshop on Process Querying, Manipulation, and Intelligence
(PQMI)

— st International Workshop on Education Meets Process Mining (EduPM)

— 1st International Workshop on Data Quality and Transformation in Process Mining
(DQT-PM)

The proceedings present and summarize the work that was discussed during the
workshops. In total, the ICPM 2022 workshops received 89 submissions, of which 42
papers were accepted for publication, leading to a total acceptance rate of about 47%.
Supported by ICPM, each workshop also conferred a best workshop paper award. Finally,
it is worth mentioning that to promote open-research, ICPM proudly offered to publish
the proceedings as open-access.

We would like to thank all the people from the ICPM community, who helped to
make the ICPM 2022 workshops a success. We particularly thank the entire organiza-
tion committee for delivering such an outstanding conference. We are also grateful to
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the workshop organizers, the numerous reviewers, and, of course, the authors for their
contributions to the ICPM 2022 workshops.

November 2022 Marco Montali
Arik Senderovich
Matthias Weidlich
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Third International Workshop on Event Data
and Behavioral Analytics (EdbA’22)

In recent decades, capturing, storing, and analyzing event data has gained attention
in various domains such as process mining, clickstream analytics, [oT analytics, e-
commerce, and retail analytics, online gaming analytics, security analytics, website
traffic analytics, and preventive maintenance, to name a few. The interest in event data
lies in its analytical potential as it captures the dynamic behavior of people, objects, and
systems at a fine-grained level.

Behavior often involves multiple entities, objects, and actors to which events can be
correlated in various ways. In these situations, a unique, straightforward process notion
does not exist, is unclear or different processes or dynamics could be recorded in the
same data set.

The objective of the Event Data & Behavioral Analytics (EdbA) workshop series
is to provide a forum to practitioners and researchers for studying a quintessential,
minimal notion of events as the common denominator for records of discrete behavior
in all its forms. The workshop aims to stimulate the development of new techniques,
algorithms, and data structures for recording, storing, managing, processing, analyzing,
and visualizing event data in various forms. To this end, different types of submissions
are welcome such as original research papers, case study reports, position papers, idea
papers, challenge papers, and work in progress papers on event data and behavioral
analytics.

The third edition of the EdbA workshop attracted 15 submissions. After careful
multiple reviews by the workshop’s program committee members, seven were accepted
for a full-paper presentation at the workshop. All full-paper papers have been included
in the proceedings. This year’s papers again cover a broad spectrum of topics, which
can be organized into three main themes: human behavior and IoT, detecting anomalies
and deviations, and event data beyond control-flow.

In the final plenary discussion session, the workshop’s participants had a very fruitful
discussion about several topics including (i) the possibility to build general approaches
to event abstraction instead of domain-dependent ones, (ii) the goals of event abstraction,
(iii) the usefulness of offline process mining, (iv) data awareness and decision points in
human processes, and (v) guidelines for object-centric logs.

The organizers wish to thank all the people who submitted papers to the EdbA’22
workshop, the many participants creating fruitful discussion and sharing insights and
the EdbA’22 Program Committee members for their valuable work in reviewing the
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submissions. A final word of thanks goes out to the organizers of ICPM 2022 for making
this workshop possible.

November 2022 Benoit Depaire
Dirk Fahland

Francesco Leotta

Xixi Lu
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Do You Behave Always the Same?
A Process Mining Approach

=)

Gemma Di Federico®™) and Andrea Burattin

Technical University of Denmark, Kgs. Lyngby, Denmark
gdfe@dtu.dk

Abstract. Human behavior could be represented in the form of a pro-
cess. Existing process modeling notations, however, are not able to faith-
fully represent these very flexible and unstructured processes. Additional
non-process aware perspectives should be considered in the representa-
tion. Control-flow and data dimensions should be combined to build a
robust model which can be used for analysis purposes. The work in this
paper proposes a new hybrid model in which these dimensions are com-
bined. An enriched conformance checking approach is described, based
on the alignment of imperative and declarative process models, which
also supports data dimensions from a statistical viewpoint.

1 Introduction

A process is a series of activities that are executed with the aim of achieving a
specific goal. The notion of process can be used to describe most of the behaviors
we adopt in our daily life. Whenever we deal with an ordered series of activities,
that are performed repetitively, we can leverage the notion of process [10]. A pro-
cess model is a formalization of a process, it abstracts activities and dependencies
in a conceptual model. A process modeling language offers the set of rules and
structural components to represent a process in form of a model. An example of
a process is the procedure to get medications from a prescription, as well as the
process that a person follows in order to get ready for work in the morning. In the
former example, the procedure is strict and follows a well-defined and ordered
set of activities; in the latter example, the process is flexible and can vary based
on daily preferences, meaning that the process does not necessarily enforce a
static structure. To some extent, existing process modeling languages are able
to represent processes related to human behavior, however, several important
aspects cannot be expressed by those languages. Dealing with human processes
is challenging [8] since human beings are not forced to follow a strict procedure
while executing activities, which results in high variability of the process, and
the model. What is more, human behavior can be influenced by external fac-
tors, such as the environment. Modeling languages have structural limitations
which restrict the expressiveness of the models they can represent. Among these
is the fact that a process model primarily focuses on the control flow perspec-
tive. Consider a process executed in an environment with a temperature of 18°,

© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022, LNBIP 468, pp. 5-17, 2023.
https://doi.org/10.1007/978-3-031-27815-0_1
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Fig. 1. Approach overview

in which a person is drinking 5 glasses of water per day. If the ambient tem-
perature rises, the frequency of the activity “drinking” is expected to increase
as well. Let’s now consider a new instance of the same process, in which a per-
son is drinking 5 glasses of water but the temperature is 32°. Just considering
a control-flow perspective, the two instances are perfectly compliant. However,
combining the drinking activity with both its frequency and the environment
temperature, leads to a more detailed representation of the behavior. Addition-
ally, most of the imperative languages only allow the design of uncountable loops,
while this aspect could be relevant when representing human behavior. Declara-
tive languages only specify the workflow through the use of constraints, i.e., only
the essential characteristics are described. Hence, the model over-generalizes the
process, often allowing too many different behaviors. As process models are con-
ceptual models, they actually are abstractions of reality, focusing only on the
aspects that are deemed relevant. The reality can be captured by observing the
actual process, resulting in a set of events collected in an event log. When trying
to workshops establish a relation between a process model and the reality, in
which both refer to the same process execution, it can be easily noted how far
from each other they can be. Even if numerous process modeling languages exist,
the control-flow and the constraints discovery (both referring to imperative and
declarative processes) are not always sufficient to capture all the characteristics
of some kind of process. Other dimensions must be considered and included in
the analysis. Among the tasks investigated in Process Mining [6], conformance
checking [4] assumes process models to be prescriptive (a.k.a. normative) and
thus it tries to establish the extent to which executions are compliant with the
reference model. Therefore, if conformance checking tasks are needed, the model
should be as robust and realistic as possible.

The work presented in this paper aims at improving conformance check-
ing techniques by extending them in such a way that the control-flow is used
alongside other dimensions. As depicted in Fig.1, we suggest a hybrid app-
roach in which process and data dimensions are combined, and we implement
an enriched conformance checking approach based on the alignment of impera-
tive and declarative process models, which also supports data dimensions form
a statistical viewpoint.

The paper is structured as follows. Section 2 presents related work and moti-
vate the paper. In Sect. 3 the solution is presented. Evaluated and discussion is
in Sect. 4. Section 5 concludes the paper and presents future work.
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2 Background

2.1 State of the Art

The difference between a business process and a human-related process lies in the
rigidity of the structure: human processes can be extremely flexible, involving
additional perspectives [8] on top of the control-flow.

Although it is possible to define the set of activities that compose human
behavior, we cannot define (or restrict) with certainty their order of execution.
The reason is that activities are typically combined based on the specific cases,
i.e. they are heavily case-dependent [18], and the behavior changes according to
known or unknown factors, in a conscious or unconscious way [13]. Even though
they share many characteristics with knowledge intensive processes [7], they
have a lower degree of uncertainty. Traditional process modeling languages man-
ifest significant limitations when applied to such unstructured processes, usually
resulting in describing all possible variants [9] in form of complex and chaotic
process models. A process model representing human behavior must abstract
the underlying process, allowing for variability, but without over-generalizing.

In order to combine rigid and flexible parts of the models, and thus take
advantage of both imperative and declarative process modeling languages [16],
hybrid approaches have emerged. Hybrid models combine several process dimen-
sions to improve the understandability of a process model and to provide a clearer
semantic of the model itself. According to Andaloussi et al. [2] three process arti-
facts are usually combined in hybrid approaches, and are static, dynamic or inter-
active artifacts. Schunselaar et al. [17] propose a hybrid language which combines
imperative and declarative constructs. The approach firstly derives an imperative
process model (a process tree) and then the less structured parts are replaced
with declarative models to improve the overall model precision. Lépez et al.,
in [12], combine texts with the Dynamic Condition Response (DCR) language.
The declarative model is discovered directly from text, and then a dynamic
mapping between model components and text is provided. The approach aims
to improve the understandability of declarative models. An interactive artifact
is proposed in [14] where authors combine the static representation of a process
model (DCR graph) and its execution through a simulation. The work presents
a tool in which the user can interact directly with the process model. Hybrid
approaches focus on the combination of a graphical representation of the process
model, together with either another static component (e.g. a process model in a
different notation, alongside or hierarchically integrated) or a dynamic or inter-
active artifact such as a simulation. Although they improve the representation
of a process model, the control-flow only is not expressive enough.

Felli et al. [11] recognized the importance of enriching a process model with
other perspectives, by proposing a framework to compute conformance metrics
and data-aware alignments using Data Petri Nets. However, they consider, in
a combined way, the control-flow and the data that the process manipulates,
without considering non-process aware perspectives. In the work presented in
this paper, the data dimension refers to all those attributes of the activities that
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are not directly captured by process discovery algorithms, hence not represented
in a process model. Without considering these additional perspectives, a process
model would be too general, always leading to a successful alignment between
the model and new process instances. As a result, if a new process instance varies
in activities frequency or duration, it will always fit the model. In this respect,
conformance checking fails in its principle.

2.2 Problem Description

Behaviour modelling is a demanding task [8]. In view of the fact that human
beings have their own minds and their own interests, their behavior cannot be
entirely defined ex-ante. There are logical reasons behind the execution of an
ordered series of activities, but the way in which these activities are coordinated
is not necessarily a single and unique pattern. This makes the control-flow of
behaviors highly wvariable. Additionally, a considerable part of human behavior
is composed of repeatable activities. Human beings perform a semi-defined set
of activities every day, but part of it is repeated several times throughout the
day [3]. Whenever an activity is executed, it may be part of a different set of
circumstances, a.k.a. contezt.

Moreover, the duration of the
activities is also a key factor that .
allows us to distinguish situations. —

An activity, based on its duration, @—>E—>/\( @Q
can have different meanings. E.g. the V‘Tj

sleeping activity executed for 8 h can

be interpreted differently from the
same activity executed only for 2h.
Both scenarios are represented by the
same process model, but the duration is not directly captured and encoded in the
model. As a consequence, the two situations cannot be distinguished. This case
can be observed in Fig. 2, in which a simple WF-Net is derived from the traces in
L. From the model we cannot distinguish whether activity a was performed for
one minute or for one hour. The last aspect we focus on is the frequency of activ-
ities. As for the duration, the frequency of occurrence of an activity can affect
the meaning of the process. Although process modeling languages are capable
of representing the repetitions of activities (such as loops), information on the
recurrence of the frequency is not included. Loops and repetitions are therefore
uncountable. For instance, from the model in Fig. 2 we can’t differentiate if the
loop between the activities b and ¢ is executed one time or ten times. A trace
t = {(a,b,e,b,¢,b,¢,b,¢,b,¢,b,d) can perfectly be executed in the model, even
though previous examples from the log show only fewer repetitions.

To tackle the above-mentioned issues, we implemented an enriched confor-
mance checking approach, in which we provide information on the process based
on different points of view, i.e. control-flow dimensions (both declarative and
imperative) along with data dimensions. The work presented in this paper aims
to answer the following research question:

Fig.2. WF-net derived from L =
[{a,b,c,b,d)?, (a,b,c,b,c,b,d)']
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RQ: Does a hybrid process model help in describing human behavior, with
the goal of understanding whether such behavior has changed or whether
it is consistent with previous observations?

3 Approach

A process model by itself is not always capable to faithfully capture human
behavior. As introduced in the above section, several types of hybrid approaches
have been developed, but they all focus only on the process dimension. Espe-
cially when dealing with human behavior, typical process representations are
not enough. We therefore analyzed human behavior processes and investigated
whenever the process representation does not relate to the real process. The
conformance checking approach presented in this paper consists of an integrated
solution that combines discovery and conformance of both a process and a data
dimension. As introduced in Fig. 1, our discovery produces process models as
well as a list of statistics for the activities in the event log. The models repre-
sent the control-flow perspective, while the statistics the data perspective. In
this first version of the approach, the statistics focuses on three data aspects
which allow to capture other dimensions of the process, and are the duration
of activities, their frequency and the absolute time. The conformance checking
produces an enriched fitness value that is based on the verification between each
trace in the event log and the enriched discovered model. The enriched fitness
value is the composition of the six fitness measures, and it is calculated according
to the procedure described in the next subsections. It is important to highlight
the importance of the enriched fitness value obtained by the application of the
approach presented in this paper. In fact, the value does not refer only to a
control-flow perspective, but takes into consideration other dimensions that are
not strictly process related.

3.1 Control-Flow and Data Discovery

Control-Flow Representation and Discovery. The main challenge in
behavioral modeling is to observe the process from different points of view. The
first viewpoint is the control-flow perspective, which can be represented using
imperative or declarative languages. Although a declarative language allows to
abstract from the problem of variability, as it represents the process in form of
constraints, an imperative language has a clearer and more structured repre-
sentation. The two language categories have different characteristics and, based
on the usage, the most appropriate one can be chosen. However, to allow the
discovery and the conformance, only languages with a clear execution seman-
tic are considered in the presented approach. The main purpose beyond this
paper is that a process model representing human behavior is visually clear and
representative of the process. As argued before, imperative and declarative lan-
guages have pros and cons in this task. Therefore, to avoid to restrict the final
user through a specific representational direction, we decided to include both
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language families in the proposed approach. In particular, the process discovery
includes the Heuristic [19] and Inductive Miner [15], which produce Petri Nets,
and the DisCoveR [15] algorithm which produces a DCR Graph.

Data Representation and Discovery. The data dimension focuses on the
derivation of relevant statistics under the frequency of activities, their duration,
and their occurrence time point of view. As introduced in Sect. 2.2, the frequency
of activities is a relevant feature to discover repetitions of activities inside the
process. To compute the frequency, the occurrence of each unique activity iden-
tifier is counted in each trace of the event log. Then, the frequencies are aggre-
gated to the entire event log, and basic statistics are calculated for each activity.
The statistics are the mean, the standard deviation, the median, the minimum
frequency and the maximum frequency. The values computed enrich the discov-
ered process from a frequency perspective, allowing to have information on the
occurrence of each activity identifier.

The second element modelling the data perspective is the duration, used to
investigate the duration of each activity over time. A different duration in the
execution of an activity can completely change the meaning with respect to the
process. The duration of the activities is calculated based on the mean duration
of each unique activity identifier in each trace. Given an activity identifier, mean,
median, min and max duration are calculated for each trace. The values are then
aggregated to obtain more accurate results which describe the entire event log.

Always remaining in the time dimension, the absolute time when activities
happen is another relevant factor in behavioral modeling. Even if conceptually
activities are not executed at the same precise time, the absolute time is a
powerful tool for identifying delays in the execution of activities. This dimension
is treated by considering the histogram of how often each activity has been
observed within a certain time interval (e.g., hours of the day).

3.2 Control-Flow and Data Conformance

Once the enriched model is derived, conformance checking algorithms can be
used to relate the process model with instance of the process collected in an
event log. The conformance checking tries to align both the control-flow and the
data perspectives, producing an enriched fitness value as output.

Conformance of the Control-Flow Dimension. The enriched model is rep-
resented both in form of Petri Nets and a DCR Graph. According to these
languages, the conformance checking algorithms included are the alignment [1]
for the Petri Nets, and a rule checker [5] for the DCR Graph. An alignment algo-
rithm establishes a link between a trace in the event log and a valid execution
sequence of the process model. For each trace in the event log, a fitness value
is obtained. The rule checker verifies if a trace violates the constraints of the
graph. For each trace, a fitness value is obtained.
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Conformance of the Data. While for the control-flow perspective there are
conformance checking techniques available, for the data part it was necessary to
investigate the most suitable ways to compare the reference data with the actual
instance. For each component of the data dimension, we implement a comparison
function. To verify if the frequency statistics in the enriched model conform to
the event log, we will assume that activities are normally distributed. The normal
distribution is used to show that values close to the mean are more frequent in
occurrence than values far from the mean. Assuming that the mean value is our
reference value for the frequency, by means of the computed probability density
function we can interpret the likelihood that the mean frequency value (for each
activity identifier) in the trace, is close to the reference. Then, we consider the
likelihood as the fitness value for the frequency dimension. What is more, the
frequency value under analysis has to be in the range from the minimum number
of occurrences up to the maximum number of occurrences (defined in the model),
otherwise a zero fitness value is returned.

The same approach explained for frequencies is used for the duration of
activities. Activity durations are assumed to be normally distributed and hence
the same strategy is used.

Concerning the absolute time, the approach used in the previous two cases
cannot be used, primarily because the absolute time is not cumulative. E.g., we
may have the same activity repeated multiple time within the same trace and
therefore it might not be possible to aggregate the time of those activities. We
decided to use the histogram of the frequencies of each activity over time inter-
vals. To compute the conformance we normalize the frequencies in the interval
0-1 (where 1 indicates the most frequent time interval and 0 the least frequent
time interval) and the conformance of new absolute time is then computed as
the normalized frequency for the time interval the new absolute time belongs to.

The final fitness value is an aggregation of six values, that are the results of
the application of conformance checking algorithms together with the results of
the conformance of the statistics. Let’s call @ the aggregation function for the
individual measures, the overall conformance becomes:

Control-flow dimension

@(Conf, Inductive, Conf. Heuristics, Rule check DCR,

Stats on freq., Stats on duration, Stats on abs. time)

Data dimension

Examples of possible aggregations functions (i.e., @) could be the (weighted)
average, the maximum, and the minimum. The (weighted) average would be
useful when all dimensions should be considered, the minimum would be a bit
more restrictive as it’d require all measures to be high in order to return a high
value itself. The fitness value shows how the discovered hybrid model reflects the
behavior in the event log, both under a control-flow and a data dimension. By
means of the enriched conformance checking approach presented in this paper,
we have a powerful tool to explain and identify variations and discrepancies even
under a non-process aware dimension.
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4 FEvaluation

The approach presented in this work aims to demonstrate that behavioral mod-
eling cannot be represented solely by the control-flow: additional perspectives
not referring to the control-flow must be considered. The evaluation conducted
is based on trying different scenarios and verifying how the control-flow and the
data perspectives respond to the identification of the variations. We identified
three different scenarios, and we built (via simulation) a total of 8 synthetic
event logs!, with 1000 traces each. Each scenario contains a “normal” situation
(the reference event log) and “anomalous situations” (the event logs used for
verifying the conformance). Each scenario aims at identifying the advantages
and limitations of both process and data perspectives.

4.1 Scenarios and Logs Description

Scenario 1 (S1) Description - The first scenario describes the night routine of
a person. The idea is that a person sleeps all night but wakes up between zero
and two times to go to the bathroom. Variations - The first variation describes
a situation in which a person goes to the bathroom very frequently during the
night, from four to ten times. In the second variation the person goes to the
toilet a normal number of times but stays in the bathroom for a long period of
time. Objective - The main objective of S1 is to highlight the importance of
the data perspective. In fact, the variation is in the frequency and the duration,
perspectives that are usually not represented on top of process models.

Scenario 2 (S2) Description - The second hypothetical scenario focuses
on repetitive activities. The log synthesizes a day where a person eats lunch,
leaves the apartment and then comes back for eating dinner, and relaxes on the
couch until sleeping time. In a normal scenario, the person has lunch between
11:30 and 13:00, and dinner between 18:00 and 20:00. Both having lunch and
having dinner are referred to as the activity of eating. Variations - Eating lunch
or dinner outside the predefined ranges is considered an anomalous behavior. In
the first variation, the person has lunch around 14:00 and dinner on time, or has
lunch on time and delayed dinner between 21:30 and 23:00. The second variation
skips one or both of the meals. Objective - The objective of S2 is to verify the
behavior of the modeling languages with repetitive activities, both in terms of
execution time and actual occurrence. We should be able to identify if a person
is skipping meals, or if they are having delayed meals.

Scenario 3 (S3) Description - The last scenario describes a hypothetical
morning routine: the person wakes up and has breakfast. Right after they go
to the bathroom and then get dressed, ready to go out. Variations - In the
variation the person does not follow the normal control-flow of the activities
but mixes the execution of them. The process always starts with waking up but
then the get dressed activity can be skipped and executed later. After that, the
breakfast, bathroom, and get dressed activities can be executed in any order.

1 All the event logs can be found at https://doi.org/10.5281/zenodo.6632042.
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Table 1. Fitness values for control-flow perspective

Scenario CCHeu | CCInd | CCDCR. | Avg
S1 Norm vs | S1 Freq 1.00 1.00 1.00 1.00
S1 Duration | 1.00 1.00 1.00 1.00
S2 Norm vs | S2 Absence | 0.75 0.75 0.00 0.50
S2 Delay 1.00 1.00 1.00 1.00
S3 Norm vs | S3 Shuffle | 0.76 0.76 0.00 0.50

Table 2. Fitness values for data perspective

Scenario CCFreq | CCDur | CCTime | Avg
S1 Norm vs | S1 Freq 0.33 0.52 0.73 0.53
S1 Duration | 0.76 0.46 0.90 0.71
S2 Norm vs | S2 Absence | 0.75 0.67 0.90 0.77
S2 Delay 1.00 0.70 0.48 0.72
S3 Norm vs | S3 Shuffle | 1.00 0.67 0.82 0.83

In the end, the person goes out. Objective - The purpose of S3 is to focus solely
on the control-flow. In this scenario we introduce variability in the execution of
activities, starting from a structured and linear situation.

4.2 Log Evaluation

The approach presented in this paper is implemented as Java and Python appli-
cations?. We constructed a Python script to orchestrate the execution of all
algorithms and return a final conformance value. For each scenario, the base
event log is used to derive the reference model. Conformance checking is then
applied on the reference model together with each variation log. The results are
stored in a CSV file. The created logs aim at demonstrating that there are cases
in which the control-flow cannot explain the process by itself and cases in which
the statistics alone do not give a clear overview of the problem. In particular,
scenario S1 focuses entirely on the data perspective, showing how frequency and
duration affect the analysis. S3 highlights the importance of the control-flow
perspective, while S2 combines both of them with missing activities on one hand
and the delay on the other hand.

4.3 Results and Discussion

The results of the application of the approach are presented below. The values
obtained are referred as: CCHeu for the alignment between the log and the Petri

2 The implementation can be found at https://doi.org/10.5281/zenodo.6631366.
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Table 3. Fitness values for control-flow and data perspective

Scenario @D =min | P = avg
S1 Norm vs | S1 Freq 0.33 0.76
S1 Duration | 0.46 0.85
S2 Norm vs | S2 Absence | 0.00 0.64
S2 Delay 0.48 0.86
S3 Norm vs | S3 Shuffle | 0.00 0.67

Net obtained by the Heuristic Miner, CCInd for the Inductive, and CCDCR for
the rule checker of DCR. Similarly for the other measures: conformance on the
frequency is CCFreq, on duration is CCDur, and on absolute time is CCTime.

To highlight the importance of the two dimensions, the results are firstly pre-
sented separately. Table 1 shows the fitness values obtained in each conformance
evaluation under a control-flow perspective. Only in two cases the conformance
is not perfect, that is the case of S2 Absence and S3 Shuffle. In the first one,
since one activity can be skipped, the fitness value for both the Petri Nets is
lowered. The fitness of the conformance with the DCR graph is zero because the
constraints between eating and leave activities, and between eating and relax
activities are violated when the execution of the eating activity is missing. In
the second case instead, the order of the activities is violated. To sum up, per-
fect fitness values can be observed in 3 cases, while 0.5 is the average for the
remaining two cases. The conclusion that can be drawn from this table is that
by analyzing the processes only from the control-flow perspective, no anomaly
is identified in the form of variation of frequency, duration or absolute time.

Table 2 shows all the fitness values obtained in each conformance evaluation
under a data perspective. The conformance between the model from S1 and the
log with frequency variation returns a fitness value of 0.33, as expected. Discrep-
ancies also emerge in the same scenario, but in the duration variation, under
the duration statistic. A significant divergence between the reference model and
the actual data is observed in Scenario S2, in the delay variation, under a time
perspective. In fact, the conformance of the absolute time statistic returns a low
fitness value, while all the other values are optimal. By computing the average
fitness for each scenario/variation, highlights the discrepancies between the data
perspective and the control-flow perspective. The average values in Table 2 are
much lower then the average values in Table 1.

To obtain more consistent results, all the individual values of conformance
must be combined. Table3 compares the two perspectives together, returning
aggregated values in form of average and minimum for each scenario/variation.
The table reveals the gap between the fitness of the control-flow dimension and
the fitness of the data dimension. In almost all the scenarios, the minimum fitness
value obtained (over all the perspectives) is close to zero. The total average in
the table is the arithmetic mean. According to the situation at hand, other
aggregation functions might also be used (e.g. by using a weighted mean, thus
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providing different weights for different aspects). In the case of this experiment,
none of the logs evaluated returned a perfect fitness value as instead observed
in Table 1, where the focus was only on the control-flow.

Based on the results shown in Table 3 we can conclude that, while individual
dimensions might show perfect fitness by themselves, even when the logs should
not be explainable by the model (cf. both Table1 and Table2); a hybrid app-
roach is instead always able to discriminate non-compliant behavior (observable
by having no entries with value 1 in Table 3), even when different aggregation
functions are used. Therefore, the research question stated in Sect. 2 can be
positively answered.

4.4 Limitations

Although the evaluation pointed out promising results, there are several limi-
tations. The first aspect to consider regards the statistics: the statistics on the
duration assume a normal probability distribution. Remaining on the perspec-
tive of the accuracy of time, the histogram used in the absolute time statistics
is calculated by aggregating the executions per hour. Hence, if an activity is
delayed but still within the same hour (with respect to the reference model), the
fitness is not affected. Finally, choosing a proper aggregation function might not
be trivial. In fact, the enriched conformance checking proposed should include a
tuning function capable of balancing all the dimensions.

5 Conclusions and Future Work

In order to deal with human behavioral, and in particular, in order to understand
whether the behavior is compliant with a normative model, new conformance
checking techniques are needed. The control-flow is not enough and it does not
provide all information needed for the application of conformance checking tech-
niques when dealing with human behavior. The process must be analyzed from
different point of view: the control-flow perspective and the data perspective.
The method proposed in this paper produces an enriched fitness value that bal-
ances control-flow alignment and data statistics. The control-flow alignments
investigates whether the order of the activities is compliant with expectations,
whereas the statistics focus on the activity frequency, activity duration, and
absolute time. By creating synthetic event logs, we have demonstrated that the
application of this methodology allows the identification of variations and dis-
crepancies between a reference model and an event log where the typical con-
formance techniques were failing. In a previous work (see [8]), we identified all
the requirements that a process modeling language must fulfill in order to rep-
resent human behavior. These requirements have been used to identify the two
perspectives to include in the hybrid model. To reply the research question intro-
duced in Sect. 2.2, taking advantage from the evaluation conducted in this paper,
especially from the results in Table 3, it emerged that to properly verify the con-
formance of a process representing human behavior, a hybrid process model is
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needed. The first step as a future work, is to refine the statistics, such as the
duration, and evaluate other perspectives to be included. After that, we would
like to combine the two dimensions together from a semantic point of view.
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Abstract. When multiple objects are involved in a process, there is
an opportunity for processes to be discovered from different angles with
new information that previously might not have been analyzed from a
single object point of view. This does require that all the information of
event /object attributes and their values are stored within logs including
attributes that have a list of values or attributes with values that change
over time. It also requires that attributes can unambiguously be linked
to an object, an event or both. As such, object-centric event logs are an
interesting development in process mining as they support the presence of
multiple types of objects. First, this paper shows that the current object-
centric event log formats do not support the aforementioned aspects
to their full potential since the possibility to support dynamic object
attributes (attributes with changing values) is not supported by existing
formats. Next, this paper introduces a novel enriched object-centric event
log format tackling the aforementioned issues alongside an algorithm that
automatically translates XES logs to this Data-aware OCEL (DOCEL)
format.

Keywords: Object-centric event logs - Process mining - Decision
mining

1 Introduction

In the last few years, object-centric event logs have been proposed as the next
step forward in event log representation. The drive behind this is the fact that the
eXtensible Event Stream (XES) standard [15] with a single case notion does not
allow capturing reality adequately [14]. A more realistic assumption instead is to
view a process as a sequence of events that interact with several objects. Several
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object-centric event log representations have been proposed such as eXtensi-
ble Object-Centric (XOC) event logs [18], Object-Centric Behavioral Constraint
model (OCBC) [4], and most recently Object-Centric Event Logs (OCEL) [14].
The first two event log representations face scalability issues related to the stor-
age of an object model with each event or to the duplication of attributes [14].
However, there is a difficult trade-off to be made between expressiveness and sim-
plicity, leaving the recent OCEL proposal as the most suitable for object-centric
process mining as it strikes a good balance between storing objects, attributes
and their relationships and yet keeping everything simple.

OCEL offers interesting new research opportunities not only for process min-
ing with, e.g., object-centric Petri nets [1] or object-centric predictive analysis
[11], but also for decision mining [16]. OCEL is already well on its way to become
an established standard with a visualization tool [12], log sampling and filtering
techniques [5], its own fitness and precision notions [2], its own clustering tech-
nique [13], an approach to define cases and variants in object-centric event logs
[3] and a method to extract OCEL logs from relational databases [23]. In this
paper, attributes are considered to be logged together with events and objects
in an event log and should relate clearly to their respective concepts, i.e., events,
objects or both. As such, OCEL could provide more analysis opportunities by
supporting attributes having several values simultaneously, allowing attributes
to change values over time and to unambiguously link attributes to objects, all of
which is currently not fully supported but common in object-centric models such
as structural conceptual models like the Unified Modeling Language (UML) [20].

For this purpose, this paper proposes an extension to OCEL called, Data-
aware OCEL or DOCEL, which allows for such dynamic object attributes. The
findings are illustrated through a widely-used running example for object-centric
processes indicating how this standard can also support the further development
of object-centric decision/process mining and other domains such as Internet of
Things (IoT) related business processes. This paper also presents an algorithm
to convert XES logs to DOCEL logs. Since many event logs are available in a
“flat” XES format for every object involved in the process, not all information
can be found in one event log. As such, providing an algorithm that merges
these XES files into one DOCEL log would centralize all the information in one
event log without compromising on the data flow aspects that make XES such
an interesting event log format.

The structure of this paper is as follows: Sect. 2 explains the problem together
with a running example applied on the standard OCEL form. Section 3 intro-
duces the proposed DOCEL format together with an algorithm to automatically
convert XES log files into this novel DOCEL format. Next, the limitations and
future work of this work are discussed in Sect. 4. Finally, Sect.5 concludes this

paper.
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2 DMotivation

The IEEE Task Force conducted a survey during the 2.0 XES workshop' con-
cluding that complex data structures, especially one-to-many or many-to-many
object relationships, form a challenge for practitioners when pre-processing event
logs. By including multiple objects with their own attributes, object-centric event
logs have the opportunity to address these challenges. This does entail that the
correct attributes must be unambiguously linked to the correct object and/or
activity to correctly discover the process of each object type as well as the rel-
evant decision points [1]. The next subsection discusses the importance object
attribute analysis had on single case notion event logs.

2.1 Importance of Object Attributes in Single Case Notion Event
Logs

Various single case notion process mining algorithms make use of both event
and case attributes, e.g., in [7], a framework is proposed to correlate, predict and
cluster dynamic behavior using data-flow attributes. Both types of attributes are
used to discover decision points and decision rules within a process in [17]. For
predictive process monitoring, the authors of [9] develop a so-called clustering-
based predictive process monitoring technique using both event and case data.
Case attributes are also used to provide explanations of why a certain case
prediction is made within the context of predictive process monitoring [10].

The same challenges apply to decision mining which aims to discover the
reasoning and structure of decisions that drive the process based on event logs
[22]. In [8], both event and case attributes are used to find attribute value shifts
to discover a decision structure conforming to a control flow and in [19], these are
used to discover overlapping decision rules in a business process. Lastly, within
an IoT context, it has been pointed out that contextualization is not always
understood in a similar fashion as process mining does [6]. As such object-centric
event logs offer an opportunity for these different views of contextualization to
be better captured.

The previous paragraphs show (without aiming to provide an exhaustive
overview) that various contributions made use of attributes that could be stored
and used in a flexible manner. Unfortunately, as will be illustrated in the next
subsections, the aforementioned aspects related to attribute analysis are cur-
rently not fully supported in object-centric event logs.

2.2 Running Example

Consider the following adapted example inspired from [8] of a simple order-to-
delivery process with three object types: Order, Product, Customer. Figure 12
visualizes the process.

! https://icpmconference.org/2021 /events/category /xes-workshop/list /?tribe-bar-da
te=2021-11-02.
2 All figures are available in higher resolution using the following link.


https://icpmconference.org/2021/events/category/xes-workshop/list/?tribe-bar-date=2021-11-02
https://icpmconference.org/2021/events/category/xes-workshop/list/?tribe-bar-date=2021-11-02
https://gitfront.io/r/user-6321558/g3WwhF8PAKKT/EdbA-ICPM2022/
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A customer places an order with the desired quantity for Product 1,2 or 3.
Nezxt, the order is received and the order is confirmed. This creates the value
attribute of order. Afterwards, the ordered products are collected from the ware-
house. If a product is a fragile product, it is first wrapped with cushioning material
before being added to the package. The process continues and then the shipping
method needs to be determined. This is dependent on the value of the order, on
whether there is a fragile product and on whether the customer has asked for a
refund. If no refund is asked, this finalizes the process. The refund can only be
asked once the customer has received the order and requests a refund. If that is
the case, the order needs to be reshipped back and this finalizes the process.

Fig. 1. BPMN model of running example

2.3 OCEL Applied to the Running Example

In this subsection, the standard OCEL representation visualizes a snippet of this
process. Table 1 is an informal OCEL representation of events and Table 2 is an
informal OCEL representation of objects. Figure2 visualizes the meta-model
of the original OCEL standard. Several observations can be made about the
standard OCEL representation:

A: Attributes that are stored in the events table can not unambigu-
ously be linked to an object. The OCEL standard makes the assumption
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Table 1. Informal representation of the events in an OCEL format

ID | Activity Timestamp | Customer | Order | Product Type| Q1 Q2| Q3 Refund Order Value Resource| Shipping Method
el | Place Order 09:00 {cl} {o1} |{pLp2} 5 [2 o o
¢2 | Receive Order 10:00 {o1} Jan
e3 | Confirm Purchase 11:00 {o1} 95 Jan
¢4 | Collect product from warehouse | 12:00 {o1} [{p2} Johannes

¢5 | Collect product from warchouse | 12:00 {o1} |{n1} Johannes

¢6 | Put protection around the product | 12:15 {o1} |{p1} Johannes
¢7 | Add product to package 12:30 {o1} [{p1} Johannes
¢8 | Add product to package 12:30 {o1} [{p2} Johannes

Table 2. Informal representation of the objects in an OCEL format

ID Type Name Bank account Value Fragile
c1 | Customer | Elien BE24 5248 54879 2659

o1 | Order

pl | Product 15

p2 | Product 10 0

p8 | Product 20

that attributes that are stored in the events table can only be linked to an
event. This assumption was taken for its clear choice of simplicity and it holds
in this running example, which has straightforward attributes relationships and
no changing product values over time. Even though the given example is very
obvious regarding how the attributes relate to the objects given the attribute
names, this is not always the case. If the value of a product could change over
time, the product value attributes would have to be added to the events table
but then there would be 4 attributes storing values, i.e., order value, product 1
value, product 2 value and product 3 value. Knowing which attribute is linked
to which object would then require domain knowledge as it is not explicitly
made clear in the events table. As such, this can be an issue in the future for
generic OCEL process discovery or process conformance algorithms since prior
to running such an algorithm, the user would have to specify how attributes and
objects are related to one another.

B: Based on the OCEL metamodel (Fig. 2), it is unclear whether
attributes can only be linked to an event or an object individually or
whether an attribute can be linked to both an event and an object
simultaneously. Since the OCEL standard did not intend for attribute val-
ues to be shared between events and objects by design to keep things compact
and clear and since the OCEL UML model (Fig.2) can not enforce the latter,
Object-Constraint Language (OCL) constraints would have made things clearer.
Therefore, it might be beneficial to support the possibility to track an attribute
change, e.g., the refund attribute of object Order can change from 0 to 1 and
back to 0 across the process.

C: Attributes can only contain exactly one value at a time accord-
ing to the OCEL metamodel (see Fig. 2). This observation entails two
aspects. First, it is unclear, based on the metamodel of Fig.2, whether an



Enhancing Data-Awareness of Object-Centric Event Logs 23

attribute can contain a list of values. It is not difficult to imagine situations
with a list of values, e.g., customers with multiple bank accounts or emails,
products can have more than one color. Currently, OCEL supports multiple val-
ues by creating a separate column for each value in the object or event table.
This means that each value is treated as a distinct attribute , e.g., in the run-
ning example, a customer orders a quantity of product 1, 2 and 3. This can be
considered as 1 attribute with 3 values. However, in Table 1, the columns Q1, Q2
and Q3 are considered to be separate attributes even though they could be con-
sidered as being from the same overarching attribute Quantity. Secondly, even if
an attribute only has 1 value at a time, its value could change over time as well.
Such an attribute can be considered to have multiple values at different points in
time. If a value were to change, currently, one would have to create a new object
for each attribute change. Unfortunately, this only works to some degree since
there are no object-to-object references (only through events) in the standard
OCEL format. Another possibility would require to unambiguously track the
value of an attribute of an object to a certain event that created it. This is also
valid within an IoT context with sensors having multiple measurements of the
same attributes over time. As such, the first three observations clearly go hand
in hand.

D: Both the event and object tables seem to contain a lot of
columns that are not always required for each event or object. When
looking at the events table, attribute Order Value is only filled once with event
‘confirm purchase’ when it is set for order 1. One could either duplicate this
value for all the next events dealing with order 1 or one could simply keep it
empty. Therefore, in a big event log with multiple traces one could expect a lot
of zero padding or duplication of values across events. Even though this issue is
not necessarily present in a storage format, it still shows that ambiguity about
attribute relationships might lead to wrongly stored attributes without domain
knowledge.
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3 Data-Aware OCEL (DOCEL)

Subsection 3.1 introduces the DOCEL UML metamodel. Next, Subsect. 3.2
applies DOCEL to the running example. Finally, Subsect. 3.3 introduces an
algorithm to convert a set of XES files into this DOCEL format.

3.1 DOCEL UML Metamodel

To formally introduce the DOCEL standard, a UML class diagram is mod-
eled (Figure 3). UML diagrams clearly formalize how all concepts relate to one
another in OCEL or DOCEL. Based on the observations from Sect. 2.3, the key
differences with the UML class diagram of OCEL (Fig. 2) are indicated in color
in Fig. 3 to enrich OCEL even further:

1: Attribute values can be changed and these changes can be
tracked. By allowing ambiguities, domain knowledge becomes indispens-
able to make sensible and logical conclusions. In the DOCEL UML model,
attributes are considered to be an assignment of a value to an attribute
name in a particular context event and/or object. A distinction is made
between static and dynamic attributes. Static event attributes and static
object attributes are assumed to be linked to an event or an object respec-
tively and only contain fixed value(s). Static attributes are stored in a similar
fashion as with the standard OCEL format, namely in the event or the object
table, except that now each object type has an individual table to avoid hav-
ing null values for irrelevant columns. On the other hand, dynamic attributes
are assumed to have changing values over time. Dynamic attributes are linked
to both an object and an event so that a value change of an attribute can
easily be tracked. Another design choice would be to store a timestamp with
the attribute value instead of linking it to the event, however, this might lead
to ambiguity in case two events happened at the exact same moment. As
such, this proposal tackles observation A.

2: Event attributes can unambiguously be linked to an object. This
issue goes hand in hand with the previous proposal and is solved at the same
time. By distinguishing between dynamic and static attributes all relations
between attributes, events and objects are made clear and ambiguities have
been reduced. A static attribute is either linked to an object or an event and
its value(s) can not change over time. A dynamic attribute is clearly linked
to the relevant object and to the event that updated its value. The DOCEL
UML model (Fig.3) can enforce that a static attribute must be linked with
at least 1 event or at least 1 object since a distinction is made between static
event attributes and static object attributes. For dynamic attributes, this
issue does not apply since it needs to both connected to both an object and
an event anyhow. This proposal solves both observations A & B.

3: Attributes can contain a list of values. Even though not all attributes
have a list of values, supporting this certainly reflects the reality that multiple
values do occur in organizations. In the DOCEL UML model (Fig.3) the 1



Enhancing Data-Awareness of Object-Centric Event Logs 25

cardinality for Attribute Value allows both dynamic and static attributes to
have complex values, e.g., lists, sets and records containing multiple values.
In practice, these values are stored in the relevant attribute tables with a list
of values. This proposal solves observation C.

3.2 DOCEL Applied to the Running Example

Table 3 is the events table containing all the events together with their static
event attributes (in green) in this case Resource. Complying with the DOCEL
UML model, only static event attributes are found in this table which are solely
linked to events. The main changes from the OCEL to the DOCEL tables have
been highlighted using the same color scheme as in the DOCEL UML model to
show where the columns have been moved to in the DOCEL tables.

Table 3. Informal representation of events with static attributes in a DOCEL format

EID | Activity Timestamp | Customer | Order | Product Type | Resource
el | Place Order 1/01/22 09:00 | {c1} {o1} |{p1,p2}

e2 | Receive Order 1/01/22 10:00 | {c1} {o1} | {p1,p2} Jan

e3 | Confirm Purchase 1/01/22 11:00 {o1} |{p1,p2} Jan

e4 | Collect product from warehouse 1/01/22 12:00 {o1} |{p2} Johannes
e5 | Collect product from warehouse 1/01/22 12:00 {o1} |{p1} Johannes
e6 | Put protection around the product | 1/01/22 12:15 {o1} |{p1} Johannes
e7 | Add product to package 1/01/22 12:30 {o1} |{p1} Johannes
e8 | Add product to package 1/01/22 12:30 {o1} | {p2} Johannes

Tables4, 5 and 6 represent object type tables where the objects are stored.
Each object is given an object ID. In this data-aware format, aligned with
the UML model, a distinction is made between static attributes and dynamic
attributes. Static attributes are assumed to be immutable and, therefore, the
static object attributes (in blue) are stored together with the objects them-
selves, e.g., customer name, product value, fragile and bank account. Notice
how here, once again, the attributes can be clearly linked to an object. Table 5
only contains primary keys because its attributes are dynamic attributes in this
example.

Table 4. Product Type table Table 5. Order table
Products Orders
PID Value|Fragile OrderID
pl 15 1 —

ol
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Table 6. Customer table

Customer
CID Name Bank account
cl Elien | BE24 5248 5487 2659

The red Tables7, 8, 9 and 10 are dynamic attribute tables. Dynamic
attributes are assumed to be mutable and its values can change over time. Using
two foreign keys (event ID and object ID), the attribute and its value can be
traced back to the relevant object as well as the event that created it. Each
attribute value is given an attribute value ID with the value(s) being stated in
the following column. This complies with the proposed UML model in Fig.3
where dynamic attributes are clearly linked to the relevant event and relevant
object.

Table 7. Quantity table Table 8. Order Value table
Quantity Order Value
QID Quantity [EID|OID| VID Value EID OID|
ql {520} el |oI | vl 95 e3 ol |

Table 9. Refund table Table 10. Shipping method table
Refund Shipping method
RID Refund Value EID OID SID Method EID OID
rl 0 el ol sl courrier ell |ol
r2 1 el5 |ol s2 express courrier|el8 |ol
r3 0 e24 |ol

From the DOCEL log, the following things are observed:

Attributes can unambiguously be linked to an object, to an event
or to both an event and an object with the use of foreign keys.

Attributes can have different values over time, with value changes
directly tracked in the dynamic attributes tables. This means one knows when
the attribute was created and for how long it was valid, e.g., refund was initialized
to 0 by event 1, then event 15 set it to 1 and finally event 24 sets it back to 0.

Static and dynamic attributes can contain a list of values in the
relevant attributes table, e.g., attribute Quantity.

The amount of information stored has only increased with foreign
keys. Previously, the dynamic attributes would have been stored anyhow in the
events table with the unfortunate side-effect of not being explicitly linked to
the relevant object and with more columns in the events table. This essentially
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is a normalization of an OCEL data format. Even though it starts resembling
a relational database structure, it was decided for this DOCEL format to not
include relations between objects. Deciding on whether to include object models
within event logs is essentially a difficult trade-off between complexity /scalability
and available information within the event log. From this perspective, the design
choice of XOC and OCBC was mostly focused on reducing complexity [14], where
we aim for an event log format that offers more information in exchange of a
slightly increased complexity. As such, the DOCEL standard has decreased the
amount of columns per table and thus observation D is solved as well.

3.3 Automatically Converting XES Logs to DOCEL Logs

Currently, research is focused on automatically converting XES logs to OCEL
logs with a first proposal introduced in [21]. Automatically transforming XES
logs or an OCEL log to the proposed DOCEL log would mainly require domain
knowledge to correctly link all attributes to the right object, but this is also
required for a normal process analysis of an OCEL log. Our algorithm can be
found in Algorithm 1. This algorithm takes as input a set of XES files describing
the same process and assumes that each XES file describes the process from the
point of view of one object type. The main ideas of the algorithm are as follows:

— Line 3 starts the algorithm by looping over all XES-logs.

— Lines 4-8 create the object type tables with all their objects and static object
attributes. In line 7, it is assumed that the trace attributes are not changing
and solely linked to one object. Since the assumption is made that an XES
file only contains one object type, these trace attributes can be considered as
static object attributes belonging to that object.

— Lines 10-12 require the user to identify the static event attributes and the
other event attributes that can be linked to an object. Next, a new EventID
is made to know from which log an event comes from.

— Inline 15, the dynamic attributes tables are constructed under the assumption
that attributes that have not yet been identified as static object attributes or
static event attributes are dynamic attributes.

— Lines 17-18 create the new chronologically ordered events Table F.

— Line 20 matches the events with the relevant objects based on the dynamic
attributes tables using the new EventID. It should definitely also include the
object related to the original tracelD related to that event.

— Finally, lines 21-22 will create the final DOCEL eventIDs and update the
eventID across all dynamic attribute tables.
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Algorithm 1. Algorithm to go from XES logs to DOCEL logs

1: L —1 > List of XES logs (1)
2: OT — ot > List of present object types
3: forl € L do

4: for ot € (OT € 1) do

5: Create empty object type table

6: for o € ot do > Find all objects of an object type
7 Create row with objectID and trace attributes > Trace attributes = static object attributes
8: for e € L do

9: Match event attributes to the event or to an object
10: Create newEventID with log identifier > To distinguish similar events of different logs
11: Create event table e¢; with static event attributes.
12: Create dynamic attributes table with valueID, value(s) and two foreign keys {newEventID, objectI D}

13: Create empty event table E with a column for every object type.
14: Merge all ¢; tables chronologically in E.
15: for e € E do

16: Find and insert all objects related to e in the relevant object type column
17: Create unique DOCELeventID
18: Update all foreign keys of linked dynamic attributes with new DOCELeventID

4 Limitations and Future Work

To better store information about attributes, DOCEL comes with a variable
number of tables. However, the tables should be smaller as there are fewer
columns compared to the standard OCEL format. It is still possible to only
use certain attributes or attribute values for analysis by extracting the relevant
attributes/values. Instead of selecting a subset of columns with OCEL, the user
selects a subset of tables in DOCEL which offer more information. Next, neither
OCEL or DOCEL include the specific roles of objects of the same object type
in an event, in case of a Send Message event from person 1 to person 2, making
it currently impossible to distinguish between the sender and the receiver.

To further validate the DOCEL format, the authors are planning to develop
a first artificial event log together with a complete formalization of the DOCEL
UML with OCL constraints. Furthermore, directly extracting DOCEL logs from
SAP is also planned. Regarding the algorithm to automatically convert XES logs
to DOCEL logs, the authors are planning to extend the algorithm with a solu-
tion to automatically discover which attributes are linked to objects or events.
Secondly, an extension to create a DOCEL log based on a single XES file with
multiple objects is also planned. DOCEL however offers many other research
opportunities such as novel algorithms for object-centric process discovery, con-
formance checking or enhancements which would further validate or improve the
DOCEL format. Also other domains such as IoT-related process mining can be
interesting fields to apply DOCEL on.

5 Conclusion

This paper illustrates that the OCEL standard has certain limitations regarding
attribute analysis, such as unambiguously linking attributes to both an event and
an object or not being able to track attribute value changes. To deal with these
challenges, an enhanced Data-aware OCEL (DOCEL) is proposed together with
an algorithm to adapt XES logs into the DOCEL log format. With DOCEL, the
authors hope that new contributions will also take into account this data-flow
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perspective not only for object-centric process and decision mining algorithms
but also for other domains such as IoT-oriented process analysis.
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Abstract. In process mining settings, events are often recorded on a low level
and cannot be used for meaningful analysis directly. Moreover, the resulting vari-
ability in the recorded event sequences leads to complex process models that
provide limited insights. To overcome these issues, event abstraction techniques
pre-process the event sequences by grouping the recorded low-level events into
higher-level activities. However, existing abstraction techniques require elaborate
input about high-level activities upfront to achieve acceptable abstraction results.
This input is often not available or needs to be constructed, which requires con-
siderable manual effort and domain knowledge. We overcome this by propos-
ing an approach that suggests groups of low-level events for event abstraction. It
does not require the user to provide elaborate input upfront, but still allows them
to inspect and select groups of events that are related based on their common
multi-perspective contexts. To achieve this, our approach learns representations
of events that capture their context and automatically identifies and suggests inter-
esting groups of related events. The user can inspect group descriptions and select
meaningful groups to abstract the low-level event log.

Keywords: Process mining - Event abstraction + Multi-perspective analysis

1 Introduction

Process mining comprises methods to analyze event data that is recorded during the
execution of organizational processes. Specifically, by automatically discovering pro-
cess models from event logs, process discovery yields insights into how a process is
truly executed [1]. Events recorded by information systems are often too fine-granular
for meaningful analysis, though, and the resulting variability in the recorded event
sequences leads to overly complex models. To overcome this issue, event abstraction
techniques aim to lift the low-level events recorded in a log to a more abstract represen-
tation, by grouping them into high-level activities [17].

Existing techniques for event abstraction (cf., [4,17]) are either unsupervised or
supervised. Unsupervised techniques do not require any input about targeted high-level
activities. Instead, they rely on control-flow similarities between low-level event types.
© The Author(s) 2023
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Yet, they do not consider any other dependencies between events, such as the amount of
time between their execution. Since the user of such techniques has no control over the
abstraction result, there is no guarantee that they yield meaningful high-level activities,
making it hard to ensure that an abstraction is appropriate for a specific analysis goal.
For instance, if the goal is to understand interactions between employees in a process,
grouping events based on control-flow similarity might lead to high-level activities that
encompass different employees. This makes it difficult—if not impossible—to analyze
interactions in the process. Supervised event abstraction techniques aim to overcome
such issues by requiring input about high-level activities upfront, e.g., high-level pro-
cess models [2] or predefined event patterns [10]. In this manner, such techniques give
the user control over high-level activities. However, in practice the required informa-
tion is often not available beforehand. For instance, when applying event abstraction as
a preprocessing step to process discovery, high-level process models are typically not
available [17]. Even if knowledge on the desired high-level activities is available, it may
require a lot of manual effort to translate it into the necessary input, e.g., by defining
how these high-level activities manifest themselves in low-level event patterns [10].

These two extremes, between not giving the user any control over high-level activi-
ties and requiring too much input, call for a common middle ground, i.e., a convenient
means to support users in their abstraction tasks. In particular, users should be enabled
to control the characteristics of high-level activities, while reducing the upfront knowl-
edge they need about the data. This is particularly challenging in situations where the
events’ labels do not reveal the purpose of the high-level activities they relate to. An
Update record event, for instance, could relate to any activity that modifies a business
object. In such situations it is inevitable to look at the context of events and identify
high-level activities in a more indirect manner.

To enable this, we propose an approach that allows the user to inspect groups of
events based on their common context, thus, guiding them towards identifying mean-
ingful high-level activities that can be used for abstraction without requiring upfront
input about these activities. Our approach learns representations that capture complex
contextual dependencies between low-level events, e.g., that events are executed within
a short period of time and are performed by the same resource. Based on these repre-
sentations, it automatically identifies and suggests groups of events. The user can select
meaningful groups that can in turn be used to abstract the low-level log.

We motivate the need for the multi-perspective identification of event groups for
abstraction in Sect. 2, before introducing preliminaries in Sect. 3. We present our app-
roach in Sect. 4. Then, Sect. 5 describes a proof of concept demonstrating the potential
of our approach. Section 6 summarizes related work; Finally, Sect.7 discusses limita-
tions of our work, gives an outlook on next steps, and concludes.

2 Problem Illustration

Our work deals with situations in which there are complex n:m relations between low-
level event classes and high-level activities, which means that events with the same
label can relate to different activities, which themselves can relate to any number of
events. Such low-level recording is a common issue, e.g., when dealing with UI logs,
logs from messaging and document management systems, and logs of sensor data. In
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Table 1. A single case of a request handling process recorded on a low level.

CaseID EventID Class Timestamp Role Column
Cl el Receive email ~ 05-23 07:45 Assistant
Cl e2 Create record  05-23 09:07 Assistant
Cl1 e3 Open document  05-23 10:40 Assistant
C1 e4  Close document 05-23 10:51 Assistant
Cl1 e5 Update record ~ 05-23 10:52 Assistant isComplete
Cl e6  Opendocument 05-25 15:03 Manager
Cl e’ Update record ~ 05-25 15:20 Manager isAccepted
Cl e8 Close document  05-25 15:23 Manager
Cl e9 Send email 05-26 10:03 Assistant

such settings, individual events are often not informative and cause a high degree of
variability in event logs resulting in the discovery of spaghetti models [17].

For illustration purposes, consider a request-handling process, which is supported
by an information system logging events on a low level, i.e., on the level of database
and document operations, such as Open document, Update record, and Send email. A
single case of the low-level event log of this process is depicted in Table 1. On the
activity level, blue events (e/—e2) record that a new request has been received, purple
events (e3—e5) refer to checking required documents for completeness, whereas brown
events (e6—e8) refer to a decision about a request. Finally, the gray event (e9) represents
the notification about the outcome of the request.

Looking at the sequence of events in case C1, however, does not reveal these activi-
ties, because their purpose is not explicitly indicated in the available data. For instance,
from an Open document event like e3, it is unclear if it refers to a check for com-
pleteness or a decision. Therefore, we have to discover meaningful activities in a more
indirect manner, i.e., by looking for events that occur in a commonly recurring context.
This may include the temporal context, e.g., that events occur within a short period of
time, the organizational context, e.g., that events are executed by the same resource,
and the data context associated with individual events. For instance, the purple events
(e3—e5) happen within a short period of time (12 min), are executed by an assistant,
while e5 changes the value of the isComplete column. In contrast, the brown events
(e6—e8) happen within 20 min, are executed by a manager, while e7 changes the value
of the isAccepted column. The events within these two groups share a common con-
text from both the time and resource perspectives, whereas the different columns they
update indicate a clear difference between the groups in C/, i.e., they hint at the purpose
of an underlying business activity.

Therefore, our goal is to group events that have similar contexts, in order to make
the purpose of activities that the low-level events represent more apparent. However,
commonly recurring contexts of events, like the ones illustrated above, often cannot
be identified from individual cases, because these represent single process instances
in which contexts may not recur. Therefore, we have to consider the entire event log
for this task, i.e., all events, across cases. The identification of these recurring contexts
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is highly complex from the low-level event log, though, which may have dozens of
event classes and attributes and thousands of cases. Hence, this requires an automated
identification of groups of events, yet, we also want to make sure that identified groups
are actually meaningful for a user and their specific analysis purpose.

We tackle this through two main parts: A e &
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Fig. 2. Suggestion of a group of events.
they share contexts across cases.

Effective Group Suggestions. To ensure that identified groups are indeed meaningful,
we support the user with understandable suggestions, allowing them to assess and select
groups of related events based on their context. For instance, in our running example we
identified that a group of events is executed within a short period of time by the same
role, which changes the status of the request as shown in Fig. 2. Given that the events
in this group occur in a similar context and there is a clear property that differentiates
this from other groups, i.e., the change of the isComplete value, we aim to suggest it to
the user. They might associate this group with a check for completeness in the request-
handling process, select it for abstraction, and later assign it a suitable label.

3 Preliminaries

Events. We consider events recorded during the execution of a process and write £ for
the universe of all events. Events have unique identifiers and carry a payload contain-
ing their Class and optional contextual information, such as a timestamp, resource
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information, or relevant data values. We capture this payload by a set of attributes
D = {Ds,...,D,}, with dom(D;) as the domain of attribute D;, 1 < ¢ < p. We
write e.D for the value of attribute D of an event e. For instance, for event el in Table
1, we write el.Class = Receive email and el.Role = Assistant.

Event Log. An event log is a set of traces L, with each trace a sequence of events
o € &, representing a single execution of a process, i.e., a case. An event belongs to
exactly one trace. We write E', for the set of all events of the traces in L.

Event Groups. An event group is a set of events g C F,. A grouping of events G =
{g1, .-, gk} is a set of event groups, such that G’s members are disjoint and cover all
events in Fr,i.e., Uf gi=FEp A ﬂf gi = 0.

4 Approach

As visualized in Fig. 3, our approach takes as input an event log and consists of four
steps to create event group suggestions for event abstraction. Step 1 learns contextual
dependencies between events and establishes multi-perspective representations. Step 2
groups the events based on these representations, which yields event groups as visual-
ized in Fig. 1. Step 3 then computes key properties per group, which Step 4 uses to create
suggestions by selecting groups with interesting properties and generating descriptions
of the common contexts in which a groups’ events occur. The output is a set of group
suggestions and textual descriptions per group, such as shown in Fig. 2. The user can
inspect these suggestions and select meaningful groups that serve their analysis pur-
pose. The selected groups can then be used to abstract the low-level event log.

) " - QO explores &
Representations R Properties per group | '295‘3('_9*_'???_ ) selects.

o
1. Learn multi-perspective 2. Discover 3. Compute 4. Suggest . 6 6 % N
%[ event representations event groups}’[group properties event groups : :
Ky

Event log + Groups. & Descriptions:

Groups G Groups G Suggested —~
groups Gg

Fig. 3. The main steps of our approach.

4.1 Step 1: Learn Multi-perspective Event Representations

In the first step, we establish event representations that capture the multi-perspective
context of low-level events, i.e., we aim to derive a representation r for each low-
level event e, which contains contextual information available in e’s attributes as well
as its context in terms of surrounding events in its trace. As illustrated in Sect.?2, it
is essential to consider this multi-perspective context of events to obtain meaningful
event groups. The challenge here lies in generating representations that contain the rel-
evant context required to create such groups. To this end, we leverage the ability of the
Multi-Perspective Process Network (MPPN) [11]. The approach processes traces with
various perspectives of different types, i.e., categorical, numerical, and temporal event
attributes, as well as the trace-based context.
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Class  Timestamp Role Column MPPN Representation of e7 Predictions
Receive email ~ 05-23 07:45 Assistant
Create record  05-23 09:07 ista 0.78
Open document  05-23 10:40 Assistant - Class: Update record
Close document  05-23 10:51 Col . isAccepted
Update record  05-23 10:52 nt isComplete — | 0.04 | —p] SO ISACCEPLE
Opend 05-25 15:03 ger Role: Manager
MASK MASK X MASK X MASK o .
Close document 05-25 15:23 Manager -0.23, Timestamp: 05-25 15:21

Send email

05-26 10:03 Assistant

Fig. 4. Masked event prediction to learn multi-perspective representations.

For a trace o, MPPN transforms the sequence of each available attribute’s values
into distinct 2D “images”. Each image is processed by a pre-trained convolutional neu-
ral network (CNN) and results in one feature vector per attribute. Then, in order to
obtain multi-perspective representations, the individual per-attribute vectors are pooled
and processed by a fully-connected neural network resulting in one representation of
adjustable size per trace, which contains features of all perspectives. Through the trans-
formation of sequences of attribute values into images and the use of CNNss, the app-
roach can focus on detecting similar patterns across traces in L, rather than focusing on
the specific order in which events occur in individual traces. This flexibility in terms of
how traces are processed makes MPPN a good choice for the task at hand, since, espe-
cially in event abstraction settings, we need to account for the considerable degree of
variability present in low-level event sequences. Moreover, the learned representations
include all process perspectives and thus, can be used for multi-perspective clustering
tasks.

Originally, MPPN was developed to learn representations per trace ¢ € L. There-
fore, we have to adapt its learning strategy during training to be able to obtain one
representation r per event e € E, which captures e’s multi-perspective context. To
this end, we randomly mask all attribute values of events and train MPPN to predict
these masked values given all other information in o. For instance, as shown in Fig. 4,
we replace the values of e7.Class, e7.Timestamp, e7.Role, and e7.Column with
MASK. The task of MPPN is to predict all masked attribute values of e7 using the infor-
mation from the trace’s other events. If MPPN is able to accurately predict the attribute
values of the masked events, this indicates that the learned representations capture their
events’ contexts well. Since MPPN has access to all events and their attributes before
and after e7, rich contextual information can be incorporated into 7.

After being trained in this manner on the whole event log, we obtain a set R of
representations: for each event e, we mask all attribute values of e, process o with
MPPN, and add the generated representation r to K.

4.2 Step 2: Discover Event Groups

Step 2 discovers groups of events with commonly recurring multi-perspective contexts,
which may represent high-level activities. To establish a set G of event groups, we clus-
ter events with similar learned representations since they are likely to share a similar
context, for instance, because they are executed by the same resources and occur within
a short period of time. For performance reasons, we reduce the complexity of the repre-
sentations using Principal Component Analysis (PCA). Then, we apply the well-known
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Table 2. Exemplary group properties used by our approach.

Level | Perspective | Property Example description based on template sentences

Group | Control-flow | # of event classes | This group has “Open document” and “Close document” events

Resource # of resources All events of this group are executed by 20 different resources.
Resource # of roles All events of this group are executed by the “Assistant” role.

Time Day of occurrence | 90% of events in this group happened on a Wednesday.

Time Time of occurrence | All events in this group happened before noon.

Data (cat.) | Distinct values All events have the value “Loan takeover” for the Goal attribute.
Data (num.) | Value range The Cost attribute ranges between 1,000 and 1,500 in this group.

Case | Control-flow | # of event classes | For this group, there are on average 3 events per case.

Control-flow | Range of positions | The events of this group occur in a range of 2 to 3 events.

Resource # of resources All events in this group are executed by the same resource per case.
Resource # of roles All events in this group are executed by the “Manager” role.

Time Duration This group of events takes 45 min on average per case.

Data (cat.) | Distinct values The value of the 1 sAccepted attribute changes once on average.
Data (num.) | Value range Cost attribute has a range of 50 on average for this group per case

k-means algorithm to obtain clusters. Instead of setting a specific number of clusters &,
we use the elbow method [15] to select an appropriate k£ from a range of values (from 2
up to twice the number of event classes).

This clustering yields a grouping G as illustrated in Fig. 1. By assigning labels to
each group g € G, we could build a mapping between low-level events and high-
level activities at this point already, which can be used to abstract a low-level event log.
However, the remaining steps further process the groups to suggest only interesting ones
to the user to make sure that they can assess how meaningful groups are for abstraction.

4.3 Step 3: Compute Group Properties

Next, based on the available event attributes, we compute a set of properties for each
group g € G, which jointly describe the multi-perspective common context of the
events in g. These are later used to (1) assess how interesting a group is and (2) create
textual descriptions of the group as exemplified in Fig.2. An overview of considered
properties is provided in Table 2. These do not necessarily consider all aspects of a par-
ticular input event log, yet, our approach can be easily extended with additional ones.
As the table shows, properties either refer to all events in g or to the events in g per
case. Moreover, each property refers to one attribute and, as such, to one main process
perspective, i.e., the control-flow, resource, time, or data perspective. For instance, a
group-based, resource-related property would be the number of distinct roles that exe-
cute events within a group, whereas a case-based one would be the average number of
distinct roles in a group per case.

We compute group-level properties by aggregating the attribute values of events in
a group, i.e., we collect distinct categorical and sum, average, and compute the range
of numerical attribute values. For case-level properties, we first aggregate per trace and
then take the average, minimum, and maximum. For instance, for a case-level property
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that explains the maximum number of distinct resources per trace, we count distinct
resources that executed a group’s events for each trace and take the maximum.

Handling Noise. There may be events with attribute values that occur infrequently in
the established groups, which may pollute otherwise clear, representative group proper-
ties. To deal with such noise, we introduce a noise-filtering threshold 7, which can take
values between 0 and 1 with a default value of 0.2 (the commonly used noise filtering
threshold to separate frequent from infrequent behavior). We remove an event from a
group g if the value’s relative frequency in g is less than 7 times the values’ relative
frequency in the log and recompute the property.

4.4 Step 4: Suggest Event Groups

In the final step, we select those groups that have properties that are actually interesting,
i.e., we establish a set G5 C G of groups to be suggested to the user. For these, we then
create textual descriptions providing the most interesting properties per group, such as
visualized in Fig. 2 of our running example.

Selecting Groups to Suggest. Using the properties that have been derived for a group g,
we make a selection of groups to present to the user based on the interestingness of their
properties. We argue that there are primarily two aspects that determine if a property is
interesting for multi-perspective event abstraction: distinctness and uniqueness.

Distinctness. The distinctness of a property assumes that the more a property of a group
differs from that of others, the more interesting it is. For instance, if a group of events
is the only one that contains the Manager role, this makes it interesting. We compute
the earth mover’s distance [13] using the property’s value sets for categorical properties
and the property’s averages per case for numerical ones for each group versus all other
groups. The sum of the distances is the distinctness score of a property. The larger this
score, the more distinct this group is from others for the respective property.

Uniqueness. The uniqueness of a property reflects how similar events in a group are
with respect to a specific property. For instance, a group that contains events that all
refer to the Assistant role makes this group more interesting than a group, whose events
refer to five different roles. The uniqueness of a categorical property is the number of
distinct values that occur for it in this group, whereas for numerical ones, we calculate
the variance of the values within a group. On the case level, the uniqueness can be
quantified using the mean number of distinct values per case for categorical properties,
respectively the mean value range (difference between minimum and maximum) for
numerical ones. The smaller this score, the more unique a group is for the property.

Inclusion Criterion. We rank the groups per property and include a group g in G if it
ranks highest for at least one property for either uniqueness or distinctness.

Generating Textual Group Descriptions. Next, we provide understandable explana-
tions for the groups in G. To this end, we create natural language descriptions of the
properties of a group g, such as exemplified in Fig. 2. For each property, we fill slots
of pre-defined template sentences. Examples of already filled template sentences are
provided in the rightmost column of Table 2.
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4.5 Output

Our approach outputs the set G5 of event group suggestions for event abstraction along
with their corresponding textual descriptions. A user can inspect the generated descrip-
tions and select meaningful groups. In this manner, we introduce a means to ensure
that the groups that are ultimately used for abstraction are actually useful for the user
with respect to their downstream analysis goal. While these textual descriptions are a
means to explain the generated suggestions in an intuitive manner, the set of suggested
groups in G5 are the important output for the actual event abstraction. They can be used
to build a mapping from low-level events to higher-level activities, once each selected
group is assigned a label. The concrete abstraction of the low-level event log can then
be instantiated in various manners. For instance, we can replace each low-level event’s
class with the label associated with its group, i.e., high-level activity, and only retain
the last event with the same label per trace. An important aspect is to consider multiple
instances of the same high-level activity within a trace [8], which we will address when
further developing our approach.

5 Proof of Concept

We implemented our approach as a Python prototype and simulated an event log that
mirrors the scenario outlined in the problem illustration (Sect.2)!. We aim to show that
our approach can find groups of low-level events that correspond to meaningful high-
level activities and that these can be used for event abstraction.

Data. There are no public logs available that record data as considered in our work and
for which a ground truth is known. Therefore, we modeled a high-level and correspond-
ing low-level Petri net. We simulated the low-level net introducing multi-perspective
contextual dependencies and n:m relationships between the event classes and high-level
activities. For instance, the execution of the Decide on acceptance activity (cf. Fig. 5)
yields Open document, Close document, and Update record events, is performed by one
manager per case, and takes at most 20 min.

Settings. We trained MPPN on the event log (cf. Sect. 4.1) generating vectors r of size
128. It reached almost 100% accuracy on all attributes except Resource with 73%.
For PCA, we chose an explained variance of 0.99 to minimize information loss.

Results. Table 3 shows the groups suggested by our approach, including the multi-
perspective context found in their event attributes. How these groups relate to the orig-
inal high-level activities is indicated in Fig. 5.

We found that our approach identified three groups of events that exactly resemble
high-level activities. Group 2 corresponds to the Examine thoroughly activity, Group 3
to Decide on acceptance, and Group 4 to Communicate decision. Notably, Decide on
acceptance consist of the same set of low-level event classes as Examine thoroughly.
However, Group 1 represents the whole initial phase of the process, which actually con-
sists of four high-level activities, i.e., our approach could not discriminate the intended

! The source code, high-level as well as low-level process models, simulation, and a detailed
scenario description are all available at https://github.com/a-rebmann/exploratory-abstraction.
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Fig. 5. High-level process model with groups suggested by our approach.

Table 3. Group suggestions found by our approach.

Group 1 2 3 4

Event classes | Open email, Open document, Open document, Query | Open document, Generate document,
Create record, Update record, record, Update record, Update record, Query record,
Close document, Send email Close document Close document Send email

Context Roles: Assistant Roles: Expert Roles: Manager Roles: Assistant
Resource: avg. 2.5 per case Resource: 1 per case Resource: 1 per case Resource: 1 per case
Duration: 3 h 30 m per case Duration: 20 m per case | Duration: 15 m per case | Duration: 8 m per case
Status: complete, incomplete Status: complete Status: accept, reject Status: accept, reject

high-level activities. This could be due to ambiguous contextual information, e.g.,
because the events all happen at the beginning of their case and are executed by the
same role. However, depending on the specific analysis purpose, this event group may
still be meaningful. If, for instance, a user is interested in how requests are examined
and how decisions are made, they do want to abstract from the details of this initial
phase.

To highlight the usefulness of the suggested groups for abstraction, we applied them
to the low-level event log, omitting events from groups not included in G. In partic-
ular, we map the low-level events of each group g € G, to high-level activities. The
DFG of the low-level event log and the DFG obtained after abstracting the log are visu-
alized in Fig. 6. In the low-level DFG, the nodes refer to the distinct event classes in
the log. Because one event class can be part of multiple high-level activities and one
high-level activity can consist of multiple low-level event classes, limited insights can
be obtained about the underlying process. From Fig. 6a it is, therefore, impossible to
derive the actual relations to activities in Fig. 5. For instance, since Send email events
relate to both inquiring about missing information (at the start of the process) and com-
municating a decision (at the end), there is a loop in the low-level DFG from the last to
the first node, which obscures the distinct activities. However, our approach was able to
group events in a way, such that a meaningful structure becomes visible (Fig. 6b), e.g.,
by assigning Send email events with different contexts (start vs. end of the process) to
different groups. The initial process phase has been abstracted into a single activity,
i.e., Initial check (the values of the Status attribute, i.e., complete and incomplete, hint
at a checking activity). Moreover, clear behavioral patterns that were “hidden” in the
low-level DFG are revealed for the later phase of the process: there is a choice between
doing a thorough examination or not and there is a sequence between first examining
the request, deciding on it, and finally communicating the decision. Note that we man-
ually assigned meaningful labels to the new activities, since this is not yet supported
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by the approach. However, the descriptions of the multi-perspective event contexts our
approach creates already provide the user with hints on how to label the groups.

¥

—

Update record

Open document

v
CQueryrecorag«— B

8
Communicate

decision 4

(a) Low-level DFG (b) DFG after abstraction;

(before abstraction). omitting events from groups

not included in G.

Fig. 6. Abstraction impact achieved with the suggested groups.

These results indicate the potential of the approach to identify meaningful groups of
events for event abstraction without any knowledge of true high-level activities. Also,
the necessity to involve the user becomes clear, who can inspect group descriptions and
make the final decision if a group is meaningful and which activity it resembles.

6 Related Work

A broad range of event abstraction techniques has been proposed in the context of
process mining [4,17]. To conduct meaningful abstraction, techniques require explicit
input about high-level activities, which has to be provided by the user beforehand.
For instance, some techniques assume a data attribute to indicate higher abstraction
levels [7,9], whereas others assume high-level process models as input [2]. While a
recent technique explains the relations between low-level events and activities, the high-
level activities and a mapping to low-level event classes are still required [6]. Other
techniques do not require users to explicitly provide information about higher-level
activities themselves, but criteria about when events are considered to be part of the
same high-level activity, e.g., using temporal information [3] or requirements about
the specific characteristics high-level activities should have [12]. In contrast to these
techniques, our approach does not require the user to provide input about high-level
activities upfront, but supports them in finding suitable groups of events based on their
properties, which can then be used to abstract the event log in a meaningful manner.
Beyond the context of event abstraction, a recent study [18] examined exploratory
analysis practices in process mining finding that few techniques support the user in the
exploration of event data. A notable example is the work by Seeliger et al. [14] who
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introduced a system for trace clustering, which recommends clusters to analyze based
on process performance indicators and thus, suggests groups of cases rather than events.
Tsoury et al. [16] strive to augment logs with information derived from database records
and transaction logs to allow for deeper insights when exploring event data. While these
works provide the user with valuable support when analyzing complex event logs, they
do not consider lifting low-level event data to a more meaningful level of abstraction.

7 Conclusion

This paper proposed an approach to identify and suggest groups of low-level events
based on their multi-perspective recurring contexts that it learns using only information
available in the event log. Users can inspect and select suggested groups, which supports
the meaningful abstraction of event logs without the need to provide elaborate input
about high-level activities upfront. In an initial proof of concept, we showed that the
approach can indeed identify groups that correspond to high-level activities.

The research presented in this workshop paper is work in progress. We aim to
expand the current work in several directions. First, we aim to extend the scope of our
approach by adding a phase in which users can explore groups and interactively refine
meaningful but too coarse-grained ones (such as Group 1 in Sect.5), e.g., by triggering
a clustering of a single group. Also, we aim to provide the user with various options
for abstracting events by clustering the same representations but with different settings.
Furthermore, if a group is discarded by the user because it does not make sense to them,
e.g., because events with complete as the value for a Status attribute were assigned
to the same group as events with incomplete, we want to incorporate their decision. In
such cases, a re-clustering could be applied that takes this feedback into account and
suggest groups that adhere to it. Second, motivated by the shift towards conducting
data-driven process analysis in an object-centric and view-based manner [5], we aim to
overcome the assumption that low-level events belong to exactly one case. Finally, to
assess the usefulness of our (extended) approach, we aim to go beyond an evaluation
using synthetic logs, by applying it in real-word settings and involving participants in a
user study to assess the value of the suggestions our approach provides.
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Abstract. In recent years, organizations are putting an increasing emphasis on
anomaly detection. Anomalies in business processes can be an indicator of system
faults, inefficiencies, or even fraudulent activities. In this paper we introduce an
approach for anomaly detection. Our approach considers different perspectives
of a business process such as control flow, data and privacy aspects simultane-
ously.Therefore, it is able to detect complex anomalies in business processes like
spurious data processing and misusage of authorizations. The approach has been
implemented in the open source ProM framework and its applicability was eval-
uated through a real-life dataset from a financial organization. The experiment
implies that in addition to detecting anomalies of each aspect, our approach can
detect more complex anomalies which relate to multiple perspectives of a busi-
ness process.

Keywords: Outlier behavior detection - Anomalous behavior + Data privacy *
Conformance checking - Multi-perspective analysis

1 Introduction

Today, anomaly detection is essential for businesses. This concept refers to the problem
of finding patterns in data that do not conform to regular behavior. Outliers and anoma-
lies are two terms commonly used in regards to anomaly detection. The importance of
outlier or anomaly detection lies in the fact that anomalies in data can be translated
into valuable, and often critical and actionable information in a variety of applications
such as fraud detection, intrusion detection for cyber-security, and fault detection in
systems [4]. In the business process management domain, anomaly detection can be
applied for detecting anomalous behaviors during business processes executions. Often,
organizations look for anomalies in their business processes, as these can be indicators
for inefficiencies, insufficiently trained employees, or even fraudulent activities. Mostly,
companies rely on process-aware information systems to manage their daily processes.
The event logs of these information systems are a great source of information captur-
ing executed behavior of different elements involved in the business processes such as
© The Author(s) 2023
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employees and systems. They can be used to extract valuable information about the exe-
cutions of a process (process instances) as they reflect executed behaviors. In the context
of business processes, an anomaly is defined as a deviation from a defined behavior, i.e.,
the business process model [11].

Nowadays, business processes have a high level of complexity. On top of a daily
process, many standards and regulations are implemented as business rules which
should be considered in anomaly analysis. For compliance checking, business analysts
should investigate the processes from multiple perspectives. This is a very challeng-
ing task since different aspects of processes should be considered in both isolating and
combining views in order to detect hidden deviations and anomalous behaviors. For
instance, generally employees are authorized to access sensitive data only in the context
of working and for a defined purpose. Privacy violations may happen when employees
misuse this authority for secondary purposes like personal or financial benefits. In this
regards, one of the articles in the GDPR regulation is about purpose limitation empha-
sizing “Who can access data for which purpose?”’. Such data privacy rule is closely
related to three different perspectives: i) the control flow, or the tasks being executed;
ii) the data, or the flow and processing of information; and iii) the privacy, or the legiti-
mate role allocation. This example clearly shows that the approaches which focus only
on control flow or data flow aspects are not sufficient to detect deviations and anoma-
lies in complex problems. The potential of multi-perspective process mining has been
emphasized by several contributions [2,6,8]. Although these techniques consider data
objects and/or the resources, in all of them control flow is a priority since they assume
data objects or resources as attributes of activity instances in the process execution.

Previously, we presented a balanced multi-perspective approach for conformance
checking and anomaly detection which considered control-flow, data and privacy per-
spectives all together and simultaneously without giving priority to one perspective [9].
In this paper, we extend our previous approach by considering the type of data opera-
tions (mandatory or optional) and their execution constraints in the calculation of align-
ments. To the best of our knowledge, no other approach takes data layer restrictions
of data operation type and frequency into account. Furthermore, in our new approach,
we made the concept of context (purpose) of data processing more clear. As another
improvement, to avoid reporting false positive deviations in the control flow perspec-
tive, we consider partial order of activity executions. Similarly, Lu ez al. [7] used partial
order in event data to improve the quality of conformance checking results. However
their approach checks only control flow alignment in contrast to our approach which is
a multi-perspective conformance checking method.

The remainder of this paper is structured as follows. Section 2 introduces our multi-
perspective conformance checking approach to detect complex anomalous behaviors in
business processes. Section 3 presents the applicability of our approach through a real-
life case study, discussing the experimental design and results. At last, the conclusion
of this paper is presented in Sect. 4.

2 Methodology

Current conformance checking methods use alignments (in detail explained in [3]) to
relate the recorded execution of a process with its model. Commonly, these techniques
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have a fundamental property, so-called synchronous product model. A synchronous
product model links observed behavior and modeled behavior in a Petri net format. By
using an A* based search strategy [1,12], the conformance checking techniques can
compute alignments for individual cases in an event log.

While traditional conformance checking approaches only consider control flow
aspect of a process, we consider data and privacy aspects together with control flow
perspective all at once. In the rest of this section, we explain the structure of the syn-
chronous product model in our new approach for multi-perspective conformance check-
ing and show the types of anomalies that our method is able to detect by employing A*
algorithm on the designed synchronous product model.

2.1 Construction of Synchronous Product Model

To clarify the steps of constructing the synchronous product in our approach, let us
consider the inputs shown in Fig. 1. Figure 1(a) shows a workflow-net as the process
model. This process model starts with activity A by role R1 and continues with activities
B, C, and D by role R2. According to the data model depicted in Fig. 1(b), for the
completion of activity A, mandatory data operation Read(x) should be executed and
the actor is allowed to repeat this data operation. Update(y) is another data operation
in the context of activity A that is optional and the actor is allowed to execute this
operation only once while performing A. Each of activities B, C, and D are expected
to execute one mandatory data operation in order to fulfilment. Figure 1(c) shows the
organisational model in our example. There are two roles in the organisational model.
Actor (resource) u/ has the role R/ and the actor u2 has the role R2.

Figure 1(d) shows one trace of the process log. This trace contains eight process
events that correspond to a single case. The start and complete events with the same
activity name and id indicate the occurrence of an instance of a specific activity. For
example, e3 and e4 both with id equal to 2 indicate the execution of one instance of
activity B. The events are sorted by their occurrence time.

Figure 1(e) presents a data trace with three data operations op1, op2, and op3, which
were executed on the data fields x, z, and m during the execution of case 100.

100

. Data Mandatory/ .
Activity Operati Optional Repetition
s P, s s Ps perations ptional
O . O . O . O . O |, |dReaiw M Allowed
: d2: Update(y) 0 Not Allowed
AR; B:R, CR, D:R,
(a). Process Model B @3: Update(z) M Not Allowed
Role Actor (Resource)
¢ d4: Update(K) M Not Allowed
RI ul
CaselD  EventID 1D  Activity Actor  Type Time D ds: Read(x, y) M Not Allowed R w
100 el 1 A ul Start  2021-02-01 12 (b). Data Model (¢). Organizational Model
100 €2 1 A ul Complete  2021-02-01 12
100 el 2 B ul Start 2021-02-01 12
100 el 2 B ul  Complete  2021-02-01 13 CaseD EventID  Operation  Actor — Type Time
100 €5 3 C ul Start 2 13
100 6 3 C ul Complete 2 13 100 opl Read(x) ul Complete  2021-02-01 12:40:44
100 e7 1 ¢ ul Start 2 1" 100 op2 Update(z) ul Complete 02-01
1 2

I 21-02-
I 021-02-01 14:

100 8 ul  Complete

op3

Update(m)

ul Complete  2021-02-01 13:32:38

(d). Process Trace ( a fragment of the process log)

(e). Data Trace ( a fragment of the data log )

Fig. 1. The inputs of the proposed approach in the running example
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Figure 1(d) together with Fig. 1(e) shape the observed behavior for case 100. A close
inspection of the event logs already shows that there are some conformance issues. First,
from the control flow perspective, activity D appears to be missing while activity F is
an unexpected activity according to the process model. Second, from data perspective,
two mandatory data operations d4 and d5 are missing and op3 implies the execution
of a spurious data operation by user u/. Third, from privacy (resource) perspective,
activities B and C are expected to be performed by a user playing role R2, but it appears
that these activities and data operations were performed by user u/ who plays the role
RI. From combined perspectives, although activity B was performed in correct order
and expected by the process model and its executed data operation (op2) conforms with
the data model, there is a deviation in the privacy aspect. Data operation op2 is only
supposed to be executed within the context of activity B by an actor playing the role R2
however this data operation was accessed by a user who plays the role R1.

A traditional conformance checking technique, which focuses only on the control
flow, would ignore the resource and data parts of the modeled behavior. To address
this issue, now we present our approach which considers control flow, data and privacy
aspects of a business process simultaneously for anomaly detection analysis and can
automatically distinguish all kind of anomalies which were described earlier.

As a pre-processing step, to combine process, data and privacy (resource) aspects
into a single prescribed behavior, we first shape the operation net of each activity in
the process model considering corresponding data operations in the data model. For
instance, the operation net of activity A is depicted in Fig. 2 surrounded by a red line. It
represents how we model mandatory and optional data operations and their execution
constraint in a Petri net format. In the operation net of an activity X, there are two
corresponding transitions labelled with “Xs” (X+Start) and “Xc¢” (X+complete) (i.e.
transition As and Ac in Fig. 2). For each expected data operation of the activity, one
transition labeled with the name of data operation and two places are created: one is the
input place and the other is the output place of the expected data operation. The input
place of the expected data operation is an output place for the activity transition with
the start type, while the output place of the expected data operation is an input place
for the activity transition with the complete type. An invisible transition is created and
connected to input and output places of each optional data operations (i.e. transition
below d2 in Fig. 2). An invisible transition is created and connected to input and output
places of each data operation that is allowed to be executed frequently. In this case, the
input place of the invisible transition is an output place for that data operation while
the output place of the invisible transition is an input place for that data operation (i.e.
transition above d/ in Fig. 2).

The first foundation of the synchronous product in our approach is Model net. The
model net (Ny) is constructed by replacing each activity in the original process model
(i.e. Fig. 1(a)) with corresponding operation net. Figure 2 shows the model net for our
running example. In this model, we enriched the process model (Fig. 1(a)) with the
expected data operations shown in Fig. 1(b).

The second foundation of the synchronous product in our approach is Process net.
The process net (Np) represents a process trace. It shows a sequence of the transitions
labelled with activities and their life cycle as they appeared in the process trace.
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Fig. 2. Model net of the running example. The operation net of activity A is surrounded by the
red line. (Color figure online)

The yellow part in the middle of Fig. 3 shows the process net constructed based on
the process trace example in Fig. 1. Two concurrent transitions Ac And Bs in this model
show the partial order of the completion of activity A (reflected in e3) and the start of
activity B (reflected in e3) which have the same timestamp. To match start and complete
events related to one instance of an activity, we consider a matching place labelled as
C and the name of executed activity (we call these type of places as context places).
The input and output of matching places are start and complete events related to one
instance of an activity. It should be noted that context places are created if and only if
the start and complete events related to one activity have the same “id” attribute.

The third foundation of the synchronous product in our approach is Data net. The
data net (INp) represents a data trace. It shows a sequence of the transitions labelled
with executed data operations as they appeared in the data trace. The red part in the
bottom of Fig.3 shows the data net constructed based on the data trace example in
Fig. 1.

Using the model net, process net and data net, we present the synchronous product
model as the combination of these three nets with two additional sets of synchronous
transitions. Figure 3 shows the synchronous product for our running example. For the
sake of less complexity, in this model, we relabeled the transitions of model net as ¢,,;,
transitions of process net as ¢,;, and transitions in data net as ¢4;. We also chose new
identifiers for the places in model net, process net and data net as py,;, Ppi and pg;,
respectively.

As shown in Fig. 3, other than transitions of the model, process and data nets,
there are two sets of synchronous transitions called synchronous transitions and data
synchronous transitions. Synchronous transitions only exist when an expected activity
appears in the process net. Data synchronous transitions only exists when an expected
data operation appears in the data net. Additionally, each data operation is associated
to a so called matched activity. The matched activity is the activity instance that was
executed by the same resource as the data operation and the timestamp of the data event
should be between the start and completion time of the matched activity in the process
net. These conditions are reflected in the model by input/output to the context place of
matched activity. Input places of synchronous data operations contain: the input place
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of the corresponding executed data operation in the data net; the input place of the
expected data operation in the model net; and the context place of matched activity in
the process net. Output places of the synchronous data operations contain: the output
places of the executed data operation; the output place of the expected data operation;
and the context place of matched activity.

For including the privacy aspect in the synchronous transitions, we consider a
penalty cost in case of expected activity and/or data operation done by an unexpected
role. This will be discussed in the next section under the cost function definition.

2.2 Multi-layer Alignment and Cost Function

An alignment is a firing sequence of transitions from initial marking to the final mark-
ing in the synchronous product model. In our approach, initial marking m; is the
set of starting places of each model, process and data nets. Final marking my is
the set of last places of each model, process and data nets. For instance, in Fig. 3,
m; = {Pm1,Pp1,Pa1} is the initial marking and m; = {pm1s5, Pp12,Paa} is the final
marking.

We need to relate “moves” in the logs to “moves” in the model in order to estab-
lish an alignment between the model, process trace and data trace. However, it might
happen that some of the moves in the logs cannot be mimicked by the model and vice-
versa. We explicitly denote such “no moves” by “>>”. Formally, we represent a move
as (tm, tp,ta), Where we set t,,, to be a transition in the model net, ¢, to be a transition
of the events in the process net (process trace), and ¢4 to be a transition of the events in
data net (data trace). Our approach separates moves into two categories: synchronous
moves and deviations. Synchronous moves represent expected behavior:

— A synchronous move happens when an expected activity was performed by a legiti-
mate role.

— A data synchronous move happens when an expected data operation was executed
by a legitimate role.

We further distinguish six kinds of deviations:

— A move on model happens when there are unobserved activity instances.

— A move on model happens when there are unobserved data operations.

— A move on process log happens when an unexpected activity instance was per-
formed.

— A move on data log happens when an unexpected data operation was executed.

— A synchronous move with illegitimate role happens when an expected activity was
performed by an illegitimate role.

— A data synchronous move with illegitimate role happens when an expected data oper-
ation was performed by an illegitimate role.

The computation of an optimal alignment relies on the definition of a proper cost
function for the possible kinds of moves. We extend the standard cost function to
include data and privacy costs. We define our default multi-layer alignment cost func-
tion as follows:
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Definition 1 (Multi-Layer Alignment Cost function). Let (t,,,t,,tq) be a move in
alignment between a model, process trace and a data trace. The cost K (t,,tp,tq) is:

2, if (tm,tp,ta) is a move on process log
or move on data log, or move on model

0, if (tm, tp,ta) is Process/Data sync. move
with legitimate role

1, if (tm, tp, ta) is process/Data sync. move
with illegitimate role

K(tm, tp, tq) =

Note that, to include the cost for deviations related to the privacy layer, we considered
a penalty cost equal to 1 in our cost function. If the actor of observed behavior was not
allowed to perform activity and/or data operation we add the penalty cost.

The alignment with the lowest cost is called an optimal alignment. We define Opti-
mal Multi-Layer Alignment as follows:

Definition 2 (Optimal Multi-Layer Alignment). Ler N be a WFR-net, o. and (3.
be a process trace and data trace, respectively. Assuming Ay as the set of all legal
alignment moves, a cost function K assigns a non-negative cost to each legal move:
An — RS‘ . The cost of an alignment ~y between o, (3. and N is computed as the sum
of the cost of all constituent moves K(y) = Z(tm,tp,td)ev K (tm,tp, tq). Alignment ~
is an optimal alignment if for any alignment v’ of o, B. and N, K(v) < K(v").

For finding the optimal alignments we employed A* algorithm. Figure 4 illustrates
an optimal alignment for running example, depicted on top of the synchronous prod-
uct shown in Fig. 3. It shows that there are six kinds of deviations between observed
behavior and modeled behavior, namely synchronous moves with illegitimate roles on
transitions Bs, Bc, Cs, and Cc in light blue color, data synchronous move with illegit-
imate role showing spurious data operation on transitions d3 in orange color, model
moves showing missing data operations on transitions d4 and d5 and model moves
showing skipped activities on transitions Ds and Dc in purple color, process log moves
indicating unexpected activities on transitions Fs and Fc in yellow color, and a data log
move showing unexpected data operations on transition op3 in red color.

3 Evaluation

To evaluate the applicability of our approach to real-life scenarios, we used the event log
recording the loan management process of a Dutch Financial Institute provided by BPI
challenge 2017 [5]. After splitting the provided event log, the resulting process log and
data log contain 301,709 workflow events and 256,767 data operations, respectively.
These logs were recorded from managing 26,053 loan applications. The activities and
data operations were performed by 146 resources (employees or system).

Figure 5 shows the loan management process in Petri net notation. In this process,
there are four main milestones: receiving applications, negotiating offers, validating
documents, and detecting potential fraud. The execution of activities may require per-
forming certain mandatory or optional data operations. The data model of this pro-
cess which presents the relationship between activities and data operations is shown in
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Fig. 5. Loan management process model [10]

Table 1. Such data model is created according to domain knowledge and also indicates
whether the user is allowed to repeat the execution of the data operations. As shown in
the process model (Fig. 5), three roles are supposed to conduct the activities. Most of the
activities are supposed to be done by the role clerk. Activities related to fraud detection
are supposed to be done by a fraud analyst. The activity “W Shortened completion”

Table 1. Data model of the loan management process. Type: Mandatory (M), Optional (O). Rep-
etition: is allowed (True), is not allowed (False). A: Application, O: Offer, W: Workflow [10].

Activity

Data operation

Type | Repetition

A-Create Application

Create: (applicationID)

False

W-Shortened Completion start

Read: (applicationID, email)

False

A-Accepted

Create: (offerID)

False

Read: (offerID)

False

Read: (address, email)

False

Read: (address)

False

A-Cancelled

Update: (OCancelledFlag)

True

W-Call after offer start

Update: (ACompletedFlag)

False

W-Call after offer complete

Update: (OAcceptedFlag)

False

W-Call after offer withdraw

Update: (OReturnedFlag)

False

W-Call after offer ate abort

Update: (OCancelledFlag)

False

W-Validate application start

Update: (AValidatedFlag)

False

A-Pending

Update: (OAcceptedFlag)

False

A-Denied

Update: (ORefusedFlag)

True

W-Validate application ate abort

Update: (OCancelledFlag)

True

W-Call incomplete files start

Update: (AInCompleteFlag)

2|z 2 g/g|g|g|g|g|g|0og|g|g|g =

False
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Table 2. The result of experiment with real-life data

Category | Anomaly Occurence
1 Ignored mandatory data operation “Update(OCancelledFlag)” | 40,869
2 Unexpected data operation “Update (OReturnedFlag)” 18,291
3 Unexpected data operation “Read (offID)” 11,874
4 Unexpected data operation “Create (offID)” 11,874
5 Unexpected data operation “Read (address- email)” 9,640
6 Ignored mandatory data operation “Create(applD)” 9,354
7 Unexpected data operation “Update (OCancelledFlag)” 5,624
8 Unexpected activity “W Call incomplete files complete” 2,565
9 Skipped activity “W Call incomplete files ate abort” 1,919
10 Unexpected data operation “Read (email)” 1,874

can only be executed by a manager. Managers also have the authority to perform all the
activities related to a clerk.

We implemented our approach as a package in the ProM framework called Multi
Layer Alignment in the “MultiLayerAlignmentWithContext” plugin. Using this tool,
we applied our approach on the described business process. A summary of our results
that shows ten most frequent anomalies is reported in Table 2. In addition to detect-
ing multi-layer deviations, the experiment remarks that the approach is capable to
reconstruct and provide the link between performed activities in the process layer and
executed data operations in the data layer to present the contexts of data processing.
For example, Table 2 shows mandatory data operation “Update(OCancelledFlag)” was
ignored 40,869 times. We have also developed a view that provides detailed informa-
tion, described in [10], which finds that this anomaly happened 16,735 times in the
context of activity “W-Validate application ate abort”, 16,184 times in the context of
activity “W-Call after offers ate abort”, and 7,950 times in the context of activity “A-
Cancelled”. Furthermore, it could detect who (in terms of roles and users) had the
anomalous or suspicious behaviors during process executions.

4 Conclusion

In this work, we presented an approach for detecting complex anomalous behaviors
in business processes. Through an example, we showed the structure of our multi-
layer synchronous product model which is the foundation of conformance checking
and applying alignment algorithms.

In existing multi-perspective conformance checking approaches, control flow per-
spective is a priority thus many deviations stay hidden and uncovered. In contrast, in
our approach, different perspectives of a business process such as control flow, data
and privacy aspects are considered simultaneously to detect complex anomalies which
relates to multiple perspectives of a business process.

We showed the applicability of our approach using real-life event logs of a loan
management process from a financial institute. The experiment demonstrated the app-
roach’s capability to return anomalies such as ignored data operations, suspicious activ-
ities and data operations, spurious and unexpected data operations. Additionally, our
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method could reconstruct the link between process layer and data layer from executed
behavior and present the contexts of data processing. Thus, it can discover data accesses
without clear context and purposes.

As future step, we plan a qualitative analysis of how useful the results of our app-
roach are to the business analysts to detect anomalous and suspicious behaviors in busi-
ness processes.

Reproducibility. The inputs required to reproduce the experiments can be found at
https://github.com/AzadehMozafariMehr/Multi- PerspectiveConformanceChecking
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Abstract. During the last years, a number of studies have experimented
with applying process mining (PM) techniques to smart spaces data. The
general goal has been to automatically model human routines as if they
were business processes. However, applying process-oriented techniques
to smart spaces data comes with its own set of challenges. This paper
surveys existing approaches that apply PM to smart spaces and analy-
ses how they deal with the following challenges identified in the litera-
ture: choosing a modelling formalism for human behaviour; bridging the
abstraction gap between sensor and event logs; and segmenting logs in
traces. The added value of this article lies in providing the research com-
munity with a common ground for some important challenges that exist
in this field and their respective solutions, and to assist further research
efforts by outlining opportunities for future work.

Keywords: Process mining - Smart spaces - Sensor logs

1 Introduction

Over the last few years, facilitated by the development of smart spaces,
researchers and manufacturers have shown interest in analysing human
behaviour via data collected by Internet of Things (IoT) devices. This infor-
mation is then used to get insights about the behaviour of the user (e.g., sleep
tracking), or to perform automated actions for the user (e.g., automatically open-
ing the blinds).

While both PM and smart spaces have been evolving quickly as separate fields
of study during the last years, researchers have recently explored combining both
disciplines and obtained interesting results. Applying PM techniques to smart
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spaces data, enables modelling and visualising human habits as processes [19].
However, even though process models could be extracted from smart spaces data,
multiple problems arose when applying techniques designed for BPs to human
habits [19].

This paper studies how current approaches deal with well-known challenges
in applying PM to smart spaces data and human behaviour [19]: modelling
formalism for representing human behaviour, abstraction gap between sensor and
event logs, and logs segmentation in traces. The main contribution of this article
to the research community is therefore threefold: (1) providing an overview and
comparison of PM techniques applied to smart spaces, (2) analysing how these
techniques currently deal with the three challenges identified, and (3) providing
an outline for future work.

The remainder of this paper is structured as follows: Sect. 2 introduces some
background concepts and commonly used terminology in the fields of smart
spaces and PM. Section3 describes the related work. The methodology fol-
lowed to perform the survey is defined in Sect. 4. Results are reported in Sect. 5.
Section 6 discusses the results and provides an outline for future work. Lastly,
Sect. 7 concludes the paper with an overview of the key findings.

2 Background

2.1 Smart Spaces

Smart spaces are cyber-physical environments where an information system takes

as input raw sensor measurements, analyses them in order to obtain a higher level

understanding of what is happening in the environment, i.e., the current context,

and eventually uses this information to trigger automated actions through a set

of actuators, following final user preferences. A smart space produces at runtime

a sequence of sensor measurements called sensor log in the form shown in Table 1.
The following terminology is usually employed [21]:

— Activities, i.e., groups of human atomic interactions with the environment
(actions) that are performed with a final goal (e.g., cleaning the house).

— Habits, routines, or behaviour patterns, i.e., an activity, or a group of actions
or activities that happen in specific contextual conditions (e.g., what the user
usually does in the morning between 08:00 and 10:00).

Human Activity Recognition (HAR) is a common task in smart spaces that
alms at recognizing various human activities (e.g., walking, sleeping, watching
tv) using machine learning techniques based on data gathered from IoT environ-
ments [16]. [24] argues that HAR is part of a bigger picture with the ultimate
aim to provide assistance, assessment, prediction and intervention related to the
identified activities.
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2.2 Process Mining in Smart Spaces

The main goal of applying PM in a smart space is to automatically discover
models of the behaviour of the user(s) of the smart space based on a log of the
sensors present in the environment. Models can represent activities (or habits)
that users perform in the smart space, e.g., eating, working, sleeping. It is impor-
tant to highlight the following differences between PM and smart spaces:

— Whereas smart spaces techniques usually take as input sensor logs, process
mining techniques use event logs. Events in event logs are execution of business
activities, while sensor logs contain fine grained sensor measurements.

— The term business process in PM may correspond to the terms activity, habit,
routine, or behaviour pattern in the smart space community.

— While event logs are typically split in traces (process executions), sensor logs
are not segmented and may contain information related to different activities
or habits.

Smart spaces usually produce and analyse data in the form of sensor logs.
According to [27], in order to apply techniques from the PM area, the sensor log
must be converted into an event log. The entries of an event log must contain at
least three elements: (%) the case id, which identifies a specific process instance,
(i) the label of the activity performed and (%) the timestamp. The conversion
from a sensor log to an event log usually consists of two steps, respectively ()
bridging the granularity gap between sensor measurements and events and (i)
segmenting the event log into traces, i.e., to assign a case ID to each event.

Table 1. Example of a sensor log used in smart spaces

Timestamp Sensor | Value

2022-05-31 12:34:52 | M3 ON
2022-05-31 12:34:58 | M5 OFF
2022-05-31 12:35:04 | M3 OFF
2022-05-31 12:35:22 | T2 22
2022-05-31 12:38:17 | M29 | OFF

3 Related Work

This section provides a short summary of the surveys and reviews that have pre-
viously been performed on the application of PM on human behaviour discovery.

[21] surveyed the modelling and mining techniques used to model human
behaviour. They studied the model lifecycle of each approach and identified
important challenges that typically came up when performing HAR. However,
they reviewed all sorts of techniques used in HAR,, not focusing on PM techniques.
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[24] performed a literature review and created a taxonomy on the applica-
tion of HAR and process discovery techniques in industrial environments. While
focusing on PM for HAR, this study is restricted to one application domain.

[13] analysed how classic PM tasks (i.e., process discovery, conformance
checking, enhancement) have taken advantage of artificial intelligence (AI) capa-
bilities. The survey specifically focused on two different strategies: (1) using
explicit domain knowledge and (2) the exploitation of auxiliary AI tasks. While
[13] briefly covers the application of PM to smart spaces, this section is rather
short as their focus lies on PM in general.

No recent survey has identified which existing PM approaches were applied to
smart spaces and how these approaches deal with the challenges identified in [19].

4 Methodology

To perform the survey, a systematic literature review protocol was followed to
maximise the reproducibility, reliability and transparency of the results [17]. The
protocol consists of six phases: (1) specify research questions, (2) define search
criteria, (3) identify studies, (4) screening, (5) data extraction and (6) results.
Figure 1 shows the number of studies reviewed and excluded in each phase and
the reasoning behind the exclusion.

Records removed Records Records

before screening: Records excluded: excluded: identified by
EQ-2(n=1) 1Q-1(n=78) 1Q-1 (n=17) snowballing
EQ-3 (n = 16) EQ-3 (n=3) (n=6)

T 17 78 T 20 l 6

Records identified 113 | Records screened 35 | Records 15 Base set of | 21 Studies
Limo (n=109) |[—» based on title, abstract [—® screened based —® papers ] included in
Scopus (n = 21) and keywords (n = 113) on text (n = 35) (n=15) review (n =21)

[ Identification ] [ Screening ] [ Snowballing ] [ Included ]

Fig. 1. Search methodology: included and excluded papers.

4.1 Research Questions

In this article, we will study the following research questions (RQs), focusing on
the challenges identified in [19]:

— RQ-1: how do primary studies represent human behaviour? One of the chal-
lenges when applying PM to smart spaces data is to choose an appropriate
formalism that can model human behaviour.

— RQ-2: how do PM techniques address the gap between sensor events and pro-
cess events? The low-level sensor logs from smart spaces have to be translated
to higher-level event logs [32,35].

— RQ-3: how do PM techniques tackle logs that are not split in traces? PM
requires the log to be segmented into traces, which is typically not the case
of sensor logs.
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4.2 Search Criteria and Studies Identification

Since this paper is about using PM to model human behaviour from smart spaces
data, three groups were identified: group 1 represents PM, group 2 represents
human behaviour modelling and group 3 represents the smart space environment.
Frequently used synonyms were added to ensure full coverage of the relevant
literature on each topic, yielding the following search query:

(“process mining” OR “process discovery”) AND (“behaviour pattern” OR
“behavior pattern” OR “habit” OR “routine” OR “activity of daily living” OR
“activities of daily living” OR “daily life activities” OR “daily-life activities”
OR “daily behaviour” OR “daily behavior”) AND (“smart space” OR “smart
home” OR “smart environment” OR “smart building”)

The base set of papers was identified by searching the title, abstract and
keywords using the Scopus and Limo online search engines, providing access to
articles published by Springer, IEEE, Elsevier, Sage, ACM, MDPI, CEUR-WS,
and IOS Press. The final set of articles was retrieved on 05/04/2022.

4.3 Screening

The papers identified by the search string must pass a quality and relevance
assessment in order to be included in the survey. The assessment consists of
exclusion and inclusion criteria.

The exclusion criteria EQ-x are defined as follows:

— EQ-1: the study is not written in English.

— EQ-2: the item is not fully accessible through the university’s online libraries.

— EQ-3: the paper is a duplicate of an item already included in the review.

— EQ-4: the study is a survey or literature review primarily summarising previ-
ous work where no new contribution related to the research topic is provided.

The inclusion criterion IQ-x is defined as follows:

— IQ-1: the study is about discovering and modelling human behaviour using
PM techniques using smart spaces data and answers at least one research
question.

The first set of primary studies was formed by all articles that remain after
the inclusion and exclusion criteria screening. Once these studies were selected,
forward and backward snowballing was performed. Articles identified through
snowballing were screened using the same criteria.

4.4 Data Extraction

First, generic information was extracted such as title, authors, year of publica-
tion, and the environment in which the included study is situated. Afterwards,
the research questions were answered based on the content of each article.



Table 2. Overview of included primary studies

ID |Ref | Title Year | Environment | Dataset | Type(s) of sensors Labelled | Segmentation

S1 | [11] | Process Mining for Individualized Behavior Modeling Using 2013 | Healthcare | Own Proximity / T
Wireless Tracking in Nursing Homes

S2 | [4] |Learning and Recognizing Routines and Activities in SOFiA 2014 | Office Own Motion, Brightness, Light, Yes A

Temperature, Pressure,
Touch and Magnetic

S3 | [5] |Incremental Learning of Daily Routines as Workflows in a Smart | 2015 | Home [6] Motion, Temperature and Yes A>A
Home Environment Magnetic

S4 | [7] |Process-Based Habit Mining: Experiments and Techniques 2016 | Home [6] Motion Partially | T'

S5 | [34] | Heuristic approaches for generating Local Process Models through | 2016 | Home [38] Motion, Magnetic and Power | Yes T
log projections

S6 | [23] | Revealing daily human activity pattern using PM approach 2017 | Home [25] Motion, Magnetic and Float | Yes T

S7 |[3] |Discovering Process Models of Activities of Daily Living from 2018 | Home [6] Motion, Temperature and Yes A>A
Sensors Magnetic

S8 | [36] | Event Abstraction for Process Mining Using Supervised Learning | 2018 | Home [38] Motion, Magnetic and Power | Partially | 7'
Techniques

89 [ [29] | Addressing multi-users open challenge in habit mining for a 2018 | Home Own Proximity / T
PM-based approach

S10 | [33] | Generating time-based label refinements to discover more precise | 2019 | Home [38] Motion, Magnetic and Power | No T
process models

S11|[9] | Analyzing of Gender Behaviors from Paths Using Process Mining: | 2019 | Commerce | Own Proximity No T>T
A Shopping Mall Application

S12|[2] | Extraction of User Daily Behavior From Home Sensors Through 2020 | Home [6] Motion, Temperature and Yes A>A
Process Discovery Magnetic

S13 | [20] | Visual process maps: a visualization tool for discovering habits in | 2020 | Home [6] Motion Yes A
smart homes

S14 | [37] | Process Mining for Activities of Daily Living in Smart Homecare | 2020 | Healthcare | [30] Not Specified Yes A

S15|[8] | Discovering Customer Paths from Location Data with Process 2020 | Commerce Own Proximity No T>T
Mining

S16 | [26] | A Multi-case Perspective Analytical Framework for Discovering 2021 | Home [31] Proximity Yes A
Human Daily Behavior from Sensors using Process Mining

S17 | [15] | Process Model Discovery from Sensor Event Data 2020 | Home [6] Motion Partially | T

S18 | [10] | Unsupervised Segmentation of Smart Home Logs for Human 2022 | Home (6] Motion, Temperature and | No T>T
Habit Discovery Magnetic

S19 | [22] | Interactive Process Mining in IoT and Human Behaviour 2021 | Home Own Motion No T
Modelling

520 | 28] | Supporting Users in the Continuous Evolution of Automated 2021 | Home Simulated | Motion Yes T
Routines in their Smart Spaces

S21 | [18] | The Benefits of Sensor-Measurement Aggregation in Discovering | 2021 | Home Simulated | Motion Yes T>T

ToT Process Models: A Smart-House Case Study
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5 Results

Table 2 gives an overview of the studies included in the survey, and provides
general information about each study. Figure2a shows the publication trend
over the years.

5.1 Modelling Formalisms

An overview of the modelling formalisms used by the papers surveyed is shown
on Fig. 2b (note that some papers used more than one modelling language). Petri
Nets are by far the most used formalism, consistent with the fact that it is a very
popular process modelling formalism and the output to several state-of-the-art
discovery algorithms.

Petri Nets is followed by weighted directed graphs, mostly as the output of
the fuzzy miner algorithm [14], which allows to mine flexible models.

A third noteworthy modelling language is timed parallel automata, a for-
malism introduced in [12] that is designed to be particularly expressive. Other
formalisms are less spread, only used by at most two studies. In addition, only
S20 uses a modelling formalism that incorporates the process execution context.
Also note that S9 only derived an event log from the sensor log and did not mine
a model, hence no formalism is used.

None: S9

40 Context-adaptive task models: 520

Process trees: S20

35 Petri Nets: S5, 57-8, S10,

Causal Nets: S17 S12, S14, S17-18, S21
Unweighted directed
graphs: S6, S14

First order logic: 52-3

30

25

20

15

10

05

00
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Timed parallel automata: S1, Weighted directed graph: S4,

S11, S19 $6, S15-16

(a) Number of publications per year (b) Breakdown of the use of formalisms in
the studies

Fig. 2. Statistics about the studies.

5.2 Abstraction Gap Between Sensor Events and Process Events

This section gives an overview of the techniques that the primary studies use to
convert sensor events into process events. Among them, S14, S15, S20 and S21
do not require any conversion step because they already work with event logs
instead of sensor logs. In particular, S20 and S21 make use of synthetic event logs
produced by a simulator. All the other studies have validated their approaches
with real-life datasets, as shown in Table 2. Six studies (S1, S2, S9, S11, S15,



64 Y. Bertrand et al.

S19) have performed the validation step on datasets they generated themselves,
all the other ones have applied their methodologies on state-of-the-art datasets,
namely [6,25,30,31,38].

Two general approaches to make groups of sensor measurements that corre-
spond to higher-level events can be identified from the literature: (7) classical
window-based, time-based or event-based segmentation, and (%) more complex
time-series analysis.

In order to translate raw sensor measurements into proper event labels, the
most common method is to derive information from the sensor’s location, as
in S1, S5, S11, S12, S15, and S19. E.g., if the triggered sensor is above the
bed then the activity “sleeping” is derived. However, this method has its draw-
backs, acknowledged in S4: the information provided by motion sensors is not
always detailed enough to derive activities accurately. These ambiguities could
be addressed by introducing other types of sensor in the environment (e.g., cam-
eras), but making the approach more intrusive.

In S13, authors perform the conversion task by adapting an already exist-
ing algorithm to automatically segment and assign human actions’ labels (i.e.,
MOVEMENT, AREA or STAY), combined with their relative location inside
the smart environment (e.g., STAY Kitchen_table).

Using a labelled dataset facilitates this conversion task. Studies S8, S10 and
S16 have used such labelling to manually deduce event names. However, this app-
roach can be very time consuming and error prone, and labels often corresponds
to activities at a higher level of abstraction with respect to atomic events.

5.3 Log Segmentation into Traces

PM techniques typically need a log to be segmented in traces with a case ID [27],
a requirement that is often not met by sensor logs (only the sensor log in S10
meets this requirement). To account for this, most of the included studies use
a form of segmentation to obtain an event log made of distinct cases, as shown
in Table 2, where T is time-based and A is activity-based. We assume that all
studies, even those that do not state it explicitly, at least segment the sensor log
in one trace per day to meet the requirement posed by PM techniques.

There are two types of segmentations applied in the studies: manual vs auto-
matic. The following studies perform a manual activity-based segmentation:

— S7 performs activity-based segmentation to segment a log by creating one
trace per day. Their approach uses the ‘sleeping’ activity to determine when
two consecutive days should be split.

— S12 uses activity-based segmentation to segment a day into activities. Based
on the annotations added by the user, artificial trace start and end events are
added to the sensor log (e.g., when a user indicates that he or she is starting
the ‘cooking’ activity, a start event is added to the sensor log).

Alternatively, some approaches try to automatically segment the log. This
solution appears more feasible in real scenarios than manual labelling, which is
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time-consuming and error-prone. In the analysed works, automatic segmentation
is performed according to the time dimension following different strategies:

— Using the time-based technique to split days using midnight as cut-off point;
such as in S4 and S5.

— Segmenting each day into activities or visits by measuring the gap between
two sensor events. When the gap is larger than a predefined threshold, the
log is split in two traces; such as S11 or S21.

In addition, if the sensor log contains different human routines a clustering
step is usually implemented, such as in S21.

6 Discussion

This section discusses the invistagated challenges and identifies future lines of
research.

6.1 Modelling Formalisms

As discussed in Sect. 5.1, papers applying PM to smart spaces data must explic-
itly or implicitly choose a formalism to represent human processes.

Interestingly, while it is suggested in [19] that human routines are volatile and
unpredictable, the most used formalism in the reviewed studies is Petri Nets, an
imperative modelling language. This may simply be because Petri Nets are one
of the most widely used languages in PM, which allow, a.o., process checking,
simulation and enactment.

A certain number of studies opted for more flexible formalisms, e.g., weighted
directed graphs. This enables the discovery of clearer and potentially better fit-
ting models, though less precise and actionable. A solution to make those more
actionable is to implement prediction techniques, as in S8. It is also remark-
able that none of the studies mined declarative models, a widespread flexible
paradigm that could be able to cope with the volatility of human behaviour.
This may be explained by the fact that declarative models are usually harder
to understand than imperative models, making it more complex for the users to
interact with the smart space system.

Finally, another important aspect in smart spaces is context-awareness: the
process model should be context-aware to adapt to the changes in the environ-
ment [1]. This is surprisingly still neglected in current research about PM applied
to smart spaces. Only S20 supports the modelling of context adaptive routines
by using context-adaptive task models and process trees.

6.2 Abstraction Gap Between Sensor Events and Process Events

The abstraction gap has been recognized as one of the main challenges in BP
applied to IoT data [40].
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The main challenge here is that the solutions proposed in the literature are
dataset- and/or sensor-specific. In most cases only PIR sensor data are available,
witnessing the human performing actions in specific areas of the house. This also
makes the techniques proposed very sensitive to the distribution of sensors across
the environment. In addition, the scarce availability of datasets makes it difficult
to evaluate the proposed approaches across multiple scenarios. In most cases,
datasets from the CASAS project! are used. This does not provide a sufficient
heterogeneity to ensure a reliable evaluation.

Finally, input from the broader PM literature could help address this issue.
More specifically, generic event abstraction techniques used in PM could also
be used to abstract sensor events into process events (see [39]). In addition to
this, IoT PM methodologies also propose techniques to extract an event log from
sensor data such as, e.g., in S17; a deeper dive in this literature could identify
relevant abstraction techniques for smart spaces.

6.3 Log Segmented into Traces

The proposed approaches for segmentation are usually naive (e.g., automatic
daily based segmentation) or relying on extensive output from the user (i.e., in
manual activity-based segmentation). From this point of view, the open research
challenge is to perform segmentation by using the process semantics and the
context. An initial proposal has been given in [10] where process model quality
measures are used to iteratively segment the log.

In addition to this, segmentation is only a part of the problem, as traces
must be clustered in order to produce event logs that are homogeneous from the
point of view of instances, which is a prerequisite for PM. This is analogous to
the general issue of case ID definition in PM, i.e., pinpointing what an instance
of the process is.

6.4 Future Work

First of all, the study of the best modelling formalism for human behaviour is to
be continued, as many different languages are used and some languages show-
ing potentially useful characteristics have not been used yet (e.g., declarative
models). The choice on the formalism may need to be adapted to the specific
application, and transformations between formalisms may also be a viable option
to meet diverse needs (understandability, actionability, expressiveness, flexibility,
etc.). In addition, the use of contextual information to create more meaningful
models remains for a large part unexplored.

Another issue that stands out is the frequent usage of the same datasets by
the included studies. A large portion of the included studies use one of the most
common datasets from smart homes to perform their research (see Table 2). The
scarce availability of these datasets may explain the trend of studies focusing on
the home environment (see Table 2). While the use of a common dataset makes

! See http://casas.wsu.edu/datasets/.
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it easier to compare the different methods, it might make some of the techniques
less generalisable to other data and other environments.

Another suggestion for future work is to source datasets from more varying
environments. Diversifying the application scenario could benefit the research
community as this might lead to new insights or techniques. Additionally, sim-
ulators could also be developed to generate labelled datasets that can be used
to develop and validate PM techniques for different kinds of smart spaces and
types of sensors.

7 Conclusions

In this paper, we surveyed the application of PM to smart spaces data. A total
of 21 studies were included in the survey and classified according to how they
handle three main identified challenges PM techniques need to deal with when
analysing smart spaces’ data [19]: 1) use of a suitable formalism to represent
human behaviour; 2) abstraction gap between sensor events and process events;
3) log segmentation into traces.

The results showed that there are already some suitable solutions for these
challenges, achieving the mining from sensor measurements to activities, and
sometimes going a step further by identifying habits. However, some important
issues still need to be addressed in future work, such as the selection of an
appropriate modelling formalism for human behaviour mining, the exploitation
of context information, the generalisability of the developed techniques or the
challenge of multi-user environments.
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Abstract. To improve the user experience, service providers may sys-
tematically record and analyse user interactions with a service using
event logs. User journeys model these interactions from the user’s per-
spective. They can be understood as event logs created by two indepen-
dent parties, the user and the service provider, both controlling their
share of actions. We propose multi-party event logs as an extension of
event logs with information on the parties, allowing user journeys to be
analysed as weighted games between two players. To reduce the size
of games for complex user journeys, we identify decision boundaries
at which the outcome of the game is determined. Decision boundaries
identify subgames that are equivalent to the full game with respect
to the final outcome of user journeys. The decision boundary analysis
from multi-party event logs has been implemented and evaluated on the
BPI Challenge 2017 event log with promising results, and can be con-
nected to existing process mining pipelines.

Keywords: User journeys * Event logs - Weighted games - Decision
boundaries

1 Introduction

In a competitive market, a good user experience is crucial for the survival of
service providers [1]. User journeys model the interaction of a user (or customer)
with a company’s services (service provider) from the user’s perspective. One
of the earliest works to map user journeys was proposed by Bitner et al. in the
form of service blueprinting [2]. Current tools can model and analyse individual
journeys with the aim to improve services from the customers’ point of view [3,4].

User journey analysis methods based on event data exploit events recording
the user interactions with a service and its underlying information systems. Due
to the sequential nature of user-service interactions, process mining techniques
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that assume grouped sequences of events as input, have been used to analyse
user journeys [5-8]. For example, Bernard et al. explore and discover journeys
from events [7] and Terragni and Hassani use event logs of user journeys to give
recommendations [5]. Input events are treated in the same way as for the analysis
of business processes: each journey is an instance of a process (case) recorded in
a sequence of events (trace) where each event represents an activity occurrence.
In contrast to a business process, which may include numerous actors and
systems, a user journey is a sequence of very specific interactions between two
parties: the user, and one or more service providers. This invites a specific view on
the source event log, where some events are controlled by the user and others by
service providers. At the end of the journey, some events represent desirable out-
comes for the service provider (positive events) whereas others represent unde-
sirable outcomes (negative events). Such partition of the event log into desired
and undesired cases or process outcomes has been explored before. Deviance
mining classifies cases to investigate deviations from expected behaviour [9]. A
binary partition of the event log into positive and negative cases was used in, e.g.,
logic-based process mining [10,11] and error detection [12]. Outcome prediction
aims to predict the outcome of a process case based on a partial trace [13,14].
However, these works do not consider the interactions between user and service
providers in user journeys as interactions between independent parties. Results
of game theory have previously been used by Saraeian and Shirazi for anomaly
detection on mined process models [16] and by Galanti et al. for explanations in
predictive process mining [17]; in contrast to our work, these works do not use
game theory to account for multiple independent parties in the process model.
In this paper, we propose a multi-party view for user journeys event logs
and present a model reduction based on game theory. We have recently shown
how to model and analyse a user journey as a two-player weighted game, in a
small event log (33 sequences) from a real scenario that could be manually anal-
ysed [15]. However, in scenarios with a large number of complex user journeys,
the resulting game can be challenging for manual analysis. This paper intro-
duces a k-sequence transition system extension on the directly follows graph of
the multi-party game approach presented in [15], and proposes a novel method to
automatically detect decision boundaries for user journeys. The method can be
useful for the analysis of the journeys since it identifies the parts from where the
game becomes deterministic with respect to the outcome of the journey, i.e., the
service provider has no further influence on the outcome afterwards. We apply
our method to the BPIC’17 dataset [18] as an example of complex user-service
interactions, which is available in a public dataset. BPIC’17 does not include
information on which activities are controlled by the user (a customer is apply-
ing for a loan) and which are controlled by the service provider (a bank). We add
this information based on domain knowledge and define multi-party event logs as
an extension of event logs with party information for user journeys. The appli-
cation on BPIC’17 demonstrates the feasibility and usefulness of our approach.
Our results show that we can automatically detect the most critical parts of the
game that guarantees successful and, respectively unsuccessful, user journeys.
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Fig. 1. Construction of the decision boundary reduction.

This analysis could be extended with automated methods targeting predictive
and prescriptive analysis, e.g., recommendations for process improvement.

The outline of our paper is illustrated in Fig. 1. Section 2 introduces necessary
definitions and summarizes user journey games. These are extended with a novel
game theoretical reduction method in Sects.3 and 4. Sectionb illustrates our
reduction method and the results on BPIC’17 and Sect. 6 concludes the paper.

2 User Journey Games

This section provides background on our previous work on user journey
games [15]. The input to the user journey analysis is an event log [19] stor-
ing records of observations of interactions between a user and one or more ser-
vice providers. An event log L is a multiset of observed traces over a set of
actions [19]. Given a universe &/ of actions, traces 7 € L are finite, ordered
sequences (ag, - ..,a,) with a; € o7, i.e., L € B(«7*). Given an event log L, we
introduce the concept of a multi-party event log £ = (L, P, I) in which each event
belongs to a party, where P is the set of parties and the function I extends the
traces 7 € L with information for each event about the initiating party from P.

Transition systems S = (I, A, E, so,T) have a set I' of states, a set A of
actions (or labels), a transition relation E C I"'x Ax I', an initial state so € I" and
aset T C I of final states. A weighted transition system S extends a transition
system S, with a weight function w indicating the impact of every event [20].
Weighted games partition the events and consider them as actions in a weighted
transition system, controllable actions A. and uncontrollable actions A, [21].
Only actions in A, can be controlled. Actions in A, are decided by an adversarial
environment. When analysing games, we look for a strategy that guarantees a
desired property, i.e. winning the game by reaching a certain state. A strategy is
a partial function I" — A, U {\} deciding the actions of the controller in a given
state (here, A denotes the “wait” action, letting the adversary move).

User journeys capture how a user moves through a service by engaging in
so-called touchpoints, which are either actions performed by the user or a com-
munication event between the user and a service provider [3]. User journeys are
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inherently goal-oriented. Users engage in a service to reach a goal, e.g. receiv-
ing a loan or visiting a doctor. If they reach the goal, the journey is successful,
otherwise unsuccessful. This can be modelled by a transition system with final
states T', and successful goal states from a subset Ts C T every journey end-
ing in t € Ty is successful. A journey’s success does not only depend on the
actions of the service provider—the journey can be seen as a game between ser-
vice provider and user, where both parties are self-interested and control their
share of actions. We define user journey games as weighted transition systems
with goals and self-interested parties [15]:

Definition 1 (User journey games). A user journey game is a weighted
game G = (I, A., Ay, E, so, T, Ts, w), where

— I are states that represent the touchpoints of the user journey,

- A, and A, are disjoint sets of actions respectively initiated by the service
provider and the user,

- ECT xA.UA, xI are the possible transitions between touchpoints,

- so € I' is an initial state,

— T C I are the final states of the game,

- Ty C T are the final states in which the game is successful, and

- w: E — R specifies the weight associated with the different transitions.

The analysis of services with a large number of users requires a notion of user
feedback [3]: Questionnaires provide a viable solution for services with a limited
number of users, but not for complex services with many users. In a user journey
game, the weight function w denotes the impact that an interaction has on the
journey. A user journey game construction is described in [15]. When building
user journey games from event logs, we used Shannon entropy [22] together with
majority voting to estimate user feedback without human intervention. The more
certain the outcome of a journey becomes after an interaction, the higher the
weight of the corresponding edge. Gas extends weights to (partial) journeys so
they can be compared. Given an event log L and its corresponding weighted
transition system S, the gas G of a journey 7 € L accumulates the weights when
replaying 7 along the transitions in S, G(7) = >, . w(a;).

Formal statements about user journey games can be analysed using a model
checker such as UPPAAL STRATEGO [23]. UPPAAL STRATEGO extends the
UPPAAL system [24] by games and stochastic model checking, allowing proper-
ties to be verified up to a confidence level by simulations (avoiding the full state
space exploration). If a statement holds, an enforcing strategy is computed. To
strengthen the user-focused analysis of user journeys, we assume that an adver-
sarial environment exposes the worst-case behaviour of the service provider by
letting the service provider’s actions be controllable and the user’s actions uncon-
trollable. For example, let us define a strategy pos for always reaching a successful
final state. Define two state properties positive for a successful and negative
for an unsuccessful final state. The keyword control indicates a game with an
adversarial environment and A<> searches for a strategy where the flag positive
eventually holds at some state in all possible paths of the game:
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Algorithm 1. Decision Boundary Detection

Input: User journey game G = (I', A¢, Au, E, so, T, Ts, w), unrolling constant n
Output: Decision Boundary M C I
: Assert Termination of Model Checker
: Initialize mapping R : I" — {True, False}
: for State s € I' do
Game G’ + DESCENDANTS(s)
Game G” «— Acvcric(G',n)
Update R(s) < QUERY(G")
Set I'r «+ {s € I' | AR(s") Vs’ € DESCENDANTS(s)}
Set I'v — {s € I' | A\—~R(s") Vs’ € DESCENDANTS(s)}
9: Add State spos and speg to G > States implying outcome
10: for State s € I' do
11: if s € I'p then MERGE(G, Spos, S)
12: else if s € I'v then MERGE(G, Sneg, S)

PN DT

13: M «— 0

14: for State s € I' do > Build decision boundary
15: if {Spos, Sneg} ={t |t € (s,t) € E} then M — M U {s}

16: return M

strategy pos = control: A<> positive.

If the strategy pos exists, it can be further analysed and refined to, e.g., minimize
the number of steps or gas to reach a final state within an upper bound time T:

strategy min = minE(steps) [t<= T] : <> positive under pos .

Strategies can be stochastically evaluated using a number of runs X, e.g., evaluate
the minimal gas of the refined strategy within an upper bound time T:

E[t<=T; X] (min: gas) under min.

3 Decision Boundaries

A decision boundary abstracts a game to focus on crucial parts from where the
future outcome is decided. Finding the decision boundary in a complex game can
be useful; e.g., there might be no guarantee to find a successful game strategy
pos (see Sect.2). Such a strategy can only be found for certain states in the
game, which may be scattered around and therefore hard to analyse when using
non-automatic methods. Moreover, detecting the decision boundary that lead
to outcomes in the game from where there is no possibility of recovery can be
used to propose further recommendations for service improvement. Figure 1b
and lc illustrate the game abstraction using decision boundaries. The red and
green marked parts of the game in Fig. 1b display guaranteeing areas. Once the
journey reached a state within those areas, the outcome becomes deterministic.
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Since all reachable states from a red or green state share the same outcome, they
can be abstracted away (Fig. 1c).

Algorithm 1 computes the decision boundary for a game G. The mapping R,
from states s to Boolean, stores whether there exists a successful strategy pos
that starts from each state s € I (Lines 2-6). The algorithm computes a reach-
able sub-game G’ for every state s using the function DESCENDANTS(s), which
computes the parts of G which are reachable from s by path exploration. Func-
tion ACcYcCLIC(G', n) unrolls n times all loops in G’, e.g. by a breadth-first search
strategy. An example of loop-unrolling in games is displayed in Fig. 2. The result-
ing acyclic game G” is then model checked with QUERY(G") to look for a suc-
cessful strategy pos. The result is stored in R(s).

Furthermore, some states are segregated into two sets, I'p and Iy, based
on the results from the previous computation (Lines 7-8). States from which
it is only possible to reach positive, respectively negative, results are assigned
to I'p, respectively I'y. States in these sets guarantee the outcome of the game.
The game is simplified by abstracting all states in I'p, respectively Iy, into one
state Spos, respectively Syeq, using the function MERGE (Lines 9-12). Once one
of these states is reached, the journey becomes deterministic; the service provider
has no further influence on the final outcome. The states which point to spes and
Sneg form the decision boundary (Lines 13-15).

4 Mining Decision Boundaries

Event logs obtained from wuser journeys ()
record actions performed by several parties.

A user can send messages to a service offered >Q‘I

by a service provider and a service provider )

can send messages to a user currently using
the service. It is common practice that arte- (a) Cyclic Model.
facts of these actions are recorded in the ser-
vice provider’s event logs, particularly the
order of actions. However, knowledge about
which party has triggered which action is
commonly ignored while collecting such logs.

In this paper, we approximate multi-party

event logs L by pre-defining a party func- (b) Acyclic Model.
tion I mapping actions a in event log L to
a party in P = {C,U}, where C denotes the Fig. 2. Unrolling example.

service provider and U the user. For simplicity, we assume that different service
provider parties are captured by the same party C.

We can now build a user journey game from a multi-party event log fol-
lowing [15] (see Fig.1 for an overview). We then extend the obtained directly
follows graph to a k-sequence transition system S¥ = (I', A, E, s, T') [25], which
considers states that record the last k actions happening in the traces of L
and stores them in a single state; e.g., the 2-action states of trace (a,b,c)
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are {(a), {a,b), (b, c)}. This abstraction captures more information in the game,
improving the precision of the game and the alignment between game and log.

We insert an initial state sg at the beginning of each trace 7 € L, and a
final state t € T at the end of each trace 7 € L. Let H denote the set of states
corresponding to the k-sequence abstraction for all traces in L, then the states
are defined by I' C {so} UT U H. The transition relation E is constructed over
adjacent actions in all traces 7 € L. An edge (8;,ai+1, Si+1) is in F if there is a
trace 7 € L where the last action in state s; is followed by the last action a; 1 in
Si+1- A transition with action a;11 in Sf, means that the corresponding action
has also been performed in 7.

The constructed transition system S¥ is transformed into a user journey
game by computing the weights on the transitions (see Sect.2), and applying
function I to compute the set A, = {a | I(a) = C} of actions controlled by the
service provider and the set A, = {a | I(a) = U} of actions controlled by the
user. The user journey game is used to compute its decision boundary (Sect. 3).
States behind the decision boundary are merged into successful and unsuccessful
states (Fig. 1c). The result is a strongly reduced game preserving all information
on the decision structure.

5 Evaluation on BPIC’17

The BPI Challenge 2017 (BPIC’17) [18] provides an event log recording actions
in loan applications from a Dutch financial institute. Since this event log has
records of interactions between users and a service provider, including calls, it
is a suitable event log for user journey analysis. However, we needed to make
assumptions to complete the missing information for our scenario, e.g., which
journeys are successful or unsuccessful and infer the party function I with knowl-
edge about which actions are triggered by which party.

The event log contains activities from the following groups: Application (A),
Offer (O) and Workflow (W) [26]. Recorded journeys in the log can end with
three different states: (1) an offer is accepted, (2) the application is declined, or
(3) the application is cancelled. We define a party function I, based on domain
knowledge and official information given in the BPIC’17 forum.! We assume that
only users can cancel, submit or complete an application, and that users decide
whether calls take place. We further assume that accepted offers are successful
journeys, cancellations are unsuccessful journeys: both parties would prefer a
different outcome since the user spent time in the service and the bank invested
resources, and declined applications are neither successful nor unsuccessful jour-
neys: users followed the whole process without achieving their goal (the bank has
to decline certain offers to protect the users, e.g., from unsustainable debt). We
exclude declined application journeys from the analysis, given their ambiguity.

BPIC’17 is known to include a substantial change in the service provider’s
process, called a concept drift [27], in July 2016. To investigate how this change
impacts the user journey game, we split the log at this month and investigate

! https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017.
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both parts separately. The first part contains traces until 30.06.2016, while the
second part contains traces after 01.08.2016.

5.1 User Journey Game Generation

We now report on the generation of the user journey game for the BPIC’17 event
log, with focus on the preprocessing of the data. The full implementation is given
in the accompanying artefact.?2 We pre-processed BPIC’17 by discretising the call
durations according to their length, tagging different offers inside one trace, and
ignoring incomplete journeys. This was necessary since records of call durations
vary between seconds to hours and several call interactions in one journey consist
of repeated adjacent occurrences of events associated to one call. To discretise the
duration, we first aggregate repeated and adjacent calls. After the aggregation,
we consider calls with duration under 10 min as “short”; between 10 min and 4 h
as “long”; and above 4 h as “super long”. Single calls with a speaking time below
60 s are omitted in the aggregation. Records of multiple offers can be present in
the same journey. One of these offers can be accepted while the remaining are
cancelled. To simplify journeys, every event associated to an offer or cancellation
is ignored after one of the offers is accepted. Offers are automatically cancelled
if there is no response after 20 days. We differentiate between actively cancelled
offers and cancellations due to time-out, and ignore incomplete journeys and
journeys with declined applications.

We further simplify the event log by removing events that do not influence
the journey; e.g., W_Call after offers is always followed by A_Complete, therefore
one of them can be removed systematically. We removed outliers and only kept
journeys whose variance is present in the corresponding log more than once.
Journeys resulting in a cancellation are considered unsuccessful, thus Speq is
attached to them; S5 is attached to the successful ones. After preprocessing,
we generated the user journey game, following the method of Sect.4. We first
generated the transition system S, with sequence history 3. The party func-
tion I and weight w transformed S} into a user journey game.

5.2 Simulation
80

Stochastic simulations can help a service o0l — ;ﬂax
3 . . . — step
provider to evaluate strategies, to guide their — both

40 {
users along their services, before implement-

ing them. We evaluated different strategies
on the user journey game for BPIC’17 until
July, using UPPAAL STRATEGO to learn and
. 0 5 10 15 20 25 30

compare the outcomes. In the experiments #Steps

reported in this section, we consider three

strategies. In the strategy max, the service Fig.3. Simulations under different

strategies.

201

Final Gas

-201

2 https://github.com/smartjourneymining/bpi_games/releases/tag/EdbA22.
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provider can guide the user through the service by maximizing the final gas,
while in the strategy step the service provider is minimising the expected num-
ber of steps. We also consider a strategy with the combination of both, both.
Furthermore, we treat the user as controllable to allow a comparative analysis
between the strategies, so that all the strategies reach a positive final state.

The simulations in Fig.3 show
the developments of the gas value
under different strategies. The sim-
ulations reveal that users have to
endure a dip in their gas at the
beginning of their journey to reach
the positive final state. From the
customer’s perspective, it is not
optimal to have negative expe-
riences (negative gas) to com-
plete the service successfully. The
strategy max achieves the highest
amount of gas, 33% above step,
but it also causes the largest mini-
mum, 50% more than step, within
the dip. The strategy step reduces
the number of taken steps by 30%,
and improves the gas minimum by
33%, but it also reduces the final
gas by 25%. The combined strategy
both maximizes the final gas while
minimising the expected number
of steps, and yields a comparable
high maximum as max, while reduc-
ing the number of steps by 22%
and holding steps’s improved min-
imum.

5.3 Decision Boundary

An exhaustive search over all
states revealed the decision bound-
aries for both BPIC’17 event
logs, using the algorithm in Algo-
rithm 1. Figure4a shows the deci-
sion boundary for the first part, i.e.
until July, and Fig.4b for the sec-

(b) From August 2016

Fig. 4. Decision boundaries (Blue) for both
BPIC’17 Event Logs. (Color figure online)

ond part. The states positive and negative incorporate all states with a certain
outcome. Blue states mark the decision boundary. Time-out cancellation edges
are violet, edges with a positive weight are green and edges with a negative

weight are red.
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We first report on the outcomes of the analysis for the first event log and then
for the second one. Our analysis revealed the existence of few paths to successful
final states, and that several journeys time-out very far into the application
process.

Analysing the decision boundary reveals that most states are negatively
biased and have a direct connection to negative. With uncontrollable user actions,
the service provider has no means to guide the user to a successful outcome,
except for a small positive cluster around positive. Most positive states require
long journeys. A detailed analysis reveals that four out of five states in the deci-
sion boundary are related to calls. The action “W_Call incomplete files” leads to
the decision boundary from two states and “O_Sent (online only)” (only sending
the offer online) from two other states.

The figure reveals many time-out cancellations from various states during
the journey, even for paths that are very far into the application process. Such
cancellations are unsatisfactory for both the service provider and user, since both
parties invested time and resources into the journey and preferred a different
outcome. The service provider can draw two action recommendations: reaching
the positive outcome should be simplified, thus the decision boundary could be
extended, and well-progressed journeys should be increasingly prevented from
time-outs, thus reducing the number of time-outs of progressed journeys.

Figure 4b shows the process model for the later data set. The figure shows
that the process model changed significantly after the concept drift in Juli 2016.
The new decision boundary inherits all states except one and contains one new
state. The positioning of the new boundary has improved. The decision bound-
ary improved in two parts: it reaches further into the negative part of the game
and increased in size. While the previous decision boundary contained only five
states, the updated decision boundary contains seven states. The updated deci-
sion boundary includes four out of five states of the previous decision boundary
and the fifth state lies now before the decision boundary. Additionally, it con-
tains three new states: one was previously in the positive cluster, one was prior
to the decision boundary and one new state.

Besides the total number of nodes also the reachability of the decision bound-
ary improved. The number of nodes reaching the decision boundary increased
by % The amount of timeouts within advanced journeys is reduced. Customers
that continue far into the journey are more prone to finish successfully or to can-
cel by themselves. The average number of actions from start to time-out reduced
from 5.4375 to 5, thus the user journey improved generally.

The service provider can now start to investigate the actions related to states
in the decision boundary.

6 Conclusion

This paper proposes a novel view on user journey event logs by introducing multi-
party event logs that differentiate between the actors of actions leading to events.
To promote a user-centric view, the service provider is modelled as controllable
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and the user as uncontrollable. Based on such a multi-party event log, we show
how to use user journey games to model the interaction between user and service
provider, and use model checking to find strategies with guaranteed outcomes.

We introduce an analysis to identify decision boundaries; these constitute a
crucial part of a game at which the outcome of the user journey is determined.
Decision boundaries are useful since strategies that guarantee a positive out-
come for all paths are unlikely in complex user journeys. The decision boundary
additionally serves to reduce the size of the game. This enables us to apply the
user journey game approach to the BPIC’17 dataset, which is a real-life event
log of a complex user journey that can be transformed to a multi-party event
log. The decision boundary gives clear insights into determining factors for the
BPIC’17 user journey before and after a concept drift. Our analysis reveals the
changes done in the workflow and demonstrates the support and applicability for
further analysis through our method, assuming a transformation of the BPIC’17
event log into a multi-party event log, and assuming that users actually have an
influence on their journey through their active decisions.

User journey games and decision boundary analysis open many interesting
directions for future work. We plan to combine user journey games with well-
established process mining tools to discover process models for behaviour leading
to determining states. Furthermore, we would like to automate recommendations
for improvement, based on the decision boundary. While the decision boundary
is helpful for analysing the interaction between a user and service providers, the
analysis is still hand-made. We also plan to generalise the approach to cyclic
models to make it agnostic to the current unrolling bound n in each cycle. Fur-
thermore, we would like to investigate probabilistic games to capture ambiguities
within user actions. Finally, we would like to implement a multi-party event log
in cooperation with companies to study real interactions between user and ser-
vice provider.
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Abstract. Complexity is an important aspect of business processes.
Numerous metrics have been introduced to measure process complexity,
however, existing metrics view processes merely as sequences of activi-
ties, disregarding the corresponding data. This is a major omission since
much of the complexity of business processes stems from the variation of
data that is associated with it. In this paper, we refer to recent research
on how behavioral complexity of business processes can be defined. More
specifically, we extend entropy-based complexity metrics such that they
are capable of capturing the variation of event data. We provide some
first insights into the implications of applying these newly proposed
metrics.

Keywords: Process complexity - Event data - Graph entropy

1 Introduction

The central objectives of Business Process Management (BPM) is the improve-
ment of process performance [5]. One of the factors hampering process perfor-
mance is complexity. For this reason, it is key prerequisite for process improve-
ment to be able to, first, measure process complexity in an appropriate way and,
then, define measures to address it.

Prior research has contributed to our understanding of how process complex-
ity can be measured based on event logs [1]. However, it is an important omission
that these event-log measures are defined purely based on the behaviour aspects
of event sequences. This neglects observations from work on process standard-
ization that identified eleven theoretical dimensions that are tied to process
standardization [13]. Notably, two of them relate to inputs & outputs and to
data. Also other fields like Machine Learning acknowledge the importance of
data complexity and its impact on results of, e.g., prediction models. So far,
there is no process complexity measure that reflects the complexity of data.

In this paper, we address this research problem and discuss how the complex-
ity of process-related data can be integrated with process complexity measures.
To this end, we extend an existing entropy-based process complexity metric with
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aspects of process-related event data. We provide a preliminary evaluation on an
artificial as well as a real-life event logs and discuss directions for future work.

The remainder of this paper is organized as follows. Section2 introduces
existing complexity metrics and their limitations. Section 3 presents our app-
roach. Section 4 shows the preliminary evaluation, its discussion and limitations
of this paper. Section 5 concludes the paper.

2 Background

This section discusses the background of our research. We first reflect upon prior
contributions to measuring process complexity based on event logs. Then we turn
to approaches from neighboring fields on how to measure data complexity.

2.1 Process Complexity Metrics

Over the years, several process complexity metrics have been introduced. They
have focused on one of the following aspects: size, variability and distance. Size-
based metrics count properties of an event log, such as the number of events,
traces, average trace length, etc. Metrics related to variability show the variation
in the event log, they often build transition matrices based on directly-follows
relations observed in the event log [1] or use the number of unique sequences
in the log [12]. Distance-based metrics measure the difference between traces in
the event log, e.g. affinity of two event sequences, i.e. the extent to which the
directly-follow relations of the sequences overlap [6].

Recently, complexity metrics based on graph entropy have been introduced:
variant entropy, normalized variant entropy, sequence entropy and mormalized
sequence entropy [1]. The latter one has been proven to capture all the three
aspects of process complexity and also correlate with the complexity of the dis-
covered process models. A major drawback of all these metrics is, however, that
they are sill solely focused on the behavior and ignore event data.

2.2 Data Complexity Metrics

Machine Learning domain has a long history of measuring data complexity. This
is not surprising as the complexity of the input data is expected to influence the
performance of the predictions. Researchers in the Machine Learning domain
generally used three kinds of complexity metrics proposed in [7] and [8]:

1. Measure of overlap: Fisher’s discriminant ratio (F1), volume of overlap region
(F2), feature efficiency (F3).

2. Measure of class separability: The minimized sum of the error distance of a
linear classifier (L1), training error of linear classifier (L2), the ratio of average
intra/inter class nearest neighbor distance (N2), leave one out error rate of
the 1-NN classifier (N3).
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3. Measure of geometry, topology and density of manifolds: Nonlinearity of lin-
ear classifier by Linear programming (L3), nonlinearity of 1-NN classifier
(N4), space covering by e-neighborhoods (T1), average number of points per
dimension (T2), density (D1).

These metrics have been widely used for different tasks, e.g. [9] uses them
for the selection of suitable normalization technique for a particular classifica-
tion problem, [10] uses some of the data complexity measures to estimate the
significant intervals for oversampling.

However, such complexity metrics have limited applicability in the process
mining domain. First, these metrics measure assume the data has class labels
and, moreover, implicitly assume that these labels are fixed. They then measure
complexity with respect to this classes, e.g. overlap between classes or class sep-
arability. While such metrics seem useful for some applications, e.g. categorical
outcome prediction in Predictive Process Monitoring, they would provide little
help when the data is not split into classes at all or these classes are not relevant
for the problem at hand, e.g. remaining time prediction. Furthermore, even if
useful, such metrics would give different results for the same data depending on
the problem, e.g. if the same dataset is used for categorical outcome and next
activity prediction, the classes for two problems would be different and thus
the complexity measurements. Second, a study has shown that while some of
the data complexity metrics provide useful information, e.g. are connected with
classifier performance, they cannot be used to compare different datasets wihh
different characteristics [2]. Finally, these metrics ultimately treat the data as a
sample of independent observations, ignoring the process notion and the corre-
sponding relations between the data points, i.e. events. This might be a critical
drawbacks for process mining applications.

While the former drawbacks could theoretically be fixed by taking a step back
and using entropy or Gini index of the entire dataset as a metric of complexity,
the latter problem of losing the process notion would still persist. Thus, our
goal in this paper is to extend an existing process complexity metric with the
capability of considering data complexity as well.

3 Approach

In order to incorporate data complexity into a process complexity metric, we
extend the existing complexity metrics based on graph entropy [1]. First, we
introduce Enriched Extended Prefix Automata that include event data. Second,
we introduce cumulative complexity metrics that allow to study in more detail
how the complexity changes as new events are observed.

Extended Prefix Automata (EPA), introduced in [1], are a representation
of business processes without abstraction. However, in its basic form, an EPA
only contains information about the behavior. It means, the transitions between
states are only labeled with activity labels, and the events in the EPA only
contain activity label, case ID timestamp and a link to the predecessor event.
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Enriched EPAs, or EEPAS for short, are EPAs enriched with other event data.
In essence, it is achieved in the following way. First, an event in the EEPA does
not only contain its basic attributes (case ID, activity label, timestamp and pre-
decessor) but also an Attribute Container, where all trace and event attributes
are stored. The distinction between trace and event attributes is made in order
to prevent name collisions, otherwise these attributes are treated equally, and
each event in the trace contains all trace attributes of its trace. The EEPA con-
taining such events is then a state automaton with guards. Thus, the transitions
of an EEPA are labeled not only with activity labels but also with correspond-
ing attribute values. In order to follow a transition on EEPA, the event thus
should have not only a matching activity label but also matching attributes.
In case there is no matching transition, a new partition with new state and a
corresponding new transition is added to an EEPA, in the same way as a new
partition is added to an EPA on a previously unobserved prefix. One can then
apply the same complexity metrics to an EEPA as to an EPA — variant entropy,
normalized variant entropy, sequence entropy and normalized sequence entropy
— but they will now take data into account as well because the underlying EEPA
is partitioned based on behavior and the data.

b [data=value 1] e c e

(b) Enriched Extended Prefix Automa-
(a) Extended Prefix Automaton (EPA) ton (EEPA)

Fig. 1. Difference between an extended prefix automaton and an enriched extended
prefix automaton built from the same event log.

Figure 1 shows the difference between an EPA and an EEPA built from the
same event log L = [{(a, b, c)?, (a, c, d)] where in of the (a, b, c) traces the activity
b carries event data valuel and in the second one value2. While the EPA only
has 2 partitions and both {(a, b, ¢) traces belong to partition 1, the corresponding
EEPA makes difference between these two traces based on the event data and
thus puts these traces in 2 different partitions and has 3 partitions in total.
This necessarily means an EEPA would have more states and partitions than
an EPA built from the same log, leading to higher variant entropy. An EEPA is
also expected to have higher sequence entropy and normalized sequence entropy
as it has more partitions with the same number of events. This is, however, not
necessarily the case for normalized variant entropy exactly because an EEPA has
more partitions but at the same time more states than a corresponding EPA.
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It is important to note though that attribute selection plays a crucial role in
building an EEPA. If an event log is rich in attributes, including them all might
lead to an EEPA where every trace is represented with a separate partition,
which is not too insightful. First, it is recommended to use only categorical vari-
ables, since numeric ones have a much lower probability to coincide on different
events. Thus, existing numerical attributes should either be disregarded or trans-
formed into categorical bins, where the size of the bins also has significant impact
and thus should be chosen with caution. Second, for the same reason it might
be meaningful to also perform similar binning even on categorical attributes in
case they have a large number of values. Finally, one should consider based on
the value ranges as well as the attribute description whether the attribute is
relevant at all and possibly reduce the pool of attributes used.

Our claim is that data adds an additional layer of complexity on top of
behavior. Thus, it is interesting to observe how complexity of a process increases
over time by adding new data values while the behavior stays exactly the same.
In order to do so, we also introduce the concept of cumulative complexity. That
is, we want to not only measure the total complexity of the entire log but also
want to see how it evolved, i.e. how new behavior and/or data influenced the
complexity. To this end, we introduce the concept of an active event which is
an event in the (E)EPA that happened (arbitrarily far in the past) before some
threshold timestamp, i.e. an event having a timestamp smaller than some given
threshold. Similarly, an active state is a state in an (E)EPA that includes at
least one active event. Then we only consider active events/states for measuring
sequence and variant entropy, respectively.

By gradually increasing the threshold, we can add more and more events
to the (E)EPA as if we were building it in real time and get the complexity
metrics at each point in time, e.g. at the end of each week, month, year, etc.
It is equivalent to measuring complexity after each period and then continuing
to build the (E)EPA, however, can be repeated indefinitely with different time
granularity over the same automaton. In addition, it enables to use two kinds of
normalization.

Normally, the variant and sequence entropy are calculated using all
states/events in an EPA. Then, the normalization is done by dividing the met-
ric by |X|log(]X|), where | X]| is the total number of states/events in the EPA.
When normalizing cumulative metrics, however, there are two possibilities. While
variant and sequence entropy are obviously measured over active states/events,
when it comes to normalization these metrics can be divided by either the num-
ber of active states/events or by the total number of the states/events in the full
(E)EPA (containing the full event log). The former option would be indeed equiv-
alent to measuring normalized metrics at the end of each time period, and the lat-
ter one allows to observe cumulative growth of the normalized metrics over time.
These 6 cumulative complexity metrics — variant entropy, variant entropy nor-
malized over active states, variant entropy normalized over all states, sequence
entropy, sequence entropy normalized over active events, sequence entropy nor-
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malized over all events — equip us with the means of observing how new events
(carrying new behavior and/or data) influence the complexity.

4 Evaluation

In this section, we present the preliminary evaluation of our approach. First,
with an artificial event log and then with real-life event logs. Next, we discuss our
results and report current limitations. The implementation is publicly available
on GitHub!.

4.1 Artificial Event Log

We use an example loan process application from [5] shown in Fig.2. We manu-
ally created an event log with 10 traces. All events have a user associated with
it. The event Loan application received is always associated with a user System,
which is not considered further. The events associated with the activity Assess
loan risk have a categorical variable Risk and the events associated with the
activity Appraise property have a numerical variable Price. In the first month,
there are 4 traces following 2 variants with 1 user and 2 risk levels. In the second
month, additional 2 variants are introduced. In the third month, additional user
is added who follows the same variants. Finally, in the fourth month additional
risk level is added, while the users and variants are kept the same. The prices

vary over the entire event log.
applicant
Check credit Assess loan not eligible Reject
history risk application
Loan
application
rejected

Assess
eligibility
" Prepare Send
Afg r::fe acceptance acceptance
RICDELLY pack pack
Acceptance

pack sent
Fig. 2. Loan process, reused from [5].

Loan
application
received

applicant
eligible

We then computed the four complexity metrics — variant entropy, normalized
variant entropy, sequence entropy and normalized sequence entropy — for this log
but varied the data that we took into consideration. Table 1 shows the results.
The first row corresponds to an EPA that only considers the behavior and uses no
data. The second row corresponds to an EEPA that only uses the User variable
of the events, and so on. We also split the numeric price into 3 bins to show how
numeric data can also be incorporated.

As we can see, the complexity of the EEPAs using additional data on top
of behavior is considerably higher than the complexity of an EPA. We also see

! https://github.com/MaxVidgof/process-complexity.
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Table 1. Complexity of the artificial event log using different amount of event data.

Data Variant | Normalized Sequence | Normalized
entropy | variant entropy | entropy |sequence
entropy

None 16.25 |0.4 47.16 0.17

User 42.58 |0.53 95.64 0.35

User & Risk 80.0 0.56 118.52 0.44

User & Risk

& Price (binned) |109.12 |0.59 135.94 0.50

User & Risk

& Price (numeric) | 109.12 | 0.59 135.94 0.50

that all metrics continue to grow as we consider more variables since it leads to
higher partition counts in the EEPA.

16 801 — variant entropy

50
10
40
8
30
6
20
.
—— Variant entropy 10
g g0 A a0 (O A Y A o> g g0 A0 a0 O A O A o>
1°11,Q 1011.0 1011.0 1611.0 1011,0 1011,0 ’161.‘_.0 161.‘_.0 101.“.0 1°11,Q 1011.0 1011.0 1511‘“ 1011,0 1011,0 ’161.‘_.“ 1“’11.0 101.“.5
Date end Date end
(a) Cumulative variant entropy of simple (b) Cumulative variant entropy of EEPA
EPA with User and Risk

Fig. 3. Cumulative variant entropy for simple EPA and an enriched EPA with User
and Risk event data.

Cumulative complexity metrics also enable us to observe how the complexity
changes as new events are observed. For instance, Fig. 3 shows the development
of variant entropy. When only behavior is considered (Fig.3a), the complexity
stops growing as soon as all variants are observed. When the event data is also
taken into account (Fig.3b), however, variant entropy continues to grow even
when all variants are observed because of the new data: new user introduced in
March and new risk level added in April.

4.2 Real-Life Event Logs

We also conducted a preliminary evaluation of our technique on the Business
Process Intelligence Challenge logs from years 2012 [4], 2013 [11] and 2015 [3].
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For each event log, we did the following. First, we filtered the event logs such
that they contain only categorical attributes, i.e. we removed all attributes hav-
ing numeric values or representing dates. Second, we generated an Extended
Prefix Automaton from each log. We will further refer to these automata as sim-
ple EPAs. We calculated variant entropy, normalized variant entropy, sequence
entropy and normalized sequence entropy for each of these simple EPAs. Further-
more, we calculated cumulative metrics — variant entropy, variant entropy nor-
malized over active states, variant entropy normalized over all states, sequence
entropy, sequence entropy normalized over active events, sequence entropy nor-
malized over all events — for each month from the month of the rirst event in the
respective log to the month of the last event. Then, we generated Enriched
Extended Prefix Automata (enriched EPAs or EEPAs) from the same logs
repeated the same procedures, i.e. calculated the 4 total complexity metrics as
well as 6 cumulative complexity metrics over time. As a result, for each log we
had 4 complexity metrics for the corresponding simple EPA, 4 complexity met-
rics of the corresponding EEPA, 6 time series of cumulative complexity metrics
for the EPA and 6 time series of cumulative complexity metrics for the EEPA.

First, we wanted to evaluate whether the new metrics adequately depict
the additional complexity introduced by event data. Two-sided t-test reported
significant difference between normalized sequence entropy of the enriched and
the simple EPA. In all cases, except the normalized variant entropy, the metric
for the enriched EPA was greater than of its simple counterpart. Thus, we also
performed one-sided t-tests. While the p-values were considerably smaller in all
cases, normalized sequence entropy still remained the only one with significant
difference (p-value 0.01). Interestingly, difference in variant entropy was also
close to significant (p-value 0.09). More observations might render it significant
as well.

For each of the logs we also compared the time series of the 6 cumulative com-
plexity metrics measured with the simple and enriched EPAs. Here, we not only
performed two-sided t-tests that would say whether the difference in means of
the two samples is significant but also performed two-sided Kolmogorov-Smirnov
tests that would assess whether two samples come from the same continuous dis-
tribution. It is important to note that some event logs carry events from before
the observation period, e.g. BPIC 2012 includes some events from late 2011.
This introduces periods having only 1 event and thus entropy metrics equalling
0, which might influence the value distribution. Thus, in such cases we also filter
the metrics for the corresponding event log, keeping only non-zero observations.
Periods with non-zero observations are naturally the same for the metrics com-
puted with EPA and EEPA.

The results of these tests can be seen in Table2. The columns in the table
represent the metric, the rows are different time series pairs (for a simple and
enriched EPA) and cells indicate whether there was a significant difference
between two time series. T means t-test reported significant difference and K
means Kolmogorov-Smirnov test reported significant difference. We say the dif-
ference is significant when the p-value is below 0.05.
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Table 2. Differences in cumulative complexity metrics of enriched extended prefix
automata and extended prefix automata for real-life event logs. T stands for sig-
nificant difference reported by t-test, K stands for significant difference reported by
Kolmogorov-Smirnov test.

Data Variant |Normalized |Normalized |Sequence |Normalized |Normalized
entropy |variant variant entropy |sequence sequence

entropy entropy entropy entropy (all)
(active) (all) (active)

BPIC12 TK TK

BPIC13 K

BPIC13 filtered TK

BPIC15.1 TK K TK

BPIC15.2 K

BPIC15_2 filtered TK

BPIC15.3 TK K TK

BPIC15_3 filtered | TK K TK

BPIC15.4 K K K

BPIC15.4 filtered | T K TK

BPIC15.5 T K

BPIC15.5 filtered | T K TK

As we can see, sequence entropy normalized over active events significantly
differs for all event logs with Kolmogorov-Smirnov test and for almost all event
logs with t-test. Variant entropy shows significant difference with Kolmogorov-
Smirnov test in 4 logs and with t-test in 7 logs. Variant entropy normalized over
active states shows significant difference in Kolmogorov-Smirnov test in 6 logs.
Finally, sequence entropy normalized over all events shows significant difference
with Kolmogorov-Smirnov test in 1 log.

4.3 Discussion

The evaluation on the artificial log shows that the new metrics are capable of
highlighting the complexity introduced by new event data. While some of this
increased complexity could be uncovered by using existing process complex-
ity metric in conjunction with auxiliary metrics, e.g. the added user could be
also spotted with Social Network Analysis and multimple risk levels could be
extracted from internal documentation or a BPMS, this would not necessarily
work with all data, especially if this data comes from external sources. It is also
important to note that while binning indeed allows taking numerical data into
consideration, the efficiency of such method largely depends on the granularity,
since if set too high it might bring no additional value compared to directly using
numerical data.

Evaluation on the real-life logs further confirms these results. Normalized
sequence entropy seems to highlight the increase in complexity due to data in
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the most effective way. This is not surprising as normalized sequence entropy
also the only one that significantly correlates with, e.g. model complexity [1]
and may just be a better metric.

When it comes to the cumulative metrics, sequence entropy normalized over
active events shows best significance, also confirming the above stated ideas. As
expected, also the differences in variant entropy are significant. The underlying
idea that with the same behavior more distinct data would lead to more branch-
ing and more partitions in the EEPA than in the EPA of the corresponding log,
which would also logically lead to higher variant entropy, seems to have found
its confirmation. The fact that such effect is observed not in all event logs may
be attributed to lower difference in data in the other logs. However, it needs
further and more detailed investigation.

4.4 Limitations

This paper is a work in progress and thus suffers from a range of limitations.
First, there are limitations in terms of the implementation. While it is capable
of handling smaller event logs, it does not scale well, thus restricting evaluation
and, more importantly, real-life application of the metrics. Second, the attribute
selection in the real-life log evaluation was superficial. It considered all of the
categorical attributes and none of the numeric ones. More thorough selection
of categorical attributes as well as meaningful binning of the numeric ones is
expected to give more adequate results. Third, only basic statistical methods
were used for the analysis, especially when it comes to cumulative metrics. While
they are definitely time series, no analysis techniques specific to this kind of data
has been applied yet.

5 Conclusion and Future Work

Complexity is important aspect of business processes that requires thorough
studying. While existing process complexity metrics are successful in measuring
behavioral complexity of the processes, they completely ignore the data associ-
ated with the events and thus miss the next layer of complexity that is added
by this data. On the other hand, there exist data complexity metrics, however,
they do not have the notion of process and also have other implicit assumptions
that limit their usability in process mining.

In this paper, we proposed a set of new process complexity metrics that take
into account event data in addition to behavior. These metrics are based on
existing complexity metrics for Extended Prefix Automata but use an updated
version of such automata — Enriched EPAs. We conducted preliminary evaluation
on a small artificial example as well as on a set of real-life event logs.

The initial results show that our new metrics capture the data complexity
in addition to behavior complexity. We plan to extend our evaluation on more
real-life logs, improve the implementation and analyse the results in more detail.
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3rd Workshop on Responsible Process Mining (RPM)

Process mining has been successfully applied in analyzing and improving processes
based on event logs in all kinds of environments. Responsible Process Mining (RPM)
is highly relevant to our more and more data-driven society and has received less focus.
FACT (Fair, Accurate, Confidential, and Transparent) and similar other principles for
data science and machine learning have been proposed! to guide the development and
application of data science. Issues such as lacking data quality in event logs, identifiable
personal data in event logs, biased event logs, learning, discovery techniques with opaque
parameters, uncertain event data, and many more aspects threaten compliance with these
principles in process mining. However, process mining could also be applied to help with
the “FACT-ful” application of machine learning and other data-driven techniques by
bringing transparency. All such aspects of RPM were in the scope of the RPM workshop
thereby covering a wide range of concepts and challenges such as fairness, accuracy,
confidentiality, privacy, transparency, explainability, trust, data quality, ethics, security,
and other related topics.

The main objective of the RPM workshop was to create a forum where researchers
and practitioners can meet each other and start new collaboration points to promote
responsible process analytics. We also considered topics from the ethics aspect to clar-
ify real ethical issues for the process mining community with respect to the rules and
regulations. We invited researchers and industry to share their research, ideas, experience
reports, and challenges in this area.

For this year’s edition, we received seven papers that cover all three topics and both
perspectives. From them, we were able to accept three full papers for presentation and
inclusion in the workshop proceedings. In addition, we invited one submission for a
presentation-only session.

Our workshop program was joined together with the workshop on the related topic
on Data Quality and Transformation in Process Mining (DQT-PM). We started with an
inspiring keynote on “Sustainability at Celonis” by Janina Nakladal. “Discrimination-
Aware Process Mining: a Discussion” was presented as the first paper in the workshop.
It gave an overview on how fairness metrics can be applied in a process mining setting.
The second paper “BERMUDA: Participatory Mapping of Domain Activities to Event
Data via System Interfaces” proposes a solution for mapping domain activities to specific
events. The full paper session was wrapped up with the paper “TraVaS: Differentially
Private Trace Variant Selection for Process Mining” which is a novel approach for the
differential private publication of trace-variant counts. Finally, we discussed the question
“Can we trust Process Mining results?” for which we invited Anne Rozinat (Fluxicon)
and Sander Leemans (RWTH Aachen) to bring their views from practice and research.

Around 30 attendees were present during the keynote, workshop presentations, and
panel discussions. Due to the generous support of the ICPM organizers, we could award
the best presentation. The Best Paper Award of the RPM workshop in 2022 went to

1 https://redasci.org.
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Majid Radfiei, Frederik Wangelik, and Wil M.P. van der Aalst for “TraVaS: Differentially
Private Trace Variant Selection for Process Mining”.
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Abstract. Organizations increasingly use process mining techniques to
gain insight into their processes. Process mining techniques can be used
to monitor and/or enhance processes. However, the impact of processes
on the people involved, in terms of unfair discrimination, has not been
studied. Another neglected area is the impact of applying process mining
techniques on the fairness of processes. In this paper, we overview and
categorize the existing fairness concepts in machine learning. Moreover,
we summarize the areas where fairness is relevant to process mining and
provide an approach to applying existing fairness definitions in process
mining. Finally, we present some of the fairness-related challenges in
processes.

Keywords: Process mining + Fairness - Discrimination

1 Introduction

Organizations interact with and affect people, such as customers, employees,
or stockholders in many forms. They operate in various sensitive environments
such as education, employment, healthcare, and finance. Processes taking place
in such sensitive environments often have important and life-changing effects on
the people involved. Moreover, such processes typically involve several decision-
makings which are performed by human resources or (supported by) machine
learning algorithms trained on historical data. These decision-makings are one of
many factors that make processes vulnerable to various forms of discrimination.
See [20] for real-life examples of discriminatory outcomes produced by algorith-
mic decision makers. As the impact of processes on the people involved can be
very drastic, it is crucial to be able to identify instances of discrimination within
processes in order to minimize negative impacts.

Process mining is a set of techniques that combine data science with model-
based process analysis to enable the understanding and improvement of opera-
tional processes. Even though the concept of responsible data science has been
investigated in process mining related literature, [2,4], to the best of our knowl-
edge, in this area, [23] is the only work dedicated to fairness. In this work, making
fair conclusions, which is one of the main aspects of fairness in process mining, is

© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 101-113, 2023.
https://doi.org/10.1007/978-3-031-27815-0_8
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investigated. Here, we mainly focus on another main aspect of fairness in process
mining: detecting unfair discrimination against cases and resources. Intuitively,
(unfair) discrimination is the act of treating similar individuals in the same sit-
uation differently based on one or more protected attributes, such as ethnicity,
race, gender, (dis)ability, or sexual orientation [11].

Typically, process mining techniques are categorized into three types: process
discovery, conformance checking, and process enhancement. Figurel (adapted
from [1]) shows the interaction between the processes, the environment they
take place in, and the process mining techniques. Processes impact their envi-
ronment, which may intentionally or unintentionally pose discrimination towards
the people in their environment. This discrimination might have stemmed from
the process itself, its resource(s), or learned from the historical data. The inter-
action between the process and its environment is captured by the information
systems and manifests itself in the event log. The discrimination level of the
process can get aggravated by applying the results of process mining techniques
on event logs containing discrimination.

Fairness is a context-sensitive concept. Consequently, there is a huge number
of fairness definitions in the literature, some of which are in contradiction with
each other [8]. Furthermore, there is a lack of consensus, both in academia and
society, on which definition of fairness is the correct one [14,16]. This makes it
hard to decide on the proper definition of fairness to audit a process.

This issue is aggravated when there are multiple human entities with different
roles and desires in an organization as each one may entail a different notion
of fairness. Therefore, in this paper, we categorize the fairness concepts and
definitions based on their properties such that it makes it easier for the user to
select the appropriate one. We discuss some of the applications and challenges
of applying fairness in process mining. Moreover, we elaborate on a mapping
between the existing techniques to measure fairness and process mining.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief
overview of fairness considerations in literature and describe common fairness
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Fig. 1. Process evolution diagram; positioning of the three main types of process mining
[1]. Some of the areas where discrimination can play a role in process mining are shown
in this picture.
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concepts and measures. In Sect. 3, we discuss the possible applications of fairness
in process mining. In Sect. 4 we elaborate on mapping the existing fairness defi-
nitions to process mining. Finally, in Sect. 5, we conclude and provide directions
for future work.

2 Literature Review

In this section, we provide an overview of the fairness understandings, concepts,
and measures defined in the literature. We start by defining relevant terms and
concepts. Then, we present a taxonomy that provides an overview of various
fairness measures. Due to the extensive amount of fairness-related scientific lit-
erature, we present only concepts and measures potentially relevant to the area
of process mining. For a comprehensive overview of fairness research, we refer
interested readers to [8,16,20,25].

2.1 Relevant Terms

Here, we briefly discuss terms relevant to fairness. For a detailed discussion on
such fairness fundamentals, we refer readers to Chap. 3 of [10].

— Discrimination: The word discrimination means “to divide”, “separate”, “dis-
tinguish”, which is exactly the goal of classification. Therefore, discrimination
itself is not necessarily unjust or unfair. However, discrimination is considered
unfair if individuals receive harmful treatment based on their membership to
a specific group [3].

— Protected groups/Sensitive attributes. A protected group is a subgroup of the
population. The attributes indicating if an individual belongs to a protected
group are called sensitive attributes.

— Qutcome. Outcome is an attribute that captures an aspect of the system that
is supposed to be fair. It is important to note that not just the outcome is
context-dependent, but also its desirability. For example, in a hospital con-
text, less waiting time for visiting a doctor is more desirable while more wait-
ing time (up to a threshold) between an elaborate surgery and the discharge
of a patient is more desirable.

2.2 Fairness Taxonomy

In this subsection, we present fairness concepts and measures defined in machine
learning literature. We structure these measures in a taxonomy (Fig. 2), which is
an extension of the fairness tree presented by Saleiro et al. in [25]. The fairness
definitions in machine learning can be conceptually divided into group fairness
definitions and individual fairness definitions [7,24,28].

Group Fairness assesses the (approximate) parity of some statistical measure
across all demographic sub-populations [7,15]. The group fairness measures are
further divided into three categories: disparate distribution, disparate represen-
tation, and disparate error.
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1. Distribution-based fairness. Here, the main idea is that the distribution of
the predictions should be similar across all subgroups [21]. Another example
of distribution-based fairness measures is proposed in [9].

2. Measures assessing representation. The fairness measures in this category
are based on the representation of the various subgroups in the outcome of
a classifier or a subset selection method [13]. Based on the application and
context, the measures are further divided into the following two categories.

— Coverage-based fairness. In this category of measures, the main concern
is either having the same number of people from each group or having a
number proportional to their relative representation in the whole popu-
lation in the selected/sampled groups [25].

— Ranking-based fairness [17] defines measures for assessing representation
tailored for scenarios in which individuals are ranked according to some
predicted score. It also assumes a notion of ground truth which indicates
the correct ordering. In essence, this definition requires that every sub-
group has an equal representation in the top-n candidates in both rank-
ings, one ranked by ground truth, the other by predicted score. Another
example of ranking-based fairness is defined in [27]. Here, the fairness cri-
terion is that the number of protected elements in the top-n candidates
(for every m) is the same number that would be expected if the top-n
candidates were picked at random from the overall population.

3. Measures assessing error. This group of measures assesses the discrimination
made via errors made by the predictor and requires the existence of some
predicted value, as well as a notion of ground truth [6,16]. These measures
are further subdivided into three contextual categories: assistive, punitive,
and neutral.

— Assistive context. In this context, a positive classification is assumed
to bring benefits to the individuals, therefore false negatives are more
undesirable in terms of fairness than false positives.

— Punitive context. This context is exactly the other way around, i.e., a
positive classification is assumed to bring negative consequences for the
individuals. Hence, false positives are more undesirable in terms of fairness
than false negatives.

— Neutral contexts. Here, we assume that false negatives and false positives
are equally undesirable.

The main advantage of group fairness definitions is their simplicity. They can
be easily explained and verified [§]. However, their main drawback comes from
the fact that this category of fairness definitions provides guarantees only to
“average” members of the protected groups. Consequently, they do not provide
guarantees to individuals or subgroups within the protected groups. Moreover,
some of these measures can be at odds with one another [8].

It is important to note, that group fairness measures based on parity require
some assumptions. The main assumption is that differences between groups are
due solely to unwarranted bias and that all warranted differences have been
eliminated (for example by removing them from the data) [15]. This includes
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the assumption that the reasons for existing differences do not lie in the choices
of individuals but in factors outside of their control [15]. If these assumptions
apply, these measures can help in correcting the unjust bias. However, if these
assumptions do not apply, enforcing them can lead to outcomes that are unfair
from the perspective of an individual or it can lead to a form of reverse discrim-
ination towards the rest of the population [16].

Individual Fairness assesses the similarity of the outcome of pairs of similar
individuals ignoring their differences in terms of protected attributes [9]. Two
main techniques for assessing individual fairness are similarity-based fairness
and counterfactual fairness (highlighted in yellow in Fig. 2).

1. Similarity-based fairness assesses individual fairness by using two similar-
ity metrics. The first metric estimates the similarity of two individuals. The
second metric estimates the similarity of the outcomes that two individuals
received. To assess the fairness from individual A’s perspective, one simply
matches A to the most similar individual(s) in the data. Then, the similar-
ity of the two individuals is compared with the similarity of their outcomes.
By doing this for every individual in our data, we can measure how sim-
ilarly similar individuals are treated. Examples of similarity-based fairness
measures can be found in [9,28].

2. Counterfactual fairness is formulated in the context of fair classifications. The
main idea is to investigate the question of “how would the prediction change if
the protected attribute of an individual were different” [12]. Under this app-
roach, a decision is considered fair towards an individual if the outcome of the
decision is the same in (a) the actual world and (b) a counterfactual world
where the individual belonged to a different demographic group [19]. Coun-
terfactual fairness can also be used to assess group fairness. By studying in
what direction the prediction changes when changing protected attributes, it
is possible to infer which groups are given preferential outcome(s). For exam-
ple, if by changing the group membership from G to G’, the prediction always
changes from a negative to a positive outcome, this indicates discrimination
against either group G or G'.

The main advantage of individual fairness definitions is their semantics, as
they provide guarantees to individuals and not average members. However, they
require making significant assumptions. For example, similarity-based fairness
measures are built on similarity measures, the definition of which can require a
large amount of domain knowledge that even domain experts rarely possess.

3 Fairness Applications in Process Mining

Fairness has three key applications in process mining. In the following, we briefly
discuss each application and provide promising lines of research for each one. It
is worth noting that fairness is not relevant in all processes. For example, in
fully automated processes with no human involvement, fairness does not play a
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Fig. 2. Taxonomy of fairness measures

role. The relevance of fairness to a process depends on (1) how much it involves
humans (for example, as cases or resources) and (2) how strong the impact of
the process on the lives of the involved people is.

Discrimination in Processes. Processes involve at least two discrimination-
relevant entities: resources and cases. The general idea is, that cases cannot
directly influence the process but may suffer from discrimination. From a case
perspective, waiting times in and between activities, the number of re-do’s,
the success rate, occurrences of deviations, and the allocation of resources are
some examples of possible outcomes (as defined in Sect. 2). Resources, in turn,
can cause discrimination by making biased decisions. However, they can also
be affected by discrimination. From a resource perspective, possible outcomes
include the assigned workload and the complexity of the assigned tasks. Some of
the interesting lines of research concerned with discrimination in processes are:
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— developing process mining specific measures to assess the level of discrimina-
tion in event logs and process models,

— developing methods for on-time monitoring of fairness in a process so that
process owners can react on time and prevent unfair discrimination, and

— providing methods to improve/enhance fairness in a process by reducing the
discrimination level in the event log or process model.

Making Fair Conclusions.! Root cause analysis is one of the main steps before
designing re-engineering steps to enhance a process. Traditionally, root cause
analysis is performed using machine learning techniques that are based on pat-
tern recognition and correlation. However, correlation does not necessarily imply
causation. Thus, applying these results, especially when affecting people (e.g., by
blaming, firing, promoting), can result in unfairness. For example, in a hospital,
is it fair to say that the cardiac surgeon with the highest mortality rate among
his/her patients is the worst surgeon? Or is he/she the most experienced one
who gets the hardest cases? Several factors must be considered to infer causal
relationships. Possible reasons for situations where correlation does not imply
causality include the Simpson-paradox [26] and (sampling) bias in the data. Two
interesting lines of research for this application are:

— providing methods to distinguish causality from mere correlation, and
— providing methods for evaluating the extent to which a particular cause is
responsible for an effect (outcome)

Impact of Process Mining Techniques on Fairness. There are several algorithms
and heuristics for performing process mining tasks, each of which can be fine-
tuned by adjusting various parameters. These methods have been developed
to optimize various metrics, but not fairness. Moreover, some process mining
techniques could distort the results of a fairness analysis. For example, it is
a commonly used rule of thumb, that the discovered model should be able to
explain 80% of the cases in the event log. However, how this filtering step affects
the results of a fairness analysis, has not been studied. In general, any process
mining technique that its process analysis pipeline involves filtering, ranking,
or decision making (e.g., in the form of clustering or classification) is prone to
causing or amplifying discrimination. Promising lines of research in this area
include:

— investigating the effect of process mining techniques in terms of the possibility
of causing/reinforcing discrimination,

— developing fairness-aware quality measures for process models and event logs,

— investigating the effect that applying confidentiality preserving techniques has
on the fairness of event logs, and

— providing methods to find and remove the root cause of discrimination in
processes.

! Even though this aspect of fairness is not the main focus of this paper, we mention
it for completeness.
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Fig. 3. An example of a simple process.

4 Mapping Existing Fairness Definitions to Process
Mining

Many fairness definitions and measures in fair machine learning have been
defined in the context of classification ([8,16], also see Table 2 in [20]). Most
of these classification-based measures require the following inputs that are not
always clearly defined in a process mining context:

1. a dataset, in tabular form, containing one or more sensitive attributes and
possibly some descriptive attributes,

2. a model to analyze its outcome in terms of fairness. In a classification context,
the outcome corresponds to the prediction made by the classifier.

3. a notion of ground truth is needed for measures assessing the errors made by
the model. Such ground truth indicates how things should have been in a fair
and ideal world, which in a classification context, corresponds to the ideal
predictions.

To measure fairness in process mining, we are interested in assessing the
fairness of the process (corresponding to model), in terms of its manifestation
(analogous to outcome), compared to how it should have been (analogous to
ground truth). We can assume that the ground truth is provided by a domain
expert or can be computed (approximated) using a normative model. To be able
to assess the discrimination level using the techniques mentioned in Sect. 2, we
need to extract the data in a tabular form. Here, we briefly mention how to
extract a data table from an event log. An event log is a collection of events,
where each event refers to the occurrence of a specific activity at a specific point
in time, for a specific case (identified with a specific case identifier). A case is
defined as the chronologically ordered sequence of events with the same case
identifier in the event log. An example of a simple process is shown in Fig. 3.
Table 1 shows an event log with two cases t; = (e1, es, e3) and to = (ey, €5, eg) for
the process in Fig. 3. To turn an event log to a tabular data, we use the method
explained in [23]. This method involves three steps: 1) enriching the event log,
2) extracting a set of outcome-sensitive prefixes of the cases in the event log,
and 3) extracting the tabular data called situation feature table (Fig.4). In the
following, we explain these three steps in more detail.

Enriching the Event Log. In this step, the event log is enriched with several
derivative attributes extracted from the event log and possibly other sources.
For example, we may add the decision made in a choice place as an attribute
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Table 1. An event log with two cases for the process shown in Fig. 3.

Event identifier | Case id | Activity name | Timestamp | Resource | Gender
el 1 Register 19.03.3019 | Alice Female
) 1 Check 20.03.3019 | Alice Female
es 1 Reject 22.03.3019 | Bob Female
N 2 Register 22.03.3019 | Sara Male
es 2 Check 24.03.3019 | Bob Male
€6 2 Accept 27.03.3019 | Bob Male

Sensitive attribute and

outcome descriptive attributes

Enrich the event Extract the set Extract situation Situation
log of situations feature table feature table

Fig. 4. The steps of extracting a situation feature table from an event log.

to the event that happened just before that choice place. More examples of
attributes that can be used to enrich the event log include the event duration,
waiting time for each event, throughput time of a case, the duration of a case
on a normative model, or some ground truth indicated by a process expert.

Extracting the Set of Situations. In this step, we map each case to multiple
prefixes of it, where each prefix ends with the occurrence of the outcome. These
prefixes are called situations. Examples of situations include:

— If the outcome is a decision made in a choice place, each situation corresponds
to the prefix of a case recorded before that place. For example, in the process
of Fig. 3, if the outcome is the choice made in p2, then the two cases in Table 1
are mapped to the situations s; = {(eq, e3) and s = (eq, e5).

— If the outcome is an event attribute of a group of events, then each situation
is a prefix of a case in the event log where the prefix ends with one of the
events of that group. For example, in the process of Fig. 3, if the outcome is
the duration of the event with activity name “check”, then the two cases in
the Table 1 are mapped to two situations s; = (e1) and so = (e4).

— If the outcome is a case-level attribute, then each situation corresponds to a
case. For example, in the process of Fig. 3, if the outcome is the “throughput
time”, then the two cases in the Table 1 are mapped to two situations s; =
(e1,ea,e1) and sg = {ey, €5, €g).

Extracting the Situation Feature Table. In the third step, tabular data is
extracted from the set of the situations in the previous step. The resulting table
is called a situation feature table. The set of features extracted from the set of sit-
uations includes sensitive attributes and the outcome (and possibly the ground
truth). This tabular data can be used to measure the level of discrimination. An
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Table 2. A situation feature table extracted from the event log in Table 1 in which the
outcome is the choice made at p2 and the sensitive attribute is “gender”.

Duration-register | Resource-check | Gender | p2-choice

1 day Alice Female | Reject
2 days Bob Male Accept

example of a situation feature table extracted from the event log in Tablel is
shown in Table2 in which the outcome is the choice made in place p2 (Fig. 3)
and the descriptive attributes are the duration of the event with activity name
“register”; the resource of the event with activity name “check”, and the “gender”.
In this example “gender” is the sensitive attribute.

5 Conclusion

Organizations operate in many important areas of life, sometimes with a life-
changing impact on people. This makes inspecting their impact in terms of dis-
crimination (as one aspect of unfairness) an important topic. However, the fair-
ness aspects of processes have rarely been considered in literature. In this paper,
we discussed the placement of fairness in the process mining realm.

We discussed fairness primarily in terms of equal and non-discriminatory
treatment of individuals and groups and provided an overview of various fair-
ness definitions to detect discrimination. We presented these definitions in a
structured way using a taxonomy. Furthermore, we discussed three potential
key contributions that fairness can have in process mining, again with a focus
on discrimination. We also provided an approach on how to map existing fairness
definitions to process mining by using situation feature tables.

In conclusion, the main question one should ask before enhancing a process
with fairness-related objectives is whether the differences between groups or
individuals are the result of an unjust bias towards them and whether this bias
needs to be corrected. Not all cases of discrimination are unfair. A methodology
to quantify the explainable and illegal discrimination in data has been presented
in [18]. Moreover, to assess the fairness of a system, it is crucial to be able to
justify the selected fairness measurement from a moral perspective. Therefore,
it is important to consider the assumptions behind each measure. For example,
in similarity-based fairness measures, it is assumed that the similarity metric
expresses ground truth (or the best available approximation of it) [9]. Also, the
assumptions connected to statistical parity have been discussed in great detail
in the academic literature [9,15,24]. Another point to note while planning to
enhance a process with fairness objectives is that the costs (such as reduction
in accuracy) are often immediately realized, whereas its benefits are usually not
immediate and less tangible [8].
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Abstract. In the area of industrial process mining, privacy-preserving
event data publication is becoming increasingly relevant. Consequently,
the trade-off between high data utility and quantifiable privacy poses
new challenges. State-of-the-art research mainly focuses on differentially
private trace variant construction based on prefix expansion methods.
However, these algorithms face several practical limitations such as high
computational complexity, introducing fake variants, removing frequent
variants, and a bounded variant length. In this paper, we introduce a
new approach for direct differentially private trace variant release which
uses anonymized partition selection strategies to overcome the afore-
mentioned restraints. Experimental results on real-life event data show
that our algorithm outperforms state-of-the-art methods in terms of both
plain data utility and result utility preservation.

Keywords: Process mining - Differential privacy - Event data

1 Introduction

In recent years, process mining and event data analysis have been successfully
deployed in many industries. The main objectives are to learn process models
from event logs for further behavioral inference (so-called process discovery), to
extend existing models using event logs (so-called model enhancement), or to
assess the alignment between a process model and an event log (so-called con-
formance checking) [2]. However, often the underlying event data are bound to
personal identifiers or other private information. A prominent example is the pro-
cess management of hospitals where the cases are patients being treated by staff.
Without means of privacy protection, any adversary is able to extract sensitive
information about individuals and their properties. Thus, privacy regulations,
such as GDPR [1], typically restrict data storage and access which motivates the
development of privacy preservation techniques.

The majority of state-of-the-art privacy preservation techniques are built on
Differential Privacy (DP), which offers a noise-based privacy definition. This is
due to its important features, such as providing mathematical privacy guaran-
tees and security against predicate-singling-out attacks [3]. The goal of techniques
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Table 1. A simple event log from the healthcare context including trace variants and
their frequencies.

Trace variant Frequency
(register, visit, blood-test, release) 10
(register, blood-test, visit, release) 8
(register, visit, release) 20
(register, visit, blood-test, blood-test, release) | 5

based on DP is to hide the participation of an individual in the released output
by injecting noise. The amount of noise is mainly determined by the privacy
parameters, € and 0, and the sensitivity of the underlying data. State-of-the-
art research targeting (e, 0)-DP methods in process mining focuses on releasing
raw privatized activity sequences performed for cases, i.e., trace variants. Table 1
shows a sample of such event data in the healthcare context, where each trace
variant belongs to a case, i.e., a patient, and one case cannot have more than one
trace variant. This format describes the control-flow of event logs that is basis
for the main process mining activities. The trace variant of a case is considered
sensitive information because it contains the complete sequence of activities per-
formed for the case that can be exploited to conclude private information, e.g.,
patient diseases in the healthcare context.

To achieve differential privacy for trace variants, the state-of-the-art approach
[12] inserts noise drawn from a Laplacian distribution into the variant distribu-
tion obtained from an event log. This approach has several drawbacks including:
(1) introducing fake variants, (2) removing frequent true variants, and (3) limited
length for generated trace variants. A recent work called SaCoFa [9], attempts to
mitigate drawbacks (1) and (2) by gaining knowledge regarding the underlying
process semantics from original event data. However, the privacy quantification
of all extra queries to gain knowledge regarding the underlying semantics is not
discussed. Moreover, the third drawback still remains since this work, similar
to [12], employs a prefiz-based approach. The prefix-based approaches need to
generate all possible unique variants based on a set of activities to provide dif-
ferential privacy for the original distribution of variants. Since the set of possible
trace variants that can be generated given a unique set of activities is infinite, the
prefix-based techniques need to bound the length of generated sequences. Also,
to limit the search space these approaches typically include a pruning parameter
to exclude less frequent prefixes.

We introduce an (€,)-DP approach for releasing the distribution of trace
variants that focuses on the aforementioned drawbacks. In contrast to the prefix-
based approaches, the underlying algorithm is based on (e, §)-DP for partition
selection that allows for a direct publication of arbitrarily long sequences [4].
Employing differentially private partition selection techniques, the actual fre-
quencies of all trace variants can directly be queried without guessing (gener-
ating) trace variants. Internally, random noise drawn from a specific geometric
distribution is injected into the corresponding frequencies, and all variants whose
privatized frequencies fall beyond a threshold are removed. Hence, no fake trace
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variants are introduced, and only some infrequent variants may disappear from
the output. Moreover, no tedious fine-tuning has to be conducted and no compu-
tationally expensive search needs to be included. In Sect. 5, we introduce different
metrics to evaluate the data and result utility preservation of our approach. We
also run our experiments for the state-of-the-art prefix-based methods and show
superior data and result utilities compared to these methods.

The remainder of this paper is structured as follows. In Sect. 2, we provide
a summary of related work. Preliminaries and notations are provided in Sect. 3.
Section 4 introduces the theoretical background of differentially private parti-
tion selection, and describes our TraVaS algorithm. In Sect. 5, the experimental
results based on real-life event logs are shown. Section 6 concludes the paper.

2 Related Work

The research area of privacy and confidentiality in process mining is recently
growing in importance. Several techniques have been proposed to address the
privacy and confidentiality issues. In this paper, our focus is on the so-called
noise-based techniques that are based on the notion of differential privacy. In
[12], the authors apply an (e, d)-DP mechanism to event logs to privatize directly-
follows relations and trace variants. The underlying principle uses a combina-
tion of an (¢, d)-DP noise generator and an iterative query engine that allows an
anonymized publication of trace variants with an upper bound for their length.
SaCoFa [9] is the most recent extension of the aforementioned (¢, §)-DP mecha-
nism that attempts to optimize the query structures with the help of underlying
semantics. Another extension of [12] is the PRIPEL approach, where more event
attributes can be secured using the so-called sequence enrichment [8].

Whereas most of the aforementioned ideas target raw event logs, in [7], the
focus is on directly-follows graphs. During the edge generation, connections are
randomized using (e, 0)-DP mechanisms to balance utility preservation and pri-
vacy risks. As the main benchmark model for our work, we choose the technique
by Mannhardt et al. [12] since it focuses on trace variants and is the basis of most
of the other techniques. Moreover, its privacy guarantees are directly proven by
(e,9)-DP mechanisms, i.e., no extra privacy analysis is required. Nevertheless,
we also compare our results with SaCoFa as the most recent extension of the
benchmark to demonstrate the superior performance of our approach.

3 Preliminaries

In this section, we introduce the necessary mathematical concepts and definitions
utilized throughout the remainder of the paper. Let A be a set. B(A) is the
set of all multisets over A. A multiset A can be represented as a set of tuples
{(a,A(a))|a € A} where A(a) is the frequency of a € A. Given A and B as two
multisets, AW B is the sum over multisets, e.g., [a?,b%] W [b?, ¢?] = [a?,b°,?].
We define a finite sequence over A of length n as o = (aj,as,...,a,) where
o(i) = a;€A for all i€{1,2,...,n}. The set of all finite sequences over A is
denoted with A*.
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3.1 Event Data

The data used by process mining techniques are typically collections of unique
events that are recorded per activity execution and characterized by their
attributes. We denote £ as the universe of events. Then, a trace o, which is a sin-
gle process execution, is represented as a sequence of events o = (e1, ea, ..., e,) €
&* belonging to the same case and having a fixed ordering based on timestamps.
Note that events are unique and cannot appear in more than one trace. More-
over, each case (individual) contributes to only one trace. An event log L can
be represented as a set of traces L C £*. Our work focuses on the control-flow
aspect of an event log that only considers the activity attribute of events in
traces. We define a simple event log based on activity sequences, so-called trace
variants.

Definition 1 (Trace Variant). Let A be the universe of activities. A trace
variant o = (a1, as, ...,a,) € A* is a sequence of activities performed for a case.

Definition 2 (Simple Event Log). A simple event log L is defined as a
multiset of trace variants L € B(A*). L denotes the universe of simple event
logs.

3.2 Differential Privacy

In the following, we introduce the necessary concepts of (e,d)-DP for our
research. The main idea of DP is to inject noise into the original data in such a
way that an observer who sees the randomized output cannot tell if the infor-
mation of a specific individual is included in the data [6]. Considering simple
event logs, i.e., the distribution of trace variants, as our sensitive event data,
differential privacy can formally be defined as Definition 3.

Definition 3 ((¢,0)-DP for Event Logs). Let Ly and Lo be two neighbour-
ing event logs that differ only in a single entry, e.g., Lo = LW[o] for any
oceA*. Also, let eeRso and IR~ be two privacy parameters. A randomized
mechanism M. s:L—L provides (€,6)-DP if for all S C A*xN: Pr[M.s(L1) €
S] < efxPr[Mcs(Ls) € S|Hd. Given L € L, Mcs5(L) C {(0,L'(0)) | 0 €
A* N L'(0) = L(0) + x4}, with x, being realizations of i.i.d. random variables
drawn from a probability distribution.

In Definition 3, € as the first privacy parameter specifies the probability ratio,
and 0 as the second privacy parameter allows for a linear violation. In the strict
case of § = 0, M offers e-DP. The randomness of respective mechanisms is typ-
ically ensured by the noise drawn from a probability distribution that perturbs
original variant-frequency tuples and results in non-deterministic outputs. The
smaller the privacy parameters are set, the more noise is injected into the mech-
anism outputs, entailing a decreasing likelihood of tracing back the instance
existence based on outputs.

A commonly used (€,0)-DP mechanism for real-valued statistical queries is
the Laplace mechanism. This mechanism injects noise based on a Laplacian dis-
tribution with scale Af/e. Af is called the sensitivity of a statistical query f.
Intuitively, Af indicates the amount of uncertainty we must introduce into the
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output in order to hide the contribution of single instances at (e, 0)-level. In our
context, f is the frequency of a trace variant. Since one individual, i.e., a case,
contributes to only one trace, Af = 1. In case an individual can appear in more
than one trace, the sensitivity needs to be accordingly increased assuming the
same value for the privacy parameter €. State-of-the-art event data anonymiza-
tion frameworks such as our benchmark often use the Laplace mechanism.

4 Partition Selection Algorithm

We first highlight the problem of partition selection and link it to event data
release. Then, the algorithmic details are presented with a brief analysis.

4.1 Partition Selection

Many data analysis tasks can be expressed as per-partition aggregation opera-
tions after grouping the data into an unbounded set of partitions. When iden-
tifying the variants of a simple log L as categories, the transformation from L
to pairs (o, L(0)) becomes a specific instance of these aggregation tasks. To ren-
der such queries differentially private, two distinct steps need to be executed.
First, all aggregation results are perturbed by noise addition of suitable mecha-
nisms. Next, the set of unique partitions must be modified to prevent leakage of
information on the true data categories (differentially private partition selection)
[4,6]. In case of publicly known partitions or bounded partitions from a famil-
iar finite domain, the second step can be reduced to a direct unchanged release
or a simple guessing-task, respectively. However, for the most general form of
unknown and infinite category domains, guessing is not efficient anymore and
an (€,0)-DP partition selection strategy can be used instead.

Recently, in [4], the authors proposed an (e,d)-DP partition selection app-
roach, where they provided a proof of an optimal partition selection rule which
maximizes the number of released category-aggregation pairs while preserving
(e,0)-DP. In particular, the authors showed how the aforementioned anonymiza-
tion steps can be combined into an explicit (e,d)-DP mechanism based on a
k-Truncated Symmetric Geometric Distribution (k-TSGD), see Definition 4. We
exploit the analogy between partition selection and simple event log publication
and transfer this mechanism to the event data context. Definition 5 shows the
respective definition based on a k-TSGD.!

Definition 4 (k-TSGD). Given probabilityp € (0,1), m =r/(1+(1—-p)—2(1—p)**1),
and k > 1, the k-TSGD of (p, k) over Z formally reads as:

m-(1—p)l*l ifr € [k, k]

k-TSGD[X = | p, k] = 1
[ vl pH {O otherwise (1)
Definition 5 ((¢,0)-DP for Event Logs Based on k-TSGD). Let e€R+

and 6€R~ ¢ be the privacy parameters, and M’:’ETSGD : L — L be a randomized

1 A respective proof can be found in Sec. 3 of [4].



TraVaS: Differentially Private Trace Variant Selection for Process Mining 119

mechanism based on a k-TSGD. Given L € L as an input of the randomized
mechanism, an event log L' = {(0,L'(0)) | c€LAL'(0) > k} € rng(MF5T99P)
is an (e,0)-DP representation of L if L'(c) = L(o)+x, is the noisified f}equency
with x, being realization of i.i.d random variables drawn from a k-TSGD with
parameters (p, k), where p=1—e ¢ and k = [1/exin((e*+26-1)/5(e<+1))].

Definition 5 shows the direct (e, d)-DP release of trace variants by first per-
turbing all variant frequencies and then truncating infrequent behavior. Addi-
tionally, optimality is guaranteed w.r.t. the number of variants being published
due to the k-TSGD structure [4]. Note that the underlying k-7'SGD mechanism
assumes each case only contributes to one variant. In case this requirement needs
to be violated, sensitivity considerations force a decrease in (e, §).

The development of differentially private partition selection enables signifi-
cant performance improvements for private trace variant releases. As there are
infinite activity sequences defining a variant, former approaches had to either
guess or query all of these potentially non-existing sequences in a cumbersome
fashion due to the ex-ante category anonymity in (e, d)-DP. On the contrary,
partition selection only needs one noisified aggregation operation followed by a
specific truncation. Hence, the output contains only existing variants that are
independent of external parameters or query patterns.

4.2 Algorithm Design

Algorithm 1 presents the core idea of TraVaS which is based on Definition 5. We
also propose a utility-aware extension of TraVasS, so-called uTraVaS, that utilizes
the privacy budgets, i.e., € and §, by several queries w.r.t. data utility. In this
paper, we focus on TraVaS, the details of uTraVaS are provided on GitHub.?
Algorithm 1 (TraVaS) allows to anonymize variant-frequency pairs by inject-
ing k-TSGD noise within one run over the according simple log. After a simple
log L and privacy parameters (¢ > 0,9 > 0) are provided, the ¢ravas function
first transforms (e, d) into k-TSGD parameters (p, k). Then, each variant fre-
quency L(o) becomes noisified using i.i.d k-T'SGD noise z, (see Definition 5).
Eventually, the function removes all modified infrequent variants where the
perturbed frequencies yield numbers below or equal to k. Due to the partition

Algorithm 1: Differentially Private Trace Variant Selection (TraVaS)

Input: Event log L, DP-Parameters (e, §)
Output: (¢,§)-DP log L’
1 function travas (L, e, §)

2 p= 1—e ¢ // compute probability
3 k=11/e x In ((e* +25 —1)/(5(e® + 1)))] // compute threshold
a forall (o, L(c)) € L do

5 2, = r'TSGD (p, k) // generate i.i.d k-TSGD noise
6 if L(0) + x5 > k then

7 | add (o, L(0) + x5) to L'

return L’

4

2 https://github.com/wangelik/TraVaS /tree/main/supplementary.
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selection mechanism, the actual frequencies of all trace variants can directly be
queried without guessing trace variants. Thus, TraVaS is considerably more effi-
cient and easier to implement than current state-of-the-art prefix-based methods.

5 Experiments

We compare the performance of TraVaS against the state-of-the-art benchmark
[12] and its extension (SaCoFa [9]) on real-life event logs. Due to algorithmic dif-
ferences between our approach and the prefix-based approaches, it is particularly
important to ensure a fair comparison. Hence, we employ divergently structured
event logs and study a broad spectrum of privacy budgets (¢, ). Moreover, the
sequence cutoff for the benchmark and SaCoFu is set to the length that covers
80% of variants in each log, and the remaining pruning parameter is adjusted
such that on average anonymized logs contain a comparable number of vari-
ants with the original log. Note that TraVaS guarantees the optimal number
of output variants due to its underlying differentially private partition selection
mechanism [4], and it does not need to limit the length of the released variants.
Thus, the aforementioned settings consider the limitations of the prefix-based
approaches to have a fair comparison.

We select two event logs of varying size and trace uniqueness. As we discussed
in Sect. 4, and it is considered in other research such as [9,12], and [14], infrequent
variants are challenging to privatize. Thus, trace uniqueness is an important
analysis criterion. The Sepsis log describes hospital processes for Sepsis patients
and contains many rare traces [11]. In contrast, BPIC13 has significantly more
cases at a four times smaller trace uniqueness [5]. The events in BPIC13 belong
to an incident and problem management system called VINST. Both logs are
realistic examples of confidential human-centered information where the case
identifiers refer to individuals. Detailed log statistics are shown in Table 2.

5.1 Evaluation Metrics

To assess the performance of an (¢, §)-DP mechanism, suitable evaluation metrics
are needed to determine how valuable the anonymized outputs are w.r.t. the
original data. In this respect, we first consider a data utility perspective where
the similarity between two logs is measured independent of future applications.
For our experiments, two respective metrics are considered. From [13], we adopt
relative log similarity that is based on the earth mover’s distance between two
trace variant distributions, where the normalized Levenshtein string edit distance
is used as a similarity function between trace variants. The relative log similarity

Table 2. General statistics of the event logs used in our experiments.

Event log | #Events | #Cases | #Activities | # Variants | Trace uniqueness
Sepsis 15214 1050 16 846 80%
BPIC13 | 65533 7554 4 1511 20%
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Fig. 1. The relative log similarity and absolute log difference results of anonymized
BPIC13 logs generated by TraVaS, the benchmark, and SaCoFa. Each value represents
the mean of 10 runs.

metric quantifies the degree to which the variant distribution of an anonymized
log matches the original variant distribution on a scale from 0 to 1.

In addition, we introduce an absolute log difference metric to account for sit-
uations where distribution-based metrics provide only different expressiveness.
Exemplary cases are event logs possessing similar variant distributions, but sig-
nificantly different sizes. For such scenarios, the relative log similarity yields high
similarity scores, whereas absolute log difference can detect these size dispari-
ties. To derive an absolute log difference value, we first transform both input
logs into a bipartite graph of variant vertices. Then a cost network flow problem
[15] is solved by setting demands and supplies to the absolute variant frequencies
and utilizing a Levenshtein distance between variants as an edge cost. Hence,
the resulting optimization value of an (e, §)-DP log resembles the number of
Levenshtein operations to transform all respective variants into variants of the
original log. In contrast to our relative log similarity metric, this approach can
also penalize a potential matching impossibility. More information on the exact
algorithms is provided on GitHub.?

Besides comparing event logs based on data utility measures, we addition-
ally quantify the algorithm performance with process discovery oriented result
utilities. We use the inductive miner infrequent [10] with default noise threshold
of 20% to discover process models from the privatized event logs for all (e, d)
settings under investigation. Then, we compare the models with the original
event log to obtain token-based replay fitness and precision scores [2]. Due to
the probabilistic nature of (¢, d)-DP, we average all metrics over 10 anonymized
logs for each setting, i.e., 10 separate algorithm runs per setting.

3 https://github.com/wangelik /TraVaS /tree/main /supplementary.
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Fig. 2. The relative log similarity and absolute log difference results of anonymized Sep-
sis event logs generated by TraVasS, the benchmark, and SaCoFa. Each value represents
the mean of 10 runs.

5.2 Data Utility Analysis

In this subsection, the results of the two aforementioned data utility metrics are
presented for both real-life event logs. We compare the performance of TraVaS
against our benchmark and SaCoFa based on the following privacy parameter
values: € € {2,1,0.1,0.01,0.001} and ¢ € {0.5,0.1,0.05,0.01,0.001}.

Figure 1 shows the average results on BPIC13 in a four-fold heatmap. The
grey fields represent a general unfeasibility of the strong privacy setting ¢ = 0.001
for our benchmark method. Due to the intense noise perturbation, the corre-
sponding variant generation process ncreased the number of artificial variant
fluctuations to an extent that could not be averaged in a reasonable time. Apart
from this artifact, both relative log similarity and absolute log difference show
superior performance of TraVaS for most investigated (e,d) combinations. In
particular, for stronger privacy settings, TraVaS provides a significant advan-
tage over SaCoFa and benchmark. Whereas more noise, i.e., lower (e, §) values,
generally decreases the output similarity to the original data, TraVaS results
seem to particularly depend on 4. According to Definition 5, this observation
can be explained by the stronger relation between k£ and § compared to k& and €.

The evaluation of the Sepsis log is presented in Fig. 2. In contrast to BPIC13,
Sepsis contains many variants occurring only once or twice. While our absolute
log difference shows a similar expected trend with (e, §) as Fig. 1, the relative log
similarity metric indicates almost constant values for the prefix-based techniques
and a considerable §-dependency for TraVaS. We explain the resulting patterns
by examining the underlying data structure in more detail. As mentioned, the
frequency threshold k of TraVaS strongly correlates with §. Hence, event logs
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Fig. 3. The fitness and precision results of anonymized BPIC13 event logs generated
by TraVaS, the benchmark, and SaCoFa. Each value represents the mean of 10 runs.

with prominent infrequent traces, e.g., Sepsis, are significantly truncated for
strong (€, d)-DP. Since this variant removal leads to a distribution mismatch
when being compared to the original log, the relative log similarity forms a
step-wise pattern as in Fig. 2. In contrast, the prefix-based techniques iteratively
generate variants that may or may not exist in the original log. In logs with high
trace uniqueness, there exist many unique variants that are treated similarly to
non-existing variants due to close frequency values, i.e., 0 and 1. Thus, in the
anonymized logs, unique variants either appear with larger noisified frequencies
or are replaced with fake variants having larger noisified frequencies. This process
remains the same for different privacy settings but with larger frequencies for
stronger privacy guarantees. Hence, the relative log similarity metric stays almost
constant although the noise increases with stronger privacy settings. However,
the absolute log difference metric can show differences. uTraVaS shows even
better performance w.r.t. the data utility metrics.

5.3 Process Discovery Analysis

We conduct a process discovery investigation based on fitness and precision
scores. For the sake of comparability, the experimental setup remains unchanged.
Figure 3 shows the results for BPIC13, where the original fitness and precision
values are 0.995 and 0.877, respectively. TraVaS provides almost perfect replay
behavior w.r.t. fitness while the prefix-based alternatives show lower values. This
observation can be explained by the different algorithmic approach of TraVaS
and some characteristics of BPIC13. TraVaS only adopts true behavior that

* https://github.com/wangelik/TraVaS/tree/main/experiments.
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Fig. 4. The fitness and precision results of anonymized Sepsis event logs generated by
TraVasS, the benchmark, and SaCoFa. Each value represents the mean of 10 algorithm
runs.

results in a simplified representation of the original process model. Due to the
rather low trace uniqueness and comparably large log-size of BPIC13, this sim-
plification is minor enough to allow an almost perfect fitness. In contrast, the
fake variants generated by prefix-based approaches negatively affect their fitness
scores. The precision metric evaluates the fraction of behavior in a model dis-
covered from an anonymized log that is not included in the original log. Due to
the direct release mechanism of TraVaS that only removes infrequent variants,
we achieve more precise process models than the alternatives. Furthermore, the
correlation between threshold & and noise intensity enables TraVaS to even rise
precision for stronger privacy guarantees. Conversely, the fake variants generated
by prefix-based approaches can lead to inverse behavior.

Figure 4 shows the fitness and precision results for Sepsis, where the original
fitness and precision values are 0.952 and 0.489, respectively. Whereas TraVaS
dominates the prefix-based approaches w.r.t. precision as in Fig. 3, our fitness
score shows a slight under-performance. Unlike BPIC13, the high trace unique-
ness and smaller log-size prohibit the underlying partition selection mechanism
to achieve negligible threshold for infrequent variant removal. Thus, the discov-
ered process models from anonymized logs miss parts of the original behavior.
This shows that carefully tuned prefix-based mechanisms might have an advan-
tage in terms of fitness for small logs with many unique traces. We particularly
note that this limitation of TraVaS vanishes as soon as the overall log-size grows.
The reason lies in the size-independent threshold k& while the pruning parameter
of prefix-based approaches intensifies with the data size. The process discovery
analyses for uTraVaS, available on GitHub, show even better performance.
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6 Discussion and Conclusion

In this paper, we demonstrated a novel approach to release anonymized dis-
tributions of trace variants based on (e, d)-DP mechanisms. The corresponding
algorithm (7TraVaS) overcomes the variant generation problems of prefix-based
mechanisms (see Sect. 1) and directly queries all true variants. Our experiments
with two differently structured event logs showed that TraVaS outperforms the
state-of-the-art approaches in terms of data utility metrics and process-discovery-
based result utility for most of the privacy settings. In particular, for large event
logs containing many long trace variants, our implementation has no efficient
alternative. Regarding limitations and future improvements, we generally note
that the differentially private partition selection mechanism only works for §>0,
whereby limits of small values can be problematic on large collections of infre-
quent variants. Thus, all use cases that require strict e-DP still need to apply
prefix-based mechanisms. Finding a more efficient solution for § = 0 seems to be
a valuable and interesting future research topic.
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Abstract. We present a method and prototype tool supporting partic-
ipatory mapping of domain activities to event data recorded in informa-
tion systems via the system interfaces. The aim is to facilitate respon-
sible secondary use of event data recorded in information systems, such
as process mining and the construction of predictive AT models. Another
identified possible benefit is the support for increasing the quality of data
by using the mapping to support educating new users in how to regis-
ter data, thereby increasing the consistency in how domain activities are
recorded. We illustrate the method on two cases, one from a job center
in a danish municipality and another from a danish hospital using the
healthcare platform from Epic.

Keywords: Data quality + Secondary use - Event extraction - Event
matching - Participatory design

1 Introduction

The abundance of data recorded in information systems and easily accessible
technologies for data processing, such as predictive Al models and process mining
[1,2], have created huge expectations of how data science can improve the society.

However, there has also been an increasing voicing of concerns [3,11,18,39],
pointing out that merely having access to data and technologies is not sufficient
to guarantee improvements. In the present paper we focus on data quality and
responsible event extraction in the context of secondary use of event data [34]
recorded in information systems. That is, data representing events in the domain
of use, such as the start and completion of work tasks which has as primary use
to support case workers and document the progress of a case, but is intended
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to be used for secondary purposes, such as building predictive AI models or the
discovery of processes using process mining tools.

The challenges of event data quality are manifold [9], including handling event
granularity, incorrect or missing data and incorrect timestamps of events [17].
A more fundamental problem in the context of secondary use of event-data is
that of ensuring a consistent and correct matching of event data to business
activities [7].

The lack of research in the area of event log creation has been pointed out
in several papers [2,7,9,16,21,26,29,30,36,38]. This task is in general associated
with words and expressions like: costly, time consuming, tedious, unstructured,
complex, garbage-in garbage-out. Historically, research for data-driven innova-
tion and improving productivity has shown to pay little to no attention to how
data is created and by who. Data is often created within a system and its user
interface where a given context for capturing and using data has been established
through continuous sense-making between people that have local and often indi-
vidual understanding of why data is generated and for what. Studies claim [22,41]
that data science initiatives are often initiated at high-level and allocated from
domain of data creation while the data science product is re-introduced as a
model that needs to be adapted by the practice where data is created. While
data driven systems can be evaluated with good results on artificial data from
the data domain, it is often a struggle to create value for the domain users. This
is due to trust of data origin, what it represents and how new intents for its pur-
pose comes through what could be considered a back-door top-down method.
A Participatory Design(PD)-study [18] investigated a mismatch between data
extraction findings at an administration level of cross-hospital management and
how doctors and clinical secretaries represented their ways of submitting data,
highlighting a need for re-negotiating data creation and its purpose in a way so
data scientists can contribute to better data capture infrastructures as well as
giving health-care workers a saying in how such data capture infrastructures are
prioritized in their given domains of non-digital work. In PD [8,23,32] as a field
such presented tensions are not new. Here PD as a design method and practice
has sought to create alignment between workers existing understanding of own
work and emerging systems through design as a practice for visualising such
tensions across actors of an innovation or IT project. PD is from here seeking,
in a democratic manner, to find solutions and interests that can match partners
across hierarchies.

As a means to facilitate responsible secondary use of event data, we propose
in this paper the BERMUDA (Business Event Relation Map via User-interface
to Data for Analysis) method to capture and maintain the link between domain
knowledge and the data in the information system. The method supports involve-
ment of domain experts in the mapping of activities or events in the business
domain to user-interface elements, and of system engineers in the mapping of
user-interface elements to database records used by data scientists. In other
words, the method helps documenting the inter-relationship in the “BERMUDA
triangle” between the domain concepts, the user interface and the database,
which often disappears. We see that by breaking down the barrier between
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data-creators and data scientists and building tools for involvement and iter-
ative feedback of data infrastructures and their user front-end, new discussions
for data cooperation can occur. The mapping is independent of any specific data
analysis, but should of course include the activities and events of relevance for
the analysis at hand. In particular, the method contributes to the responsible
application of process mining [27] by supporting a collaborative creation of event
logs.

The motivation for the method came from research into the responsible engi-
neering of Al-based decision support tools in Danish municipalities within the
EcoKnow [19] research project and later the use of the method was also found
relevant in a study of a Danish hospital wanting to create an Al-based predictive
model for clinical no-shows. The method and prototype were initially evaluated
by a consultant employed in a process mining company and a municipal case
worker collaborating with the authors in the EcoKnow research project.

The paper is structured as follows. Prior and related work is discussed in
Sect. 2. Sect. 3 explains our proposed BERMUDA method, where we also show
a prototype tool. Sect. 4 introduces two specific case studies in a job center and
a danish hospital. A brief evaluation of the use of the method in the first case
along with a discussion on the results is made in Sect. 5. Lastly, in Sect. 6 we
conclude and discuss future work.

2 Prior and Related Work

Within health-care informatics, problems arising from having a primary use of
data (original intend of health-care delivery and services) and different, sec-
ondary use of data (emergence of new possibilities through statistics and data
science) has been highlighted in several studies [5,28,37]. The authors of [5]
found that underlying issues for data quality and reuse was attributed to differ-
ential incentives for the accuracy of the data; flexibility in system software that
allowed multiple routes to documenting the same tasks; variability in documenta-
tion practices among different personnel documenting the same task; variability
in use of standardized vocabulary, specifically, the internally developed stan-
dardized vocabulary of practice names; and changes in project procedures and
electronic system configuration over time, as when a paper questionnaire was
replaced with an electronic version.

Such underlying socio-technical issues to data capturing can attribute to an
overall lower degree of data integrity resulting in little to no secondary usefulness
of data representing health-care events. A similar [18] study conducted by this
papers co-authors highlighted the need for iteratively aligning data creation and
use with domain experts and data creators (i.e. doctors, nurses, secretaries, etc.)
when conducting data science on operational data from hospitals.

We see event abstraction [40] as a related topic to our paper, however we
approach the problem in a top-down manner i.e. from domain knowledge down
to the data source. A similar top-down approach exists in database systems [12]
where an ontology of domain concepts is used to query the databases. We do not
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alm to propose techniques for process discovery as there are a plethora of tools
already in use for this task, some of which [35] also allow for domain expert
interventions. We propose BERMUDA both for pre-processing of data before
moving to process discovery or building predictive models, and for training of
new users in how to consistently record data suitable for the secondary uses.

The paper [21] provides a procedure for extracting event logs from databases
that makes explicit the decisions taken during event log building and demon-
strates it through a running example instead of providing tool support. The
paper [7] present a semi-automatic approach that maps events to activities by
transforming the mapping problem into the a constraint satisfaction problem,
but it does not directly handle the event log extraction.

In [29] the authors describe a meta model that separates the extraction and
analysis phases and makes it easy to connect event logs with SQL queries. In [30]
they associate events from different databases into a single trace and propose an
automated event log building algorithm. They point towards the lack of domain
knowledge as a driving force for an automated and efficient approach. They
discuss that their definition of event log “interestingness” as an objective score
ignores aspects of domain level relevance. Both papers bind database scripts and
event log concepts in order to build ontologies/meta-models, but do not link to
domain knowledge in order to provide traceability to domain experts, such that
the limitations of the “interestingness” score may be overcome.

To summarize, most work [6,9,10,16,17,24,25,33,38] on event data quality
so far has focused on technical means to repair and maintain the quality of
event logs [15]. Our approach complements these approaches by focusing on the
socio-technical problem of aligning what is done in practice by the users of the
information systems, i.e. how is a domain activity registered within the system,
and at the other hand, where is this event stored in the database.

3 BERMUDA: Mapping Domain Events to Data

Our method relies on so-called BERMUDA triples (e, i, d) as illustrated in
Fig. 1, recording the relation between respectively a domain event e, a user
interface element i of the information system in which the domain event is
registered and the location of the resulting data element d in the database.
A concrete example from one of our case studies can be seen in Fig.2. Here a
domain event“Register ... during the first interview” is described in a textual
audit schema. This is linked by a screen shot to the drop down menu in the user
interface, where the case worker performs this concrete registration. And finally,
the location of the resulting data element is recorded by an SQL statement that
extracts the event.

There are typically three roles involved in the recording such BERMUDA
triples: Data scientist (or analyst), domain expert and system engineer. As guid-
ance towards applying our method we recommend following these steps:

1. Domain to user interface. For each domain event e, the domain experts

record an association (e, i) between the domain event e and an (user or
system) interface element i.



Mapping Domain Event to Data 131

System
Engineer

#1 0F AT
o hbndle ndh o sk sy
o

i

Fig. 1. BERMUDA method

2. User interface to data. Through code inspection or simulation, system
engineers develop the correct database query d to extract the data recording
the event e created via the interface element i resulting in a triple (e, i, d).

3. Triples to event log. The data scientist merges and refines the database
queries and creates the initial version of the event log. The event log entries
are enriched with extra attributes that hold a reference to the domain event,
the interface element and the data source from where the entry originated.

Prototype Tool. To facilitate the adoption of the BERMUDA method we present
a prototype tool to illustrate how the triples can be created and an event log
extracted. A screenshot from the prototype is shown in Fig.2. Briefly, the Ul
consists of 3 input areas in the top for documenting the individual parts of
triples (description of domain event, system interface, script for extracting the
event from the system), an input area at the bottom for adding and selecting a
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Fig. 2. BERMUDA method Prototype
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triple to document, and a display area (not shown in the figure) for the resulting
event log.!

The prototype has a simple role base access control supporting the use of the
method in practice. All roles have access to the description of domain events, in
order to build trust through a common domain understanding. Domain experts
have access to domain events and the user interface input areas. System engineers
need access to all areas, but not the production data in the information system.
Data scientists are allowed access to all areas except they can not see the data
extraction scripts, if they are covered by intellectual propriety rights. They can
however run the scripts on the production system, to extract the event data.

4 Cases: Secondary Use of Municipal and Health Data

We discuss the method in relation to two concrete cases from Denmark where
data in respectively a municipality and a hospital were intended to be used
for Al-based decision support. Case 1 is elicited at a municipal job center in
Denmark and case 2 covers our work with a regional research hospital where a
project aiming for producing and using an AI model for no-shows. Both cases
unveiled a gap between how data is produced in a local context for its primary
purpose of case management and what it represents when extracted and used
for decision support. We made an evaluation of our BERMUDA prototype for
case one and speculate how it could be used in case two.

Case 1: As part of the EcoKnow research project [19], we had by the software
vendor KMD (kmd.dk), been given access to interact with the system engineers
that developed the case management system used in danish job centers. Collab-
orating with colleagues in the EcoKnow research project performing field studies
at the job center [4,20,31], we also had the opportunity to gather domain knowl-
edge through workshops, semi-structured interviews and informal methods from
job center employees. Finally, we had access to historical data from about 16000
citizens with the purpose of researching the possibilities for improving compli-
ance and the experienced quality of case management in municipalities.

In addition to our case we interviewed a consultant at a process mining
company Infoventure (infoventure.dk), doing conformance checking, using the
same case management system but a different data source. Their current practice
relies on first co-creating a document with employees at the job center, which
contained the necessary domain knowledge and screenshots of user interface
elements with relevant explanations. Next it was the task of the consultant to
build extraction scripts for the identified domain events. During this phase there
was ongoing communication with the software vendor and job center employees
through meetings, calls or emails, in order to build up the necessary domain and
system knowledge. Often he would observe specific data (an exact timestamp or
citizen registration number) in the user interface and proceed to search for that
exact information in the database. This process was done either offline, with the

! The prototype is available at: https://github.com/paul-cvp/bermuda-method.
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aid of screenshots, or on site by sitting next to a case worker. The links between
domain events and the data extracted from the database was recorded in an
ad-hoc way and only available to the consultant.

Domain Activities/FEvents: We used a management audit schema comprised of 21
questions. From these questions we define the domain activities/events relevant
for the case compliance analysis. For example: From the audit question “Is the
first job interview held within one week of the first request? Legal basis: LAB
§31(3)” we can identify several domain event data of interest: first request, first
job interview, first week passed.

Graphical User Interface (GUI) Areas for Recording Domain Events. A case-
worker employed at the job center associated the domain events identified in the
audit questions with areas of the user interface where caseworkers record the
event. From the 21 questions, 11 domain events could be identified that could
be given a user interface association. For 3 of the domain events, the caseworker
was unsure where to record it. A data scientist was able to associate 12 of the
21 domain events to a field in the user interface. This relatively low number
of associations can be explained by the fact that the audit schema was created
by the municipality and not the vendor of the it-system, and thus, some of the
domain events relevant for the audit did not have a direct representation in the
user interface. Therefore certain events were completely missing or documented
in free text fields, while others require access to other systems used by the munic-
ipality. In particular, as also observed in [4], the free text field was sometimes
used to describe the categorisation of the unemployed citizen (as activity or job
ready) or the reason for the choice of categorisation, by selecting the reason
“other”, instead of using one of the specific predefined values available in the
system interface.

Data and Database Organization. The database contains 133 tables with 1472
columns in total. By having access to source code and the system engineers, we
mapped the identified GUI elements to the database. Furthermore this limited
our inspection to 8 main tables from which the data was extracted and 4 tables
used for mapping table relations, thus ensuring data minimisation as specified
in the General Data Protection Regulation (GDPR) [14].

Case 2: In the wake of a grand scale implementation of an EPIC? Regional
Electronic Health Record-system (EHR-system) purchase and implementation,
we have since 2017 been engaged in a longitudinal case-study of facilitating and
developing an Al-model for predicting patient no-shows based on clinical event
and demographic data. The project was pioneering as the first test of the models
developed from local data and appointed a small endoscopy unit at Bispebjerg
hospital (a research hospital in the capital region of Denmark). The project
have a foundation in participatory design and end-user involvement in pursuit

2 epic.com.
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of creating visions for use of data and Al, as well as creating synergy effects for
data creation among clinicians, nurses and clinical secretaries as domain experts
creating clinical event data used to predict future no-shows.

We extracted 8 different data sets together with the regional data team to
learn about implications for applying such data for machine-learning purposes.
We here learned, that missing data values and incomplete submissions were
largely representing the first data sets and that due to missing guidelines and
coordinated workflows each individual health care person had different under-
standing of the categories used to report clinical appointment statuses.

Domain FEvents: Interpretations of the events. We conducted 2 follow-up inter-
views with clinical secretaries to understand the local flow of data submission
into the EHR-system. The clinical secretaries demonstrated their data submis-
sion practices and their understanding of how to document clinical appointment
statuses into the EHR-system. We further conducted four 2-h workshops involv-
ing the clinical secretaries in putting context to their workflow and use of cate-
gories to assign meaning to no-show categories. In the same period, we invited
Regional data management and extraction teams to learn from practices and
iteratively extract data sets with no-show data.

Data and Database Organization. 8 data sets were extracted in total over a
period of 3 months before a machine learning algorithm could be fed with a
data set with sufficient domain contexts to remove categories that didn’t have
meaning for secondary use. The best example of this was again the free text
category “other” as a category for assigning reason for no-shows or cancellations
of appointments. This category was heavily used by all clinical staff due to its
ability to avoid reading through 16 other categories of reason for mentioned out-
come. The first data set had 81.000 rows and observations with 2/3 of those past
appointments being assigned “other” with text-field inputs sometimes represent-
ing the same categories as suggested in the drop-down menu and sometimes left
empty or with “other” written in the text-field. A further 11.000 appointments
were deemed incomplete or “in process” several months after appointment date.
When sorting out unassigned events for appointment status the department only
had 2880 observations left for the machine learning algorithm.

5 Initial Evaluation

As an initial qualitative evaluation of the usefulness of the method, we conducted
two semi-structured interviews, one with a municipal case worker acting as a
domain expert and another with a data scientist working as consultant in the
process analysis company Infoventure. Both interview respondents collaborated
with the authors in the Ecoknow research project. The municipal case worker was
given the task of mapping business activities to user-interface elements of a case
and document management system. The consultant was asked about the current
practice of documenting event log extraction for process mining, illustrated by
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a concrete case, and how the Bermuda prototype could support or improve this
practice.

Overall, the evaluation indicated, that the BERMUDA method exhibits the
following positive proprieties:

— Transparency, Accountability, and Traceablity. The BERMUDA
triples make it possible to trace the relation between events extracted from
a data base, e.g. for the creation of an event log, and domain events. Both
interviewees saw the advantage in unambiguously referencing domain events
across different roles of a data science project (domain expert, software engi-
neer, data scientist), thereby providing accountability for the data prove-
nance/lineage, while also building trust across different roles.

— Accuracy. Through the participatory co-creation of the event log it is pos-
sible to observe that the event log correctly captures the relevant domain
knowledge. As each of the roles interact with each other, they can observe
that the correct steps were taken in the extraction of event data for sec-
ondary use. This was already to some extend part of the current practices,
but BERMUDA supported the consistent documentation.

— Maintainability and Training. The interview participants indicated that
the Bermuda method is useful for maintaining event logs over time when
changes happen in the domain or system, because the information is docu-
mented consistently in one place. They also pointed out, that the method
and tool for the same reason could be valuable both in training new data
scientists and new case workers.

— Protection of Intellectual Property. Since each link in the BERMUDA
triangle can be defined independently, the system engineers can provide map-
pings that can be used to extract events without revealing the code of the
system. We observed this in the interaction between the data science consul-
tant and the system engineers developing the job center solution.

Limitations. Firstly, the tool is not mature enough to replace a general SQL
scripting environment. Secondly, it does not yet account for data that are not
stored in an SQL database, nor for data that is not recorded via user interface,
as for instance data recorded automatically by system events.

6 Conclusion and Future Work

In this paper we presented BERMUDA, a method for facilitating the respon-
sible secondary use of event data in data science projects by supporting the
collaboration between domain experts, system engineers and data scientists on
associating domain events, via user interfaces to data in the database. This facil-
itates transparent extraction of event logs for analysis and thereby accountable
data lineage. We discussed its use through cases of data science projects at a job
center in a Danish municipality and a Danish hospital. In particular, both cases
highlight the frequent use of the category “other” in the registration of reasons
for domain events, instead of using pre-defined values in drop down menus. We
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showed through a prototype tool how BERMUDA can facilitate the interactions
between domain experts, system engineers and data scientists. Furthermore we
conducted interviews in order to lightly evaluate its usefulness and limitations.

In the future we expect to conduct more field trials of the method and inter-
view more practitioners in order to do a thematic analysis for better qualitative
feedback. We aim to investigate how the results of applying BERMUDA can
be used when training domain experts to use the appropriate categories instead
of “other”. We also aim to extend the tool with an automatic signaling system
to monitor for changes in the user interface and in the database structure to
notify the data scientist of possible misalignment in existing processes. We hope
to increase the robustness of the tool and its compatibility with existing process
mining tools. We also aim to provide the prototype as an online tool in order to
facilitate remote cooperative work. Finally we aim to support a broader range of
input and output formats by applying the method on diverse data sources from
information systems in relevant domains.

Acknowledgements. Thanks to Infoventure, KMD Momentum, Bispebjerg Hospi-
tal, The Capital Region of Denmark, Gladsaxe and Syddjurs municipalities, and the
reviewers.
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Streaming Process Mining is an emerging area in process mining that spans data mining
(e.g. stream data mining; mining time series; evolving graph mining), process mining
(e.g. process discovery; conformance checking; predictive analytics; efficient mining of
big log data; online feature selection; online outlier detection; concept drift detection;
online recommender systems for processes), scalable big data solutions for process
mining and the general scope of online event mining. In addition to many other techniques
that are all gaining interest and importance in industry and academia. The SA4PM
workshop aims at promoting the use and the development of new techniques to support
the analysis of streaming-based processes. We aim at bringing together practitioners
and researchers from different communities, e.g., Process Mining, Stream Data Mining,
Case Management, Business Process Management, Database Systems, and Information
Systems, who share an interest in online analysis and optimization of business processes
and process-aware information systems with time, storage, or complexity restrictions.
Additionally, SA4PM aims to attract research results on scalable algorithmic process
mining solutions in general, given that the work addresses how such efficient solutions
would function under streaming settings. The workshop aims at discussing the current
state of ongoing research and sharing practical experiences, exchanging ideas, and setting
up future research directions.

This third edition of the workshop attracted 4 international submissions, one of
which was redirected to another workshop before the reviewing due to relevance. Each
paper was reviewed by at least three members of the Program Committee. From these
submissions, the top 2 were accepted as full papers for presentation at the workshop.
Both presenters got the chance to interact with the audience through panel discussions.
The SA4PM’22 workshop shared the program this year with the EdBA’22 workshop,
which further enriched the discussions among various audience members. The papers
presented at SA4PM’22 provided a mix of novel research ideas and focused on online
the customer journey optimization and streaming declarative processes.

Lisan Wolters et al. focus on online process predictions by introducing a frame-
work that continuously retrains machine learning models to predict the occurence of
activities of interest in the remainder of the customer journey. The proposed framework,
called HIAP, uses process mining techniques to analyze the customer journeys. Different
prediction models are researched to investigate which model is most suitable for high
importance activity prediction. Furthermore the effect of using a sliding window or land-
mark model for (re)training a model is investigated. The framework is evaluated using
a health insurance real dataset and a benchmark data set. The efficiency and prediction
quality results highlight the usefulness of the framework under various realistic online
business settings.

Next, Andrea Burattin et al. addressed the problem of online process discovery
through an algorithm that extracts declarative processes as dynamic condition graphs
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from event streams. Streams are monitored to generate temporal representations of the
process, later processed to create declarative models. The authors validated the technique
by identifying drifts in a publicly available dataset of event streams. The used metrics
extend the Jaccard similarity measure to account for process change in a declarative
setting. The technique and the data used for testing are available online.

We hope that the reader will find this selection of papers useful to keep track of the
latest advances in the stream process mining area. We are looking forward to showing
new advances in future editions of the SA4PM workshop.

November 2022 Marwan Hassani
Andrea Burattin
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Thomas Seidl
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Abstract. Customer journey analysis is important for organizations to
get to know as much as possible about the main behavior of their cus-
tomers. This provides the basis to improve the customer experience within
their organization. This paper addresses the problem of predicting the
occurrence of a certain activity of interest in the remainder of the customer
journey that follows the occurrence of another specific activity. For this,
we propose the HIAP framework which uses process mining techniques
to analyze customer journeys. Different prediction models are researched
to investigate which model is most suitable for high importance activity
prediction. Furthermore the effect of using a sliding window or landmark
model for (re)training a model is investigated. The framework is evaluated
using a health insurance real dataset and a benchmark data set. The effi-
ciency and prediction quality results highlight the usefulness of the frame-
work under various realistic online business settings.

Keywords: Process mining + Process prediction - Customer journey
analysis + Streaming data - Machine learning  Deep learning

1 Introduction

Customer journey analysis is useful for companies trying to understand how the
customer interacts with the company. Next to understanding the customer jour-
ney it can also be used to improve the customer experience [1]. Customers can
interact with a company over multiple channels, such as website visits, phone
calls, physical presence at stores, etc. Not all interactions (or touchpoints) pro-
vide the same customer experience and satisfaction [2]. Next to understand-
ing current customer journeys, it is also interesting for companies to predict
whether customers will interact with a certain touchpoint on a later moment in
their journey. Knowing in advance which customer will encounter certain touch-
points, might provide the option to prevent the occurrence of touchpoints that
often indicate a negative feeling towards the journey which in turn might result
with saving resources. Current research has already shown interest in next event
prediction and final outcome prediction for running customer cases [3,6]. In this
paper, the research conducted will investigate whether the customer will interact
© The Author(s) 2023
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with a certain activity in the remainder of its journey. Therefore, neither next
activity prediction nor final outcome prediction will alone be sufficient. Filling
the gap in future touchpoint of interest prediction is achieved by providing a
repeatable framework for future high importance activity prediction (HIAP).
The main use case of this work comes from a health insurer company that we
will refer to as Yhealth. Yhealth wants to retrieve insights in which customers are
most likely to call Yhealth. Performing a call is often experienced bad; therefore,
it is interesting to prevent such interactions. A first step in prevention is knowing
which customer will call. For this purpose, a data set containing declaration data
of the customer is provided. The goal is to predict at a certain moment in the
customer journey which customers will call Yhealth in the remainder of their
journey. The solution proposed in this paper uses online process mining tech-
niques to analyze the current customer journeys. The insights gathered serve
as basis to indicate the decision moment (DeM) and potential activity (PoAc).
For customer journeys reaching the DeM it should be predicted whether the
customer will interact with the PoAc in the remainder of its journey. Machine
and deep learning models are trained to perform predictions. The solution pro-
vides a repeatable framework to predict the occurrence of a PoAc in a customer
journey. The performance of the different prediction models is evaluated. Next,
research is conducted in the resources needed to keep a model up to date to
recent customer journeys with respect to the quality gain, using online settings
with a sliding window model and a landmark window model. This research shows
that it is important to focus on recent traces to observe and react on changing
behaviour of the customer.

The paper is structured as follows: Sect.2 provides an overview of related
work. Section 3 contains notations used in the paper and explains the research
problem in more details. Section 4 defines the proposed framework, which is then
evaluated in Sect. 5. Section 6 concludes the paper with an outlook.

2 Related Work

Predicting next events and timestamps in a running trace is discussed in several
works. Though none of these works have the same assumptions, data or goal. In
[7] a technique to analyze and optimize the customer journey by applying pro-
cess mining and sequence-aware recommendations is proposed. These techniques
are used to optimize key performance indicators to improve the customer jour-
ney by providing personalized recommendations. The goal of predicting what
a customer will like differs from predicting what a customer will do. Especially
predicting whether a customer will encounter an action that is often experienced
badly is a different goal. Therefore, the second phase of sequence-aware recom-
mendations is not applicable in the current context. Predicting a next event and
its associated timestamp in a customer journey is discussed in [6]. They propose
a RNN with the LSTM architecture for both next event and suffix prediction.
Suffix prediction is applied by iteratively predicting the next event. This may
result in a poor suffix quality as an error in a previous prediction is propa-
gated to the next prediction. This approach encounters difficulties with traces
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in which the same event occurs multiple times as in that case the model will
predict overly long sequences of that event. In the case of a health insurer, some
events are expected to reoccur. Therefore, a solution for this limitation should
be implemented to be applicable in the current context. Another approach on
suffix prediction is applied in [5] by using an encoder-decoder GAN. The encoder
and decoder are both represented by an LSTM network and allow the creation of
variable length suffixes. This technique is used to predict suffixes up to the end
of the trace. Furthermore, a suffix is not generated at a certain point in the cus-
tomer journey, which is of high importance in the current research. Different ML
and DL techniques for outcome predictions are evaluated in [4]. The outcome of
a trace is predicted for a journey up to x events in which = has values from 1 to
10. Predicting the final outcome of a case is not the same as predicting whether
a certain activity will occur. However, it should be possible to adapt the final
outcome to high importance activity prediction. But nonetheless the technique
is not applicable in the current research as a prediction should be provided as
soon as a certain proposition holds for that trace, instead of after x events. In
[8], the authors propose a framework for online prediction of the final outcome
of retailer consumer behaviour using several aggregation methods.

3 Problem Exposition

This section defines the notation needed to understand the HIAP framework
and describes the research problem in more details. Let CJ = (cj1, ¢ja, .., CIn)
be a log containing the customer interactions. Each row in the log ¢j, =
(cuj,t,i,ia1, ..ia,,) defines a single interaction of customer cu;. The customer
conducted touchpoint ¢ at time t. The interaction of the customer may have
interaction attributes (iaq, ...ia,,). Later, CJ is converted into an event log. Let
L = (e1,ea,...e,) be the event log of the customer journey. Each row in the log
er = (¢i,t,a,dy,..dy) defines a single event performed by one case identifier ¢;.
Each customer cu; can be mapped to a ¢;. The touchpoint of the interaction
of the customer is renamed to an activity a and the activity is performed at
time t. Each touchpoint ¢ will be mapped to an activity a, but multiple touch-
points might be mapped to the same activity a. Furthermore, events can have
attributes dy, ...dy, extracted from the interaction attributes. The log £ contains
all traces of the customers in C'J. Let 0; =< e1, €2, ..., €5, > define the trace of
case identifier ¢;. The a-prefix is the trace up to and including the first a events.
The suffix is defined as event (« + 1) until the end of the trace.

This work aims to use process mining techniques to improve customer journey
analysis and use the insights to improve the customer experience. A repeatable
framework for future touchpoint prediction in a customer journey is proposed.
The result can be used to make the customer journey smoother, which will
result in a more satisfied customer. For a customer journey a PoAc and DeM
in the trace will be defined. Based on DeM x, we know the z-prefix <eq,...e;>
of a customer journey. Using the information in the x-prefix, the goal is to
predict whether PoAc y will occur in the z-suffix of the customer. Where the z-
suffix is <€y 41, -+, €|trace|>- Customer journeys may change rapidly, therefore the
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prediction models should facilitate updates and the framework is tested by means
of data streams. Using data streams stresses the effect of incorporating changing
behaviour of customers. Without using data streams, models are based on older
customer data and in the case of changing customer behaviour the prediction
will become unreliable. When models are retrained over time the recent changes
in customer behaviour is still considered and models will provide predictions
with a higher performance.

4 High Importance Activity Prediction Framework

This chapter introduces the high importance activity prediction (HIAP) frame-
work to predict the occurrence of an interesting touchpoint in the remainder
of the customer journey based on the journey up to a specific point in time.
The prediction uses information of the event log prefixes and possible customer
information to predict for a specific customer whether (s)he will have a specific
interaction in the future. Figurel shows an overview of the framework. This
chapter explains the steps of the framework.

£l
........ . g 2 oy "
A x £l
i ; & g @
- - L0 - mmEE - g
- ° = & b_‘!,)
Journeylogto event log Dem& PoAc Datapreperation Prediction Evaluation

Fig. 1. Schematic overview of the proposed framework

The goal of the first step is to create a preprocessed event log £ that can
be used for the research. Preprocessing is needed to combine data of different
sources, infer missing data and remove unnecessary data [9]. Different scenarios
require different data harmonization techniques. Examples are data cleaning,
transforming interactions and transforming a customer journey to an event log.

4.1 Critical Moments

The process model of event log L is used for defining critical moments. The crit-
ical moments are the decision moment(DeM) and the potential activity (PoAc).

Decision Moment Definition. The goal of HIAP is to predict whether a
certain activity will occur based on a predefined moment in the trace. This
specific moment can be defined either by a specific activity or by a proposition
based on the events in the trace. The first time that such an activity occurs or
the proposition holds will be taken as the DeM of the trace. When determining
the DeM two criteria should be considered. First, the goal of the prediction is
to be able to adjust the remainder of the trace and prevent the occurrence of a
certain activity or to be able to save resources. As a result, the prediction should
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be early in the process. Second, the prediction should be as accurate as possible.
In general, more accurate predictions can be provided at the moment that more
information is available about the current process. Therefore, a balance should
be found between choosing an early DeM and the quality of the prediction [10].
As the prediction takes place at a certain moment, only the traces in £ that at
some moment satisfy the condition of a DeM should be considered. The traces
that do not satisfy the DeM should be removed from the log.

Potential Activity Definition. The PoAc is the activity of which it is pre-
ferred to know whether it will occur in the remainder of the customer journey.
The DeM should be a proposition that is met earlier in the trace than that
the PoAc occurs. However, the PoAc may be an activity that is occurring at a
random moment in the suffix of the trace with respect to the DeM.

4.2 Data Preparation

Prior to the prediction phase a training, a validation and a test set should be
created. Two methods are used to create those sets, one being a static method
and the second method a streaming setting. Method one uses chronological in
time the first 70% of the data as training data, the next 10% as validation data
and the last 20% as test data. For the second method, a sliding window and
a landmark model are used to investigate the effect on the training time and
prediction performance. These results provide insights in the need to use all
historical data or only recent historical data to keep the prediction models up
to date. Using a wider period of time results in a considering more customer
journeys and more likely a wider spectrum of use cases. While narrowing the
time window provides a more detailed focus on recent customer journeys and
provides more details on recent behaviour. In this case, a start date and end date
of the window is defined. The training and the validation sets are composed of
the traces that are completed in this window. The test set is constructed of the
set of traces of which the proposition defining the DeM is satisfied in this time
window, but that are not yet completed.

4.3 Prediction of the Potential Activity

In this paper three models are considered for the prediction of the PoAc to
determine which model is most suited. The possible methods for prediction are
not limited to these models; therefore, it is possible to consider other models
too.

Random Forest Classifier. In order to train a RFC, the traces first need to be
represented as a set of features [11]. These features consist of a set of independent
variables and one dependent variable. This set of independent variables should
be deduced from the trace that is available up to the DeM as well as available
customer details. The dependent variable represents the occurrence of the PoAc
in the suffix of the trace. Resulting in a binary decision.
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Long-Short-Term-Memory Network. The LSTM used in the research is
inspired on the implementation of [4] for final outcome prediction. Their prepro-
cessing entails multiple steps. First, they defined the number x of events which
should be considered while creating the feature vector. The feature vectors only
entail information of the event and trace attributes that are available up to
that moment of the trace. The traces that did not contain at least x events are
removed from the log. Last, the label indicating the final outcome of the current
trace is assigned to the feature vector. This part of the feature vector is used to
compare the prediction with the ground truth and to train model parameters.
This preprocessing is not directly applicable in the current research. The event
number of the DeM may differ from one trace to another, but for each trace
the prediction should be provided at the DeM. For each trace, the number of
events prior to the DeM can be extracted. Furthermore, a number y of events
is defined, defining the preferred prefix length for each trace. Traces containing
more than y events up to the DeM, should be shortened. Only the last y events
up to the DeM should be kept. Traces that have less than y events up to the
DeM should lengthened with artificial events, added to the start of the trace.
The events occurring later than the DeM, should still be preserved. The trace
suffix will be used to determine the dependent variable, indicating whether the
PoAc occurs. The feature vectors are used as input to a LSTM network classifier.
The model is trained with a two-stage learning strategy as explained in [4].

Generative Adversarial Network. The GAN described is an adaption of
the model in [5] for suffix prediction. The implementation needed some modifi-
cation regarding the creation of the training, the validation and the test set and
the number of prefix and suffixes created for each trace. [5] created the train-
ing, the validation and the test sets by randomly selecting instances from the
complete log. In this research those are defined based on the timestamp of the
DeM or based on the timeframe. Secondly, one prefix-suffix combination should
be created per trace based on the DeM. The PoAc activity prediction could be
determined by the occurrence of the PoAc in the suffix returned by the model.

4.4 Model Comparison and Future Model Use

The next step is to evaluate the performance of each classifier to judge the
trustworthiness of the classifiers and to compare the different models. Depending
on the research field and goal of the research the quality of each model will
be accessed by the Fl-score and/or recall. Generally, a higher score implies
that the model is outperforming the other models [9]. Furthermore, the three
models should also be compared to a baseline model. As baseline model a random
predictor is used. The random predictor uses the distribution of the occurrence
of the PoAc in the training set and predicts for the test set that the PoAc will
occur in the same percentage of cases. The average prediction performance over
1000 runs is used as result for the baseline model. After training a model, the
goal is to predict for new cases, as soon as the DeM property holds, whether
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the PoAc will occur. Predictions should be as reliable as possible in such cases;
therefore, the model that is expected to be most trustworthy should be used.

The model that is evaluated to be the best model, can be used for future
instance predictions. After training a model, the model can be stored, such that
the model can be used for future predictions of the PoAc. At the moment that
the proposition defining the DeM holds for a new customer journey, it can be
represented with the same feature representation as the original data. A predic-
tion on the occurrence of the PoAc will be provided by the model. The prediction
can be used to act upon to improve the customer experience.

5 Experimental Evaluation

This section evaluates the application of the HIAP research on the Yhealth and
benchmark BPI 2012 dataset.

5.1 Health Insurer Data Set

The Dutch health insurer data set contains details about the declaration process
for customers. The log CJ covers a time period of two months, recording for
all interactions cj, the touchpoint i, its timestamp ¢ and the customer identifier
cu;. In addition, anonymized customer details are available and touchpoints are
related to further attributes, for example for a call the question is recorded.
The data harmonization is conducted with the help of Yhealth. Steps taken
are filtering of phone calls based on the subject, mapping of touchpoints to
belong to a declaration and filtering incomplete traces. This resulted in an event
log L consisting of 95,457 traces accounting for nearly 400,000 events. Most
traces are relatively short as 95% of the traces had less than 10 events. The
goal for Yhealth is to determine whether a customer will call as a follow-up to
obtaining the result of the declaration. Calling is often perceived negatively by
the customer; therefore, Yhealth would like to prevent the occurrence of a call.
The first step to prevent the call is to know who will call. For that reason, the
PoAc is defined as a call. The DeM is the moment that the result of a declaration
is sent to the customer. This moment is chosen as earlier in the trace, for a lot
of traces not enough information is available for the prediction and the result of
the declaration will provide valuable information for the prediction. The log is
imbalanced, as only 3.5% of the traces contain a call event on a later moment
than receiving the result on a declaration. The set is used to create a training,
a validation and a test set. The training set is undersampled such that the
occurrence of the PoAc is more evenly distributed in the suffix with respect to
the DeM.

The next step is to convert the traces to input for the RFC, LSTM and GAN.
For all three models the traces up to the moment that the customer receives the
results of a declaration is used as input to train a model for predictions. In the
case of the RFC the traces have to be converted in a set of independent decision
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variables and one dependent variable which is the PoAc. The independent vari-
ables contain information of trace and event attributes. The input features of the
LSTM network contain information on trace attributes and event attributes. All
input features should have the same length; therefore, each trace is preprocessed
such that it contains 5 events up to the DeM. The preprocessing of [4] is used to
create the feature representation. The GAN network uses the original prefixes
up to the DeM. The input of the training set also contains the suffixes which
are either the suffix up to the PoAc or the complete suffix when PoAc is not
in the suffix. The feature representation as proposed in [7] is the input for the
encoder-decoder GAN.

1 (A) Yhealth 1 (B) BPI12 A_Preaccepted 1 (C) BPI12 W_Completeren_aanvraag
038 0,8 08
0,6

X 0,6 | 0,6
04 | I 04 04
02 I i 02 i i 02
N | | [—— AN mmm. | | | | | | | | | | | | | | | |
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Fig. 2. Performance measures of the prediction models in offline setting

To determine which model can be used best, the three models and baseline
model should be compared. The result is shown in Fig. 2(A). None of the models
is performing best on all four performance measures. For the case of Yhealth it
is most important to know whether a customer is likely to call. Therefore recall
together with Fl-score are the most import performance measures. On these
two measures the LSTM and RFC model are performing best. The F1 score of
both these models is doubled with respect to the random classifier; therefore,
outperforming the baseline model. Without affecting the quality of the model,
LSTM networks usually require a higher hardware requirement to train and use
the model [4], which is not always available. Furthermore, RFC models are easier
to understand and explain for humans. Accordingly, the RFC might be selected
as the best prediction model for Yhealth.

Next to comparing the three prediction models on the complete data set,
research is conducted in applying a sliding window and landmark model. A slid-
ing window model only trains over the most recent instances, while a landmark
model trains on the complete history of available data. Therefore, it is expected
that a landmark model needs more resources to train a model. However, it is
also expected that the quality of the predictions will be higher, as more training
data is available. For this purpose, sub windows of the complete data are used
to create the training, the validation and the test set for the sliding window
and landmark model. In the current research, all models are trained on a CPU.
If a GPU would be available the models could benefit from improved parallel
computations. A GAN and LSTM network are expected to benefit more from a
GPU, while the RFC is expected to be faster on a CPU.
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Fig. 3. Sliding window and landmark model results for the Yhealth data set.

The results of using a sliding window and landmark model on the Yhealth
data set is shown in Fig. 3. For the sliding window, each window contains two
weeks of data and the window shifts with one week for each new window. For the
landmark model the first window contains two weeks of data, the next windows
each increase with the data of one extra week. As can be seen in Fig.3 the
training time of the landmark model increases as the window size increases.
Considering the same window, the RFC model is trained faster than the LSTM
model and the LSTM models is faster than the GAN model. The inference time
for the RFC and LSTM model is similar, but the GAN model is slower. For
each model, the precision and Fl-score of the landmark model is at least as
high as their counterparts of the sliding window. This shows that the landmark
model is eager to learn using more journeys, even if these journey are already
a little older. Considering the recall score, up to the window ending at June
22, the landmark model is performing better than the sliding window for each
prediction model. For the window ending at June 29, the GAN and the LSTM
models trained over the sliding window have higher recall scores than the two
models trained over the landmark model. The GAN model is performing worst
for almost all windows. As of the window ending at June 15, the LSTM model on
the sliding window and landmark model scores are slightly higher than the RFC
model. However, the training time of the RFC model is considerably shorter. For
a model to provide predictions, it is important to regularly update the model
to new instances. Updating a model is easiest if training takes as less time as
possible, but the results should not be affected by the reduction of the training
time. Especially the time to train the LSTM model on the landmark model is
too long for the last window. Therefore, the landmark LSTM model is not the
most preferred model. The gain in performance for the LSTM sliding window
model is small with respect to the RFC model on the landmark model. The
performance of the RFC model with the sliding window is again slightly lower.
However, the model with the lowest performance requires the shortest training
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time. As the RFC model is easier to understand, the RFC model is the preferred
model to use. The running time of the landmark model of the RFC is not yet
too long; therefore, the landmark model is preferred over the sliding window.

5.2 BPI 2012 Data Set

Since the data of Yhealth is confidential, the HIAP framework is replicated on the
public available BPI 2012 event log. The BPI 2012 challenge event log contains
data of the application process for a personal loan or overdraft within a Dutch
financial institute. Only events with the life cycle attribute value ‘complete’ are
considered and only traces that either have an approved, cancelled or declined
application. The event log covers a time period of 6 months and contains around
12,700 cases and 156,000 events. The process model of the event log is used to
determine the critical moments. A new sub-process in the log is initiated if a
customer requests a loan, in that case the Dutch financial institute determines
whether an offer will be sent to the customer. In order to determine whether
an offer will be sent, human resources are needed to complete the application
and to create an offer. If it is known early enough whether an offer will be
sent, the resources could be used only for cases in which indeed an offer will be
provided to the customer. Therefore, the PoAc is the activity ‘O _SENT’. At
the activities of ‘W_Completeren aanvraag’ (Complete application, W _C _a)
and ‘A _PREACCEPTED’ (A_p) the remainder of the process can still contain
the activity ‘O_SENT’, but the process might also finish without the activity
‘O_SENT’. Accordingly, two DeMs are defined, 1) the moment at which ‘A _p’
occurs and 2) the moment at which ‘W C_a’ occurs. For the prediction task on
the DeM of ‘A p’ only traces in which the activity ‘A p’ occurs are considered.
Resulting in 6968 traces. For the activity ‘W __C _a’ the event log also consist
of 6968 traces. The occurrence of ‘O SENT’ is 67,2% and 44, 1% respectively.
After creating a training, a validation and a test set for both DeMs, the training
set is balanced on the occurrence of ‘O SENT’.

The next step is to convert the traces to inputs for the RFC, LSTM and
GAN for both DeMs. For all three models the traces up to the moment ‘A _p’
as well as the moment ‘W_C_a’ are used separately as input to train a model
for predictions. In the case of the RFC the traces have to be converted to a
feature representation. The independent variables contain information of trace
and event attributes. The input features of the LSTM network contain similarly
information on trace attributes and event attributes. The trace length is set to
3 for ‘A_p’ and 6 for ‘W_C_a’ up to the DeM. The preprocessing of [4] is
used to create the feature representation. For each trace, additional independent
variables are created, which are the amount of loan or overdraft requested by the
customer, the number of activities so far, the types of these activities and time
between them. The GAN network uses the original prefixes up to the DeM. The
input of the training set also contains the suffixes which are either the suffix up
to the PoAc or the complete suffix when PoAc is not in the suffix. The feature
representation as proposed in [7] is the input for the encoder-decoder GAN.
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To determine the best prediction model, the three models and the baseline
model should be compared. The result is shown Fig.2(B) and (C). For both
DeMs the three models are outperforming the baseline model, as the models
score higher on all performance measures. For DeM ‘A p’ the Fl-score for all
three models is comparable. The recall is best on the LSTM model. Therefore,
the LSTM model is preferred in predicting ‘O _SENT’. For DeM ‘W_C_a’ the
RFC and LSTM model score equally on the F1-score and slightly better than the
GAN model. The recall score of the RFC is outperforming those of the LSTM
and GAN model. The RFC model is best for the current prediction task.
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Fig. 4. Sliding window and landmark model results on the BPI 2012 data set.

Next the results of using a sliding window and a landmark model are dis-
cussed. The first window consists of 50 days and for each timeframe it either
shifts by 25 days (Sw) or 25 days of data are added (Lm). The results for both
‘A p’and ‘W_C_a’ are shown in Fig. 4. For both DeMs it is the case that the
training time of the sliding window models is relatively consistent over the differ-
ent windows, while the training time of the landmark model increases. Resulting
in a longer training time for the landmark model for later windows. Furthermore
the training time and the inference time of the GAN is longer than the coun-
terparts of the LSTM and RFC model. Considering the performance measure,
the GAN model shows some poor performance results for some of the windows.
This might be caused by the goal of training for suffix prediction, which is a
different goal than predicting a PoAc. For both the RFC and LSTM model the
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performance (recall and Fl-score) for the landmark model are comparable to
the sliding window results. Therefore models are not learning form more data
and only retraining on the most recent data is needed. For prediction moment
‘A_p’ the LSTM model is performing better than the RFC model on most win-
dows. Therefore, considering training time, inference time, recall and F1-score
the LSTM model with sliding window is preferred. On the other hand, for pre-
diction moment ‘W_C_a’ the RFC on both windows and the LSTM model on
the landmark window perform better than the LSTM with the sliding window.
Considering the training time, inference time, recall and F1l-score the RFC on
the sliding window is preferred.

6 Conclusion

In this paper the HIAP framework is proposed as a repeatable framework for
predicting the occurrence of a PoAc at a DeM in the customer journey. Differ-
ent machine and deep learning models are compared for future predictions of
touchpoint of interest using two windowing methods. To show the relevance of
the framework, we tested it using two datasets showing the prediction power
and the impact of using a sliding window or a landmark window. Showing that
the preferred prediction model and windowing technique depends the type of
customer journey data. Interesting future research is to predict the moment at
which the expected activity is expected to occur [6]. This provides information
on the possibility to prevent the activity to occur.
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Abstract. Process discovery is a family of techniques that helps to comprehend
processes from their data footprints. Yet, as processes change over time so should
their corresponding models, and failure to do so will lead to models that under-
or over-approximate behaviour. We present a discovery algorithm that extracts
declarative processes as Dynamic Condition Response (DCR) graphs from event
streams. Streams are monitored to generate temporal representations of the pro-
cess, later processed to create declarative models. We validated the technique by
identifying drifts in a publicly available dataset of event streams. The metrics
extend the Jaccard similarity measure to account for process change in a declara-
tive setting. The technique and the data used for testing are available online.

Keywords: Streaming process discovery * Declarative processes + DCR graphs

1 Introduction

Process discovery techniques promise that given enough data, it is possible to output
a realistic model of the process as is. This evidence-based approach has a caveat: one
needs to assume that inputs belong to the same process. Not considering process vari-
ance over time might end in under- or over-constrained models that do not represent
reality. The second assumption is that it is possible to identify full traces from the
event log. This requirement indeed presents considerable obstacles in organizations
where processes are constantly evolving, either because the starting events are located
in legacy systems no longer in use, or because current traces have not finished yet.
Accounting for change is particularly important in declarative processes. Based on a
“outside-in” approach, declarative processes describe the minimal set of rules that gen-
erate accepting traces. For process mining, the simplicity of declarative processes has
been demonstrated to fit well with real process executions, and declarative miners are
currently the most precise miners in use'. However, little research exists regarding how
declarative miners are sensitive to process change. The objective of this paper is to study
how declarative miners can give accurate and timely views of partial traces (so-called
event streams). We integrate techniques of streaming process mining to declarative
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modelling notations, in particular, DCR graphs [14]. While previous works of streaming
conformance checking have addressed other declarative languages (e.g.: Declare [23]),
these languages are fundamentally different. Declare provides a predefined set of 18
constraint templates with an underlying semantics based on LTL formulae on finite
traces [12]. Instead, DCR is based on a minimal set of 5 constraints, being able to cap-
ture regular and omega-regular languages [13]. In comparison with Declare, DCR is
a language adopted by the industry: DCR is integrated into KMD Workzone, a case
management solution used by 70% of central government institutions in Denmark [22].
Event streams present challenges for discovery. Streams are potentially infinite, mak-
ing memory and time computation complexities major issues. Our technique optimizes
these aspects by relying on intermediate representations that are updated at runtime.
Another aspect is extensibility: our technique can be extended to more complex work-
flow patterns via the combination of atomic DCR constraints. Figure 1 illustrates our
contribution: a streaming mining component, capable of continuously generating DCR
graphs from an event stream (here we use the plural graphs to indicate that the DCR
model could evolve over time, to accommodate drifts in the model that might occur).
Towards the long-term goal of a system capable of spotting changes in a detailed fash-
ion, we will also sketch a simple model-to-model metric for DCR, which can be used
to compare the results of stream mining with a catalogue or repository of processes.
An implementation of our techniques together with tests and datasets is available in
Beamline? [6].

The rest of the paper is structured as follows: related works are presented in Sect. 2;
theoretical background is covered in Sect. 3. The streaming discovery is presented in
Sect. 4 and the approach is validated in Sect. 5. Section 6 concludes.

2 Related Work
This is the first work aiming at discovering DCR graphs from event streams. We find
related work in offline discovery of DCR graphs and stream process mining for Declare.

Offline Process Discovery Techniques. The most current discovery technique for DCR
graphs is the DisCoveR algorithm [4]. In their paper, the authors claim an accuracy of

2 See https://github.com/beamline/discovery-dcr.
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96,1% with linear time complexity (in PDC 2021 the algorithm achieved 96.2%). The
algorithm is an extension of the ParNek algorithm [21] using an efficient implementa-
tion of DCR mapping via bit vectors. In its most recent version [24], DisCoveR has been
extended with the idea of having both positive and negative examples to produce a more
precise process model. Other related works derive from conformance checking [10] and
process repair [1] techniques. Both fields aim at understanding whether executions can
be replayed on top of an existing processes model. However, in our case, we wanted to
separate the identification of the processes (i.e., control-flow discovery) from the calcu-
lation of their similarity (i.e., the model-to-model metric) so that these two contributions
can be used independently from each other. Conformance checking and process repair,
on the other hand, embed the evaluation and the improvement into one “activity”.

Online Discovery for Declarative Models. In [ 7] aframework for the discovery of Declare
models from streams was introduced as a way to deal with large collections of datasets
that are impossible to store and process altogether. In [20] this work was generalized to
handle the mining of data constraints, leveraging the MP-Declare notation [9].

Streaming Process Mining in General. In his PhD thesis [29], van Zelst proposes process
mining techniques applicable to process discovery, conformance checking, and process
enhancement from event streams. An important conclusion from his research consists
of the idea of building intermediate models that capture the knowledge observed in the
stream before creating the final process model. In [5] the author presents a taxonomy for
the classification of streaming process mining techniques. Our techniques constitute a
hybrid approach in the categories in [5], mixing a smart window-based model which is
used to construct and maintain an intermediate structure updated, and a problem reduc-
tion technique used to transform the such structure into a DCR graph.

3 Background

In the following section, we recall basic notions of Directly Follows Graphs [1] and the
Dynamic Condition Response (DCR) graphs [14]. While, in general, DCR is expressive
to capture multi-perspective constraints such as time and data [15,26], in this paper we
use the classical, set-based formulation first presented in [14] that contains only four
most basic behavioural relations: conditions, responses, inclusions and exclusions.

Definition 1 (Sets, Events and Sequences). Let C denote the set of possible case iden-
tifiers and let A denote the set of possible activity names. The event universe is the set
of all possible events £ = C x A and an event is an element e = (c,a) € E. Given a
set Nt =1,2,...,n and a target set A, a sequence o : N\ — A maps index values to
elements in A. For simplicity, we can consider sequences using a string interpretation:
o={ay,...,a,) where o(i) = a; € A.

We can now formally characterize an event stream:

Definition 2 (Event stream). An event stream is an unbounded sequence mapping
indexes to events: S : Nt — £,

Definition 3 (Directly Follows Graph (DFG)). A DFG is a graph G = (V, R) where
nodes represent activities (i.e., V. C A), and edges indicate directly follows relations
Sfrom source to target activities (i.e., (as,a;) € Rwithas,a; € V,50 RCV x V).
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Definition 4 (Extended DFG). An extended DFG is a graph G, = (V, R, X) where
(V,R) is a DFG and X contains additional numerical attributes referring to the nodes:
X : V x Attrs — R, where Attrs is the set of all attribute names. To access attribute o
Sor node v we use the notation X (v, aq).

We use the following attributes: avgFO: average index of the first appearance of an
activity in a trace; noTraceApp: current number of traces containing the activity;
avgldx: average index of the activity in a trace; and noOccur: number of activity occur-
rences.

Definition 5 (DCR Graph). A DCR graph is a tuple (A, M, —e o— —+ —%),
where Ais a set of activities, M C P(A) x P(A) x P(A) is a marking, and ¢ C Ax A
for ¢ € {—e, 0 —+ —%} are relations between activities.

A DCR graph defines processes whose executions are finite and infinite sequences
of activities. An activity may be executed several times. The three sets of activities in
the marking M = (Ex, Re,In) define the state of a process, and they are referred to
as the executed activities (Ex), the pending response (Re)® and the included activities
(In). DCR relations define what is the effect of executing one activity in the graph.
Briefly: Condition relations a—ea’ say that the execution of a is a prerequisite for a’,
i.e. if a is included, then a must have been executed for a’ to be enabled for execution.
Response relations ae—a’ say that whenever a is executed, a’ becomes pending. In
a run, a pending event must eventually be executed or be excluded. We refer to o’
as a response to a. An inclusion (respectively exclusion) relation a—+a’ (respectively
a—%a’) means that if a is executed, then a’ is included (respectively excluded).

For a DCR graph* P with activities A and marking M = (Ex, Re, In) we write P, .
for the set of pairs {(z,y) |z € ANy € A A (z,y) € e—} (similarly for any of the
relations in ¢) and we write P4 for the set of activities. Definition 5 omits the existence
of a set of labels and labelling function present in [14]. This has a consequence in the
set of observable traces: Assume a graph G = ({a, b}, (0, {a, b}, {a,b}),0,0,0,0) as
well as a set of labels L = {p} and a labelling function [ = {(a, p), (b, p)}. A possible
run of G has the shape o = (p, p), which can be generated from 1) two executions of a,
2) two executions of b or 3) an interleaved execution of ¢ and b. By removing the labels
from the events (or alternatively, assuming an injective surjective labelling function in
[14]), we assume that two occurrences of the event in the stream imply event repetition.

4 Streaming DCR Miner

This section presents the general structure of the stream mining algorithm for DCR
graphs. The general idea of the approach presented in this paper is depicted in Fig. 2:
constructing and maintaining an extended DFG structure (cf. Definition 4) starting from
the stream and then, periodically, a new DCR graph is extracted from the most recent
version of the extended DFG available. The extraction of the different DCR rules starts
from the same extended DFG instance. For readability purposes, we split the approach

3 We might simply say pending when it is clear from the context.
* We will use “DCR graph” and “DCR model” interchangeably in this paper.
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Fig. 2. Conceptual representation of the discovery strategy in this paper.

Algorithm 1: General structure of Streaming DCR Miner
Input: S: stream of events; m: maximum number of traces to store; m.: maximum number of events per trace to
store; (T, <): Pattern poset
1 Initialize map obs > Maps case ids to the sequence of activities

2 Initialize map deps > Maps case ids to one activity name
3 Initialize extended DFG Gx = (V, R, X)

4 forever do
> Step 0: Observe new activity a for case ¢
5 (¢,a) «— observe(S)

> Step 1: Update of the extended DFG

6 if ¢ € obs then

7 Refresh the update time of ¢

8 if |obs(c)| > m. then

9 Remove oldest (i.e., earliest update time) event from list obs(c)
Update V' and X of G x to be consistent with the event just removed

11 else
12 if [obs| > m then
13 Remove the oldest (i.e., earliest update time) trace from obs and all its events
14 Update V' and X of G x to be consistent with the events just removed
15 obs(c) « () > Create empty list for obs(c)
16 obs(c) « obs(c) - (a) > Append a to obs(c)
17 V —VuU{a}
18 Update frequency and avg appearance index in X component of G x > The average appearance index is
updated considering the new position given by |obs(c)|
19 if ¢ € deps then
20 | R < RU{(deps(c),a)}
21 deps(c) «— a
22 if trigger periodic cleanup then 1> Periodic cleanup of deps
23 L Remove the oldest cases from deps
> Step 2: Periodic update of the DCR model (enough time/new behaviour)
24 if trigger periodic update of the model then
25 M — mine((T, <), Gx) > See Algorithm 2
26 Notify about new model M

into two phases. The former (Algorithm 1) is in charge of extracting the extended DFG,
the latter (Algorithms. 2, 3, 4) focuses on the extraction of DCR rules from the extended
DFG.

Algorithm 1 takes as input a stream of events S, two parameters referring to the
maximum number of traces m; and events to store m. and a set of DCR patterns to
mine. The algorithm starts by initializing two supporting map data structures obs and
deps as well as an empty extended DCR graph G x (lines 1-3). obs is a map associating
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Algorithm 2: Mining of rules starting from the extended DFG
Input: (T, <): Pattern poset, G x = (V, R, X): extended DFG

P — (V, My, —o =0,0— =0, =+ =0, =% = @) 1> Initial DCR graph
Rels,CompRels «— 0,0

foreach ¢t € MinimalElements({T, <)) do 1> Baseline for atomic patterns
L Rels < Rels U MineAtomic(G x , t)

foreach t € T'\MinimalElements({T' <)) do > Composite case
L CompRels — CompRels U MineComposite(G x , t, Rels)

if CompRels # () then

8 ‘ P — P & CompRels
9 else

10 L P — P @ Rels

11 return RemoveRedundancies(P) > Apply transitive reduction

W=

o o

<

case ids to sequences of partial traces; deps is a map associating case ids to activity
names. After initialization, the algorithm starts consuming the actual events in a never-
ending loop (line 4). The initial step consists of receiving a new event (line 5). Then, two
major steps take place: the first step consists of updating the extended DFG; the second
consists of transforming the extended DFG into a DCR model. To update the extended
DFG the algorithm first updates the set of nodes and extra attributes. If the case id ¢ of
the new event has been seen before (line 6), then the algorithm refreshes the update time
of the case id (line 7, useful to keep track of which cases are the most recent ones) and
checks whether the maximum length of the partial trace for that case id has been reached
(line 8). If that is the case, then the oldest event is removed and the G x is updated to
incorporate the removal of the event. If this is the first time this case id is seen (line 11),
then it is first necessary to verify that the new case can be accommodated (line 12) and,
if there is no room, then first some space needs to be created by removing oldest cases
and propagating corresponding changes (lines 13-14) and then a new empty list can
be created to host the partial trace (line 15). In either situation, the new event is added
to the partial trace (line 16) and, if needed, a new node is added to the set of vertices
V (line 17). The X data structure can be refreshed by leveraging the properties of the
partial trace seen so far (line 18). To update the relations in the extended DFG (i.e., the
R component of G x), the algorithm checks whether an activity was seen previously for
the given case id ¢ and, if that is the case, the relation from such activity (i.e., deps(c))
to the new activity just seen (i.e., a) is added (lines 19-20). In any case, the activity just
observed is now the latest activity for case id ¢ (line 21) and oldest cases (i.e., cases
not likely to receive any further events) are removed from deps (line 23). Finally, the
algorithm refreshes the DCR model by calling the procedure that transforms (lines 25-
26) the extended DFG into a DCR model (cf. Algorithm 2). Updates can be triggered
based on some periodicity (line 24) or based on the amount of behaviour seen. The
mechanics of such periodicity are beyond the scope of the paper.

Algorithm 2 generates a DCR graph from an extended DFG. First, it (1) defines
patterns that describe occurrences of atomic DCR constraints in the extended DFG, and
then it (2) defines composite patterns that describe the most common behaviour. Given
a set of relation patterns T, (T, <) denotes a pattern dependency poset with < a partial
order over T'. Similarly Minimal Elements({(T, <)) ={z € T | Ay € T.y < x}. Pat-
terns as posets allow us to reuse and simplify the outputs from the discovery algorithm.
Consider a pattern describing a sequential composition from a to b (similar to a flow
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Algorithm 3: Atomic miner
Input: Gx = (V, R, X): extended DFG, u: DCR Pattern

1 Rels <+ @ > Empty dictionary of mined relations
2 foreach (s,t) € Rdo

3 switch « > Pattern match with each atomic pattern
4 do

5 case RESPONSE

6 if X (s, avgldx) < X (t, avgldx) then

7 | Rels[u] — Rels[u] U (s,t,0—)

8 case CONDITION

9 if X (s, avgFO) < X (t, avgFO) A X (s, noTraceApp) > X (t, noTraceApp) then
10 | Rels[u] — Rels[u] U (s, t, —e)

11 case SELFEXCLUDE

12 if X (s, noOccur) = 1 then

13 | Rels[u] — Rels[u] U (s, s, —=%)

> Further patterns here...
14| return Rels

Algorithm 4: Composite miner
Input: Gx = (V, R, X): extended DFG, u: DCR Pattern, Rels: Mined Relations

1 switch u do

2 case EXCLUDEINCLUDE

3 return Rels[SELFEXCLUDE] U Rels[PRECEDENCE] U RelsNOTCHAINSUCCESION] > Removes
redundant relations

4 > Further patterns here

in BPMN). A DCR model that captures a sequential behaviour will need 4 constraints:
{a—eb,ae—b, a—%a,b—%b}. Consider T = {T} : Condition, T : Response,T5 :
Exclusion, Ty : Sequence}. The pattern poset (T, {(Ty, T1 ), (Tu, T>), (T4, T5)}) defines
the dependency relations for a miner capable of mining sequential patterns. Additional
patterns (e.g. exclusive choices, escalation patterns, etc.), can be modelled similarly.
Pattern posets are finite, thus there exist minimal elements. The generation of a DCR
model from an extended DFG is described in Algorithm 2. We illustrate the mining of
DCR conditions, responses and self-responses, but more patterns are available in [25].
The algorithm takes as input an extended DFG G x and a pattern poset. It starts by creat-
ing an empty DCR graph P with activities equal to the nodes in Gx and initial marking
M, = {0,0,V}, that is, all events are included, not pending and not executed. We then
split the processing between atomic patterns (those with no dependencies) and compos-
ite patterns. The map Rel stores the relations from atomic patterns, that will be used for
the composite miner. We use the merge notation P & Rels to denote the result of the
creation of a DCR graph whose activities and markings are the same as P, and whose
relations are the pairwise union of the range of Rels and its corresponding relational
structure in P. Line 11 applies a transitive reduction strategy [4], reducing the number
of relations while maintaining identical reachability properties.

The atomic and composite miners are described in Algorithms 3, and 4. The atomic
miner in Algorithm 3 iterates over all node dependencies in the DFG and the pattern
matches with the existing set of implemented patterns. Take the case of a response
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constraint. We will identify it if the average occurrence of s is before ¢ (line 6). This
condition, together with the dependency between s and ¢ in G x is sufficient to infer a
response constraint from s to ¢. To detect conditions, the algorithm verifies another set
of properties: given a dependency between s and ¢, it checks that the first occurrence of
s precedes ¢ and that s and ¢ appeared in the same traces (approximated by counting the
number of traces containing both activities, line 9). The composite miner in Algorithm
4 receives the DFG, a pattern, and the list of mined relations from atomic patterns. We
provide an example for the case of include and exclude relations. This pattern is built
as a combination of self-exclusions, precedence, and not chain successions. As these
atomic patterns generate each set of include/exclude relations, the pattern just takes the
set union construction.

Suitability of the Algorithms for Streaming Settings. Whenever discussing algorithms
that can tackle the streaming process mining problem [5], it is important to keep in
mind that while a stream is assumed to be infinite, only a finite amount of memory can
be used to store all information and that the time complexity for processing each event
must be constant. Concerning the memory, an upper bound on the number of stored
events in Algorithm 1 is given by m; - m, where m. is the number of unique events
and m; is the number of parallel traces. Moreover, note that the extended DFG is also
finite since there is a node for each activity contained in the memory. Concerning the
time complexity, Algorithm 1 does not perform any unbounded backtracking. Instead,
for each event, it operates using just maps that have amortized constant complexity or
on the extended DFG (which has finite, controlled size). The same observation holds
for Algorithm 2 as it iterates on the extended DFG which has a size bounded by the
provided parameters (and hence, can be considered constant).

5 Experimental Evaluation

To validate our approach we executed several tests, first to validate quantitatively the
streaming discovery on synthetic data, then to qualitatively evaluate the whole approach
on a real dataset. Due to lack of space, we only report quantitative tests, while perfor-
mance and the qualitative evaluation can be found in a separate technical report [8].

5.1 Quantitative Evaluation of Streaming Discovery

Recall from the previous section that time/space complexity are constant for streaming
settings. Thus, our analysis will focus on studying how the algorithm behaves when
encountering sudden changes in a stream. We compare with other process discovery
algorithms for DCR graphs, in this case, the DisCoveR miner [4]. The tests are per-
formed against a publicly available dataset of events streams [11]. This dataset includes
(1) a synthetic stream inspired by a loan application process, and (2) perturbations to
the original stream using change patterns [28]. Recall that the DisCoveR miner is an
offline miner, thus it assumes an infinite memory model. To provide a fair evaluation
we need to parameterize DisCoveR with the same amount of available memory. We
divided the experiment into two parts: a simple stream where the observations of each
process instance arrive in an ordered manner (i.e., one complete process instance at a
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Fig. 3. Performance comparison between the offline DisCoveR miner and the streaming DCR
Miner with equal storage available (capacity of up to 100 and 500 events).

time) and a complex stream where observations from many instances arrive intertwined.
As no initial DCR graph exists for this process, and no streaming DCR miner exists,
we used the DisCoveR miner in its original (offline) setting to generate a baseline graph
using the entire dataset. This model (the one calculated with offline DisCoveR) was
used to calculate the model-to-model similarity between the DCR stream miner and
the DisCoveR miner with memory limits. For the sake of simplicity, in this paper, we
considered only the case of sudden drifts, while we discuss other types of drift in future
work.

We introduce a metric that quantifies the similarity between two DCR graphs. It
can be used, for example, to identify which process is being executed with respect to
a model repository, or by quantifying the change rate of one process over time. The
metric takes as input two DCR graphs P and ) as well as a weight relation W that
associates each DCR relation in ¢ (cf. Definition 5) with a weight, plus one additional
weight for the activities. Then it computes the weighted Jaccard similarity [17] of the
sets of relations and the set of activities, similarly to what happens in [2] imperative
models:

Definition 6 (DCR Model-to-Model metric). Given P and () two DCR graphs, and
W : gu{act} — R aweight function in the range [0, 1] such that 3, c s 1 aey W (r) =
1. The model-to-model similarity metric is defined as:

[PANQal
[P4UQu4l +ZW

PN Q|

1
1P UQ, M

S(P,Q, W) =W(act) -
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The similarity metric compares the relations in each of the two DCR graphs, thus
returning a value between O and 1, where 1 indicates a perfect match and O stands for
no match at all. A brief evaluation of the metric is reported in Appendix A.

The results of the quantitative evaluation are reported in Fig. 3. Each figure shows
the performance of the incremental version of DisCoveR and the streaming DCR miner
against 2 different configurations over time. The vertical black bars indicate where a
sudden drift occurred in the stream. While the performance for the simple stream is very
good for both the DisCoveR and the streaming DCR miners, when the stream becomes
more complicated (i.e., Fig. 3b), DisCoveR becomes less effective, and, though its aver-
age performance increases over time, the presence of the drift completely disrupt the
accuracy. In contrast, our approach is more robust to the drift and more stable over time,
proving its ability at managing the available memory in a more effective way.

5.2 Discussion

One of the limitations of the approach regards precision with respect to offline min-
ers. A limiting aspect of our work is the choice of the intermediate structure. A DFG
representation may report confusing model behaviour as it simplifies the observations
using purely a frequency-based threshold [27]. A DFG is in essence an imperative data
structure that captures the most common flows that appear in a stream. This, in a sense,
goes against the declarative paradigm as a second-class citizen with respect to declara-
tive constraints. We believe that the choice of the DFG as an intermediate data structure
carries out a loss of precision with respect to the DisCoveR miner in offline settings.
However, in an online setting, the DFG still provides a valid approximation to observa-
tions of streams where we do not have complete traces. This is far from an abnormal sit-
uation: IoT communication protocols such as MQTT [16] assume that subscriber nodes
might connect to the network after the communications have started, not being able
to identify starting nodes. Specifically, in a streaming setting it is impossible to know
exactly when a certain execution is complete and, especially in declarative settings, cer-
tain constraints describe liveness behaviours that can only be verified after a whole trace
has been completely inspected. While watermarking techniques [3] could be employed
to cope with lateness issues, we have decided to favour self-contained approaches in
this paper, leaving for future work the exploration of watermarking techniques.

6 Conclusion and Future Work

This paper presented a novel streaming discovery technique capable of extracting
declarative models expressed using the DCR language, from event streams. Addition-
ally, a model-to-model metric is reported which allows understanding if and to what
extent two DCR models are the same. An experimental evaluation, comprising both
synthetic and real data, validated the two contributions separately as well as their com-
bination in a qualitative fashion, which included interviews with the process owner.
We plan to explore several directions in future work. Regarding the miner, we plan
to extend its capabilities to the identification of sub-processes, nesting, and data con-
straints. Regarding the model-to-model similarity, we would like to embed more seman-
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tic aspects, such as mentioned in [18]. A possible limitation of the streaming miner algo-
rithm approach followed here relates to the updating mechanism. Currently lines 22-24
of Algorithm 1 perform updates based entirely on periodic updates triggered by time,
which will generate notifications even when no potential changes in the model have
been identified. A possibility to extend the algorithm will be to integrate the model-to-
model similarity as a parameter to the discovery algorithm, so models only get updated
after a given change threshold (a similarity value specified by the user) is reached.

A Quantitative Evaluation of Model-to-Model Metric

To validate our metric we used
a dataset of 28 DCR process
models collected from previ- !

ous mapping efforts [19]. For o8 J ! ; ‘ ‘ _ | so00
each model, we randomly intro- 2000
duced variations such as: adding £ o¢ : l l l l

-

| 6000

T

new activities connected to the 3000
existing fragments, adding dis-

0.4

T

2000

Model-to-model similarity

I .... o esseses/oses

connected activities, deleting 02 |- 1000
existing activities, adding and . i i i B
removing constraints, and swap- 0 7 14 2

plng aCtiVlty labels ln the pro- Number of errors introduced in the model

cess. By systematically apply-
ing all possible combinations of
variations in a different amount
(e.g., adding 1/2/3 activities and
nothing else; adding 1/2/3 activ-
ities and removing 1/2/3 con-
straints) we ended up with a total of 455,826 process models with a quantifiable
amount of variation from the 28 starting processes. Figure 4 shows each variation on
a scatter plot where the x axis refers to the number of introduced variations and the y
axis refers to the model-to-model similarity. The colour indicates the number of mod-
els in the proximity of each point (since multiple processes have very close similar-
ity scores). For identifying the optimal weights we solve an optimization problem,
aiming at finding the highest correlation between the points, ending up with: W =
{(-#,0.06), (e—,0.07), (—<,0.06), (—+,0.07), (—%,0.13), (act,0.61)} leading to
a Pearson’s correlation of —0.56 and a Spearman’s correlation of —0.55. These values
indicate that our metric is indeed capable of capturing the changes. As the metric is very
compact (value in [0, 1]) and operates just on the topological structure of the model, it
cannot identify all details. However, the metric benefits from a fast computation.

Fig.4. Correlation between the model-to-model metric
and the number of model changes. The colour indicates
the density of observations. (Color figure online)
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Over the past several years, interest in combining Machine Learning (ML) and Process
Mining (PM) methods has grown, as well as the challenges posed by using properly both
methods. It is becoming more and more popular to apply ML to PM and to automate
PM tasks, which is fostering a new research area.

By bringing together practitioners and researchers from both communities, the 3rd
International Workshop on Leveraging Machine Learning for Process Mining aimed
to discuss recent research developments at the intersection of ML and PM. The open
call for contributions solicited submissions in the areas of outcome and time prediction,
classification and clusterization of business processes, application of Deep Learning for
PM, Anomaly detection for PM, Natural Language Processing and Text Mining for PM,
Multi-perspective analysis of processes, ML for robot process automation, Automated
process modeling and updating, ML-based Conformance checking, Transfer Learning
applied to business processes, IoT business services leveraged by ML, Multidimensional
PM, Predictive Process Monitoring, Prescriptive Learning in PM and Convergence of
ML and Blockchain in Process Management.

The workshop attracted sixteen submissions confirming the liveliness of the field. Of
the received sixteen submissions, eight submissions passed through the review process
and were accepted for presentation at the workshop. Each paper was reviewed by three
or four members of the program committee. Papers presented at the workshop were also
selected for inclusion in the post-proceedings. These articles are briefly summarised
below.

The paper of Kwon and Comuzzi presented a framework for AutoML in Predictive
Process Monitoring (PPM). Through genetic algorithms, PPM-specific parameters and
traditional hyperparameters for machine learning models have been explored creating a
rich configuration space to provide pipeline recommendations.

The paper of Peeperkorn et al. discusses the negative impact of mislabelling cases
as negative, particularly using XGBoost and LSTM neural networks. Promising results
have been presented by changing the loss function used by a set of models during training
to those of unbiased Positive-Unlabelled or non-negative Positive-Unlabelled learning.

The paper of Warmuth and Leopold, another regarding PPM, focuses on eXplainable
Artificial Intelligence (XAI). The authors investigated the combination of textual and
non-textual data used for explainable PPM. Furthermore, they analyzed the trade-off
regarding the incorporation of textual data in predictive performance and explainability.

The paper of Faria Junior et al. presented an exploratory study based on frequent
mining and trace clustering analysis as a mechanism for profile characterization. The
clustering method has been fashioned over a vector representation from an object-centric
event log.
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The paper of Lahann et al. compared deep learning-based anomaly detection of pro-
cess instances, creating a baseline and providing insights. They suggested minor refine-
ment to build a simple LSTM detector capable of outperforming the existing approaches
on several event log scenarios.

The paper of Grohs and Rehse proposed the attribute-based conformance diagnosis
(ABCD) method. ABCD is a novel approach for correlating process conformance with
trace attributes based on ML. The idea is grounded on identifying trace attributes that
potentially impact the process conformance allowing proper processing.

The paper of Zbikowski et al. proposed a new representation for modelling multi-
process environment with different process-based rewards. The proposal is based on
Deep Reinforcement Learning to reach an optimal resource allocation policy based on
a representation of a business process.

The paper of Kohlschmidt et al. shared some assumptions regarding those areas
where a process enhancement is possible but the process presents a significantly different
performance from their similar situations. They have defined a process enhancement area
as a set of situations where the process performance is surprising.

In addition to these eight papers, the program of the workshop included the technical
talk “Process Mining in Python: Basics and Integrations to Other Python Libraries”
presented by Sebastiaan van Zelst.

We would like to thank all the authors submitted papers for publication in this book.
We are also grateful to the members of the Program Committee and external referees
for their excellent work in reviewing submitted and revised contributions with expertise
and patience.
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Abstract. Assigning resources in business processes execution is a
repetitive task that can be effectively automated. However, different
automation methods may give varying results that may not be optimal.
Proper resource allocation is crucial as it may lead to significant cost
reductions or increased effectiveness that results in increased revenues.

In this work, we first propose a novel representation that allows the
modeling of a multi-process environment with different process-based
rewards. These processes can share resources that differ in their eligi-
bility. Then, we use double deep reinforcement learning to look for an
optimal resource allocation policy. We compare those results with two
popular strategies that are widely used in the industry. Learning optimal
policy through reinforcement learning requires frequent interactions with
the environment, so we also designed and developed a simulation engine
that can mimic real-world processes.

The results obtained are promising. Deep reinforcement learning based
resource allocation achieved significantly better results compared to two
commonly used techniques.

Keywords: Resource allocation + Deep reinforcement learning -
Double DQN - Process optimization

1 Introduction

In process science, there is a wide range of approaches that are employed in
different stages of operational processes’ life cycles. Following [1], these include,
among others, optimization and stochastic techniques. Business processes can
be also categorized according to the following perspectives: control-flow, orga-
nizational, data, and time perspective [2]. Resource allocation is focused on the
organizational perspective utilizing optimization and stochastic approaches.

As it was emphasized in [3] resource allocation, while being important from
the perspective of processes improvement, did not receive much attention at the
time. However, as it was demonstrated in [4] the problem received much more
attention in the last decade, which was reflected in the number of published
scientific papers.
© The Author(s) 2023
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This paper addresses the problem of resource allocation with the use of meth-
ods known as approximate reinforcement learning. We specifically applied recent
advancements in deep reinforcement learning such as double deep g-networks
(double DQN) described in [5]. To use those methods we firstly propose a rep-
resentation of a business processes suite that helps to design the architecture of
neural networks in terms of appropriate inputs and outputs.

To the best of our knowledge, this is the first work that proposes a method
utilizing double deep reinforcement learning for an on-line resource allocation for
a multiple-process and multi-resource environment. Previous approaches either
used so-called “post mortem” data in the form of event logs (e.g. [6]), or applied
on-line learning, but due to the usage of tabular algorithms were limited by
the exploding computational complexity when the number of possible states
increased.

In the next section, we provide an overview of reinforcement learning meth-
ods and outline improvements of deep learning approaches over existing solu-
tions. Then we analyze and discuss different approaches to resources allocation.
In Sect.3 we outline our approach for modeling operational processes for the
purpose of training resource allocation agents. In Sect.4 we describe the simu-
lation engine used in training and its experimental setup. In Sect. 5 we evaluate
the proposed approach and present outcomes of the experiments. In Sect. 6 we
summarize the results and sketch potential future research directions.

2 Background and Related Work

2.1 Deep Reinforcement Learning

Following [7], reinforcement learning is “learning what to do — how to map situ-
ations to actions — so as to maximize a numerical reward signal”. There are two
main branches of reinforcement learning, namely tabular and approximate meth-
ods. The former provide a consistent theoretical framework that under certain
conditions guarantees convergence. Their disadvantage is increasing computa-
tional complexity and memory requirements when the number of states grows.
The latter are able to generalize over a large number of states but do not provide
any guarantee of convergence.

The methods that we use in this work find optimal actions indirectly, identify-
ing optimal action values for each state-action pair. Following recursive Bellman
equation for the state-action pair [7], where p(s’,r|s,a) is a conditional proba-
bility of moving to state s’ and receiving reward r after taking action a in state
s; m(als) is the probability of taking action a in state s; v € [0,1] is a discount

factor:
Zps r|s,a) 7"+VZ a'ls")qx(s',a’)], (1)

an optimal policy is a policy that at each subsequent step takes an action that
maximizes state-action value, that is g.(s,a) = maz,q(s,a).

When we analyze Eq. 1 we can intuitively understand problems with iterative
tabular methods for finding optimal policy 7* for high-dimensional state spaces.
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Fortunately, recent advancements in deep learning methods allow for further
enhancement of approximate reinforcement learning methods with a most visible
example being human-level results for Atari suite [8] obtained with the use of
double deep Q-network [9].

2.2 Resource Allocation

In [4] we can find a survey of human resource allocation methods. The spectrum
of approaches is wide. In [10-14] we can find solutions based on static, rule based
algorithms.

There is a number of approaches for resource allocation that rely on applying
predictive models. In [15] an offline prediction model based on LSTM is combined
with extended minimum cost and maximum flow algorithms.

In [16] authors introduce Reinforcement Learning Based Resource Allocation
Mechanism that utilizes Q-learning for the purpose of resource allocation. For
handling multiple business processes, the queuing mechanism is applied.

Reinforcement learning has been also used for the task of proactive business
process adaptation [17,18]. The goal there is to monitor the particular business
process case while it is running and intervene in case of any detected upcoming
problems.

The evaluations conducted in the aforementioned works are either based
on simulations [16,18] or on analysis of historical data, mostly from Business
Process Intelligence Challenge [15,17,19]. The latter has the obvious advantage
of being real-world based dataset while simultaneously being limited by the
number of available cases. The former offers a potentially infinite number of
cases, but alignment between simulated data and real business processes is hard
to achieve.

In [20] authors proposed a deep reinforcement learning method for business
process optimization. However, their research objective is concentrated on ana-
lyzing which parameters of DQN are optimal.

3 Approach

This section describes the methods that we used to conduct the experiment.
First, we will introduce concepts related to business process resource allocation.
Then we will present double deep reinforcement learning [21] for finding optimal
resource allocation policy. By optimal resource allocation policy, we mean such
that maximizes the number of completed business process cases in a given period.

As it was pointed out earlier, both tabular and approximate algorithms in
the area of reinforcement learning require frequent interaction with the execution
environment. For the purpose of this work, we designed and developed a dedi-
cated simulation environment that we call Simulation Engine. However, it can
serve as a general-purpose framework for testing resource allocation algorithms
as well. Concepts that we use for defining the business process environment
assume the existence of such an engine. They incorporate parameters describing
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the level of uncertainty regarding their instances. The purpose here is to replicate
stochastic behavior during process execution in real-world scenarios.

We imagine a business process workflow as a sequence of tasks! that are
drawn from the queue and are being executed by adequate resources (both
human and non-human). Each task realization is in fact an instance of a task
specification described below. The task here is considered as an unbreakable unit
of work that a resource can be assigned to and works on for a specified amount
of time.
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Fig. 1. Training architecture diagram. The learning process is centered around Sim-
ulation Engine that takes action from the main network and returns the reward and
the next state. The architecture above follows the double deep Q-network (DDQN)
approach [21].

Definition 1 (Task). Let the tuple (i, C', d, s, 6) define a task t; that is a single
work unit represented in the business process environment where:

- i is a unique task identifier where i € {0,1,2,...},

~ (' is a set of transitions from a given task 1,

— d € R" is a mean task duration with s being its standard deviation and

6 € {0,1} indicates whether it is a starting task for a particular business
process.

Each task in the business process (see e.g. Figure 2a) may have zero or more
connections from itself to other tasks.

! Task here should not be confused with the task definition used in reinforcement
learning literature where it actually means the objective of the whole learning pro-
cess. In the RL sense, our task would be to “solve” Business Process Suite (meaning
obtaining as much cumulative reward as possible) in the form of Definition 6.
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Definition 2 (Task Transition). For a given task t; a task transition cji s a
tuple (j, p) where j is a unique identifier of a task that this transition refers to
and p is a probability of this transition. If i = j it is a transition to itself.

Definition 3 (Resource). Let the tuple (k) define a single resource r¢ where
k € {0,1,2,...} is a unique resources identifier. To refer to the set of all
resources, we use &.

Definition 4 (Resource Eligibility). If a resource r; can be assigned to a
task t; it is said it is eligible for this task. Set E' = {e : ¢; € R*} contains all
resource eligibility modifiers for a given task i. The lower the ef(, the shorter is
the expected execution of task t;. To refer to the set of all properties of eligibility
for all defined resources %, we use E.

The expected execution time of a task ¢ is calculated by multiplying its
duration by the resource eligibility modifier ef.

Definition 5 (Business Process). Let a tuple (m, f,, R, T,,) define a busi-
ness process P,, where m is a unique identifier of a process P, and T, is a set
of tasks belonging to the process P, and t; € T, —> —An:n# mAt; € T,. The
relative frequency of a particular business process is defined by f,. By R, we
refer to the reward that is received by finishing this business process instance. To
refer to the set of all defined business processes, we use P.

An example of a business process can be found in Fig. 2a. Nodes represent tasks
and their identifiers. Arrows define possible task transitions from particular
nodes. The numbers on the arrows represent transition probabilities to other
tasks.

Definition 6 (Business Process Suite). Let a tuple (R, E,P) define a Busi-
ness Process Suite that consists of a resources set R, resources eligibility set E
and business processes set P such that: Ve € % Im, i eK CENLET, NP, €P

Business Process Suite is a meta definition of the whole business processes
execution environment that consists of tasks that aggregate to business processes
and resources that can execute tasks in accordance with the defined eligibility.
We will refer to the instances of business processes as business process cases.

Definition 7 (Business Process Case). Let a tuple (®,,i,0) define a busi-
ness process case P, where P, is a business process definition, i is a current task
that is being executed and o € {0,1} is information whether it is running (0) or
was completed (1).

Definition 8 (Task Instance). Let a tuple (i,r) be a task instance &. At a
particular moment of execution, there exists exactly one task instance matching
business process case property i. The exact duration is determined by properties
d and s of task definition t;.
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Definition 9 (Task Queue). Let the ordered list (N, N, N, ..., %) define
a task queue that stores information about the number of task instances N for
a given task t;.

Property 1. Direct consequence of Definitions 5, 7, 8 and 9 is that number of
task instances in the task queue matching the definition of task with identifiers
from particular business processes is equal to the number of business process
cases.

The process of learning follows the schema defined in [5] and [9]. We use two
sets of weights 6 and ¢’. The former is used for online learning with random
mini-batches sampled from a dedicated experience replay queue D. The latter is
updated periodically to the weights of the more frequently changing counterpart.
The update period used in tests was 10% steps. The detailed algorithm, based
on [21], is outlined in Listing 1.

Algorithm 1. Double DQN training loop

1: Initialize number of episodes F, and number of steps in episode M
2: Initialize batch size 3 > Set to 32 in tests
3: Initialize randomly two sets of neural network weights 6 and ¢’
4: 0= {} > Replay memory of size £« M % 0.1
5: Initialize environment £
6: for e=0 in E do
7 S := RESET(ZE)
8 for m=0 in M do
9: if RANDOM() < € then
10: a := SELECTRANDOMACTION()
11: else
12: a := argmaz.Q(S, a;0)
13: end if
14: S’, R := STEP(Z, a)
15: Put a tuple (S,a,R,S’) in D
16: Sample 3 experiences from D to (S, A, R,S")
17: Qtarget := R+ x Q(S', argmax, Q(S’, a; 0); 0')
18: chr'r'ent = Q(S7 a; 0)
19: 0t+1 =0+ v9t (Qta’rget - chrrent)Q
20: Each 10* steps update 8 := 6
21: end for
22: end for

In Fig.1 an architecture of a system used in the experiment is presented in
accordance with main data flows. It is a direct implementation of the training
algorithm described in Algorithm 1. We used two neural networks: main and tar-
get. Both had the same architecture consisting of one input layer with |R| + | 7|
inputs, two densely connected hidden layers containing 32 neurons each, and one
output layer with |® |x|7| outputs. After each hidden layer, there is a Batch Nor-
malization layer [22]. Its purpose is to scale each output from the hidden neuron
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layer before computing the activation function. This operation improves train-
ing speed by reducing undesirable effects such as vanishing/exploding gradient
updates.

The input configuration we used is defined as follows:

S= [p07p15"'p\ﬂ(‘\717<07<1a"'aq‘ﬂfl] (2)

where p¢ = i refers to the resource assignment to one of its eligible tasks, and

G=a"/ ZE& “at is a relative load of a a given task with respect to all the
tasks present in the task queue.

Outputs of the neural network are an approximation of a g-value for each
of the available actions. The action here is assigning a particular resource to
a particular task or taking no action for a current time step. Thus, number
of outputs equals |®||7| + 1. This number grows quickly with the number of
resources and tasks. This, in turn, may lead to a significant increase in training
time or even an inability to obtain adequate g-value estimation.

In RL there exists a separation between continuing and episodic RL tasks
[7]. The former are ending in a terminal state and differ in the rewards for the
different outcomes. The latter are running infinitely and accumulate rewards over
time. The business processes suite is a continuing RL task in its nature. However,
in our work, we artificially terminate each execution after M steps simulating
an episodic environment. We observed that it gave much better results than
treating the whole set of business processes as a continuing learning task. As
it is shown in Sect. 4 agents trained in such a way can be used in a continuing
setup without loss of their performance.

4 Experimental Setup
This section briefly describes the setup of the experiments that we have con-

ducted to assess the proposed methods and parametrization of a business process
suite used for the evaluation.

0.5

03
0.5 0.1\ /( w\
5 e ’ /. = — e AT 2
s= k/\ \ k@ﬁ%}),l
’ 0.4

() Graph.of 5 fist Busines process. (b) Graph of a second business process.

Fig. 2. Business processes used in the evaluation.

To evaluate the proposed method we devised a business processes suite con-
taining two business processes m = 0 and m = 1. Although they are quite small
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in terms of the number of tasks, the tasks transitions are nondeterministic which
intuitively makes the learning process harder.

In Figs. 2a and 2b we can see both processes’ graphs along with information
about their tasks’ parametrization. In Table 1 we can see available resources from
the testing suite along with the information about their eligibility in regard to
particular tasks.

Both processes have the same reward R, = R; = 1, which is received for each
completed business process case. They differ in their relative frequency, which
for the first process is fy = 1 and f; = 6 for the second one.

The resources we use in our experimental setup are of the same type, differing
only in their eligibility in regard to the tasks.

Table 1. Resource eligibility. Values in cells define resource efficiency that is used in
Simulation Engine. Final duration is obtained by multiplying duration & of a particular
task by the adequate value from the table. A lack of value indicates that a particular
resource is not eligible for a given task.

Task ID | Resources

0 |1 2
0 - 10.752.8
1 1.410.3 |-
2 0.3|— 2.7
3 - |27 |01
4 0.6 2.6 |-
5 0.4 - 10.5
6 1.1]- 1.7
7 0.4/06 |25

In terms of algorithm parametrization, we set the number of episodes E to
600 and the number of steps in a single episode to 400. € according to [5] was
linearly annealed from 1 to 0.1 over first Ex M x0.1 steps. The size of the memory
buffer was set to E * M % 0.1 elements.

5 Results and Discussion

We run 30 tests for the test suite. The results are presented in Fig. 3a. We can see
that the variance in the cumulative sum of rewards is tremendous. Best models
achieve up to 20 units of reward while the worst keep their score around zero.

Our findings are consistent with the general perception of how deep rein-
forcement learning works [23]. In particular, a training model that achieves sat-
isfactory results strongly depends on weights initialization.

As we can see in Fig. 3b the value of a loss function also varies significantly.
Moreover, its value after the initial drop steadily increases with subsequent
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Results for training
Train loss
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Fig. 3. Training on the test suite over 30 training runs.

episodes. This is a phenomenon that is characteristic of DQN. The error mea-
sures the difference between training and main network outputs. This value is
not directly connected with the optimization target - maximizing the cumulative
reward over all steps.

In [5] authors recommend saving model parameters if they are better than
the best previously seen (in terms of cumulative reward) during the current
training run. This approach allows addressing - to some extent - a catastrophic
forgetting effect and overall instability of approximate methods. For each run we
save both the best and last episode’s weights. After the training phase, we got
30 models as a result of keeping parameters giving the highest rewards during
learning and 30 models with parameters obtained at the end of training. The
distribution over all runs can be seen in Fig.4a. We can see that the models
with the best parameters achieve significantly higher cumulative rewards. The
median averaged over 100 episodes was 14.04 for the best set of parameters and
12.07 for the last set.

To assess the results obtained by the deep learning agent we implemented
two commonly used heuristics:

— FIFO (first in, first out) - the first-in-first-out policy was implemented in
an attempt to avoid any potential bias while resolving conflicts in resource
allocation. In our case, instead of considering task instances themselves, we
try to allocate resources to the business process cases that arrived the earliest.

— SPT (shortest processing time) - our implementation of the shortest process-
ing time algorithm tries to allocate resources to the task instances that take
the shortest time to complete (without taking into account resource efficien-
cies for tasks). Thanks to this policy, we are able to prevent the longest tasks
from occupying resources when these resources could be used to complete
other, much shorter tasks and therefore shorten the task queue.

We conducted the same test lasting 100 episodes for both heuristics. Results
are presented in Fig.4b. The median averaged over 100 episodes was 11.54 for
FIFO and 3.88 for SPT. SPT results were far below the FIFO. Comparing the
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Results for evaluation with best/last model weights Results for evaluation with FIFO/SPT methods.
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(a) Best (left) and last (right) model. (b) FIFO and SPT algorithms

Fig. 4. Results over 30 runs.

results of the best model from the left side of Fig. 4a with results for FIFO from
the left side of Fig.4b, we can see that the cumulative reward for deep learning
models is larger in the majority of episodes.

The improvement achieved by the deep RL model with each episode lasting
400 steps is not large considering its absolute value. The median FIFO agent’s
reward oscillates around 11, while the median deep RL’s around 14. The question
that arises here is whether this relation will hold with long (potentially infinitely)
lasting episodes? To answer it, we conducted an experiment with 100 episodes
with 5000 steps each. The results are presented in Fig. 5. We can see that the gap
between rewards for DQN model and for FIFO increased. The average episode
reward for DQN was 210.52, while for FIFO 145.84 and 80.2 for SPT.

Long run test
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Fig. 5. Long run test for best model achieved during training compared to FIFO and
SPT approaches. Each episode lasted 5000 time steps.

6 Conclusions and Future Work

In this paper, we applied double deep reinforcement learning for the purpose
of resource allocation in business processes. Our goal was to simultaneously
optimize resource allocation for multiple processes and resources in the same
way as it has to be done in real-world scenarios.
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We proposed and implemented a dedicated simulation environment that
enables an agent to improve its policy in an iterative manner obtaining infor-
mation about the next states and rewards. Our environment is thus similar to
OpenAl’'s Gym. We believe that along with processes’ definitions, it may serve as
a universal testing suite improving the reproducibility of the results for different
resource allocation strategies.

We proposed a set of rules for defining business processes suites. They are
the formal representation of real-world business process environments.

The results of the double DQN algorithm for resources allocation were com-
pared with two strategies based on common heuristics: FIFO and SPT. The
deep RL approach obtained results that are 44% better than FIFO and 162%
better than SPT. We were not able to directly compare our results to previously
published studies as they are relatively hard to reproduce. This was one of the
main reasons for publishing the code of both our simulation engine and training
algorithm. We can see this as a first step toward a common platform that will
allow different resource allocation methods to be reliably compared and assessed.

As for future work, it would be very interesting to train a resource allocation
agent for a business process suite with a larger number of business processes
that would be more deterministic compared to those used in this study. Such a
setup would put some light on a source of complexity in the training process.

The number of potential actions and neural networks’ outputs is a significant
obstacle in applying the proposed method for complex business process suites
with many processes and resources. In our future work, we plan to investigate
other deep reinforcement learning approaches, such as proximal policy optimiza-
tion, which tend to be more sample efficient than standard double DQN.

Reproducibility. Source code: https://github.com/kzbikowski/ProcessGym
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Abstract. Predictive process monitoring techniques leverage machine
learning (ML) to predict future characteristics of a case, such as the pro-
cess outcome or the remaining run time. Available techniques employ
various models and different types of input data to produce accurate pre-
dictions. However, from a practical perspective, explainability is another
important requirement besides accuracy since predictive process moni-
toring techniques frequently support decision-making in critical domains.
Techniques from the area of explainable artificial intelligence (XAI) aim
to provide this capability and create transparency and interpretability
for black-box ML models. While several explainable predictive process
monitoring techniques exist, none of them leverages textual data. This is
surprising since textual data can provide a rich context to a process that
numerical features cannot capture. Recognizing this, we use this paper
to investigate how the combination of textual and non-textual data can
be used for explainable predictive process monitoring and analyze how
the incorporation of textual data affects both the predictions and the
explainability. Our experiments show that using textual data requires
more computation time but can lead to a notable improvement in pre-
diction quality with comparable results for explainability.

Keywords: Predictive process monitoring - Explainable Artificial
Intelligence (XAI) - Natural language processing + Machine learning

1 Introduction

In recent years, machine learning (ML) techniques have become a key enabler for
automating data-driven decision-making [14]. Machine learning has also found
its way into the broader context of business process management. Here, an
important application is to predict the future of business process executions
- commonly known as predictive business process monitoring [7]. For example,
a machine learning model can be used to predict the process outcome [20], the

next activity [9] or the remaining time of a running process [21].

From a practical point of view, one of the critical shortcomings of many
existing predictive process monitoring techniques is that their results are not
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explainable, i.e., it remains unclear to the user how or why a certain prediction
was made [17]. Especially in critical domains, such as healthcare, explainabil-
ity, therefore, has become a central concern. Techniques in the area of explain-
able artificial intelligence (XAI) aim to shed light on black box ML models
and provide transparency and interpretability [1]. Recognizing this, several so-
called explainable predictive process monitoring techniques have been proposed
[10,14,18]. They rely on well-established explainability approaches such as SHAP
[12] and LIME [16] to support users in better understanding the predictions of
the employed techniques.

What existing explainable predictive process monitoring techniques have in
common is that they solely rely on numerical and categorical attributes and do
not leverage textual data. This is surprising given that textual data often pro-
vides rich context to a process. Recognizing the potential value of textual data
for explainable predictive process monitoring, we use this paper to empirically
explore how the combination of textual and non-textual data affects the predic-
tion quality, the explainability analysis, and the computational effort. To this
end, we propose two novel strategies to combine textual and non-textual data
for explainable predictive process monitoring and conduct extensive experiments
based on an artificial dataset.

The remainder of this paper is organized as follows: Sect.?2 illustrates the
problem and the potential of using textual data for explainable predictive process
monitoring. Section 3 elaborates on our study design. The code for all experi-
ments can be found on GitHub!. Section 4 presents the results. Section 5 discusses
related work before Sect. 6 concludes our paper.

2 Problem Illustration

Predictive process monitoring techniques aim to predict the future state of cur-
rent process executions based on the activities performed so far and process
executions in the past [7]. Given a trace, we might, for instance, aim to predict
the outcome of a trace [20]. Depending on the context, such an outcome could
relate to the successful completion of a production process or the successful cur-
ing of a patient. Predicting the outcome of a process execution at an early stage
enables early interventions, such as allocating additional resources or taking a
different course of action still to reach the desired process outcome [22].

A central problem in process monitoring techniques leveraging ML is that it
is nearly impossible for humans to understand why a particular prediction was
made. This led to the development of techniques for explainable artificial intel-
ligence, which aim to produce more explainable models without deterioration of
the predictive performance. The goal is to help humans comprehend, effectively
use, and trust artificial intelligence systems [1]. One widely employed XAI strat-
egy is to produce a simpler, understandable model that approximates the results
of the original prediction model [12] such as SHAP [10,18] or LIME [14] which
are commonly used in the context of predictive process monitoring.

! https://github.com/christianwarmuth /explainable-predictive- process-monitoring-
with-text.
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All existing techniques for explainable predictive process monitoring have in
common that they rely on numerical and categorical features only and do not
consider textual data. This is surprising since textual data often can provide rich
insights into the context of a process execution.

For example, consider a loan application process where customers may pro-
vide written statements about their financial situation, the purpose of the
requested loan, and details of the repayment plan. This data might allow to more
accurately predict whether the customer will pay back the loan and explain that
prediction better. Figure 1 illustrates such a setting using an exemplary event
log. We can see two cases where one applicant intends to spend the money on
a wedding and the other on a new car. From the bank’s perspective, this might
make quite a difference since purchasing a car results in a physical asset that
can be resold if the customer cannot pay it back.

case_id activity timestamp loan credit loan goal
amount | score description

1566432 Create Application | 15.03.202215:04 | 1.000% 093 I recently proposed
to my wifeso | ...

1566432 Review Application | 17.03.202213:18 | 1.000$ 0.93 /

1566432 Re-Negotiate Terms | 17.03.2022 16:21 900$ 0.93 /

1566432 | Application Accepted | 23.03.2022 09:15 900$ 0.93 /

1748744 Create Application | 16.03.202210:20 | 3.000% 087 am planning to buy
anew car and...

1748744 Review Application 17.03.2022 17:04 3.000% 0.87 /

Fig. 1. Exemplary eventlog with textual context data

Recognizing the potential value of textual data in the context of explainable
predictive process monitoring, we use this paper to investigate how the combi-
nation of textual and non-textual data can be used for explainable predictive
business process monitoring and analyze how the incorporation of textual data
affects both the prediction quality and the explainability.

3 Study on the Impact of Textual Data on Explainable
Predictive Process Monitoring

In this section, we describe the design of our study to investigate the potential of
textual data for explainable predictive process monitoring. In Sect. 3.1, we first
explain the different strategies we use for combining textual and non-textual
data and the models chosen for their instantiation. In Sect. 3.2, we introduce the
dataset and its creation. In Sect. 3.3, we elaborate on the preprocessing and in
Sect. 3.4 we explain the training and explanation setup for the experiments.

3.1 Strategies and Models

Combining textual and non-textual data for explainable predictive process mon-
itoring is not trivial. That is because these different types of input data must
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be combined in a useful way for both model building and inference and the
explainability analysis. We propose two novel strategies:

Class Label or Probability Combination. Strategy one is to have two models (one
for the textual data and one specific for the non-textual data). For inference,
we can combine the class labels or the class probabilities output by the different
models for prediction on real input. We have two separate explainability analyses
as we have two individual models (Fig. 2).

Model Buidling & Inference: Explainability Analysis:
Non-text data Text data
Model 2
LmaX() Feature Importance
Probability or Labels Model 2

Fig. 2. Conceptual architecture strategy 1

Two-Stage Model. In a two-stage model approach, we have one model using
solely textual information as stage 1. We then filter out the n most important
features (e.g., words or smaller parts of a sentence) and feed them into the stage
2 model alongside non-textual information. The explainability analysis would be
performed on the second-stage model, considering both data sources (Fig. 3).

Model Buidling & Inference: Text data Explainability Analysis:

n most important
features J

»

Non-text data

Fig. 3. Conceptual architecture strategy 2

We needed to choose a model for each input type to instantiate these strate-
gies. For non-textual data, i.e., categorical and numerical input, we selected the
XGBoost model since it has been found to deliver the best average performance
in predictive process monitoring across various datasets with good scalability for
large datasets [20]. XGBoost uses gradient tree boosting, a common ensemble
learning technique (i.e., combining multiple machine learning models to derive
a prediction) which performs boosting on decision trees [4]. For textual data, we
use BERT (Bidirectional Encoder Representations from Transformers), a state-
of-the-art NLP model introduced by Devlin et al., which outperforms previous
methods on various NLP tasks and datasets. BERT can be described as a large
language model and belongs to the family of transformer models, the current
state-of-the-art models dealing with sequences [6].
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3.2 Dataset

There is no public event log dataset available that contains rich textual context
data. We, therefore, artificially augment an existing event log with textual data.
We chose to augment the BPIC17 dataset with textual context data on case level
in a parameterizable fashion with the LendingClub dataset. The BPI Challenge
dataset from 2017 refers to a credit application process filed by customers of a
Dutch financial institution through an online system [8]. Overall, 12792 of the
31413 loans were granted, which leaves us with a 0.41 minority class ratio for this
binary process outcome prediction problem on loan acceptance. The Lending-
Club dataset we use for dataset augmentation only includes textual descriptions
of accepted loan applications, and we therefore have to redistribute the existing
textual loan goal descriptions [11]. The redistribution is based on the topics dis-
cussed by the loan applicants in their loan goal description. In an initial data
analysis, we identified the dominant topics using Latent Dirichlet Allocation,
an NLP technique to retrieve topics in text corpora [2]. We assigned multiple
topics to the two process outcomes and thus introduced in a controlled fash-
ion, for example, that people who talk about medical issues in their loan goal
description tend to be less likely to receive a loan offer. This approach creates
a latent structure for the machine learning model to pick up in the prediction
process. The topic attribution is performed based on the word occurrences per
topic in the document. After determining the topic memberships, the dataset is
augmented with the schematic depicted in Fig.4 with a varying parameter of
impurity, which adjusts the proportion of randomly assigned texts samples from
the dataset during the data augmentation process. The loan goal descriptions
are added to the original BPIC17 event log as an additional feature in the first
event for each case (the filing of the loan application).

accepted rejected impurity

0.0

0.2 I = topic group 1
0.4 = topic group 2
0.6 = random texts
0.8

1.0

Fig. 4. Dataset augmentation strategy with impurity parameter

With an impurity of zero, the accepted cases are solely assigned the textual
descriptions talking about topics in topic group 1. As the newly introduced
textual features do not correlate with existing features, we thus introduce an
additional dimension to differentiate between accepted and rejected cases. An
impurity of 0.0 allows for an apparent differentiation in textual features. In
contrast, an impurity of 1.0 would be a baseline with purely randomly sampled
text for both outcomes, so there is no way to differentiate between the outcomes
on the textual data. We henceforward define purity = 1 — impurity. For all
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experiments described in the following, we create 11 synthetically augmented
dataset variants with an impurity ranging from 0.0 to 1.0 in steps of 0.1. We
reduce measurement deviations by running each experiment 10 times and taking
the arithmetic mean.

3.3 Data Preprocessing

We conduct several preprocessing steps. First, we need to retrieve the class labels
“accepted” and “rejected” by choosing respective end activities. Then, we need
to transform the input such as it is suitable for the employed models. For the
XGBoost model, we have multiple events per case with various attributes that
change during the process executions. However, the XGBoost model expects
static (non-sequential input). We, therefore, preprocess the data to derive static
properties (i.e., one n-dimensional vector of features per case) and convert all
activities performed into categorical variables (encoding whether they occurred
or not). All further categorical variables are one-hot-encoded (resulting in one
additional feature per category level) to represent categorical variables using
numerical values. Numerical variables are then standardized by removing the
mean and scaling them to unit variance. Since we use BERT models for the
textual data, we do not need extensive preprocessing steps. The model can pro-
cess the textual data without significant assumptions and in considerable length.
We, however, need to tokenize the dataset before feeding it into the BERT model
with the model-specific tokenizer (in our case “BERT base model (uncased)”).

3.4 Model Training and Explanation

For strategy 1, we focus on combining the class attribution probability of an
XGBoost Model and a BERT model, which is fine-tuned on our dataset. We
then decide per case which of the models’ predictions results in a more sig-
nificant absolute difference to the probability of 0.5 and, therefore, provide a
clearer decision. Both models are fed into the SHAP explainer module and are
individually explained. The SHAP framework is generally model-agnostic, but
model-specific optimizations for faster calculation exist. The SHAP framework
relies for BERT on the so-called PartitionExplainer and for XGBoost on Tree-
Explainer.

For strategy 2, we first use the identical BERT setup described above. How-
ever, we then perform an explainability analysis using the SHAP framework
to filter out the n most important words. We then feed these n features into
an XGBoost model as the second stage to derive the final prediction. As men-
tioned above, BERT will be explained using the SHAP PartitionExplainer. As
we use XGBoost in the second stage, we delete the stopwords before feeding
these features into the XGBoost model. XGBoost disregards a word’s left and
right context and its sequential nature. The n most important features of the
BERT explainability analysis after stopwords removal are represented using the
well-known TF-IDF approach before using the XGBoost model. For the explain-
ability analysis of strategy 2, we only consider the second-stage XGBoost model.
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4 Results

Effect on Model Performance. The two strategies and their performance
on the different augmented datasets are assessed using an Fl-score and ROC
AUC, which are common evaluation metrics for classification problems. We also
introduce another baseline with “baseline unilateral” predicting all inputs with
the majority class. Overall, we differentiate between strategies 1 and 2 on the
augmented dataset and a baseline model on non-textual data only. The results
in Fig. 5 show that already for purity of above 0.1, the proposed strategies lead
to a net improvement of both ROC AUC and F1-score. The results suggest that
the strategies provide a benefit even at low levels of textual data purity and
improve the model performance. The combined incorporation of textual and
non-textual information shows value in light of a low level of textual data purity
as neither model alone can score these results. Using a pure textual model also
creates similar results for high textual data purity (around 1.0), as shown by the
pure BERT performance. Therefore, we can conclude that both strategies are
valuable in that they provide higher predictive quality, especially for low levels
of textual data purity, while the performance of the models converges for a very
high purity on textual features. There is a slight difference discernible between
strategies 1 and 2.

Effect on Rediscovery Rate. We calculate a metric of rediscovery to deter-
mine whether the artificial latent structures introduced during the dataset aug-
mentation are uncovered and manifested in the explainability analysis. The redis-
covery rate will be measured by the overlap between the most important textual
features derived by the SHAP calculations and the input features used during
the dataset augmentation via word2vec vector similarity. Word2vec represents
words in a high-dimensional vector space [13]. We used the pre-trained word2vec
vectors based on the Google News dataset?. In our rediscovery calculation, we
consider two words as rediscovered if the cosine similarity between the two words
on the pre-trained word2vec vectors is above 0.3 and if the mean absolute feature
importance via SHAP is above 0.005. Since both strategies show high rediscovery
rates, one can conclude that the right latent structures seem to be found, and the
strategies seem to work as intended. There is a difference between strategies 1 and
2, which indicates that strategy 1 rediscovers more of the latent features intro-
duced during dataset augmentation. Strategy 2 incorporates a limited amount
of features and thus leads to a lower yet still considerable rediscovery rate.

Effect on Quantitative Explainability Metrics. Stevens et al. propose an
approach to quantitatively evaluate the explainability of ML models, particularly
for the process domain. Their approach distinguishes interpretability (measured
by parsimony), as well as faithfulness (measured by monotonicity) [18].

Parsimony. Parsimony as a property can describe the explainability models’
complexity. Parsimony describes the number of features in the final model and
can quantify the simplicity of a model. For post-hoc explainability analysis using

2 https://code.google.com /archive/p/word2vec/.
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feature importance, the non-zero feature weights are considered. The maximal
value of the parsimony property is the number of features. A simple (or parsi-
monious) model is characterized by a small parsimony value [18]. To compare
the parsimony, we take the parsimony for the baseline model, for strategy 1 (as
a sum of both models’ feature counts), and the second-stage model of strategy
2. We can see a significant difference between the baseline model and strategy 1
in Fig. 5. For strategy 2, the parsimony is only slightly higher than the baseline
and converges against an upper boundary since we limit the number of textual
features n in the second-stage model.

F1-Score Parsimony
) [y, j 3000 { — taseine

—— Strategy 1 —— Strategy 1
0.9 { = strategy 2

—— BERT
— - One-sided prediction

27001 — Stratear2

F1-Score

1200

Parsimony Score
-
v
o
o

00 01 02 03 04 05 06 07 08 09 1.0 0.0 01 02 03 04 05 06 0.7 0.8 09 1.0
Dataset Purity Dataset Purity

Fig. 5. Fl-score and parsimony for augmented datasets with varying impurity

This implies that strategies 1 and 2 naturally consider substantially more
features than the baseline. For strategy 1, even more features are incorporated
in an explainability analysis with a higher purity of the augmented datasets
and overall better model performance. As parsimony is a metric to determine
how interpretable an explainability analysis is, this consequently means that
models considering textual information (strategy 1 and strategy 2) are more
challenging to interpret. We have to note here that the parsimony of strategy 2
is significantly below the parsimony of strategy 1. Therefore, the interpretability
of strategy 2 is better as we limit the number of features to incorporate by the
parameter n. In their elaboration on feature importance techniques specifically
in the area of NLP, Danilevsky et al. argue in their work that “[t]ext-based
features are inherently more interpretable by humans [...]” [5]. Following this
line of reasoning, it is not entirely correct to assign non-textual and textual
features the same negative impact on interpretability, which puts the results
into relative terms.

Monotonicity. Monotonicity can be used as a metric to describe the faithfulness
between the model and the explanation. Monotonicity describes the faithfulness
between the feature importance resulting from the explainability analysis and the
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feature importance of the task model. For models that require post-hoc explain-
ability, the monotonicity is denoted by the Spearman’s correlation coefficient
between the absolute values of the feature weights for the task model and the
absolute values of the feature weights of the explainability model [18]. The range
of the monotonicity lies between [—1, 1] and describes the association of rank,
where a perfectly faithful model would have a Monotonicity M of +1. In con-
trast, a less faithful model would score values closer to 0. A negative Spearman
correlation coefficient implies a negative association of rank between the task
model’s feature importance and the explainability model’s feature importance.
For strategy 2 in the second stage and the baseline model, we use XGBoost as a
model of choice, which provides inherent task model-specific feature importance.
While there are multiple ways to assess XGBoost-specific feature importance, we
will focus on the importance by the number of times a feature is used to split
the data across all trees of the decision tree approach. We will not consider the
monotonicity metric for strategy 1 because it is a BERT model for which task
model-specific feature importance cannot be directly obtained.

We see that the monotonicity of the baseline model and the second-stage
model in strategy 2 are almost similar. While there is only a small difference in
monotonicity initially, it disappears with higher dataset purity. The results on
monotonicity showed little to no difference between strategy 2 and the baseline.
This indicates no notable difference in the faithfulness of the explainability anal-
ysis in comparison with the original prediction model. As elaborated before, we
cannot calculate the monotonicity score for strategy 1 due to a lack of task model
feature importance from the BERT model. Therefore, the statement relates to
strategy 2 only.

Effect on Computation Time. For strategy 1, we add up both models’ train-
ing time and the explanation time. For strategy 2, we add the training time of
both stages together for training. At the same time, we only consider the expla-
nation time of the second stage as we only perform an explanation computation
via SHAP for this second stage.

The results show a significant difference between the baseline and strategies
1 and 2 for model training and explainability calculation. For the baseline, the
training is performed quicker than the explanation, while this holds not true
for strategies 1 and 2. The training and explanation of strategy 2 take only
marginally longer than for strategy 1 but are considerably more expensive than
for the baseline. There is also a noteworthy difference between training time and
time for the SHAP calculations. The evaluations showed that the training times
and explainability analyses required significantly more time for the proposed
strategies than for the baseline. Our experiments suggest that for a high number
of features and complex models, the computation for the explainability analysis
far outweighs the training time. We can, however, not draw a conclusion regard-
ing the ratio of training and explainability times, as this is highly dependent on
the model choice and the dataset used for evaluation.
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Prototype. To contemplate the practical implications of using textual data
for explainable predictive monitoring of business processes, we developed a
prototype illustrating how this might affect users. We differentiate between
local explainability (for individual process instances) and global explainability
(overview over all process instances). This screenshot shows a local analysis of
strategy 1 divided into two separate models for the prediction as well as the
explanation. A red color in the individual explainability plots indicates a posi-
tive change (towards a loan acceptance); blue color indicates a negative change
in the expected model prediction (towards a loan rejection) (Fig.6).

Gilobal Explainability Local Explainability Model Metrics

Case: 156

~ Non-Textual Model v Textual Model
True Label Predicted Label True Label Predicted Label
Rejected Rejected Rejected Rejected
SHAP Waterfall Plot SHAP Force Plot
0

SHAP Text Plot

f(x) base value
- -9.732774 -7.955 -6.580015 7-4.399963-2.622359-0.844755

oos @ repairs medical
)

plan to consolidate debt am good borrower because of my

P history and i to being responsibl
financially have very stable job and live within my means br
borrower added on recently had GEiféBaig)and figdiealbills not
covered by ([SHiEHEEJappreciate the opportunity to receive
great rate on this loan affording me an alternative to using credit
cards br

Fig. 6. Prototypical implementation of local explainability analysis (Strategy 1)

5 Related Work

Predictive process monitoring techniques have been developed for a wide range
of purposes. The most prominent use cases include the prediction of the process
outcome [19,22] and the prediction of future process behavior, such as the next
activity [9]. While most techniques build on categorical and numerical features
to accomplish their prediction goal, some also take into account textual data.
For instance, Pegoraro et al. use different strategies such as TF-IDF, Doc2Vec,
or LDA to represent textual information and, in this way, integrate it into an
LSTM architecture with further categorical and numerical data [15]. Teinemaa
et al. perform predictive monitoring with structured and unstructured data by
concatenating the textual features to the feature vector of the non-textual fea-
tures. The text is represented, among others, using bag-of-n-grams, TF-IDF, and
LDA [19]. A recent technique from Cabrera et al. [3] uses contextualized word
embeddings to predict the next activity and the next timestamp of running cases.
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Recognizing the need for explainability, several so-called explainable pre-
dictive process monitoring techniques have been developed. These techniques
mostly rely on model-agnostic approaches such as SHAP [10,18] or LIME [14].
SHAP unifies existing model explanation techniques (which include six existing
methods, amongst others, LIME [16]). SHAP is a unified measure to calcu-
late post-hoc feature importance by using the Shapley values of the conditional
expectation function of the original model [12]. All explainable predictive process
monitoring techniques have in common that they rely on numerical and categor-
ical features only and do not consider textual data. Hence, this paper empirically
demonstrates the potential of explainable predictive process monitoring based
on textual and non-textual data.

6 Conclusion and Future Work

This paper empirically explored the potential of combining textual and non-
textual data in the context of explainable predictive process monitoring. To
this end, we conducted extensive experiments on a synthetic dataset we cre-
ated for this purpose. We found that using textual data alongside non-textual
data requires more computation time but can lead to better predictions even
when the quality of the textual data is poor. While the explainability metrics
might decrease slightly depending on the chosen strategy, textual information
is inherently more interpretable by humans, which allows for a more human-
understandable explanation. Therefore, we conclude that combining textual and
non-textual data in the context of explainable predictive process monitoring is
a promising approach.

As for future work, we see two main directions. First, after an explainability
analysis, it is unclear whether a variable is merely correlated with the outcome
or causally related. Therefore, future work should combine the explainability
analysis with a subsequent causality analysis. Second, it would be interesting to
relate the results of an explainability analysis to real interventions.
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Abstract. An important practical capability of conformance checking
is that organizations can use it to alleviate potential deviations from
the intended process behavior. However, existing techniques only iden-
tify these deviations, but do not provide insights on potential expla-
nations, which could help to improve the process. In this paper, we
present attribute-based conformance diagnosis (ABCD), a novel app-
roach for correlating process conformance with trace attributes. ABCD
builds on existing conformance checking techniques and uses machine
learning techniques to find trace attribute values that potentially impact
the process conformance. It creates a regression tree to identify those
attribute combinations that correlate with higher or lower trace fitness.
We evaluate the explanatory power, computational efficiency, and gen-
erated insights of ABCD based on publicly available event logs. The
evaluation shows that ABCD can find correlations of trace attribute
combinations with higher or lower fitness in a sufficiently efficient way,
although computation time increases for larger log sizes.

Keywords: Process mining - Conformance checking - Correlations -
Trace attributes - Root cause analysis

1 Introduction

The goal of conformance checking is to analyze the relation between the intended
behavior of a process, captured in a process model, and the observed behavior
of a process, captured in an event log [7]. It generates insights on where and
how the observed behavior aligns with or deviates from the intended behavior.
Organizations can use these insights for example to check whether their process
execution is compliant with the originally designed process [22]. Over the last
years, multiple conformance checking techniques have been developed, including
rule checking, token-based replay, and alignments [7]. The techniques differ with
regards to their algorithmic approach, computational complexity, and generated
results, but they have one output in common: A measure of the conformance
between log and model, called fitness, which quantifies the capability of a model
to replay the behavior observed in the log [22].

© The Author(s) 2023
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One problem of existing conformance checking techniques is that they do
not enable practitioners to reach their underlying goal, which is to improve
the process [19]. As an example, consider a loan application process in a bank,
where the application of a conformance checking algorithm yielded an overall
fitness value of 0.8. From this number, a process analyst can conclude that
some deviations between log and model occurred, but they do not know where,
how, and—most importantly—why the process execution deviated and what the
effects of the potential problem are. Therefore, explaining and understanding the
underlying causes of conformance problems is an important part of leveraging the
practical benefits of conformance checking [22]. Existing conformance checking
techniques focus only on the identification of deviations and do not provide
any potential reasons for their occurrence [5], although this would be a vital
prerequisite for any deeper process analysis. For our exemplary loan application
process, if the process analyst knows that loans with a higher amount more likely
deviate from the intended process, they could specifically analyze those process
instances to find and eventually address the root cause of those deviations.

In this paper, we present a novel approach for finding correlations between
process conformance and trace attributes. This approach, called attribute-based
conformance diagnosis (ABCD), builds on the results of existing conformance
checking techniques and uses machine learning to find trace attribute values
that potentially impact the conformance. Specifically, it creates a regression
tree to identify those attribute combinations that correlate with higher or lower
trace fitness. These correlations can be considered as potential explanations for
conformance differences and therefore as a starting point for further analysis
steps to find and address the causes of lower process conformance. ABCD is
(1) inductive, i.e., it requires no additional domain or process knowledge, (2)
data-driven, i.e., it requires only an event log and a process model as input, (3)
universally applicable, i.e., it does not depend on process-specific characteristics,
and (4) flexible, i.e., it can be configured to fit a specific case.

In the following, the ABCD approach is introduced in Sect. 2. Its explanatory
power, computational efficiency, and potential practical insights are evaluated
based on publicly available event logs in Sect.3. We discuss related work in
Sect. 4 and conclude with a discussion of limitations and future work in Sect. 5.

2 Approach

The goal of the ABCD approach is to find attribute value combinations in an
event log that correlate with differences in conformance. Therefore, it analyzes
trace attributes and correlates them with trace-level fitness, which is the most
common way to measure conformance [22]. A schematic overview of ABCD can
be found in Fig.1. The approach requires two inputs, an event log and a cor-
responding process model, and consists of two major steps. In the first step,
explained in Sect. 2.1, we enrich the event log with the trace-level fitness values
with regard to the provided process model. This enriched log serves as input
for the second step, called Inductive Overall Analysis (I0OA) and explained in
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Fig. 1. Illustration of the Attribute-Based Conformance Diagnosis (ABCD) approach

Sect. 2.2. It determines the correlations between combinations of attribute values
and process conformance. Therefore, it computes a regression tree. Regression
trees are a data mining technique that relate a set of independent variables, in
our case all trace attributes in an event log, to a real-valued dependent variable,
in our case, i.e., average trace fitness in a log. To build the regression tree, the
event log is iteratively split into sub-logs, based on trace attribute values. Each
split defines a new node in the tree. These nodes are then used to predict the
value of the dependent variable [10]. To find the best fitting tree, the algorithm
minimizes the sum of errors in the prediction. An error is the difference between
the predicted value in a leaf node and the actual value of the respective sub-log.
The percentage of the true variation that can be explained by the predictions,
i.e., 1 minus the sum of errors, is the coefficient of determination R?, which can
be used to determine the prediction quality of the regression tree [9].

2.1 Log Enrichment

Because the goal of ABCD is to correlate trace attributes with variations in
conformance, it needs the trace-level fitness to perform any further analysis.
Therefore, we compute the fitness of each trace with regard to the provided pro-
cess model and add the value to the event log as a trace attribute. The user can
choose between token-replay fitness and alignment-based fitness [7]. The latter
is the default choice used in the remainder of this paper. This parametrization
allows users to flexibly choose the best-suited technique, for example choosing
token-based fitness if alignments require too much computation time.

After computing the trace fitness value, we also enrich each trace by its overall
duration, defined as the time difference between start and end event in a timely
ordered trace. This ensures that at least one trace attribute will always occur in
the log. We decided on the trace duration as the default trace attribute, because
it can be computed for every (time-stamped) event log and because the relation
between process performance and process conformance is potentially relevant for
all processes, independent of their context [24].

2.2 Inductive Overall Analysis

Following the log enrichment, Inductive Overall Analysis (IOA) determines cor-
relations between combinations of attribute values and process conformance.
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Therefore, it first preprocesses the data and then constructs a regression tree
that uses the trace attribute values as determinants for the fitness value. Figure 2
shows the schematic overview. IOA consists of two steps: preprocessing the data
and building the regression tree.

Data Preprocessing. For the data pre-processing, we distinguish between cat-
egorical and numerical attributes. Due to requirements of the tree algorithm,
pre-processing is necessary for both. First, because a regression tree can only
handle numerical attributes, categorical variables need to be encoded to be used
as a determinant. For this purpose, we use One-Hot-Encoding, which constructs
one binary trace attribute per categorical attribute value. Second, the regres-
sion tree algorithm cannot handle missing data. If there are values missing for
numerical attributes, we need to perform imputation, i.e., replace missing val-
ues with other values [31]. Assuming that raw data is the best representation of
reality, no imputation will be the default. If it must be performed due to missing
values, potential imputation strategies include replacing missing values with the
mean, the median, the most frequent value, or a constant value. For IOA, users
can select the imputation strategy as a parameter. Additional to no imputation,
we allow for imputing with the most frequent value, a constant value of 0, the
mean, and the median value. Imputation will only be necessary for numerical
attributes since the encoding transforms the categorical attributes into binary
attributes with no missing values. Missing values in categorical attributes will
therefore lead to a 0 in all binary attributes.

Regression Tree Building. After the preprocessing, we build the regression
tree. The goal is to find those combinations of attribute values that best predict
variations in conformance. Therefore, the regression tree consists of nodes that
split the event log based on one attribute value. A splitting node includes a
condition for the attribute value, e.g., a duration smaller than 4 days. For all
traces below the splitting node on the left side of the tree, the node condition is
true. For all traces below on the right side, it is false. Leaf nodes do not state
a condition, either because the tree has reached its maximum depth or because
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an additional split will not improve the result. Traversing the tree from root to
leaves, each node divides the log according to its condition, iteratively dividing
the log into one sub-log per leaf node. The sub-log of an internal node is the
union of all sub-logs of its children. Each node reports on the average fitness for
the sub-log created by all splits above it, which is used as a predictor for the
fitness of the individual traces. The tree algorithm chooses attribute values and
conditions by minimizing the total errors in the prediction, i.e., the sum of the
differences between the true fitness value of each trace and the average fitness
in the leaf node. The final tree consists of splitting nodes and leaf nodes. The
leaf nodes indicate the overall prediction for the sub-logs created by the splitting
nodes. The combination of conditions leading down to a leaf node indicates a
combination of attribute values that well predicts the fitness of the given sub-log,
i.e., it consistently determines the conformance level of these traces.

For building the tree, we use the sklearn-environment in Python'. As a
parameter, we require the maximum tree depth, i.e., the number of node layers
the algorithm may use to split the log. When choosing this depth, we need to
balance the explanatory power of the tree with its visual clarity and the gran-
ularity of sub-logs. The returned regression tree includes those attribute value
combinations that are correlated with higher or lower fitness and thus offer a
potential explanation for differences in conformance.

3 Evaluation

We implemented the ABCD approach in Python.? Using this implementation, we
conduct an evaluation to show that ABCD has explanatory power, is computa-
tionally efficient, and generates practical insights. For our evaluation, we used
three publicly available data sets consisting of seven event logs (see Table 1):

MobIS-Challenge 2019 [26]. This event log from a travel management process
contains trace attributes. It also comes with a matching process model that
describes that process and can be used as a reference for conformance checking.

BPI Challenge (BPIC) 2020 [30]. This collection of five event logs, also from
a travel management process, contains many trace attributes, which makes it well
suitable to test ABCD’s abilities to provide insights. Because there is no to-be
model available for this process, we applied the PM4Py auto-filter on the event
log to filter all common variants® and discovered a model using the Inductive
Miner. This way, we check conformance against the most frequent behavior.

BPI Challenge (BPIC) 2017 [29]. This event log from a loan application
process is comparably large, which makes it well suitable to test ABCD’s compu-
tational feasibility. Because there also is no to-be model available for this process,
we discovered one using the above-described method.

! https://scikit-learn.org/stable/modules/generated /sklearn.tree. DecisionTreeRegre
ssor.html.

2 https://gitlab.uni-mannheim.de/mgrohs/attribute-based-conformance-diagnosis /- /
tree/main.

3 https://pm4py.fit.fraunhofer.de/documentation.
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Table 1. Public event logs used for evaluation

ID | Dataset Name Traces | Events Trace attributes
(1) | MobIS MobIS 6,555 | 83,256 | Duration (Dur), Costs
(2) | BPIC 2020 | Domestic 10,500 | 56,437 Dur, Amount (Amn), Budget Number
Declarations (BudNo), Declaration Number
(DeclNo)
(3) | BPIC 2020 | International | 6,449 | 72,151 Dur, Adjusted Amn, Amn, BudNo,
Declarations DeclNo, Original Amn, Act. No., Org.

Entity, Req. Bud
(4) | BPIC 2020 | Request for 6,886 | 36,796 Dur, Act., Cost Type, Org. Entity,

Payment Project, Req. Amon., Task, Rfp No.
(5) | BPIC 2020 | Prepaid Travel | 2,099 | 18,246 Dur., Act., Cost Type, Org. Entity,
Costs Project No., Bud. No., Red. Budget,

Project, Task

(6) | BPIC 2020 | Travel Permit | 7,065 |86,581 Dur., Bud. No., Cost Type, Org.
Entity, Overspent Amn, Project, Req.

Amn
(7) | BPIC 2017 | Loan 31,509 | 1,202,267 | Dur, Application Type, Loan Goal,
Application Requested Amn

3.1 Explanatory Power

To measure the explanatory power of ABCD, we use the coefficient of determi-
nation R?, which shows the goodness of fit of the regression [8]. To determine
the influence of our parameters, our evaluation setting varies the imputation
strategy (none, mean, median, zero, constant), and the tree depth (from 3 to 7;
a larger tree would not be visually clear anymore).

We first inspect the influence of the imputation strategy. This is shown in
Table 2, where we list the R? for the four imputation strategies for the MobIS
event log. No imputation is not possible for this event log due to missing attribute
values. We do see not see any difference in R? for the different imputation strate-
gies in the MobIS data. This is also the case for all other logs.* We can conclude
that the imputation strategy has no effect on the explanatory power of ABCD.
However, this might be different for highly variable real-life event logs, so the
imputation option is necessary to remain universally applicable.

Table 3 shows the R? values for all event logs and tree depths. As expected,
R? grows with tree depth, due to more allowed splits in the tree. This increase
is log-dependent and ranges between 1% for log (2) and 13% for log (3). It
is generally impossible to determine a universal threshold for a good R? value
[25]. However, we see that ABCD is capable of explaining at least one fifth of
the fitness variation in all logs and as much as 84% in one, meaning that it is
capable of finding correlations of data attributes with (non-)conformance. All in
all, our evaluation showed that for our inspected datasets, ABCD has moderate
to high explanatory power and is not sensitive to imputation and tree depth.

4 The full evaluation documentation is available in the GitLab repository.
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Table 2. R? for the MobIS data set
for working imputation strategies and tree

depths 3 to 7

Log | Imp. 3 4 5 6 7

(1) [Mean [0.163/0.178/0.1950.2030.218
(1) [Median|0.163/0.1780.195|0.203 | 0.218
(1) |Zero 0.163]0.178]0.195|0.203|0.218
(1) |Freq 0.163]0.178]0.195|0.203|0.218

3.2 Computational Efficiency
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Table 3. R? for tree depths 3 to 7

Log | Imp. |3 4 5 6 7

(1) |All |0.163|0.178|0.195|0.203 |0.218
(2) |All |0.744|0.747|0.75 |0.753|0.756
(3) |All |0.303|0.344|0.374|0.405|0.433
(4) |All |0.8190.8240.8290.835|0.84
(5) |All |0.483/0.513|0.54 |0.569|0.596
(6) |All 0.416|0.434|0.448 | 0.462 | 0.476
(7) |All |0.322|0.336|0.348|0.357 | 0.368

For assessing the computational efficiency of ABCD, we measure the execution
times, separated into the enrichment step in Table4 and the analysis step in
Table 5. Each reported value in those tables is an average of three separate exe-
cutions, to account for outliers. For the analysis time, we only report the average
execution time over all imputation strategies since there were no significant devi-

ations between them.

Table 4. Enrichment times

Log Traces|Events  |Attr. Time [s]
(1) 16,555 (83,256 |2 33.75
(2) /10,500/56,437 |5 2.26
(3) 16,449 |72,151 |18 61.98
(4) 16,886 (36,796 |9 1.38
(5) 12,099 (18,246 |17 3.65
(6) 7,065 86,581 168 859.47
(7) 131,5091,202,267|4  9,216.35

Like the enrichment time, the analy-
sis time for IOA depends heavily on
the number of traces and the num-
ber of trace attributes, again visi-
ble for logs (6) and (7). However,
this increase is less significant com-
pared to the increase in enrichment
time and the maximum duration is
below 25 min. 25 min. In case of more
trace attributes, we consider more
independent variables and in case of
many traces we have a larger sample
size, both increasing the explanatory
power of ABCD. We conclude that

We see that the enrichment time
increases with the number of traces
and the number of events, because
especially alignments become compu-
tationally expensive [7]. Additionally,
the number of trace attributes nega-
tively influences the enrichment time,
which is visible for the Travel Permit
log (6). At most, the enrichment takes
2.6 h for the largest log (7).

Table 5. Average computation time for
IOA over all imputation strategies for tree
depths 3 to 7 in s

Log|3 4 5 6 7

(1) |64.61 65.13 64.98 65.69 64.77
(2) |180.99 180.02 181.69 183.07 187.44
(3) [132.15 132.71 132.45 134.88 132.98
(4) 199.51 100.42 99.78 100.14 101.1
(5) |15.95 16.03 16.0 16.19 16.33
(6) |602.4 618.54 |591.85 590.82 |651.73
(7) 11,395.65 | 1,357.93 | 1,353.86 | 1,352.12 | 1,375.79

ABCD is computationally feasible even for larger logs, although the execution
times are a potential drawback. Neither imputation strategy nor tree depth have

a significant impact on the analysis time.
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Overall, we see a negative influence of the log size on the computational
efficiency. Still, execution takes less than 3 h for event logs with up to 1.2 million
events. Considering the potential value of ABCD, the execution time does not
limit its applicability. As alignment are the main cause for long executions, larger
event logs could still be analyzed by means of a different fitness technique.

3.3 Practical Insights

The main benefit of ABCD is that it generates process insights without prior
knowledge, which is supposed to provide value for practitioners. These insights
are correlations between trace attributes and process conformance that serve
as a starting point for further process analyses. To demonstrate some of these
insights, we further examine the regression trees generated for the event logs. It
is important to note that for all event logs except MoblS, the process model is
generated based on variant filters. This means that conformance and fitness are
based on the most common variants and not on a constructed process model. In
the following, conformance of the BPI logs has to be interpreted as conformance
to the most common variants. Detailed information about the practical insights
provided by ABCD can be derived from the computed regression trees for all
logs (available in the GitLab repository).

MobIS. An exemplary
regression tree with depth
3 is provided in Fig.3. samples = 6555
It splits the log into six m:almw;ase
different sub-logs repre- e
sented by the six leaf Mol 8 [sa':‘ns;;%]
nodes. For example, the yave °°29

top node splits the log /

duration <0.0
mse = 0.077

cost <90.0

= d.nﬂm =<0.998 duration < 28.253

based on whether the [amse2%a] [smosess mss = 0,063 mse =0.067
. value = 0.03 value = 0.0 samples = samplei—
trace has a duration value = 0.805 value =0.643
above 0 (more than one / l
: : mse = 0.017 mse = 0.087 mse = 0.064 mse = 0.101
eVent) . The color indi- [umﬂu 84] (samples= sse) [samples = 5528J [sampies = 318]
value = 0.831 value = 0.792 value = 0.65 value =0.515

cates the fitness value:
high fitness leads to
darker color. We see that
short duration above 0
correlates with better conformance. For traces with one event, lower costs cor-
relate with slightly better fitness.

Fig. 3. Exemplary regression tree for the MobIS Log

BPI Challenge 2020. Not knowing the trace 1D, e.g., the declaration number,
correlates with lower conformance in logs (2), (3), (4), and (5). For all five logs,
the duration is an important feature in the trees, which shows the value of
separately enriching this attribute. Longer traces conform better in log (2), but
they conform worse in log (4). Another relevant trace attribute is the requested
amount or budget, which also correlates with lower conformance in most cases.
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BPI Challenge 2017. Longer traces conform better for log (7). Further, an
unknown loan goal and a smaller requested amount correlate with lower fitness.

We conclude that ABCD can generate practical insights in form of correla-
tions between trace attributes and trace fitness without relying on process or
domain knowledge. These correlations can serve as starting points to identify
causalities that explain conformance deviations. We show that it finds signif-
icant attribute values correlating with worse conformance, both for available
to-be models and for mined models that represent the most common behavior.
The identified correlations can be used to further examine the deviations that
occur in the sub-logs created by the regression tree nodes. Comparing all sub-logs
of MobIS data based on the leaf nodes in Fig. 3 could yield additional insights
into conformance variation, including, e.g., the location and type of deviation
that occurs in the individual sub-logs. For example, we see that for the leaf node
with size 184, the deviations occur primarily in the reporting part of the travel
management process.

4 Related Work

In this section, we elaborate on work related to the ABCD approach. Many other
approaches combine data attributes and conformance checking. For example,
data attributes are used while performing the conformance check to incorporate
other perspectives into the optimal alignment of data-enriched process models
and event logs [20-22]. Data attributes can also be used to define response moves
(i.e., log moves that change data attributes that have been incorrectly changed by
another log move in advance) [28] and to perform multi-perspective conformance
checks on declarative models [6]. In all approaches, the data attributes refine the
check itself but are not used to potentially explain conformance problems.

Data attributes can also be used to create sub-logs or sub-models in so called
process cubes. Users can then analyze the differences between the sub-logs or sub-
models and draw conclusions about what data attributes lead to the differences
[1]. Main applications are process discovery [14,17] and performance analysis
[2,4]. Applying process cubes for various purposes implicitly tries to use data
attributes to explain differences in an event log or process model, often related to
performance. This resembles attribute-based conformance diagnosis, but focuses
on aspects other than conformance and metrics other than fitness.

The research stream that resembles ABCD the most closely is called root
cause analysis (RCA). It aims to identify causal structures between different
variables and show the influence these variables have on each other [23]. This
can be achieved by using structural equation models based on data attributes
[23], Granger-causal feature pairs, conventional correlations [3,18], or clustering
techniques [12]. Also, to find reasons for deviations in processes, fuzzy mining
and rule mining with data attributes can be applied without performing any
conformance check [27]. Consequently, no deviations against a to-be model are
investigated.

Another prominently used RCA technique are regression trees [10, 16]. In pro-
cess mining, regression trees have been applied to detect causes for performance
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issues [16], for example by analyzing data attributes not referring to the control-
flow [10]. Also, tree structures can be applied to identify causes for control-flow
deviations located through sub-group discovery [11]. However, all approaches
require domain knowledge to identify deviations or validate root causes after
the automated analysis. Further, current approaches do not use conformance as
the dependent variable. The automation is limited and the approaches are very
specific [10].

Correlation-based RCA is also supported by process mining tools like Appian
Process Mining, ARIS PM, Celonis, Lana Labs and Mehrwerk Process Mining.
Those tools among others have been identified as relevant in a recent study [15].
However, none of them include a to-be model in the analysis but try to find root
causes for variations in the data instead variations in conformance.

ABCD further resembles approaches like [11,12] where correlations between
data attributes and process flow metrics other than conformance are identified.
However, no to-be models are included in the analysis and therefore no confor-
mance checking can be performed.

5 Discussion and Conclusion

The goal of the ABCD approach is to identify combinations of trace attribute
values that correlate with variations in process conformance. Therefore, we first
enrich the event log with fitness values. After that, we investigate the correlation
between process conformance and attribute combinations. Our evaluation shows
that ABCD is able to generate practical insights with explanatory power in
an acceptable computation time. ABCD is inductive because it does not rely
on domain knowledge and data-driven because it only needs an event log and a
corresponding process model. It is universally applicable because is only depends
on generic event log attributes, such as timestamps, and flexible because users
can parametrize it to fit their specific case.

ABCD is subject to multiple limitations, which should be addressed in future
research. First and most importantly, ABCD identifies correlations between
attribute values and process conformance. It is not capable to determine whether
and how the identified values actually caused the process to deviate. Instead, they
are meant as an orientation for practitioners that try to improve the conformance
of their process. In future research, ABCD could be extended by causal analysis
techniques that are capable of identifying causal relations between attribute val-
ues and process conformance. Currently, the causal identification is performed
manually based on the found correlations (i.e., potential explanations).

Second, the computation times indicate that the enrichment might take long
for larger event logs, mainly due to the duration of the alignments. To still
make ABCD applicable to larger event logs, we could compute the trace fitness
with other techniques such as token-based replay or heuristics [7]. This was
not necessary for our evaluation, because the duration of under three hours at
maximum was acceptable, but it might become necessary for larger data sets.

Third, we enriched traces by their duration only. This attribute was use-
ful since the case study found it to be a potential explanatory factor in many
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regression trees. However, additional enrichment by other generic trace attributes
might further increase the explanatory power. Possibilities are the weekday in
which the trace started or the number of other active cases at the point of ini-
tiation. Such attributes could also relate to events, such as the occurrence of
certain activities in a trace or the number of executions of the same activity.
More sophisticated encoding approaches might be used [13].

Fourth, we limited our dependent variable to fitness. Therefore, we treat
different causes for fitness differences similar. However, it might be better to
include deviation information to find root causes of these fitness differences.

A limitation of our evaluation is that no to-be models were available for the
BPI logs, meaning that our evaluation results have to be interpreted carefully. We
tried to mitigate this limitation by applying ABCD in a case with to-be model.
However, we acknowledge that the insights of ABCD heavily depend on the
availability of these models. This could be addressed by data-driven approaches
for deriving to-be models, reducing the necessary effort for the organizations.

Finally, ABCD only identifies that a certain attribute value or combination of
attribute values is correlated with process conformance, but it does not explain
how the conformance is influenced. As discussed in Sect. 3.3, the next step could
be to incorporate a post-processing that investigates the alignments of the sub-
logs generated in the leaf nodes and analyzes where and how a deviation occurs.
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Abstract. Process mining is a set of techniques that are used by orga-
nizations to understand and improve their operational processes. The
first essential step in designing any process reengineering procedure is
to find process improvement opportunities. In existing work, it is usu-
ally assumed that the set of problematic process instances in which an
undesirable outcome occurs is known prior or is easily detectable. So the
process enhancement procedure involves finding the root causes and the
treatments for the problem in those process instances. For example, the
set of problematic instances is considered as those with outlier values
or with values smaller/bigger than a given threshold in one of the pro-
cess features. However, on various occasions, using this approach, many
process enhancement opportunities, not captured by these problematic
process instances, are missed. To overcome this issue, we formulate find-
ing the process enhancement areas as a context-sensitive anomaly /outlier
detection problem. We define a process enhancement area as a set of sit-
uations (process instances or prefixes of process instances) where the
process performance is surprising. We aim to characterize those situa-
tions where process performance is significantly different from what was
expected considering its performance in similar situations. To evaluate
the validity and relevance of the proposed approach, we have imple-
mented and evaluated it on a real-life event log.

Keywords: Process mining + Process enhancement - Context-sensitive
outlier detection + Surprising instances

1 Introduction

Considering the current highly competitive nature of the economy, it is vital
for organizations to continuously enhance their processes in order to meet the
best market standards and improve customer experience. Process enhancement
involves many steps, including finding the process areas where improvements are
possible, designing the process reengineering steps, and estimating the impact of
changing each factor on the process performance. By conducting all these steps,
organizations can benefit from applying process mining techniques. The first step
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of process enhancement is detecting those process areas where an improvement
is possible. Process mining includes several techniques for process monitoring
and finding their friction points. However, these techniques have the hidden
assumption that all the process instances (cases) are the same. So the set of
problematic cases can be easily identified. For example, the problematic cases can
be identified as the ones with an outlier value with respect to a process feature.
Another common method is using a threshold for a specific process feature.
However, considering the variety of the cases, it is possible that a solution solves
the problem for one group of cases while aggravating the problem for another
group. Moreover, using the current techniques, the performance of the process
in some cases can be considered normal and acceptable compared to the overall
behavior of the process, while it can be considered surprising (i.e. anomalous
or undesirable) when just considering their similar cases. This phenomenon can
lead to overlooking some of the process enhancement opportunities.

As another issue, there are several process instances where the process per-
forms significantly better than other similar process instances. Analyzing the
process behavior while performing these process instances can lead to invalu-
able clues on how to improve the process. Usually, this source of information is
neglected by the current process mining techniques.

To overcome these issues, we formulate finding those areas where a process
enhancement is possible as the problem of finding those groups of process situa-
tions where the process performance is significantly different from their similar
situations. Here, we define a process situation (or simply a situation) as a process
instance or a prefix of it. The proposed method includes four steps (1) enriching
and extracting the data from the event log (2) finding a set of sets of similar
situations (which we call a vicinity cover and each set of similar situations is
a vicinity). Naturally, a measure is needed to measure the similarity between
instances and identify vicinities. However, having access to such a measure is a
strong assumption. Thus we use a machine learning technique to determine the
vicinities in the absence of such a measure. (3) The next step involves finding
the set of surprising situations in each vicinity (if any exist). (4) Finally, a list
of detected sets of surprising situations is presented to the user ordered by their
effect on the process and how surprising they are. These findings can be fur-
ther analyzed to understand the reason for the different behavior of the process
in these surprising situations and gain insights on how to improve the process.
Figure 1 shows the general overview of the proposed method.

For example, consider that in a loan application process with 20 cases, we
are interested in finding those cases where their throughput is surprising. In

@ : — - Ranking : Ranked list
: Situation feature >| Vicinity detection »| Surprising > surprising | —>of surprising

. H table extraction instance detection N N
Input setting—! situations ! instances

Fig. 1. The general overview of the proposed method.
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Fig. 2. A graph representing the similarity of situations in a loan application example.
Each node represents a situation (a process instance). Two situations are similar if
the Levenshtein distance of their activity sequences is at most one. The vicinity of a
node is the set of process instances in the same community. Three vicinities have been
detected in this example, which are colored red, blue, and green. Surprising situations
are highlighted with a darker color. The throughput of each situation is proportional
to the size of its corresponding node. (Color figure online)

this example, each process instance (case) is a situation. Also, we consider two
situations similar if the Levenshtein distance of their activity sequence is at most
one. Figure 2 shows the graph for the cases of this loan application, where each
case corresponds to a node. Two cases are connected if they are similar. The
size of each node is proportional to its throughput. The colors (blue, green, and
red) indicate the vicinities found by the Louvain community detection algorithm
[3]. The nodes highlighted with darker colors are the surprising cases where the
throughput is significantly different from the other cases in the same vicinity. In
this example, the throughput was worse than expected for cases 5 and 16 and
better than expected for cases 4 and 10. The process owner can gain actionable
insights by analyzing the behavior of the process in these cases, particularly in
comparison with their vicinity, to enhance the performance of the process in
other similar cases in the future. Note, if we just had considered the overall
performance of this process, these four cases would not have been detected as
their throughput are not far from the average throughput of all cases.

The rest of the paper is organized as follows. In Sect.2, a brief overview
of the related work is given. In Sect. 3, the proposed method is presented. The
experimental results are discussed in Sect. 4. Finally, in Sect. 5, the conclusion is
presented.

2 Related Work

Existing research on context-aware anomaly detection in process mining is closest

to our work. Here we provide an overview of anomaly detection techniques.
Most existing methods investigate anomalies considering the control-flow per-

spective (e.g., [1,2,7,9,10,16]). These methods generate a reference model from
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the event log and apply conformance checking to detect anomalous behavior.
A subgroup of these methods known as deviance mining approaches investigate
performance anomalies [9]. In [16], the authors identify deviations and bottle-
necks by replaying the event log on an enrich process model with performance
information. In [7], the authors analyze the deviations between a process model
and an event log to identify which deviations enforce positive performance. In
[8], the anomalous cases in event logs are detected using window-based and
Markovian-based techniques. The drawback of control-flow approaches is that
they ignore a wide range of non-control-flow data, which can be used for more
sophisticated context-sensitive anomaly detection methods.

The authors of [4] propose an anomaly detection approach that incorporates
perspectives beyond the control-flow perspective, such as time and resource-
related information. This approach marks events as anomalies based on a certain
likelihood of occurrence, however, case anomalies are not considered.

Other approaches in this category only focus on specific use cases. The
authors of [13] analyze suspicious payment transactions to identify money laun-
dering within a money transfer service. They propose an approach to match
the transactions with the expected behavior given by a process model to iden-
tify many small transactions that end up on the same account. [14] identifies
surprisingly short activity execution times in a process by automatically infer-
ring a Bayesian model from the Petri net representation of the process model.
The authors of [15] use fuzzy association rule learning to detect anomalies. As
these approaches specialize in specific use cases, they do not apply to identify
anomalies in a general process.

A third category is domain-based anomaly detection. For example, the
authors of [11] propose an approach that supports the identification of unusual
or unexpected transactions by encoding the cases and assigning an anomaly
score to each case. They use the domain knowledge of domain experts to update
the assigned anomaly scores. The approaches in this category require domain
knowledge to label cases, which limits their applicability.

3 Method

Process mining techniques usually start by analyzing an event log. An event log
is a collection of cases where each case is a sequence of events, in which each
event refers to a case, an activity, and a point in time. More formally,

Definition 1 (Event, Case, Event log). Let C be the universe of case identi-
fiers, A be the universe of activities, T be the universe of timestamps. Moreover,
let D ={Dy,...,Dyp} be the universe of domain-dependent data attributes. We
define the universe of events as E = Cx AxT xDy x--- XDy and each element
e = (c,a,t,dy,...,d,) € € an event. Let EV be the universe of (non-empty)
finite and chronologically ordered sequences of events. We define a case as a
sequence of events v € ET in which all events have the same case identifier; i.e.
Ve, e; € yme(e;) = me(e;) where mc(e) returns the case identifier of event e € £.
We define an event log, L, as a set of cases in which each case has a unique
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case identifier; i.e., Vv,7 € L(Je € v3e’ € ym.(e) = we(€))) = ~=+". We
denote the universe of all event logs with L.

We assume that we know the process feature that captures the property of
the process that the process owner is interested in its optimization. We call this
feature target feature and denote it with tf where tf € TF = A x D. Note that
the target is composed of an attribute name and an activity name, which indicate
the attribute value should be extracted from the events with that activity name.
The attribute name can be any of the attributes captured by the event log or a
derived one. Moreover, we assume that we know descriptive features, which are
the set of process features that are relevant in measuring the similarity of the
situations. In the following, we explain the surprising situation detection steps.

3.1 Situation Feature Table Extraction

To find the surprising situations, we have to extract the data in the form of
tabular data from the event log. As the detected surprising situations are meant
to be used for root cause analysis, it is important to respect the temporal prece-
dence of cause and effect, indicating that the cause must occur before the effect.
Therefore, we extract the data from that prefix of the case that has been recorded
before the target feature. We call such a prefix a situation. More formally:

Definition 2 (Situation). Let L € L, v = (e1,...,en) € L, prfr({e1,...,en))
={{e1,...,e;) | 1 <i<n}, afunction that returns the set of non-empty prefizes
of a given case, and tf € TF = A x D a target feature. We define the universe
of all situations as S = \J,c, Sr where Sy = {0 | 0 € prfz(y) ANy € L} is
the set of situations of event log L. We call each element 0 € S a situation.
Moreover, we define sit € (£ x TF) x 25 to be the a function that returns
{c € SL | ma(0) = act} for a given L € L and tf = (att, act), where mq(0)
returns the activity name of the last event of o.

We call the data table created by extracting data from situations a situation
feature table. Please note that each row of the situation feature table extracted
from sit(L, tf) corresponds to a situation in it and this correspondence forms a
bijection. To enrich the event log and extract the situation feature table, we use
the method presented in [12].

3.2 Vicinity Detection

Informally, a vicinity is a set of similar situations and a vicinity cover of S C §
is a set of vicinities of its situations such that their union covers S. Let cov €
25 — 22° in which VS C SYS’ € cov(S) (S # 0 A (Vo,0' € S'sim(0,0") = 1))
and VS C S Ugrcoonis) S° = S. Here, sim € S x § — {0,1} is an indicator
function indicating if o and ¢’ are similar, for 0,0’ € S.

Using a coverage function, we define a vicinity cover of a set of situations
extracted from an event log with respect to a specific target feature as follows:
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Definition 3 (Vicinity and Vicinity Cover). Let S = sit(L,tf) be the set
of situations extracted from L € L with respect to the target feature tf € TF and
cov € 25 — 22° be a coverage function. We simply define a vicinity cover of S
as cov(S) and we call each member of V € cov(S) a vicinity of S. We denote
the universe of all vicinities by V.

In the sequel, we explain the vicinity detection method separately for the
case where we know the similarity measure and the case where such a similarity
measure is not known.

Vicinity Detection with a Similarity Measure. Let d € S xS — R be
a distance measure. Then we can say a situation is similar to another situation
if their distance is less than «. Now, we can define the similarity function as
simg,q € S xS — {0,1} such that simg (o1,01) returns 1 if d(o,0’) < « and 0
otherwise, for all 0,0’ € S. In this case, we can determine the vicinity cover of the
set of situations through the coverage function (Definition 3) in which simg (., .)
is the similarity function. Another method is to create a graph G = (S, E) in
which each node corresponds to one of the situations extracted from the event
log. There is an edge between two nodes if the distance of their corresponding
situations is smaller than «. Using a community detection algorithm on this
graph, we can determine the vicinities. Note that in this case two situations
are similar if their corresponding nodes are in the same community and each
detected community is a vicinity. A community detection function aims at finding
(potentially overlapping) sets of nodes that optimize the modularity within the
similarity graph. Modularity measures the relative density of edges inside the
communities compared to edges outside the communities.

As another option we can use a clustering method to detect vicinities. We
use k-means as the clustering model to explain the method; however, the general
idea is similar to using other clustering models. To find the surprising situations
using a clustering model, we first cluster the situations using k-means, with a
predefined k, based on their descriptive features. In this method, two situations
are similar if they belong to the same cluster and each cluster forms a vicinity.
Please note that in this case the similarity measure is used to measure the
distance between each situation and the centroids of clusters.

Vicinity Detection without a Similarity Measure. The availability of a
distance function is a strong assumption. Considering the complexity of the real-
life event data, even for specialists, it is a challenging task to determine such a
distance function. Hence, we use machine learning techniques to detect surprising
situations in the data. In this case, the process expert needs to know the set of
process features relevant to measuring the similarity of the situations and not the
exact distance measure. Here we briefly mention the vicinity detection method
using a classification model.

We mainly use a decision tree as the classification model. We train a decision
tree on the data trying to predict the target feature tf using descriptive features.
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In this method, we consider two situations similar if they belong to the same
node of the tree. Moreover, we consider the set of situations corresponding to
each node of the decision tree (or each node in a subset of nodes of the decision
tree, such as leaves) as a vicinity.

3.3 Surprising Situation Detection

We define the surprising situations in each vicinity as those situations in that
vicinity that significantly differ from the other situations (in that vicinity). Sup-
pose that D € V — ¢y, 2V where VV € V: D(V) C V is a function that, given
a set of similar situations (a vicinity), returns its subset of surprising ones. We
call such a function a detector. For example, a detector function can be a func-
tion that returns the subset of situations that exceed a user-defined threshold
value for the target feature. Using this function, we define the set of surprising
situations of a vicinity as follows:

Definition 4 (Surprising Situation Set). Let V €V be a vicinity and D €
V — Uyep2” where VWV € V : D(V) C V be a detector function. We define
D(V) as the set of surprising situations in V.

We can find the set of all sets of surprising situations of the set of situations by
applying the detector function on all the vicinities of its vicinity cover.

Definition 5 (Surprising Situation Sets). Let S = sit(L,tf) be the set of
situations extracted from L € L with respect to target feature tf € TF, cov(S)
a vicinity cover of S, and detection function D € V — Jy ¢y 2V, We define the
surprising situation sets of S as {D(V) | V € cov(S)}.

3.4 Ordering Surprising Situations

We define two criteria to order the detected surprising situations: surprisingness
and effectiveness. Suppose U is the set of surprising situations in a vicinity V.
Surprisingness of U measures how rare it is to see such a situation in its vicinity,
whereas effectiveness measures how beneficial it is to enhance the process based
on the findings of root cause analysis of U. More precisely:

Definition 6. Let V €V be a vicinity and U C 'V the set of surprising situations
in'V, and 8 € (0,1] a threshold. We define the surprisingness of U as:

#(U)

surp(U) = 3 | avg(U) — ang(V\U) | +(1 = 8)

and the effectiveness of U as:

eff (U) = (avg(V\U) = avg(U)) x #V\U) avg(U) < avg(V \U)
(avg(U) — avg(V\U)) x #(U) avg(U) > avg(V \ U)

where #(A) denotes the cardinality of A and avg(A) = % foreachAC S

is the average value of the target feature tf for the situations in A.
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Fig. 3. The throughput time for the BPI Challenge 2017 event log.

In the above definition, we assume that the lower values for tf are more desirable.
If this assumption does not hold, the effectiveness can be similarly defined.

4 Experimental Results

To evaluate the proposed framework!, we present the result of applying it on the
event log for BPI Challenge 2017 [5]. This event log represents an application
process for a personal loan or overdraft within a global financing organization
taken from a Dutch financial institute. We consider throughput as the target
feature. The majority of the cases in the process take between 5 and 40 days.
The average duration for all cases in the event log is around 22 days. Figure 3a
shows the distribution of the throughput time.

Boxplots are frequently used to identify performance anomalies [6]. Thus we
use boxplots as the baseline and call this approach the baseline. The resulting
boxplot is shown in Fig. 3b. Using this method, 255 cases with a throughput
of more than 61 days have been considered anomalous. These are the detected
anomalies without any context-awareness of the process.

To apply our approach, we used the following case-level attributes as descrip-
tive features: application type, loan goal, applicant’s requested loan amount, and
the number of offers which is a derivative attribute indicating how many times
the loan application institute offered a loan to the customer. Note that in this
experiment, each case is a situation.

We apply surprising situation detection using a similarity measure, a clas-
sification method (using a decision tree), and also a clustering method (using
k-means clustering). We call these three approaches similarity based method,

! The implemented tool is available at https://github.com/ckohlschm/detecting-
surprising-instances.
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Fig. 4. Detected surprising situations in each vicinity defined by the decision tree
method.

decision tree method, and k-means clustering method respectively. In all these
methods, to maximize the applicability of the implemented tool and to minimize
the required domain knowledge, we use the boxplot as the detector function (Def-
inition 4) to find the surprising situations in each vicinity.

Decision Tree Method. For this experiment, we trained a decision (regression)
tree with a maximum depth of 5 and a minimum number of instances per leaf
of 100. We consider the vicinities described by the leaves of the tree. Figure4
shows the detected surprising situations for the leaves in the decision tree where
each leaf is labeled with a number. Some of the highlights of the comparison of
the results of the decision tree method and the baseline are as follows:

— Application 1839367200 (Case duration 62 days) is barely considered an out-
lier in the total dataset, but in its vicinity (Vicinity 4: one offer, limit raise,
loan goal car, requested amount > 11.150) it is far from the average which is
14 days.

— Vicinity 19, where the number of offers is more than 3 and the requested
amount < 13.162 includes seven surprising situations. These situations have
not been considered outliers by the baseline method. One possible interpre-
tation of this result is that high throughput is acceptable in such situations.
The same applies to vicinity 20.

— Vicinity 5 (one offer, limit raise, Unknown loan goal, requested amount <
3000) contains 3 surprising situations that are all overlooked by the baseline
method. The vicinity contains 338 cases with an average throughput time of
13 days which makes cases with a duration of more than 40 days surprising.
The same applies to vicinities 3 and 6.
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Figure 5 shows the surprisingness (on the left) and effectiveness (on the right)
of the sets of surprising situations detected by the decision tree method. The set
of surprising situations in vicinity 17 has the highest surprisingness. This vicinity
includes 126 situations, where 6 are surprising with an average throughput of
100 days, whereas the other situations in the vicinity have an average of 27 days.
These are the cases with two offers that use their loan to pay their remaining
home dept and the requested amount is at most 24.500. The set of surprising
situations in vicinity 7 has the highest effectiveness. These situations correspond
to the customers with one offer that apply for a new credit. Removing the prob-
lem that causes the delay in these surprising situations would reduce the average
throughput time for similar cases by more than one day.

k-means Clustering Method. In this approach, we used k-means clustering to
identify vicinities. For k we use the value 25, which is the number of the vicinities
in the decision tree method and Euclidean distance as similarity measure. This
method results in detecting a total of 280 surprising situations. The plot on the
left side of Fig. 6 shows the surprising situations detected in each vicinity.
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0.9 3500
08 3000
07
06 2500
05 2000
0.4 1500
08 1000
02
ARl
o o lu.l.a (EEERN Lan
12345678 910111213141516171819202122232425 2 3 4 567 B 9 1011 121314151617 1819202122232425

Fig. 5. Surprisingness and effectiveness of the surprising situations identified by the
decision tree method.
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Fig. 6. Detected surprising situations by the k-means clustering and similarity based
method.




226 C. Kohlschmidt et al.

== Baseline

== Decision tree
Similarity based
k-means clustring

Fig. 7. Venn Diagram showing the intersection of detected surprising situations using
the different methods.

Similarity Based Method. We run the similarity based approach where the dis-
tance measure is the Euclidean distance of normalized descriptive features (using
min-max method). Then, we use 1.4, which results in 27 clusters (close to 25),
as the threshold to generate a graph. To find the vicinities, we used the Louvain
community detection method [3] on this graph. The plot on the right side of
Fig. 6 shows the surprising situations detected in each vicinity.

It is worth noting that the set of surprising situations detected by different
methods was not exactly the same. Figure 7 shows that all the methods agree
on 176 detected surprising situations and for all other situations at least one
method does not select it.

5 Conclusion

Finding the process enhancement areas is a fundamental prerequisite for any
process enhancement procedure that highly affects its outcome. It is usually
assumed that these process areas are known in advance or can be detected easily.
However, utilizing simple methods have the danger of overlooking some of the
opportunities for process enhancement or targeting the wrong ones. In this paper,
we formulate the process of finding process enhancement areas as a method for
finding surprising situations; i.e., detecting those situations where the process
behavior is significantly different from similar situations.

We have implemented the proposed framework with different methods and
evaluated it using real event logs. The experiment shows that the detected sur-
prising (anomalous) situations are overlapping but not identical to the ones of
the baseline, which is currently a common method for finding anomalies. It shows
that to find the best result, it is best to use our framework complementary to
the existing methods; i.e., using both context-sensitive and non-context-sensitive
methods for finding the process enhancement areas.

Acknowledgment. We thank Alexander von Humboldt (AvH) Stiftung for support-
ing our research.
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Abstract. Anomaly detection can identify deviations in event logs and
allows businesses to infer inconsistencies, bottlenecks, and optimiza-
tion opportunities in their business processes. In recent years, various
anomaly detection algorithms for business processes have been proposed
based on either process discovery or machine learning algorithms. While
there are apparent differences between machine learning and process dis-
covery approaches, it is often unclear how they perform in comparison.
Furthermore, deep learning research in other domains has shown that
advancements did not solely come from improved model architecture but
were often due to minor pre-processing and training procedure refine-
ments. For this reason, this paper aims to set up a broad benchmark and
establish a baseline for deep learning-based anomaly detection of pro-
cess instances. To this end, we introduce a simple LSTM-based anomaly
detector utilizing a collection of minor refinements and compare it with
existing approaches. The results suggest that the proposed method can
significantly outperform the existing approaches on a large number of
event logs consistently.

Keywords: Business process management - Anomaly detection - Deep
learning - LSTM

1 Introduction

Anomaly detection deals with the identification of rare articles, objects, or obser-
vations that differ significantly from the majority of the data and therefore raise
suspicions [16]. In the context of business process analysis, businesses apply
anomaly detection to automatically detect deviations in event logs which can be a
sign of inconsistencies, bottlenecks, and optimization opportunities in their busi-
ness processes [7]. A typical approach to detect anomalous behavior in business
processes is to apply conformance checking [12], i.e., evaluating the real occurred
behavior that is recorded in event logs against the business process model that
business experts previously designed. However, to do this, such a process model
is required beforehand. More recently, a variety of deep learning-based anomaly
detection algorithms with different architectures have been developed that are
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able to identify anomalous process behavior without requiring a process model
or other prior knowledge about the underlying process. While there are apparent
differences between the existing approaches, it is not clear how they perform in
comparison. Furthermore, deep learning research in other domains has shown
that advancements did not solely come from improved model architecture but
are often due to minor training procedure refinements [6]. Thus, this paper aims
to set up a broad benchmark between anomaly detection algorithms where we
compare the performance of existing approaches with a simple LSTM-based
anomaly detector that utilizes a number of minor refinements. The contribution
of this paper is threefold:

— We examine a collection of different processing, model architecture, and
anomaly score computation refinements that lead to significant model accu-
racy or run-time improvements.

— We show that the proposed methods lead to a significant performance
improvement in comparison with state-of-the-art process mining-based and
deep learning-based anomaly detection methods. To this end, we conduct
experiments on the data sets from the Process Discovery Contests, the Busi-
ness Process Intelligence Challenges, and additional synthetic event logs [7].

— We set up a comprehensive evaluation over a total of 328 different event logs,
which can be utilized as a benchmark for further research.

The remaining sections of the paper unfold as follows: Sect.2 introduces the
reader to preliminary ideas of process mining and predictive process monitoring.
Section 3 gives a brief overview of the approach before it discusses the applied
refinements. Section4 describes two experiments to evaluate the performance
of the proposed approach. Sectionb shows the evaluation results covering an
overall performance comparison with existing methods and a detailed analysis
of the impact of different design decisions and refinements. Section 6 relates
the developed approach to existing literature. Section 7 closes the paper with a
summary of the main contributions and an outline of future work.

2 Preliminaries

This section introduces some preliminary concepts. In particular, we introduce
the concepts of events, cases, and event logs and define next step prediction
and (case-level) anomaly detection as we understand it during the scope of this

paper.

Definition 1. Event, Case, Fvent Log
Let E be the universe of events. A case o is a finite-length word of events, i.e.
o € E*ANlo| =n, n € N. An event log is a multi-set of cases, i.e. L € B(E*).

To describe a case o, we also use the notation o := (e,...,e,). There are
further attributes next to the activity associated with events such as resource,
timestamp, and others. These attributes can add additional information that
can also be utilized for analysis and predictive tasks.
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One process prediction task that has been researched intensively in recent
years and also plays a major role in the proposed anomaly detection approach in
this paper is next step prediction. Next step prediction aims to forecast the direct
continuation of an ongoing process instance based on all available information
regarding the process instance. We define next step prediction as follows:

Definition 2. Next Step Prediction

Given a prefix py = (e1,...,e¢) of a case 0 = {e1,...,e,) with 0 <=t < n, t,n €
N, we define Next Step Prediction as a relation NSP C E* x E that predicts the
next occurring event ey 1 based of the prefix p;.

Next, we can define anomaly detection of process instances. There is a distinction
between attribute and case-level anomaly detection in the literature. While the
former detects irregular attribute values on event-level, such as false activities,
resources, or timestamps, the latter aims to classify anomalous cases. For the
scope of this paper, we are only concerned with case-level anomaly detection,
which we conceptualize as follows:

Definition 3. Case-level Anomaly Detection

We define a case-level anomaly detector as a function f that receives a case o
and returns a label £ € {0,1}, where 0 indicates a normal case and 1 indicates
an anomalous case.

One may notice that we do not specify what makes a case normal or anomalous.
We argue that depending on the context, the criteria for an anomaly may differ.
Hence, a more vague definition is beneficial. In the first conducted experiment,
we understand anomaly detection similarly to conformance checking, i.e., a case
is normal if it fits a hidden process model; else, it is anomalous. In the second
experiment, synthetic events and attributes are injected into the data sets based
on a predefined rule-set. A case is considered anomalous if it contains at least
one of the injected values.

3 Proposed Approach

3.1 Overview

The proposed method investigates prediction-based anomaly detection with a
deep neural network as the predictive model. The approach can be divided into
two stages - first, we train an LSTM-based model to learn the behavior of the
process, while in the second stage, the trained model is used to assess whether
a given trace is anomalous or not. In the first stage, we train the prediction
model to solve the next step prediction task. The idea is to teach the model a
hidden representation that contains the most relevant information to predict the
possible next events. To assess whether a trace ¢ is anomalous or not, we use the
trained model to predict all the steps of a given case. If the predicted behavior
of the neural network and the real behavior differ significantly in at least one
of the events, we consider this observation a strong indicator that the case is



232 J. Lahann et al.

suspicious. Therefore, we mark the case as anomalous. We introduce DAPNN
(Detection of Anomalous Processes through Neural Networks), which utilizes a
collection of changes and refinements to previous work [8,9] that together led to
significant performance improvements in the conducted experiments. We gener-
ated fixed sliding windows and switched to a LSTM-based network architecture.
Furthermore, we used multiple training methods to improve the convergence of
the neural networks. Last, we added normalization to the anomaly score com-
putation, which creates a comparable anomaly score throughout different event
logs.

3.2 Approach Characteristics and Refinements

Data Processing. DAPNN is trained on windows extracted from the cases o
of size w. Given a window of the w — 1 previous events, DAPNN’s task is to
predict the last event in the window. Thereby, we do not have to insert padding
elements to counteract the different lengths of the prefixes. Furthermore, since
the window size is usually much smaller than the maximum length of the prefixes,
this results in a much faster training time. For a case o := (ey,...,e,) and a
fixed window size w, we generate n-w windows (e; — w, e;), where w < t < n.
In the conducted experiments, we used a fixed window size of 5. Next, we add
special Start and End events to each case in the event log. Thereby, the next
step prediction model can also learn to predict the beginning and the end of a
case. This is especially effective since there are anomalous cases that only behave
wrongly at the beginning or at the end.

Model Architecture and Training. We decided to use a simple LSTM-based
architecture. Each case ¢ is split into separate sequences along the attributes,
which are processed by individual LSTM blocks. Each block consists of an
embedding layer, two LSTM-layer with hidden layer size 25, followed by a soft-
max layer. This allows obtaining a probability distribution p per attribute found
in the event log, which serves as the basis to assess whether ¢ is anomalous or
not.

We train each neural network for up to 25 epochs utilizing early stopping, the
learning rate finder, and cyclic learning rates [13]. While early stopping primarily
reduces training time, we see a significant improvement in the robustness of the
results through the latter two methods throughout the conducted experiments.

Anomaly Score Computation. After training the prediction model, we can
utilize it to detect anomalies. To do this, we compute all windows for a given
case o and feed them through the prediction model. For a case with n events and
m attributes, we compute m x n probability distributions p. In order to obtain
the anomaly scores, we apply a scoring function © and store the anomaly scores
per case in a matrix Manomaty. We define © as follows:

O(7y) = "L s
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Fig. 1. Illustration of the anomaly scores of a case that resembles a skip sequence
anomaly. For the 3rd predicted event, the threshold is exceeded for 4 out of 5 attributes.

y depicts the actual next occurred attribute in o, and p, represents the prob-
ability that the prediction model is assigned to the attribute y. The margin of
max(p) and p, can be interpreted as a measure of certainty for an anomaly. If
the margin is high, the prediction model is certain that another attribute should
occur instead. Hence, this is a sign of an anomaly. By normalizing with maz(p),
we make the anomaly score more robust so that it behaves similarly throughout
all predictions. Additionally, it penalizes deviations stronger if it has low con-
fidence regarding the occurred value. For example, if the predicted event has a
probability of 0.75 and the occurred event has a probability of 0.25, the obtained
anomaly score is (0.75—-0.25)/0.75 = 0.66. However, if the predicted event has a
probability of 0.5 and the occurred event has a probability of 0.0, the obtained
anomaly score is (0.5-0.0)/0.5 =1.0. The normalization pushes anomalies near
1.0 and enables easier differentiation between anomalies and normal events. Fur-
thermore, it allows us to introduce a threshold that functions similarly to a
significance measure, as the threshold is relatively stable over different event
logs. Figure 1 shows the resulting anomaly scores for one particular case.

Anomaly Classification. Based on the anomaly scores, we can then determine
if a case is anomalous, i.e., we define a function f that takes all anomaly scores
M of a case and a threshold 7 as input and outputs a label [ € 0, 1.

1, if mam(Manomaly) >T

f(Manomaly7 T) = {

0, otherwise

The intuition behind the formula is that if a case contains at least one anomaly
score greater or equal to the given threshold, it is flagged as an anomaly. In order
to choose a suitable threshold, we compare different options:

— Best Threshold: we select the optimal threshold based on the achieved F1-
score on the test set. l.e., we compute the F1-Score for all possible thresholds
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Table 1. Data sets of experiment 1.

# Logs | # Cases | # Activities | # Events | # Anomalies
PDC 2020 Train | 192 1000 16-38 886770106 | 0/~ 200
PDC 2020 Test |192 1000 16-38 8764-68706 | 412-515
PDC 2021 Train | 480 1000 37-65 9867-32009 | 0/~ 200
PDC 2021 Test 96 250 35-64 6612-11860 | 125

and choose the threshold with the highest F1-Score. Note that this heuris-
tic requires labels and thus is not applicable in practice in an unsupervised
scenario. However, it is still relevant as it allows us to measure the maximal
achievable performance with the underlying prediction model.

— Fized Threshold: we set a fixed threshold that we use throughout all experi-
ments. We achieved reasonable results with a threshold of 0.98.

— Anomaly Ratio: we pick a threshold based on the total number or the ratio
of predicted anomalies.

— FElbow and Lowest Plateau Heuristic: we utilize heuristics based on the
anomaly ratio per potential threshold as introduced in [8].

4 Experimental Setup

4.1 Experiment 1

The first experiment compares the performance of the proposed anomaly detec-
tion approach with process discovery algorithms on the Process Discovery Con-
tests 2020 and 2021 [14,15]. The process discovery contest (PDC) aims to assess
tools and techniques that discover business process models from event logs. To
this end, synthetic data sets are generated that comply with general concepts
that influence process mining algorithms.

While the process discovery is designed to evaluate process discovery algo-
rithms, it measures their performance indirectly through a classification task,
identifying process cases that fit a hidden process model. Hence this task can
also be accomplished through anomaly detection. Regarding the experimental
setup, we follow the instructions from the process discovery contest. In particu-
lar, we consider the data sets from PDC 2020 and PDC 2021. Table 1 highlights
the most important characteristics and statistics about the data sets. To achieve
maximal comparability with the other algorithms that took part in the chal-
lenges, we also trained the next step prediction model on the training logs and
measured the performance on the test sets.

4.2 Experiment 2

The second experiment provides a comparison with other machine learning-based
anomaly detection approaches on the data sets generated by Nolle et al. [8].The
synthetic event logs are based on six process models with a different number of
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activities, model depths, and model widths, which are created randomly with the
PLG2 framework [5]. Additionally, the authors utilized the event logs from the
BPI Challenges 12, 13, 15, and 17. Subsequently, a variety of artificial anomalies
was added to some of the cases of all event logs (Table 2):

— Skip: One or multiple ev