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Preface

The International Conference on Process Mining (ICPM) was established three years

ago as the conference where people from academia and industry could meet and discuss

the latest developments in the area of process mining research and practice, including

theory, algorithmic challenges, and applications. Although the ICPM conference series

is very young, it has attracted innovative research of high quality from top scholars and

industrial researchers.

This year the conference took place in Bolzano, Italy and included co-located work-

shops that were held on October 24, 2022. The workshops presented a wide range of

outstanding research ideas and excellent paper presentations. In addition, the resulting

workshop programs were complemented with keynotes, round-table panels, and poster

sessions, providing a lively discussion forum for the entire community. ICPM 2022 fea-

tured eight workshops, each focusing on particular aspects of process mining, either a

particular technical aspect or a particular application domain:

– 3rd International Workshop on Event Data and Behavioral Analytics (EDBA)

– 3rd International Workshop on Leveraging Machine Learning in Process Mining

(ML4PM)

– 3rd International Workshop on Responsible Process Mining (RPM) (previously

known as Trust, Privacy and Security Aspects in Process Analytics)

– 5th International Workshop on Process-Oriented Data Science for Healthcare

(PODS4H)

– 3rd International Workshop on Streaming Analytics for Process Mining (SA4PM)

– 7th International Workshop on Process Querying, Manipulation, and Intelligence

(PQMI)

– 1st International Workshop on Education Meets Process Mining (EduPM)

– 1st International Workshop on Data Quality and Transformation in Process Mining

(DQT-PM)

The proceedings present and summarize the work that was discussed during the

workshops. In total, the ICPM 2022 workshops received 89 submissions, of which 42

papers were accepted for publication, leading to a total acceptance rate of about 47%.

Supported by ICPM, each workshop also conferred a best workshop paper award. Finally,

it is worth mentioning that to promote open-research, ICPM proudly offered to publish

the proceedings as open-access.

We would like to thank all the people from the ICPM community, who helped to

make the ICPM 2022 workshops a success. We particularly thank the entire organiza-

tion committee for delivering such an outstanding conference. We are also grateful to
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the workshop organizers, the numerous reviewers, and, of course, the authors for their

contributions to the ICPM 2022 workshops.

November 2022 Marco Montali

Arik Senderovich

Matthias Weidlich
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Third International Workshop on Event Data

and Behavioral Analytics (EdbA’22)

In recent decades, capturing, storing, and analyzing event data has gained attention

in various domains such as process mining, clickstream analytics, IoT analytics, e-

commerce, and retail analytics, online gaming analytics, security analytics, website

traffic analytics, and preventive maintenance, to name a few. The interest in event data

lies in its analytical potential as it captures the dynamic behavior of people, objects, and

systems at a fine-grained level.

Behavior often involves multiple entities, objects, and actors to which events can be

correlated in various ways. In these situations, a unique, straightforward process notion

does not exist, is unclear or different processes or dynamics could be recorded in the

same data set.

The objective of the Event Data & Behavioral Analytics (EdbA) workshop series

is to provide a forum to practitioners and researchers for studying a quintessential,

minimal notion of events as the common denominator for records of discrete behavior

in all its forms. The workshop aims to stimulate the development of new techniques,

algorithms, and data structures for recording, storing, managing, processing, analyzing,

and visualizing event data in various forms. To this end, different types of submissions

are welcome such as original research papers, case study reports, position papers, idea

papers, challenge papers, and work in progress papers on event data and behavioral

analytics.

The third edition of the EdbA workshop attracted 15 submissions. After careful

multiple reviews by the workshop’s program committee members, seven were accepted

for a full-paper presentation at the workshop. All full-paper papers have been included

in the proceedings. This year’s papers again cover a broad spectrum of topics, which

can be organized into three main themes: human behavior and IoT, detecting anomalies

and deviations, and event data beyond control-flow.

In the final plenary discussion session, the workshop’s participants had a very fruitful

discussion about several topics including (i) the possibility to build general approaches

to event abstraction instead of domain-dependent ones, (ii) the goals of event abstraction,

(iii) the usefulness of offline process mining, (iv) data awareness and decision points in

human processes, and (v) guidelines for object-centric logs.

The organizers wish to thank all the people who submitted papers to the EdbA’22

workshop, the many participants creating fruitful discussion and sharing insights and

the EdbA’22 Program Committee members for their valuable work in reviewing the
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submissions. A final word of thanks goes out to the organizers of ICPM 2022 for making

this workshop possible.

November 2022 Benoît Depaire

Dirk Fahland

Francesco Leotta

Xixi Lu
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Do You Behave Always the Same?

A Process Mining Approach

Gemma Di Federico(B) and Andrea Burattin

Technical University of Denmark, Kgs. Lyngby, Denmark

gdfe@dtu.dk

Abstract. Human behavior could be represented in the form of a pro-
cess. Existing process modeling notations, however, are not able to faith-
fully represent these very flexible and unstructured processes. Additional
non-process aware perspectives should be considered in the representa-
tion. Control-flow and data dimensions should be combined to build a
robust model which can be used for analysis purposes. The work in this
paper proposes a new hybrid model in which these dimensions are com-
bined. An enriched conformance checking approach is described, based
on the alignment of imperative and declarative process models, which
also supports data dimensions from a statistical viewpoint.

1 Introduction

A process is a series of activities that are executed with the aim of achieving a
specific goal. The notion of process can be used to describe most of the behaviors
we adopt in our daily life. Whenever we deal with an ordered series of activities,
that are performed repetitively, we can leverage the notion of process [10]. A pro-
cess model is a formalization of a process, it abstracts activities and dependencies
in a conceptual model. A process modeling language offers the set of rules and
structural components to represent a process in form of a model. An example of
a process is the procedure to get medications from a prescription, as well as the
process that a person follows in order to get ready for work in the morning. In the
former example, the procedure is strict and follows a well-defined and ordered
set of activities; in the latter example, the process is flexible and can vary based
on daily preferences, meaning that the process does not necessarily enforce a
static structure. To some extent, existing process modeling languages are able
to represent processes related to human behavior, however, several important
aspects cannot be expressed by those languages. Dealing with human processes
is challenging [8] since human beings are not forced to follow a strict procedure
while executing activities, which results in high variability of the process, and
the model. What is more, human behavior can be influenced by external fac-
tors, such as the environment. Modeling languages have structural limitations
which restrict the expressiveness of the models they can represent. Among these
is the fact that a process model primarily focuses on the control flow perspec-
tive. Consider a process executed in an environment with a temperature of 18◦,

c© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022, LNBIP 468, pp. 5–17, 2023.
https://doi.org/10.1007/978-3-031-27815-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27815-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-27815-0_1


6 G. Di Federico and A. Burattin

Fig. 1. Approach overview

in which a person is drinking 5 glasses of water per day. If the ambient tem-
perature rises, the frequency of the activity “drinking” is expected to increase
as well. Let’s now consider a new instance of the same process, in which a per-
son is drinking 5 glasses of water but the temperature is 32◦. Just considering
a control-flow perspective, the two instances are perfectly compliant. However,
combining the drinking activity with both its frequency and the environment
temperature, leads to a more detailed representation of the behavior. Addition-
ally, most of the imperative languages only allow the design of uncountable loops,
while this aspect could be relevant when representing human behavior. Declara-
tive languages only specify the workflow through the use of constraints, i.e., only
the essential characteristics are described. Hence, the model over-generalizes the
process, often allowing too many different behaviors. As process models are con-
ceptual models, they actually are abstractions of reality, focusing only on the
aspects that are deemed relevant. The reality can be captured by observing the
actual process, resulting in a set of events collected in an event log. When trying
to workshops establish a relation between a process model and the reality, in
which both refer to the same process execution, it can be easily noted how far
from each other they can be. Even if numerous process modeling languages exist,
the control-flow and the constraints discovery (both referring to imperative and
declarative processes) are not always sufficient to capture all the characteristics
of some kind of process. Other dimensions must be considered and included in
the analysis. Among the tasks investigated in Process Mining [6], conformance

checking [4] assumes process models to be prescriptive (a.k.a. normative) and
thus it tries to establish the extent to which executions are compliant with the
reference model. Therefore, if conformance checking tasks are needed, the model
should be as robust and realistic as possible.

The work presented in this paper aims at improving conformance check-
ing techniques by extending them in such a way that the control-flow is used
alongside other dimensions. As depicted in Fig. 1, we suggest a hybrid app-
roach in which process and data dimensions are combined, and we implement
an enriched conformance checking approach based on the alignment of impera-
tive and declarative process models, which also supports data dimensions form
a statistical viewpoint.

The paper is structured as follows. Section 2 presents related work and moti-
vate the paper. In Sect. 3 the solution is presented. Evaluated and discussion is
in Sect. 4. Section 5 concludes the paper and presents future work.
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2 Background

2.1 State of the Art

The difference between a business process and a human-related process lies in the
rigidity of the structure: human processes can be extremely flexible, involving
additional perspectives [8] on top of the control-flow.

Although it is possible to define the set of activities that compose human
behavior, we cannot define (or restrict) with certainty their order of execution.
The reason is that activities are typically combined based on the specific cases,
i.e. they are heavily case-dependent [18], and the behavior changes according to
known or unknown factors, in a conscious or unconscious way [13]. Even though
they share many characteristics with knowledge intensive processes [7], they
have a lower degree of uncertainty. Traditional process modeling languages man-
ifest significant limitations when applied to such unstructured processes, usually
resulting in describing all possible variants [9] in form of complex and chaotic
process models. A process model representing human behavior must abstract
the underlying process, allowing for variability, but without over-generalizing.

In order to combine rigid and flexible parts of the models, and thus take
advantage of both imperative and declarative process modeling languages [16],
hybrid approaches have emerged. Hybrid models combine several process dimen-
sions to improve the understandability of a process model and to provide a clearer
semantic of the model itself. According to Andaloussi et al. [2] three process arti-
facts are usually combined in hybrid approaches, and are static, dynamic or inter-
active artifacts. Schunselaar et al. [17] propose a hybrid language which combines
imperative and declarative constructs. The approach firstly derives an imperative
process model (a process tree) and then the less structured parts are replaced
with declarative models to improve the overall model precision. López et al.,
in [12], combine texts with the Dynamic Condition Response (DCR) language.
The declarative model is discovered directly from text, and then a dynamic
mapping between model components and text is provided. The approach aims
to improve the understandability of declarative models. An interactive artifact
is proposed in [14] where authors combine the static representation of a process
model (DCR graph) and its execution through a simulation. The work presents
a tool in which the user can interact directly with the process model. Hybrid
approaches focus on the combination of a graphical representation of the process
model, together with either another static component (e.g. a process model in a
different notation, alongside or hierarchically integrated) or a dynamic or inter-
active artifact such as a simulation. Although they improve the representation
of a process model, the control-flow only is not expressive enough.

Felli et al. [11] recognized the importance of enriching a process model with
other perspectives, by proposing a framework to compute conformance metrics
and data-aware alignments using Data Petri Nets. However, they consider, in
a combined way, the control-flow and the data that the process manipulates,
without considering non-process aware perspectives. In the work presented in
this paper, the data dimension refers to all those attributes of the activities that
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are not directly captured by process discovery algorithms, hence not represented
in a process model. Without considering these additional perspectives, a process
model would be too general, always leading to a successful alignment between
the model and new process instances. As a result, if a new process instance varies
in activities frequency or duration, it will always fit the model. In this respect,
conformance checking fails in its principle.

2.2 Problem Description

Behaviour modelling is a demanding task [8]. In view of the fact that human
beings have their own minds and their own interests, their behavior cannot be
entirely defined ex-ante. There are logical reasons behind the execution of an
ordered series of activities, but the way in which these activities are coordinated
is not necessarily a single and unique pattern. This makes the control-flow of
behaviors highly variable. Additionally, a considerable part of human behavior
is composed of repeatable activities. Human beings perform a semi-defined set
of activities every day, but part of it is repeated several times throughout the
day [3]. Whenever an activity is executed, it may be part of a different set of
circumstances, a.k.a. context.

Fig. 2. WF-net derived from L =
[〈a, b, c, b, d〉2, 〈a, b, c, b, c, b, d〉10]

Moreover, the duration of the
activities is also a key factor that
allows us to distinguish situations.
An activity, based on its duration,
can have different meanings. E.g. the
sleeping activity executed for 8 h can
be interpreted differently from the
same activity executed only for 2 h.
Both scenarios are represented by the
same process model, but the duration is not directly captured and encoded in the
model. As a consequence, the two situations cannot be distinguished. This case
can be observed in Fig. 2, in which a simple WF-Net is derived from the traces in
L. From the model we cannot distinguish whether activity a was performed for
one minute or for one hour. The last aspect we focus on is the frequency of activ-
ities. As for the duration, the frequency of occurrence of an activity can affect
the meaning of the process. Although process modeling languages are capable
of representing the repetitions of activities (such as loops), information on the
recurrence of the frequency is not included. Loops and repetitions are therefore
uncountable. For instance, from the model in Fig. 2 we can’t differentiate if the
loop between the activities b and c is executed one time or ten times. A trace
t = 〈a, b, c, b, c, b, c, b, c, b, c, b, d〉 can perfectly be executed in the model, even
though previous examples from the log show only fewer repetitions.

To tackle the above-mentioned issues, we implemented an enriched confor-
mance checking approach, in which we provide information on the process based
on different points of view, i.e. control-flow dimensions (both declarative and
imperative) along with data dimensions. The work presented in this paper aims
to answer the following research question:
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RQ: Does a hybrid process model help in describing human behavior, with

the goal of understanding whether such behavior has changed or whether

it is consistent with previous observations?

3 Approach

A process model by itself is not always capable to faithfully capture human
behavior. As introduced in the above section, several types of hybrid approaches
have been developed, but they all focus only on the process dimension. Espe-
cially when dealing with human behavior, typical process representations are
not enough. We therefore analyzed human behavior processes and investigated
whenever the process representation does not relate to the real process. The
conformance checking approach presented in this paper consists of an integrated
solution that combines discovery and conformance of both a process and a data
dimension. As introduced in Fig. 1, our discovery produces process models as
well as a list of statistics for the activities in the event log. The models repre-
sent the control-flow perspective, while the statistics the data perspective. In
this first version of the approach, the statistics focuses on three data aspects
which allow to capture other dimensions of the process, and are the duration
of activities, their frequency and the absolute time. The conformance checking
produces an enriched fitness value that is based on the verification between each
trace in the event log and the enriched discovered model. The enriched fitness
value is the composition of the six fitness measures, and it is calculated according
to the procedure described in the next subsections. It is important to highlight
the importance of the enriched fitness value obtained by the application of the
approach presented in this paper. In fact, the value does not refer only to a
control-flow perspective, but takes into consideration other dimensions that are
not strictly process related.

3.1 Control-Flow and Data Discovery

Control-Flow Representation and Discovery. The main challenge in
behavioral modeling is to observe the process from different points of view. The
first viewpoint is the control-flow perspective, which can be represented using
imperative or declarative languages. Although a declarative language allows to
abstract from the problem of variability, as it represents the process in form of
constraints, an imperative language has a clearer and more structured repre-
sentation. The two language categories have different characteristics and, based
on the usage, the most appropriate one can be chosen. However, to allow the
discovery and the conformance, only languages with a clear execution seman-
tic are considered in the presented approach. The main purpose beyond this
paper is that a process model representing human behavior is visually clear and
representative of the process. As argued before, imperative and declarative lan-
guages have pros and cons in this task. Therefore, to avoid to restrict the final
user through a specific representational direction, we decided to include both



10 G. Di Federico and A. Burattin

language families in the proposed approach. In particular, the process discovery
includes the Heuristic [19] and Inductive Miner [15], which produce Petri Nets,
and the DisCoveR [15] algorithm which produces a DCR Graph.

Data Representation and Discovery. The data dimension focuses on the
derivation of relevant statistics under the frequency of activities, their duration,
and their occurrence time point of view. As introduced in Sect. 2.2, the frequency

of activities is a relevant feature to discover repetitions of activities inside the
process. To compute the frequency, the occurrence of each unique activity iden-
tifier is counted in each trace of the event log. Then, the frequencies are aggre-
gated to the entire event log, and basic statistics are calculated for each activity.
The statistics are the mean, the standard deviation, the median, the minimum
frequency and the maximum frequency. The values computed enrich the discov-
ered process from a frequency perspective, allowing to have information on the
occurrence of each activity identifier.

The second element modelling the data perspective is the duration, used to
investigate the duration of each activity over time. A different duration in the
execution of an activity can completely change the meaning with respect to the
process. The duration of the activities is calculated based on the mean duration
of each unique activity identifier in each trace. Given an activity identifier, mean,
median, min and max duration are calculated for each trace. The values are then
aggregated to obtain more accurate results which describe the entire event log.

Always remaining in the time dimension, the absolute time when activities
happen is another relevant factor in behavioral modeling. Even if conceptually
activities are not executed at the same precise time, the absolute time is a
powerful tool for identifying delays in the execution of activities. This dimension
is treated by considering the histogram of how often each activity has been
observed within a certain time interval (e.g., hours of the day).

3.2 Control-Flow and Data Conformance

Once the enriched model is derived, conformance checking algorithms can be
used to relate the process model with instance of the process collected in an
event log. The conformance checking tries to align both the control-flow and the
data perspectives, producing an enriched fitness value as output.

Conformance of the Control-Flow Dimension. The enriched model is rep-
resented both in form of Petri Nets and a DCR Graph. According to these
languages, the conformance checking algorithms included are the alignment [1]
for the Petri Nets, and a rule checker [5] for the DCR Graph. An alignment algo-
rithm establishes a link between a trace in the event log and a valid execution
sequence of the process model. For each trace in the event log, a fitness value
is obtained. The rule checker verifies if a trace violates the constraints of the
graph. For each trace, a fitness value is obtained.
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Conformance of the Data. While for the control-flow perspective there are
conformance checking techniques available, for the data part it was necessary to
investigate the most suitable ways to compare the reference data with the actual
instance. For each component of the data dimension, we implement a comparison
function. To verify if the frequency statistics in the enriched model conform to
the event log, we will assume that activities are normally distributed. The normal
distribution is used to show that values close to the mean are more frequent in
occurrence than values far from the mean. Assuming that the mean value is our
reference value for the frequency, by means of the computed probability density
function we can interpret the likelihood that the mean frequency value (for each
activity identifier) in the trace, is close to the reference. Then, we consider the
likelihood as the fitness value for the frequency dimension. What is more, the
frequency value under analysis has to be in the range from the minimum number
of occurrences up to the maximum number of occurrences (defined in the model),
otherwise a zero fitness value is returned.

The same approach explained for frequencies is used for the duration of
activities. Activity durations are assumed to be normally distributed and hence
the same strategy is used.

Concerning the absolute time, the approach used in the previous two cases
cannot be used, primarily because the absolute time is not cumulative. E.g., we
may have the same activity repeated multiple time within the same trace and
therefore it might not be possible to aggregate the time of those activities. We
decided to use the histogram of the frequencies of each activity over time inter-
vals. To compute the conformance we normalize the frequencies in the interval
0–1 (where 1 indicates the most frequent time interval and 0 the least frequent
time interval) and the conformance of new absolute time is then computed as
the normalized frequency for the time interval the new absolute time belongs to.

The final fitness value is an aggregation of six values, that are the results of
the application of conformance checking algorithms together with the results of
the conformance of the statistics. Let’s call

⊕
the aggregation function for the

individual measures, the overall conformance becomes:

⊕

(

Control-flow dimension
︷ ︸︸ ︷

Conf. Inductive, Conf. Heuristics, Rule check DCR,

Stats on freq., Stats on duration, Stats on abs. time
︸ ︷︷ ︸

Data dimension

)

Examples of possible aggregations functions (i.e.,
⊕

) could be the (weighted)
average, the maximum, and the minimum. The (weighted) average would be
useful when all dimensions should be considered, the minimum would be a bit
more restrictive as it’d require all measures to be high in order to return a high
value itself. The fitness value shows how the discovered hybrid model reflects the
behavior in the event log, both under a control-flow and a data dimension. By
means of the enriched conformance checking approach presented in this paper,
we have a powerful tool to explain and identify variations and discrepancies even
under a non-process aware dimension.
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4 Evaluation

The approach presented in this work aims to demonstrate that behavioral mod-
eling cannot be represented solely by the control-flow: additional perspectives
not referring to the control-flow must be considered. The evaluation conducted
is based on trying different scenarios and verifying how the control-flow and the
data perspectives respond to the identification of the variations. We identified
three different scenarios, and we built (via simulation) a total of 8 synthetic
event logs1, with 1000 traces each. Each scenario contains a “normal” situation
(the reference event log) and “anomalous situations” (the event logs used for
verifying the conformance). Each scenario aims at identifying the advantages
and limitations of both process and data perspectives.

4.1 Scenarios and Logs Description

Scenario 1 (S1) Description - The first scenario describes the night routine of
a person. The idea is that a person sleeps all night but wakes up between zero
and two times to go to the bathroom. Variations - The first variation describes
a situation in which a person goes to the bathroom very frequently during the
night, from four to ten times. In the second variation the person goes to the
toilet a normal number of times but stays in the bathroom for a long period of
time. Objective - The main objective of S1 is to highlight the importance of
the data perspective. In fact, the variation is in the frequency and the duration,
perspectives that are usually not represented on top of process models.

Scenario 2 (S2) Description - The second hypothetical scenario focuses
on repetitive activities. The log synthesizes a day where a person eats lunch,
leaves the apartment and then comes back for eating dinner, and relaxes on the
couch until sleeping time. In a normal scenario, the person has lunch between
11:30 and 13:00, and dinner between 18:00 and 20:00. Both having lunch and
having dinner are referred to as the activity of eating. Variations - Eating lunch
or dinner outside the predefined ranges is considered an anomalous behavior. In
the first variation, the person has lunch around 14:00 and dinner on time, or has
lunch on time and delayed dinner between 21:30 and 23:00. The second variation
skips one or both of the meals. Objective - The objective of S2 is to verify the
behavior of the modeling languages with repetitive activities, both in terms of
execution time and actual occurrence. We should be able to identify if a person
is skipping meals, or if they are having delayed meals.

Scenario 3 (S3) Description - The last scenario describes a hypothetical
morning routine: the person wakes up and has breakfast. Right after they go
to the bathroom and then get dressed, ready to go out. Variations - In the
variation the person does not follow the normal control-flow of the activities
but mixes the execution of them. The process always starts with waking up but
then the get dressed activity can be skipped and executed later. After that, the
breakfast, bathroom, and get dressed activities can be executed in any order.

1 All the event logs can be found at https://doi.org/10.5281/zenodo.6632042.

https://doi.org/10.5281/zenodo.6632042
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Table 1. Fitness values for control-flow perspective

Scenario CCHeu CCInd CCDCR Avg

S1 Norm vs S1 Freq 1.00 1.00 1.00 1.00

S1 Duration 1.00 1.00 1.00 1.00

S2 Norm vs S2 Absence 0.75 0.75 0.00 0.50

S2 Delay 1.00 1.00 1.00 1.00

S3 Norm vs S3 Shuffle 0.76 0.76 0.00 0.50

Table 2. Fitness values for data perspective

Scenario CCFreq CCDur CCTime Avg

S1 Norm vs S1 Freq 0.33 0.52 0.73 0.53

S1 Duration 0.76 0.46 0.90 0.71

S2 Norm vs S2 Absence 0.75 0.67 0.90 0.77

S2 Delay 1.00 0.70 0.48 0.72

S3 Norm vs S3 Shuffle 1.00 0.67 0.82 0.83

In the end, the person goes out. Objective - The purpose of S3 is to focus solely
on the control-flow. In this scenario we introduce variability in the execution of
activities, starting from a structured and linear situation.

4.2 Log Evaluation

The approach presented in this paper is implemented as Java and Python appli-
cations2. We constructed a Python script to orchestrate the execution of all
algorithms and return a final conformance value. For each scenario, the base
event log is used to derive the reference model. Conformance checking is then
applied on the reference model together with each variation log. The results are
stored in a CSV file. The created logs aim at demonstrating that there are cases
in which the control-flow cannot explain the process by itself and cases in which
the statistics alone do not give a clear overview of the problem. In particular,
scenario S1 focuses entirely on the data perspective, showing how frequency and
duration affect the analysis. S3 highlights the importance of the control-flow
perspective, while S2 combines both of them with missing activities on one hand
and the delay on the other hand.

4.3 Results and Discussion

The results of the application of the approach are presented below. The values
obtained are referred as: CCHeu for the alignment between the log and the Petri

2 The implementation can be found at https://doi.org/10.5281/zenodo.6631366.

https://doi.org/10.5281/zenodo.6631366
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Table 3. Fitness values for control-flow and data perspective

Scenario
⊕

= min
⊕

= avg

S1 Norm vs S1 Freq 0.33 0.76

S1 Duration 0.46 0.85

S2 Norm vs S2 Absence 0.00 0.64

S2 Delay 0.48 0.86

S3 Norm vs S3 Shuffle 0.00 0.67

Net obtained by the Heuristic Miner, CCInd for the Inductive, and CCDCR for
the rule checker of DCR. Similarly for the other measures: conformance on the
frequency is CCFreq, on duration is CCDur, and on absolute time is CCTime.

To highlight the importance of the two dimensions, the results are firstly pre-
sented separately. Table 1 shows the fitness values obtained in each conformance
evaluation under a control-flow perspective. Only in two cases the conformance
is not perfect, that is the case of S2 Absence and S3 Shuffle. In the first one,
since one activity can be skipped, the fitness value for both the Petri Nets is
lowered. The fitness of the conformance with the DCR graph is zero because the
constraints between eating and leave activities, and between eating and relax

activities are violated when the execution of the eating activity is missing. In
the second case instead, the order of the activities is violated. To sum up, per-
fect fitness values can be observed in 3 cases, while 0.5 is the average for the
remaining two cases. The conclusion that can be drawn from this table is that
by analyzing the processes only from the control-flow perspective, no anomaly
is identified in the form of variation of frequency, duration or absolute time.

Table 2 shows all the fitness values obtained in each conformance evaluation
under a data perspective. The conformance between the model from S1 and the
log with frequency variation returns a fitness value of 0.33, as expected. Discrep-
ancies also emerge in the same scenario, but in the duration variation, under
the duration statistic. A significant divergence between the reference model and
the actual data is observed in Scenario S2, in the delay variation, under a time
perspective. In fact, the conformance of the absolute time statistic returns a low
fitness value, while all the other values are optimal. By computing the average
fitness for each scenario/variation, highlights the discrepancies between the data
perspective and the control-flow perspective. The average values in Table 2 are
much lower then the average values in Table 1.

To obtain more consistent results, all the individual values of conformance
must be combined. Table 3 compares the two perspectives together, returning
aggregated values in form of average and minimum for each scenario/variation.
The table reveals the gap between the fitness of the control-flow dimension and
the fitness of the data dimension. In almost all the scenarios, the minimum fitness
value obtained (over all the perspectives) is close to zero. The total average in
the table is the arithmetic mean. According to the situation at hand, other
aggregation functions might also be used (e.g. by using a weighted mean, thus
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providing different weights for different aspects). In the case of this experiment,
none of the logs evaluated returned a perfect fitness value as instead observed
in Table 1, where the focus was only on the control-flow.

Based on the results shown in Table 3 we can conclude that, while individual
dimensions might show perfect fitness by themselves, even when the logs should
not be explainable by the model (cf. both Table 1 and Table 2); a hybrid app-
roach is instead always able to discriminate non-compliant behavior (observable
by having no entries with value 1 in Table 3), even when different aggregation
functions are used. Therefore, the research question stated in Sect. 2 can be
positively answered.

4.4 Limitations

Although the evaluation pointed out promising results, there are several limi-
tations. The first aspect to consider regards the statistics: the statistics on the
duration assume a normal probability distribution. Remaining on the perspec-
tive of the accuracy of time, the histogram used in the absolute time statistics
is calculated by aggregating the executions per hour. Hence, if an activity is
delayed but still within the same hour (with respect to the reference model), the
fitness is not affected. Finally, choosing a proper aggregation function might not
be trivial. In fact, the enriched conformance checking proposed should include a
tuning function capable of balancing all the dimensions.

5 Conclusions and Future Work

In order to deal with human behavioral, and in particular, in order to understand
whether the behavior is compliant with a normative model, new conformance
checking techniques are needed. The control-flow is not enough and it does not
provide all information needed for the application of conformance checking tech-
niques when dealing with human behavior. The process must be analyzed from
different point of view: the control-flow perspective and the data perspective.
The method proposed in this paper produces an enriched fitness value that bal-
ances control-flow alignment and data statistics. The control-flow alignments
investigates whether the order of the activities is compliant with expectations,
whereas the statistics focus on the activity frequency, activity duration, and
absolute time. By creating synthetic event logs, we have demonstrated that the
application of this methodology allows the identification of variations and dis-
crepancies between a reference model and an event log where the typical con-
formance techniques were failing. In a previous work (see [8]), we identified all
the requirements that a process modeling language must fulfill in order to rep-
resent human behavior. These requirements have been used to identify the two
perspectives to include in the hybrid model. To reply the research question intro-
duced in Sect. 2.2, taking advantage from the evaluation conducted in this paper,
especially from the results in Table 3, it emerged that to properly verify the con-
formance of a process representing human behavior, a hybrid process model is
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needed. The first step as a future work, is to refine the statistics, such as the
duration, and evaluate other perspectives to be included. After that, we would
like to combine the two dimensions together from a semantic point of view.
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Abstract. When multiple objects are involved in a process, there is
an opportunity for processes to be discovered from different angles with
new information that previously might not have been analyzed from a
single object point of view. This does require that all the information of
event/object attributes and their values are stored within logs including
attributes that have a list of values or attributes with values that change
over time. It also requires that attributes can unambiguously be linked
to an object, an event or both. As such, object-centric event logs are an
interesting development in process mining as they support the presence of
multiple types of objects. First, this paper shows that the current object-
centric event log formats do not support the aforementioned aspects
to their full potential since the possibility to support dynamic object
attributes (attributes with changing values) is not supported by existing
formats. Next, this paper introduces a novel enriched object-centric event
log format tackling the aforementioned issues alongside an algorithm that
automatically translates XES logs to this Data-aware OCEL (DOCEL)
format.

Keywords: Object-centric event logs · Process mining · Decision
mining

1 Introduction

In the last few years, object-centric event logs have been proposed as the next
step forward in event log representation. The drive behind this is the fact that the
eXtensible Event Stream (XES) standard [15] with a single case notion does not
allow capturing reality adequately [14]. A more realistic assumption instead is to
view a process as a sequence of events that interact with several objects. Several
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object-centric event log representations have been proposed such as eXtensi-
ble Object-Centric (XOC) event logs [18], Object-Centric Behavioral Constraint
model (OCBC) [4], and most recently Object-Centric Event Logs (OCEL) [14].
The first two event log representations face scalability issues related to the stor-
age of an object model with each event or to the duplication of attributes [14].
However, there is a difficult trade-off to be made between expressiveness and sim-
plicity, leaving the recent OCEL proposal as the most suitable for object-centric
process mining as it strikes a good balance between storing objects, attributes
and their relationships and yet keeping everything simple.

OCEL offers interesting new research opportunities not only for process min-
ing with, e.g., object-centric Petri nets [1] or object-centric predictive analysis
[11], but also for decision mining [16]. OCEL is already well on its way to become
an established standard with a visualization tool [12], log sampling and filtering
techniques [5], its own fitness and precision notions [2], its own clustering tech-
nique [13], an approach to define cases and variants in object-centric event logs
[3] and a method to extract OCEL logs from relational databases [23]. In this
paper, attributes are considered to be logged together with events and objects
in an event log and should relate clearly to their respective concepts, i.e., events,
objects or both. As such, OCEL could provide more analysis opportunities by
supporting attributes having several values simultaneously, allowing attributes
to change values over time and to unambiguously link attributes to objects, all of
which is currently not fully supported but common in object-centric models such
as structural conceptual models like the Unified Modeling Language (UML) [20].

For this purpose, this paper proposes an extension to OCEL called, Data-
aware OCEL or DOCEL, which allows for such dynamic object attributes. The
findings are illustrated through a widely-used running example for object-centric
processes indicating how this standard can also support the further development
of object-centric decision/process mining and other domains such as Internet of
Things (IoT) related business processes. This paper also presents an algorithm
to convert XES logs to DOCEL logs. Since many event logs are available in a
“flat” XES format for every object involved in the process, not all information
can be found in one event log. As such, providing an algorithm that merges
these XES files into one DOCEL log would centralize all the information in one
event log without compromising on the data flow aspects that make XES such
an interesting event log format.

The structure of this paper is as follows: Sect. 2 explains the problem together
with a running example applied on the standard OCEL form. Section 3 intro-
duces the proposed DOCEL format together with an algorithm to automatically
convert XES log files into this novel DOCEL format. Next, the limitations and
future work of this work are discussed in Sect. 4. Finally, Sect. 5 concludes this
paper.
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2 Motivation

The IEEE Task Force conducted a survey during the 2.0 XES workshop1 con-
cluding that complex data structures, especially one-to-many or many-to-many
object relationships, form a challenge for practitioners when pre-processing event
logs. By including multiple objects with their own attributes, object-centric event
logs have the opportunity to address these challenges. This does entail that the
correct attributes must be unambiguously linked to the correct object and/or
activity to correctly discover the process of each object type as well as the rel-
evant decision points [1]. The next subsection discusses the importance object
attribute analysis had on single case notion event logs.

2.1 Importance of Object Attributes in Single Case Notion Event
Logs

Various single case notion process mining algorithms make use of both event
and case attributes, e.g., in [7], a framework is proposed to correlate, predict and
cluster dynamic behavior using data-flow attributes. Both types of attributes are
used to discover decision points and decision rules within a process in [17]. For
predictive process monitoring, the authors of [9] develop a so-called clustering-
based predictive process monitoring technique using both event and case data.
Case attributes are also used to provide explanations of why a certain case
prediction is made within the context of predictive process monitoring [10].

The same challenges apply to decision mining which aims to discover the
reasoning and structure of decisions that drive the process based on event logs
[22]. In [8], both event and case attributes are used to find attribute value shifts
to discover a decision structure conforming to a control flow and in [19], these are
used to discover overlapping decision rules in a business process. Lastly, within
an IoT context, it has been pointed out that contextualization is not always
understood in a similar fashion as process mining does [6]. As such object-centric
event logs offer an opportunity for these different views of contextualization to
be better captured.

The previous paragraphs show (without aiming to provide an exhaustive
overview) that various contributions made use of attributes that could be stored
and used in a flexible manner. Unfortunately, as will be illustrated in the next
subsections, the aforementioned aspects related to attribute analysis are cur-
rently not fully supported in object-centric event logs.

2.2 Running Example

Consider the following adapted example inspired from [8] of a simple order-to-
delivery process with three object types: Order, Product, Customer. Figure 12

visualizes the process.

1 https://icpmconference.org/2021/events/category/xes-workshop/list/?tribe-bar-da
te=2021-11-02.

2 All figures are available in higher resolution using the following link.

https://icpmconference.org/2021/events/category/xes-workshop/list/?tribe-bar-date=2021-11-02
https://icpmconference.org/2021/events/category/xes-workshop/list/?tribe-bar-date=2021-11-02
https://gitfront.io/r/user-6321558/g3WwhF8PAKKT/EdbA-ICPM2022/
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A customer places an order with the desired quantity for Product 1,2 or 3.

Next, the order is received and the order is confirmed. This creates the value

attribute of order. Afterwards, the ordered products are collected from the ware-

house. If a product is a fragile product, it is first wrapped with cushioning material

before being added to the package. The process continues and then the shipping

method needs to be determined. This is dependent on the value of the order, on

whether there is a fragile product and on whether the customer has asked for a

refund. If no refund is asked, this finalizes the process. The refund can only be

asked once the customer has received the order and requests a refund. If that is

the case, the order needs to be reshipped back and this finalizes the process.

Fig. 1. BPMN model of running example

2.3 OCEL Applied to the Running Example

In this subsection, the standard OCEL representation visualizes a snippet of this
process. Table 1 is an informal OCEL representation of events and Table 2 is an
informal OCEL representation of objects. Figure 2 visualizes the meta-model
of the original OCEL standard. Several observations can be made about the
standard OCEL representation:

A: Attributes that are stored in the events table can not unambigu-
ously be linked to an object. The OCEL standard makes the assumption
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Table 1. Informal representation of the events in an OCEL format

ID Activity Timestamp Customer Order Product Type Q1 Q2 Q3 Refund Order Value Resource Shipping Method

e1 Place Order 09:00 {c1} {o1} {p1,p2} 5 2 0 0

e2 Receive Order 10:00 {o1} Jan

e3 Confirm Purchase 11:00 {o1} 95 Jan

e4 Collect product from warehouse 12:00 {o1} {p2} Johannes

e5 Collect product from warehouse 12:00 {o1} {p1} Johannes

e6 Put protection around the product 12:15 {o1} {p1} Johannes

e7 Add product to package 12:30 {o1} {p1} Johannes

e8 Add product to package 12:30 {o1} {p2} Johannes

Table 2. Informal representation of the objects in an OCEL format

ID Type Name Bank account Value Fragile

c1 Customer Elien BE24 5248 54879 2659

o1 Order

p1 Product 15 1

p2 Product 10 0

p3 Product 20 1

that attributes that are stored in the events table can only be linked to an
event. This assumption was taken for its clear choice of simplicity and it holds
in this running example, which has straightforward attributes relationships and
no changing product values over time. Even though the given example is very
obvious regarding how the attributes relate to the objects given the attribute
names, this is not always the case. If the value of a product could change over
time, the product value attributes would have to be added to the events table
but then there would be 4 attributes storing values, i.e., order value, product 1
value, product 2 value and product 3 value. Knowing which attribute is linked
to which object would then require domain knowledge as it is not explicitly
made clear in the events table. As such, this can be an issue in the future for
generic OCEL process discovery or process conformance algorithms since prior
to running such an algorithm, the user would have to specify how attributes and
objects are related to one another.

B: Based on the OCEL metamodel (Fig. 2), it is unclear whether
attributes can only be linked to an event or an object individually or
whether an attribute can be linked to both an event and an object
simultaneously. Since the OCEL standard did not intend for attribute val-
ues to be shared between events and objects by design to keep things compact
and clear and since the OCEL UML model (Fig. 2) can not enforce the latter,
Object-Constraint Language (OCL) constraints would have made things clearer.
Therefore, it might be beneficial to support the possibility to track an attribute

change, e.g., the refund attribute of object Order can change from 0 to 1 and
back to 0 across the process.

C: Attributes can only contain exactly one value at a time accord-
ing to the OCEL metamodel (see Fig. 2). This observation entails two
aspects. First, it is unclear, based on the metamodel of Fig. 2, whether an
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attribute can contain a list of values. It is not difficult to imagine situations
with a list of values, e.g., customers with multiple bank accounts or emails,
products can have more than one color. Currently, OCEL supports multiple val-
ues by creating a separate column for each value in the object or event table.
This means that each value is treated as a distinct attribute , e.g., in the run-
ning example, a customer orders a quantity of product 1, 2 and 3. This can be
considered as 1 attribute with 3 values. However, in Table 1, the columns Q1, Q2
and Q3 are considered to be separate attributes even though they could be con-
sidered as being from the same overarching attribute Quantity. Secondly, even if
an attribute only has 1 value at a time, its value could change over time as well.
Such an attribute can be considered to have multiple values at different points in
time. If a value were to change, currently, one would have to create a new object
for each attribute change. Unfortunately, this only works to some degree since
there are no object-to-object references (only through events) in the standard
OCEL format. Another possibility would require to unambiguously track the
value of an attribute of an object to a certain event that created it. This is also
valid within an IoT context with sensors having multiple measurements of the
same attributes over time. As such, the first three observations clearly go hand
in hand.

D: Both the event and object tables seem to contain a lot of
columns that are not always required for each event or object. When
looking at the events table, attribute Order Value is only filled once with event
‘confirm purchase’ when it is set for order 1. One could either duplicate this
value for all the next events dealing with order 1 or one could simply keep it
empty. Therefore, in a big event log with multiple traces one could expect a lot
of zero padding or duplication of values across events. Even though this issue is
not necessarily present in a storage format, it still shows that ambiguity about
attribute relationships might lead to wrongly stored attributes without domain
knowledge.

Fig. 2. OCEL UML model from [14] Fig. 3. DOCEL UML model
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3 Data-Aware OCEL (DOCEL)

Subsection 3.1 introduces the DOCEL UML metamodel. Next, Subsect. 3.2
applies DOCEL to the running example. Finally, Subsect. 3.3 introduces an
algorithm to convert a set of XES files into this DOCEL format.

3.1 DOCEL UML Metamodel

To formally introduce the DOCEL standard, a UML class diagram is mod-
eled (Figure 3). UML diagrams clearly formalize how all concepts relate to one
another in OCEL or DOCEL. Based on the observations from Sect. 2.3, the key
differences with the UML class diagram of OCEL (Fig. 2) are indicated in color
in Fig. 3 to enrich OCEL even further:

1: Attribute values can be changed and these changes can be
tracked. By allowing ambiguities, domain knowledge becomes indispens-
able to make sensible and logical conclusions. In the DOCEL UML model,
attributes are considered to be an assignment of a value to an attribute
name in a particular context event and/or object. A distinction is made
between static and dynamic attributes. Static event attributes and static
object attributes are assumed to be linked to an event or an object respec-
tively and only contain fixed value(s). Static attributes are stored in a similar
fashion as with the standard OCEL format, namely in the event or the object
table, except that now each object type has an individual table to avoid hav-
ing null values for irrelevant columns. On the other hand, dynamic attributes
are assumed to have changing values over time. Dynamic attributes are linked
to both an object and an event so that a value change of an attribute can
easily be tracked. Another design choice would be to store a timestamp with
the attribute value instead of linking it to the event, however, this might lead
to ambiguity in case two events happened at the exact same moment. As
such, this proposal tackles observation A.
2: Event attributes can unambiguously be linked to an object. This
issue goes hand in hand with the previous proposal and is solved at the same
time. By distinguishing between dynamic and static attributes all relations
between attributes, events and objects are made clear and ambiguities have
been reduced. A static attribute is either linked to an object or an event and
its value(s) can not change over time. A dynamic attribute is clearly linked
to the relevant object and to the event that updated its value. The DOCEL
UML model (Fig. 3) can enforce that a static attribute must be linked with
at least 1 event or at least 1 object since a distinction is made between static
event attributes and static object attributes. For dynamic attributes, this
issue does not apply since it needs to both connected to both an object and
an event anyhow. This proposal solves both observations A & B.
3: Attributes can contain a list of values. Even though not all attributes
have a list of values, supporting this certainly reflects the reality that multiple
values do occur in organizations. In the DOCEL UML model (Fig. 3) the 1
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cardinality for Attribute Value allows both dynamic and static attributes to
have complex values, e.g., lists, sets and records containing multiple values.
In practice, these values are stored in the relevant attribute tables with a list
of values. This proposal solves observation C.

3.2 DOCEL Applied to the Running Example

Table 3 is the events table containing all the events together with their static
event attributes (in green) in this case Resource. Complying with the DOCEL
UML model, only static event attributes are found in this table which are solely
linked to events. The main changes from the OCEL to the DOCEL tables have
been highlighted using the same color scheme as in the DOCEL UML model to
show where the columns have been moved to in the DOCEL tables.

Table 3. Informal representation of events with static attributes in a DOCEL format

EID Activity Timestamp Customer Order Product Type Resource

e1 Place Order 1/01/22 09:00 {c1} {o1} {p1,p2}

e2 Receive Order 1/01/22 10:00 {c1} {o1} {p1,p2} Jan

e3 Confirm Purchase 1/01/22 11:00 {o1} {p1,p2} Jan

e4 Collect product from warehouse 1/01/22 12:00 {o1} {p2} Johannes

e5 Collect product from warehouse 1/01/22 12:00 {o1} {p1} Johannes

e6 Put protection around the product 1/01/22 12:15 {o1} {p1} Johannes

e7 Add product to package 1/01/22 12:30 {o1} {p1} Johannes

e8 Add product to package 1/01/22 12:30 {o1} {p2} Johannes

Tables 4, 5 and 6 represent object type tables where the objects are stored.
Each object is given an object ID. In this data-aware format, aligned with
the UML model, a distinction is made between static attributes and dynamic
attributes. Static attributes are assumed to be immutable and, therefore, the
static object attributes (in blue) are stored together with the objects them-
selves, e.g., customer name, product value, fragile and bank account. Notice
how here, once again, the attributes can be clearly linked to an object. Table 5
only contains primary keys because its attributes are dynamic attributes in this
example.

Table 4. Product Type table

Products

PID Value Fragile

p1 15 1

Table 5. Order table

Orders

OrderID

o1
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Table 6. Customer table

Customer

CID Name Bank account

c1 Elien BE24 5248 5487 2659

The red Tables 7, 8, 9 and 10 are dynamic attribute tables. Dynamic
attributes are assumed to be mutable and its values can change over time. Using
two foreign keys (event ID and object ID), the attribute and its value can be
traced back to the relevant object as well as the event that created it. Each
attribute value is given an attribute value ID with the value(s) being stated in
the following column. This complies with the proposed UML model in Fig. 3
where dynamic attributes are clearly linked to the relevant event and relevant
object.

Table 7. Quantity table

Quantity

QID Quantity EID OID

q1 {5,2,0} e1 o1

Table 8. Order Value table

Order Value

VID Value EID OID

v1 95 e3 o1

Table 9. Refund table

Refund

RID Refund Value EID OID

r1 0 e1 o1

r2 1 e15 o1

r3 0 e24 o1

Table 10. Shipping method table

Shipping method

SID Method EID OID

s1 courrier e11 o1

s2 express courrier e18 o1

From the DOCEL log, the following things are observed:
Attributes can unambiguously be linked to an object, to an event

or to both an event and an object with the use of foreign keys.
Attributes can have different values over time, with value changes

directly tracked in the dynamic attributes tables. This means one knows when
the attribute was created and for how long it was valid, e.g., refund was initialized
to 0 by event 1, then event 15 set it to 1 and finally event 24 sets it back to 0.

Static and dynamic attributes can contain a list of values in the
relevant attributes table, e.g., attribute Quantity.

The amount of information stored has only increased with foreign
keys. Previously, the dynamic attributes would have been stored anyhow in the
events table with the unfortunate side-effect of not being explicitly linked to
the relevant object and with more columns in the events table. This essentially
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is a normalization of an OCEL data format. Even though it starts resembling
a relational database structure, it was decided for this DOCEL format to not
include relations between objects. Deciding on whether to include object models
within event logs is essentially a difficult trade-off between complexity/scalability
and available information within the event log. From this perspective, the design
choice of XOC and OCBC was mostly focused on reducing complexity [14], where
we aim for an event log format that offers more information in exchange of a
slightly increased complexity. As such, the DOCEL standard has decreased the
amount of columns per table and thus observation D is solved as well.

3.3 Automatically Converting XES Logs to DOCEL Logs

Currently, research is focused on automatically converting XES logs to OCEL
logs with a first proposal introduced in [21]. Automatically transforming XES
logs or an OCEL log to the proposed DOCEL log would mainly require domain
knowledge to correctly link all attributes to the right object, but this is also
required for a normal process analysis of an OCEL log. Our algorithm can be
found in Algorithm 1. This algorithm takes as input a set of XES files describing
the same process and assumes that each XES file describes the process from the
point of view of one object type. The main ideas of the algorithm are as follows:

– Line 3 starts the algorithm by looping over all XES-logs.
– Lines 4–8 create the object type tables with all their objects and static object

attributes. In line 7, it is assumed that the trace attributes are not changing
and solely linked to one object. Since the assumption is made that an XES
file only contains one object type, these trace attributes can be considered as
static object attributes belonging to that object.

– Lines 10–12 require the user to identify the static event attributes and the
other event attributes that can be linked to an object. Next, a new EventID
is made to know from which log an event comes from.

– In line 15, the dynamic attributes tables are constructed under the assumption
that attributes that have not yet been identified as static object attributes or
static event attributes are dynamic attributes.

– Lines 17–18 create the new chronologically ordered events Table E.
– Line 20 matches the events with the relevant objects based on the dynamic

attributes tables using the new EventID. It should definitely also include the
object related to the original traceID related to that event.

– Finally, lines 21–22 will create the final DOCEL eventIDs and update the
eventID across all dynamic attribute tables.
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Algorithm 1. Algorithm to go from XES logs to DOCEL logs
1: L ← l ⊲ List of XES logs (l)
2: OT ← ot ⊲ List of present object types
3: for l ∈ L do

4: for ot ∈ (OT ∈ l) do

5: Create empty object type table
6: for o ∈ ot do ⊲ Find all objects of an object type
7: Create row with objectID and trace attributes ⊲ Trace attributes = static object attributes

8: for e ∈ L do

9: Match event attributes to the event or to an object
10: Create newEventID with log identifier ⊲ To distinguish similar events of different logs

11: Create event table el with static event attributes.
12: Create dynamic attributes table with valueID, value(s) and two foreign keys {newEventID, objectID}

13: Create empty event table E with a column for every object type.
14: Merge all el tables chronologically in E.
15: for e ∈ E do

16: Find and insert all objects related to e in the relevant object type column
17: Create unique DOCELeventID
18: Update all foreign keys of linked dynamic attributes with new DOCELeventID

4 Limitations and Future Work

To better store information about attributes, DOCEL comes with a variable
number of tables. However, the tables should be smaller as there are fewer
columns compared to the standard OCEL format. It is still possible to only
use certain attributes or attribute values for analysis by extracting the relevant
attributes/values. Instead of selecting a subset of columns with OCEL, the user
selects a subset of tables in DOCEL which offer more information. Next, neither
OCEL or DOCEL include the specific roles of objects of the same object type
in an event, in case of a Send Message event from person 1 to person 2, making
it currently impossible to distinguish between the sender and the receiver.

To further validate the DOCEL format, the authors are planning to develop
a first artificial event log together with a complete formalization of the DOCEL
UML with OCL constraints. Furthermore, directly extracting DOCEL logs from
SAP is also planned. Regarding the algorithm to automatically convert XES logs
to DOCEL logs, the authors are planning to extend the algorithm with a solu-
tion to automatically discover which attributes are linked to objects or events.
Secondly, an extension to create a DOCEL log based on a single XES file with
multiple objects is also planned. DOCEL however offers many other research
opportunities such as novel algorithms for object-centric process discovery, con-
formance checking or enhancements which would further validate or improve the
DOCEL format. Also other domains such as IoT-related process mining can be
interesting fields to apply DOCEL on.

5 Conclusion

This paper illustrates that the OCEL standard has certain limitations regarding
attribute analysis, such as unambiguously linking attributes to both an event and
an object or not being able to track attribute value changes. To deal with these
challenges, an enhanced Data-aware OCEL (DOCEL) is proposed together with
an algorithm to adapt XES logs into the DOCEL log format. With DOCEL, the
authors hope that new contributions will also take into account this data-flow
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perspective not only for object-centric process and decision mining algorithms
but also for other domains such as IoT-oriented process analysis.
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Abstract. In process mining settings, events are often recorded on a low level

and cannot be used for meaningful analysis directly. Moreover, the resulting vari-

ability in the recorded event sequences leads to complex process models that

provide limited insights. To overcome these issues, event abstraction techniques

pre-process the event sequences by grouping the recorded low-level events into

higher-level activities. However, existing abstraction techniques require elaborate

input about high-level activities upfront to achieve acceptable abstraction results.

This input is often not available or needs to be constructed, which requires con-

siderable manual effort and domain knowledge. We overcome this by propos-

ing an approach that suggests groups of low-level events for event abstraction. It

does not require the user to provide elaborate input upfront, but still allows them

to inspect and select groups of events that are related based on their common

multi-perspective contexts. To achieve this, our approach learns representations

of events that capture their context and automatically identifies and suggests inter-

esting groups of related events. The user can inspect group descriptions and select

meaningful groups to abstract the low-level event log.

Keywords: Process mining · Event abstraction · Multi-perspective analysis

1 Introduction

Process mining comprises methods to analyze event data that is recorded during the

execution of organizational processes. Specifically, by automatically discovering pro-

cess models from event logs, process discovery yields insights into how a process is

truly executed [1]. Events recorded by information systems are often too fine-granular

for meaningful analysis, though, and the resulting variability in the recorded event

sequences leads to overly complex models. To overcome this issue, event abstraction

techniques aim to lift the low-level events recorded in a log to a more abstract represen-

tation, by grouping them into high-level activities [17].

Existing techniques for event abstraction (cf., [4,17]) are either unsupervised or

supervised. Unsupervised techniques do not require any input about targeted high-level

activities. Instead, they rely on control-flow similarities between low-level event types.
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Yet, they do not consider any other dependencies between events, such as the amount of

time between their execution. Since the user of such techniques has no control over the

abstraction result, there is no guarantee that they yield meaningful high-level activities,

making it hard to ensure that an abstraction is appropriate for a specific analysis goal.

For instance, if the goal is to understand interactions between employees in a process,

grouping events based on control-flow similarity might lead to high-level activities that

encompass different employees. This makes it difficult—if not impossible—to analyze

interactions in the process. Supervised event abstraction techniques aim to overcome

such issues by requiring input about high-level activities upfront, e.g., high-level pro-

cess models [2] or predefined event patterns [10]. In this manner, such techniques give

the user control over high-level activities. However, in practice the required informa-

tion is often not available beforehand. For instance, when applying event abstraction as

a preprocessing step to process discovery, high-level process models are typically not

available [17]. Even if knowledge on the desired high-level activities is available, it may

require a lot of manual effort to translate it into the necessary input, e.g., by defining

how these high-level activities manifest themselves in low-level event patterns [10].

These two extremes, between not giving the user any control over high-level activi-

ties and requiring too much input, call for a common middle ground, i.e., a convenient

means to support users in their abstraction tasks. In particular, users should be enabled

to control the characteristics of high-level activities, while reducing the upfront knowl-

edge they need about the data. This is particularly challenging in situations where the

events’ labels do not reveal the purpose of the high-level activities they relate to. An

Update record event, for instance, could relate to any activity that modifies a business

object. In such situations it is inevitable to look at the context of events and identify

high-level activities in a more indirect manner.

To enable this, we propose an approach that allows the user to inspect groups of

events based on their common context, thus, guiding them towards identifying mean-

ingful high-level activities that can be used for abstraction without requiring upfront

input about these activities. Our approach learns representations that capture complex

contextual dependencies between low-level events, e.g., that events are executed within

a short period of time and are performed by the same resource. Based on these repre-

sentations, it automatically identifies and suggests groups of events. The user can select

meaningful groups that can in turn be used to abstract the low-level log.

We motivate the need for the multi-perspective identification of event groups for

abstraction in Sect. 2, before introducing preliminaries in Sect. 3. We present our app-

roach in Sect. 4. Then, Sect. 5 describes a proof of concept demonstrating the potential

of our approach. Section 6 summarizes related work; Finally, Sect. 7 discusses limita-

tions of our work, gives an outlook on next steps, and concludes.

2 Problem Illustration

Our work deals with situations in which there are complex n:m relations between low-

level event classes and high-level activities, which means that events with the same

label can relate to different activities, which themselves can relate to any number of

events. Such low-level recording is a common issue, e.g., when dealing with UI logs,

logs from messaging and document management systems, and logs of sensor data. In
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Table 1. A single case of a request handling process recorded on a low level.

CaseID EventID Class Timestamp Role Column

C1 e1 Receive email 05-23 07:45 Assistant

C1 e2 Create record 05-23 09:07 Assistant

C1 e3 Open document 05-23 10:40 Assistant

C1 e4 Close document 05-23 10:51 Assistant

C1 e5 Update record 05-23 10:52 Assistant isComplete

C1 e6 Open document 05-25 15:03 Manager

C1 e7 Update record 05-25 15:20 Manager isAccepted

C1 e8 Close document 05-25 15:23 Manager

C1 e9 Send email 05-26 10:03 Assistant

such settings, individual events are often not informative and cause a high degree of

variability in event logs resulting in the discovery of spaghetti models [17].

For illustration purposes, consider a request-handling process, which is supported

by an information system logging events on a low level, i.e., on the level of database

and document operations, such as Open document, Update record, and Send email. A

single case of the low-level event log of this process is depicted in Table 1. On the

activity level, blue events (e1–e2) record that a new request has been received, purple

events (e3–e5) refer to checking required documents for completeness, whereas brown

events (e6–e8) refer to a decision about a request. Finally, the gray event (e9) represents

the notification about the outcome of the request.

Looking at the sequence of events in case C1, however, does not reveal these activi-

ties, because their purpose is not explicitly indicated in the available data. For instance,

from an Open document event like e3, it is unclear if it refers to a check for com-

pleteness or a decision. Therefore, we have to discover meaningful activities in a more

indirect manner, i.e., by looking for events that occur in a commonly recurring context.

This may include the temporal context, e.g., that events occur within a short period of

time, the organizational context, e.g., that events are executed by the same resource,

and the data context associated with individual events. For instance, the purple events

(e3–e5) happen within a short period of time (12 min), are executed by an assistant,

while e5 changes the value of the isComplete column. In contrast, the brown events

(e6–e8) happen within 20 min, are executed by a manager, while e7 changes the value

of the isAccepted column. The events within these two groups share a common con-

text from both the time and resource perspectives, whereas the different columns they

update indicate a clear difference between the groups in C1, i.e., they hint at the purpose

of an underlying business activity.

Therefore, our goal is to group events that have similar contexts, in order to make

the purpose of activities that the low-level events represent more apparent. However,

commonly recurring contexts of events, like the ones illustrated above, often cannot

be identified from individual cases, because these represent single process instances

in which contexts may not recur. Therefore, we have to consider the entire event log

for this task, i.e., all events, across cases. The identification of these recurring contexts
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is highly complex from the low-level event log, though, which may have dozens of

event classes and attributes and thousands of cases. Hence, this requires an automated

identification of groups of events, yet, we also want to make sure that identified groups

are actually meaningful for a user and their specific analysis purpose.

We tackle this through two main parts:

CaseID: C1
EventID: e5
Class: Update record
Column: isComplete
Role: Assistant
Timestamp: 05-23 10:52

CaseID: C1
EventID: e7
Class: Update record
Column: isAccepted
Role: Manager
Timestamp: 05-25 15:20

CaseID: C1
EventID: e3
Class: Open document
Role: Assistant
Timestamp: 05-23 10:40

CaseID: C2
EventID: e22
Class: Update record
Column: isComplete
Role: Assistant
Timestamp: 05-29 11:02

Fig. 1. Multi-perspective event groups.

Update 

record

Close 

document

group occur within 

are executed by the same 
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isComplete column is 
changed by this 

Open 

document

Fig. 2. Suggestion of a group of events.

Multi-perspective Event Groups. We

identify groups of events based on their

multi-perspective context. In particular,

we assign similar events that share com-

monly recurring contexts across process

perspectives to the same group and dis-

tinct events that do not share such con-

texts to different groups. An example is

shown in Fig. 1, where, e.g., an Open doc-

ument is grouped with an Update record

event, as both are executed by an assis-

tant and happen within 20 min. In con-

trast, the Update record event executed by

a manager changing the value of the isAc-

cepted column is assigned to a different

group. While these events belong to the

same case C1, it is important to stress that

we aim for groups of events that span indi-

vidual cases. If, for instance, a hypotheti-

cal Update record event of a case C2 is

also executed by an assistant and changes

the isComplete column, we aim to assign

it to the same group as e3 and e5, because

they share contexts across cases.

Effective Group Suggestions. To ensure that identified groups are indeed meaningful,

we support the user with understandable suggestions, allowing them to assess and select

groups of related events based on their context. For instance, in our running example we

identified that a group of events is executed within a short period of time by the same

role, which changes the status of the request as shown in Fig. 2. Given that the events

in this group occur in a similar context and there is a clear property that differentiates

this from other groups, i.e., the change of the isComplete value, we aim to suggest it to

the user. They might associate this group with a check for completeness in the request-

handling process, select it for abstraction, and later assign it a suitable label.

3 Preliminaries

Events. We consider events recorded during the execution of a process and write E for

the universe of all events. Events have unique identifiers and carry a payload contain-

ing their Class and optional contextual information, such as a timestamp, resource
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information, or relevant data values. We capture this payload by a set of attributes

D = {D1, . . . , Dp}, with dom(Di) as the domain of attribute Di, 1 ≤ i ≤ p. We

write e.D for the value of attribute D of an event e. For instance, for event e1 in Table

1, we write e1.Class = Receive email and e1.Role = Assistant.

Event Log. An event log is a set of traces L, with each trace a sequence of events

σ ∈ E∗, representing a single execution of a process, i.e., a case. An event belongs to

exactly one trace. We write EL for the set of all events of the traces in L.

Event Groups. An event group is a set of events g ⊆ EL. A grouping of events G =
{g1, ..., gk} is a set of event groups, such that G’s members are disjoint and cover all

events in EL, i.e.,
⋃k

i gi = EL ∧
⋂k

i gi = ∅.

4 Approach

As visualized in Fig. 3, our approach takes as input an event log and consists of four

steps to create event group suggestions for event abstraction. Step 1 learns contextual

dependencies between events and establishes multi-perspective representations. Step 2

groups the events based on these representations, which yields event groups as visual-

ized in Fig. 1. Step 3 then computes key properties per group, which Step 4 uses to create

suggestions by selecting groups with interesting properties and generating descriptions

of the common contexts in which a groups’ events occur. The output is a set of group

suggestions and textual descriptions per group, such as shown in Fig. 2. The user can

inspect these suggestions and select meaningful groups that serve their analysis pur-

pose. The selected groups can then be used to abstract the low-level event log.

2. Discover  

event groups

1. Learn multi-perspective 

event representations
Event log 

3. Compute 

group properties
Groups & Descriptions

explores & 

selects 
Representations R

Groups G

4. Suggest 

event groups 

Properties per group Descriptions

Suggested 

groups G
S

Groups G

Fig. 3. The main steps of our approach.

4.1 Step 1: Learn Multi-perspective Event Representations

In the first step, we establish event representations that capture the multi-perspective

context of low-level events, i.e., we aim to derive a representation r for each low-

level event e, which contains contextual information available in e’s attributes as well

as its context in terms of surrounding events in its trace. As illustrated in Sect. 2, it

is essential to consider this multi-perspective context of events to obtain meaningful

event groups. The challenge here lies in generating representations that contain the rel-

evant context required to create such groups. To this end, we leverage the ability of the

Multi-Perspective Process Network (MPPN) [11]. The approach processes traces with

various perspectives of different types, i.e., categorical, numerical, and temporal event

attributes, as well as the trace-based context.
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MASK MASK MASK

Class:          Update record

Column:      isAccepted

Role:            Manager

Timestamp: 05-25 15:21

PredictionsRepresentation of e7MPPN

0.78 

0.04 

-0.23
MASK

Fig. 4. Masked event prediction to learn multi-perspective representations.

For a trace σ, MPPN transforms the sequence of each available attribute’s values

into distinct 2D “images”. Each image is processed by a pre-trained convolutional neu-

ral network (CNN) and results in one feature vector per attribute. Then, in order to

obtain multi-perspective representations, the individual per-attribute vectors are pooled

and processed by a fully-connected neural network resulting in one representation of

adjustable size per trace, which contains features of all perspectives. Through the trans-

formation of sequences of attribute values into images and the use of CNNs, the app-

roach can focus on detecting similar patterns across traces in L, rather than focusing on

the specific order in which events occur in individual traces. This flexibility in terms of

how traces are processed makes MPPN a good choice for the task at hand, since, espe-

cially in event abstraction settings, we need to account for the considerable degree of

variability present in low-level event sequences. Moreover, the learned representations

include all process perspectives and thus, can be used for multi-perspective clustering

tasks.

Originally, MPPN was developed to learn representations per trace σ ∈ L. There-

fore, we have to adapt its learning strategy during training to be able to obtain one

representation r per event e ∈ EL, which captures e’s multi-perspective context. To

this end, we randomly mask all attribute values of events and train MPPN to predict

these masked values given all other information in σ. For instance, as shown in Fig. 4,

we replace the values of e7.Class, e7.Timestamp, e7.Role, and e7.Column with

MASK. The task of MPPN is to predict all masked attribute values of e7 using the infor-

mation from the trace’s other events. If MPPN is able to accurately predict the attribute

values of the masked events, this indicates that the learned representations capture their

events’ contexts well. Since MPPN has access to all events and their attributes before

and after e7, rich contextual information can be incorporated into r.

After being trained in this manner on the whole event log, we obtain a set R of

representations: for each event e, we mask all attribute values of e, process σ with

MPPN, and add the generated representation r to R.

4.2 Step 2: Discover Event Groups

Step 2 discovers groups of events with commonly recurring multi-perspective contexts,

which may represent high-level activities. To establish a set G of event groups, we clus-

ter events with similar learned representations since they are likely to share a similar

context, for instance, because they are executed by the same resources and occur within

a short period of time. For performance reasons, we reduce the complexity of the repre-

sentations using Principal Component Analysis (PCA). Then, we apply the well-known
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Table 2. Exemplary group properties used by our approach.

Level Perspective Property Example description based on template sentences

Group Control-flow # of event classes This group has “Open document” and “Close document” events

Resource # of resources All events of this group are executed by 20 different resources.

Resource # of roles All events of this group are executed by the “Assistant” role.

Time Day of occurrence 90% of events in this group happened on a Wednesday.

Time Time of occurrence All events in this group happened before noon.

Data (cat.) Distinct values All events have the value “Loan takeover” for the Goal attribute.

Data (num.) Value range The Cost attribute ranges between 1,000 and 1,500 in this group.

Case Control-flow # of event classes For this group, there are on average 3 events per case.

Control-flow Range of positions The events of this group occur in a range of 2 to 3 events.

Resource # of resources All events in this group are executed by the same resource per case.

Resource # of roles All events in this group are executed by the “Manager” role.

Time Duration This group of events takes 45 min on average per case.

Data (cat.) Distinct values The value of the isAccepted attribute changes once on average.

Data (num.) Value range Cost attribute has a range of 50 on average for this group per case

k-means algorithm to obtain clusters. Instead of setting a specific number of clusters k,

we use the elbow method [15] to select an appropriate k from a range of values (from 2

up to twice the number of event classes).

This clustering yields a grouping G as illustrated in Fig. 1. By assigning labels to

each group g ∈ G, we could build a mapping between low-level events and high-

level activities at this point already, which can be used to abstract a low-level event log.

However, the remaining steps further process the groups to suggest only interesting ones

to the user to make sure that they can assess how meaningful groups are for abstraction.

4.3 Step 3: Compute Group Properties

Next, based on the available event attributes, we compute a set of properties for each

group g ∈ G, which jointly describe the multi-perspective common context of the

events in g. These are later used to (1) assess how interesting a group is and (2) create

textual descriptions of the group as exemplified in Fig. 2. An overview of considered

properties is provided in Table 2. These do not necessarily consider all aspects of a par-

ticular input event log, yet, our approach can be easily extended with additional ones.

As the table shows, properties either refer to all events in g or to the events in g per

case. Moreover, each property refers to one attribute and, as such, to one main process

perspective, i.e., the control-flow, resource, time, or data perspective. For instance, a

group-based, resource-related property would be the number of distinct roles that exe-

cute events within a group, whereas a case-based one would be the average number of

distinct roles in a group per case.

We compute group-level properties by aggregating the attribute values of events in

a group, i.e., we collect distinct categorical and sum, average, and compute the range

of numerical attribute values. For case-level properties, we first aggregate per trace and

then take the average, minimum, and maximum. For instance, for a case-level property
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that explains the maximum number of distinct resources per trace, we count distinct

resources that executed a group’s events for each trace and take the maximum.

Handling Noise. There may be events with attribute values that occur infrequently in

the established groups, which may pollute otherwise clear, representative group proper-

ties. To deal with such noise, we introduce a noise-filtering threshold τ , which can take

values between 0 and 1 with a default value of 0.2 (the commonly used noise filtering

threshold to separate frequent from infrequent behavior). We remove an event from a

group g if the value’s relative frequency in g is less than τ times the values’ relative

frequency in the log and recompute the property.

4.4 Step 4: Suggest Event Groups

In the final step, we select those groups that have properties that are actually interesting,

i.e., we establish a set Gs ⊆ G of groups to be suggested to the user. For these, we then

create textual descriptions providing the most interesting properties per group, such as

visualized in Fig. 2 of our running example.

Selecting Groups to Suggest. Using the properties that have been derived for a group g,

we make a selection of groups to present to the user based on the interestingness of their

properties. We argue that there are primarily two aspects that determine if a property is

interesting for multi-perspective event abstraction: distinctness and uniqueness.

Distinctness. The distinctness of a property assumes that the more a property of a group

differs from that of others, the more interesting it is. For instance, if a group of events

is the only one that contains the Manager role, this makes it interesting. We compute

the earth mover’s distance [13] using the property’s value sets for categorical properties

and the property’s averages per case for numerical ones for each group versus all other

groups. The sum of the distances is the distinctness score of a property. The larger this

score, the more distinct this group is from others for the respective property.

Uniqueness. The uniqueness of a property reflects how similar events in a group are

with respect to a specific property. For instance, a group that contains events that all

refer to the Assistant role makes this group more interesting than a group, whose events

refer to five different roles. The uniqueness of a categorical property is the number of

distinct values that occur for it in this group, whereas for numerical ones, we calculate

the variance of the values within a group. On the case level, the uniqueness can be

quantified using the mean number of distinct values per case for categorical properties,

respectively the mean value range (difference between minimum and maximum) for

numerical ones. The smaller this score, the more unique a group is for the property.

Inclusion Criterion. We rank the groups per property and include a group g in Gs if it

ranks highest for at least one property for either uniqueness or distinctness.

Generating Textual Group Descriptions. Next, we provide understandable explana-

tions for the groups in Gs. To this end, we create natural language descriptions of the

properties of a group g, such as exemplified in Fig. 2. For each property, we fill slots

of pre-defined template sentences. Examples of already filled template sentences are

provided in the rightmost column of Table 2.
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4.5 Output

Our approach outputs the set Gs of event group suggestions for event abstraction along

with their corresponding textual descriptions. A user can inspect the generated descrip-

tions and select meaningful groups. In this manner, we introduce a means to ensure

that the groups that are ultimately used for abstraction are actually useful for the user

with respect to their downstream analysis goal. While these textual descriptions are a

means to explain the generated suggestions in an intuitive manner, the set of suggested

groups in Gs are the important output for the actual event abstraction. They can be used

to build a mapping from low-level events to higher-level activities, once each selected

group is assigned a label. The concrete abstraction of the low-level event log can then

be instantiated in various manners. For instance, we can replace each low-level event’s

class with the label associated with its group, i.e., high-level activity, and only retain

the last event with the same label per trace. An important aspect is to consider multiple

instances of the same high-level activity within a trace [8], which we will address when

further developing our approach.

5 Proof of Concept

We implemented our approach as a Python prototype and simulated an event log that

mirrors the scenario outlined in the problem illustration (Sect. 2)1. We aim to show that

our approach can find groups of low-level events that correspond to meaningful high-

level activities and that these can be used for event abstraction.

Data. There are no public logs available that record data as considered in our work and

for which a ground truth is known. Therefore, we modeled a high-level and correspond-

ing low-level Petri net. We simulated the low-level net introducing multi-perspective

contextual dependencies and n:m relationships between the event classes and high-level

activities. For instance, the execution of the Decide on acceptance activity (cf. Fig. 5)

yields Open document, Close document, and Update record events, is performed by one

manager per case, and takes at most 20 min.

Settings. We trained MPPN on the event log (cf. Sect. 4.1) generating vectors r of size

128. It reached almost 100% accuracy on all attributes except Resource with 73%.

For PCA, we chose an explained variance of 0.99 to minimize information loss.

Results. Table 3 shows the groups suggested by our approach, including the multi-

perspective context found in their event attributes. How these groups relate to the orig-

inal high-level activities is indicated in Fig. 5.

We found that our approach identified three groups of events that exactly resemble

high-level activities. Group 2 corresponds to the Examine thoroughly activity, Group 3

to Decide on acceptance, and Group 4 to Communicate decision. Notably, Decide on

acceptance consist of the same set of low-level event classes as Examine thoroughly.

However, Group 1 represents the whole initial phase of the process, which actually con-

sists of four high-level activities, i.e., our approach could not discriminate the intended

1 The source code, high-level as well as low-level process models, simulation, and a detailed

scenario description are all available at https://github.com/a-rebmann/exploratory-abstraction.

https://github.com/a-rebmann/exploratory-abstraction
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1 2 3 4

Receive 
Request

Check 
completeness

Inquire about 
missing info

Update 
request

Examine 
casually

Examine 
thoroughly

Decide on 
acceptance

Communicate 
decision

Fig. 5. High-level process model with groups suggested by our approach.

Table 3. Group suggestions found by our approach.

Group 1 2 3 4

Event classes Open email, Open document,

Create record, Update record,

Close document, Send email

Open document, Query

record, Update record,

Close document

Open document,

Update record,

Close document

Generate document,

Query record,

Send email

Context Roles: Assistant

Resource: avg. 2.5 per case

Duration: 3 h 30 m per case

Status: complete, incomplete

Roles: Expert

Resource: 1 per case

Duration: 20 m per case

Status: complete

Roles: Manager

Resource: 1 per case

Duration: 15 m per case

Status: accept, reject

Roles: Assistant

Resource: 1 per case

Duration: 8 m per case

Status: accept, reject

high-level activities. This could be due to ambiguous contextual information, e.g.,

because the events all happen at the beginning of their case and are executed by the

same role. However, depending on the specific analysis purpose, this event group may

still be meaningful. If, for instance, a user is interested in how requests are examined

and how decisions are made, they do want to abstract from the details of this initial

phase.

To highlight the usefulness of the suggested groups for abstraction, we applied them

to the low-level event log, omitting events from groups not included in Gs. In partic-

ular, we map the low-level events of each group g ∈ Gs, to high-level activities. The

DFG of the low-level event log and the DFG obtained after abstracting the log are visu-

alized in Fig. 6. In the low-level DFG, the nodes refer to the distinct event classes in

the log. Because one event class can be part of multiple high-level activities and one

high-level activity can consist of multiple low-level event classes, limited insights can

be obtained about the underlying process. From Fig. 6a it is, therefore, impossible to

derive the actual relations to activities in Fig. 5. For instance, since Send email events

relate to both inquiring about missing information (at the start of the process) and com-

municating a decision (at the end), there is a loop in the low-level DFG from the last to

the first node, which obscures the distinct activities. However, our approach was able to

group events in a way, such that a meaningful structure becomes visible (Fig. 6b), e.g.,

by assigning Send email events with different contexts (start vs. end of the process) to

different groups. The initial process phase has been abstracted into a single activity,

i.e., Initial check (the values of the Status attribute, i.e., complete and incomplete, hint

at a checking activity). Moreover, clear behavioral patterns that were “hidden” in the

low-level DFG are revealed for the later phase of the process: there is a choice between

doing a thorough examination or not and there is a sequence between first examining

the request, deciding on it, and finally communicating the decision. Note that we man-

ually assigned meaningful labels to the new activities, since this is not yet supported
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by the approach. However, the descriptions of the multi-perspective event contexts our

approach creates already provide the user with hints on how to label the groups.

Open email

Open document

Update record

Generate document
Close document

Send email

Create record

Query record

(a) Low-level DFG
(before abstraction).

Initial 

check

Communicate 

decision

Decide on 

acceptance

Examine 

thoroughly

1

2

3

4

(b) DFG after abstraction;
omitting events from groups
not included in Gs.

Fig. 6. Abstraction impact achieved with the suggested groups.

These results indicate the potential of the approach to identify meaningful groups of

events for event abstraction without any knowledge of true high-level activities. Also,

the necessity to involve the user becomes clear, who can inspect group descriptions and

make the final decision if a group is meaningful and which activity it resembles.

6 Related Work

A broad range of event abstraction techniques has been proposed in the context of

process mining [4,17]. To conduct meaningful abstraction, techniques require explicit

input about high-level activities, which has to be provided by the user beforehand.

For instance, some techniques assume a data attribute to indicate higher abstraction

levels [7,9], whereas others assume high-level process models as input [2]. While a

recent technique explains the relations between low-level events and activities, the high-

level activities and a mapping to low-level event classes are still required [6]. Other

techniques do not require users to explicitly provide information about higher-level

activities themselves, but criteria about when events are considered to be part of the

same high-level activity, e.g., using temporal information [3] or requirements about

the specific characteristics high-level activities should have [12]. In contrast to these

techniques, our approach does not require the user to provide input about high-level

activities upfront, but supports them in finding suitable groups of events based on their

properties, which can then be used to abstract the event log in a meaningful manner.

Beyond the context of event abstraction, a recent study [18] examined exploratory

analysis practices in process mining finding that few techniques support the user in the

exploration of event data. A notable example is the work by Seeliger et al. [14] who
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introduced a system for trace clustering, which recommends clusters to analyze based

on process performance indicators and thus, suggests groups of cases rather than events.

Tsoury et al. [16] strive to augment logs with information derived from database records

and transaction logs to allow for deeper insights when exploring event data. While these

works provide the user with valuable support when analyzing complex event logs, they

do not consider lifting low-level event data to a more meaningful level of abstraction.

7 Conclusion

This paper proposed an approach to identify and suggest groups of low-level events

based on their multi-perspective recurring contexts that it learns using only information

available in the event log. Users can inspect and select suggested groups, which supports

the meaningful abstraction of event logs without the need to provide elaborate input

about high-level activities upfront. In an initial proof of concept, we showed that the

approach can indeed identify groups that correspond to high-level activities.

The research presented in this workshop paper is work in progress. We aim to

expand the current work in several directions. First, we aim to extend the scope of our

approach by adding a phase in which users can explore groups and interactively refine

meaningful but too coarse-grained ones (such as Group 1 in Sect. 5), e.g., by triggering

a clustering of a single group. Also, we aim to provide the user with various options

for abstracting events by clustering the same representations but with different settings.

Furthermore, if a group is discarded by the user because it does not make sense to them,

e.g., because events with complete as the value for a Status attribute were assigned

to the same group as events with incomplete, we want to incorporate their decision. In

such cases, a re-clustering could be applied that takes this feedback into account and

suggest groups that adhere to it. Second, motivated by the shift towards conducting

data-driven process analysis in an object-centric and view-based manner [5], we aim to

overcome the assumption that low-level events belong to exactly one case. Finally, to

assess the usefulness of our (extended) approach, we aim to go beyond an evaluation

using synthetic logs, by applying it in real-word settings and involving participants in a

user study to assess the value of the suggestions our approach provides.
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Abstract. In recent years, organizations are putting an increasing emphasis on

anomaly detection. Anomalies in business processes can be an indicator of system

faults, inefficiencies, or even fraudulent activities. In this paper we introduce an

approach for anomaly detection. Our approach considers different perspectives

of a business process such as control flow, data and privacy aspects simultane-

ously.Therefore, it is able to detect complex anomalies in business processes like

spurious data processing and misusage of authorizations. The approach has been

implemented in the open source ProM framework and its applicability was eval-

uated through a real-life dataset from a financial organization. The experiment

implies that in addition to detecting anomalies of each aspect, our approach can

detect more complex anomalies which relate to multiple perspectives of a busi-

ness process.

Keywords: Outlier behavior detection · Anomalous behavior · Data privacy ·
Conformance checking · Multi-perspective analysis

1 Introduction

Today, anomaly detection is essential for businesses. This concept refers to the problem

of finding patterns in data that do not conform to regular behavior. Outliers and anoma-

lies are two terms commonly used in regards to anomaly detection. The importance of

outlier or anomaly detection lies in the fact that anomalies in data can be translated

into valuable, and often critical and actionable information in a variety of applications

such as fraud detection, intrusion detection for cyber-security, and fault detection in

systems [4]. In the business process management domain, anomaly detection can be

applied for detecting anomalous behaviors during business processes executions. Often,

organizations look for anomalies in their business processes, as these can be indicators

for inefficiencies, insufficiently trained employees, or even fraudulent activities. Mostly,

companies rely on process-aware information systems to manage their daily processes.

The event logs of these information systems are a great source of information captur-

ing executed behavior of different elements involved in the business processes such as
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employees and systems. They can be used to extract valuable information about the exe-

cutions of a process (process instances) as they reflect executed behaviors. In the context

of business processes, an anomaly is defined as a deviation from a defined behavior, i.e.,

the business process model [11].

Nowadays, business processes have a high level of complexity. On top of a daily

process, many standards and regulations are implemented as business rules which

should be considered in anomaly analysis. For compliance checking, business analysts

should investigate the processes from multiple perspectives. This is a very challeng-

ing task since different aspects of processes should be considered in both isolating and

combining views in order to detect hidden deviations and anomalous behaviors. For

instance, generally employees are authorized to access sensitive data only in the context

of working and for a defined purpose. Privacy violations may happen when employees

misuse this authority for secondary purposes like personal or financial benefits. In this

regards, one of the articles in the GDPR regulation is about purpose limitation empha-

sizing “Who can access data for which purpose?”. Such data privacy rule is closely

related to three different perspectives: i) the control flow, or the tasks being executed;

ii) the data, or the flow and processing of information; and iii) the privacy, or the legiti-

mate role allocation. This example clearly shows that the approaches which focus only

on control flow or data flow aspects are not sufficient to detect deviations and anoma-

lies in complex problems. The potential of multi-perspective process mining has been

emphasized by several contributions [2,6,8]. Although these techniques consider data

objects and/or the resources, in all of them control flow is a priority since they assume

data objects or resources as attributes of activity instances in the process execution.

Previously, we presented a balanced multi-perspective approach for conformance

checking and anomaly detection which considered control-flow, data and privacy per-

spectives all together and simultaneously without giving priority to one perspective [9].

In this paper, we extend our previous approach by considering the type of data opera-

tions (mandatory or optional) and their execution constraints in the calculation of align-

ments. To the best of our knowledge, no other approach takes data layer restrictions

of data operation type and frequency into account. Furthermore, in our new approach,

we made the concept of context (purpose) of data processing more clear. As another

improvement, to avoid reporting false positive deviations in the control flow perspec-

tive, we consider partial order of activity executions. Similarly, Lu et al. [7] used partial

order in event data to improve the quality of conformance checking results. However

their approach checks only control flow alignment in contrast to our approach which is

a multi-perspective conformance checking method.

The remainder of this paper is structured as follows. Section 2 introduces our multi-

perspective conformance checking approach to detect complex anomalous behaviors in

business processes. Section 3 presents the applicability of our approach through a real-

life case study, discussing the experimental design and results. At last, the conclusion

of this paper is presented in Sect. 4.

2 Methodology

Current conformance checking methods use alignments (in detail explained in [3]) to

relate the recorded execution of a process with its model. Commonly, these techniques
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have a fundamental property, so-called synchronous product model. A synchronous

product model links observed behavior and modeled behavior in a Petri net format. By

using an A* based search strategy [1,12], the conformance checking techniques can

compute alignments for individual cases in an event log.

While traditional conformance checking approaches only consider control flow

aspect of a process, we consider data and privacy aspects together with control flow

perspective all at once. In the rest of this section, we explain the structure of the syn-

chronous product model in our new approach for multi-perspective conformance check-

ing and show the types of anomalies that our method is able to detect by employing A*

algorithm on the designed synchronous product model.

2.1 Construction of Synchronous Product Model

To clarify the steps of constructing the synchronous product in our approach, let us

consider the inputs shown in Fig. 1. Figure 1(a) shows a workflow-net as the process

model. This process model starts with activity A by role R1 and continues with activities

B, C, and D by role R2. According to the data model depicted in Fig. 1(b), for the

completion of activity A, mandatory data operation Read(x) should be executed and

the actor is allowed to repeat this data operation. Update(y) is another data operation

in the context of activity A that is optional and the actor is allowed to execute this

operation only once while performing A. Each of activities B, C, and D are expected

to execute one mandatory data operation in order to fulfilment. Figure 1(c) shows the

organisational model in our example. There are two roles in the organisational model.

Actor (resource) u1 has the role R1 and the actor u2 has the role R2.

Figure 1(d) shows one trace of the process log. This trace contains eight process

events that correspond to a single case. The start and complete events with the same

activity name and id indicate the occurrence of an instance of a specific activity. For

example, e3 and e4 both with id equal to 2 indicate the execution of one instance of

activity B. The events are sorted by their occurrence time.

Figure 1(e) presents a data trace with three data operations op1, op2, and op3, which

were executed on the data fields x, z, and m during the execution of case 100.

A:R1 B:R2 C:R2 D:R2

p4 p5

(a). Process Model

(b). Data Model (c). Organizational Model

(d). Process Trace ( a fragment of the   process log ) (e). Data Trace ( a fragment of the data log )

p2p1 p3

Activity
Data 

Operations

Mandatory/

Optional
Repetition

A
d1: Read(x) 

d2: Update(y)

M

O

Allowed

Not Allowed

B d3: Update(z) M Not Allowed

C d4: Update(K) M Not Allowed

D d5: Read(x, y) M Not Allowed

Role Actor (Resource)

R1 u1

R2 u2

Fig. 1. The inputs of the proposed approach in the running example
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Figure 1(d) together with Fig. 1(e) shape the observed behavior for case 100. A close

inspection of the event logs already shows that there are some conformance issues. First,

from the control flow perspective, activity D appears to be missing while activity F is

an unexpected activity according to the process model. Second, from data perspective,

two mandatory data operations d4 and d5 are missing and op3 implies the execution

of a spurious data operation by user u1. Third, from privacy (resource) perspective,

activities B and C are expected to be performed by a user playing role R2, but it appears

that these activities and data operations were performed by user u1 who plays the role

R1. From combined perspectives, although activity B was performed in correct order

and expected by the process model and its executed data operation (op2) conforms with

the data model, there is a deviation in the privacy aspect. Data operation op2 is only

supposed to be executed within the context of activity B by an actor playing the role R2

however this data operation was accessed by a user who plays the role R1.

A traditional conformance checking technique, which focuses only on the control

flow, would ignore the resource and data parts of the modeled behavior. To address

this issue, now we present our approach which considers control flow, data and privacy

aspects of a business process simultaneously for anomaly detection analysis and can

automatically distinguish all kind of anomalies which were described earlier.

As a pre-processing step, to combine process, data and privacy (resource) aspects

into a single prescribed behavior, we first shape the operation net of each activity in

the process model considering corresponding data operations in the data model. For

instance, the operation net of activity A is depicted in Fig. 2 surrounded by a red line. It

represents how we model mandatory and optional data operations and their execution

constraint in a Petri net format. In the operation net of an activity X, there are two

corresponding transitions labelled with “Xs” (X+Start) and “Xc” (X+complete) (i.e.

transition As and Ac in Fig. 2). For each expected data operation of the activity, one

transition labeled with the name of data operation and two places are created: one is the

input place and the other is the output place of the expected data operation. The input

place of the expected data operation is an output place for the activity transition with

the start type, while the output place of the expected data operation is an input place

for the activity transition with the complete type. An invisible transition is created and

connected to input and output places of each optional data operations (i.e. transition

below d2 in Fig. 2). An invisible transition is created and connected to input and output

places of each data operation that is allowed to be executed frequently. In this case, the

input place of the invisible transition is an output place for that data operation while

the output place of the invisible transition is an input place for that data operation (i.e.

transition above d1 in Fig. 2).

The first foundation of the synchronous product in our approach is Model net. The

model net (NM ) is constructed by replacing each activity in the original process model

(i.e. Fig. 1(a)) with corresponding operation net. Figure 2 shows the model net for our

running example. In this model, we enriched the process model (Fig. 1(a)) with the

expected data operations shown in Fig. 1(b).

The second foundation of the synchronous product in our approach is Process net.

The process net (NP ) represents a process trace. It shows a sequence of the transitions

labelled with activities and their life cycle as they appeared in the process trace.
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As:R1

d1:R1

d2:R1

Ac:R1

p1s,d1

p1s,d2

p1c,d1

p1c,d2

p1 p2

Bs:R2 d3 :R2 Bc:R2 Cs:R2

p3 p4

d4:R2 Cc:R2

p5

Ds:R2 d5:R2 Dc:R2

p2s,d3 p2c,d3
p3s,d4 p3c,d4 p4s,d5 p4c,d5

Fig. 2. Model net of the running example. The operation net of activity A is surrounded by the

red line. (Color figure online)

The yellow part in the middle of Fig. 3 shows the process net constructed based on

the process trace example in Fig. 1. Two concurrent transitions Ac And Bs in this model

show the partial order of the completion of activity A (reflected in e2) and the start of

activity B (reflected in e3) which have the same timestamp. To match start and complete

events related to one instance of an activity, we consider a matching place labelled as

C and the name of executed activity (we call these type of places as context places).

The input and output of matching places are start and complete events related to one

instance of an activity. It should be noted that context places are created if and only if

the start and complete events related to one activity have the same “id” attribute.

The third foundation of the synchronous product in our approach is Data net. The

data net (ND) represents a data trace. It shows a sequence of the transitions labelled

with executed data operations as they appeared in the data trace. The red part in the

bottom of Fig. 3 shows the data net constructed based on the data trace example in

Fig. 1.

Using the model net, process net and data net, we present the synchronous product

model as the combination of these three nets with two additional sets of synchronous

transitions. Figure 3 shows the synchronous product for our running example. For the

sake of less complexity, in this model, we relabeled the transitions of model net as tmi,

transitions of process net as tpi, and transitions in data net as tdi. We also chose new

identifiers for the places in model net, process net and data net as pmi, ppi and pdi,

respectively.

As shown in Fig. 3, other than transitions of the model, process and data nets,

there are two sets of synchronous transitions called synchronous transitions and data

synchronous transitions. Synchronous transitions only exist when an expected activity

appears in the process net. Data synchronous transitions only exists when an expected

data operation appears in the data net. Additionally, each data operation is associated

to a so called matched activity. The matched activity is the activity instance that was

executed by the same resource as the data operation and the timestamp of the data event

should be between the start and completion time of the matched activity in the process

net. These conditions are reflected in the model by input/output to the context place of

matched activity. Input places of synchronous data operations contain: the input place
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of the corresponding executed data operation in the data net; the input place of the

expected data operation in the model net; and the context place of matched activity in

the process net. Output places of the synchronous data operations contain: the output

places of the executed data operation; the output place of the expected data operation;

and the context place of matched activity.

For including the privacy aspect in the synchronous transitions, we consider a

penalty cost in case of expected activity and/or data operation done by an unexpected

role. This will be discussed in the next section under the cost function definition.

2.2 Multi-layer Alignment and Cost Function

An alignment is a firing sequence of transitions from initial marking to the final mark-

ing in the synchronous product model. In our approach, initial marking mi is the

set of starting places of each model, process and data nets. Final marking mf is

the set of last places of each model, process and data nets. For instance, in Fig. 3,

mi = {pm1, pp1, pd1} is the initial marking and mf = {pm15, pp12, pd4} is the final

marking.

We need to relate “moves” in the logs to “moves” in the model in order to estab-

lish an alignment between the model, process trace and data trace. However, it might

happen that some of the moves in the logs cannot be mimicked by the model and vice-

versa. We explicitly denote such “no moves” by “≫”. Formally, we represent a move

as (tm, tp, td), where we set tm to be a transition in the model net, tp to be a transition

of the events in the process net (process trace), and td to be a transition of the events in

data net (data trace). Our approach separates moves into two categories: synchronous

moves and deviations. Synchronous moves represent expected behavior:

– A synchronous move happens when an expected activity was performed by a legiti-

mate role.

– A data synchronous move happens when an expected data operation was executed

by a legitimate role.

We further distinguish six kinds of deviations:

– A move on model happens when there are unobserved activity instances.

– A move on model happens when there are unobserved data operations.

– A move on process log happens when an unexpected activity instance was per-

formed.

– A move on data log happens when an unexpected data operation was executed.

– A synchronous move with illegitimate role happens when an expected activity was

performed by an illegitimate role.

– A data synchronous move with illegitimate role happens when an expected data oper-

ation was performed by an illegitimate role.

The computation of an optimal alignment relies on the definition of a proper cost

function for the possible kinds of moves. We extend the standard cost function to

include data and privacy costs. We define our default multi-layer alignment cost func-

tion as follows:



D
etectin

g
C

o
m

p
lex

A
n
o
m

alo
u
s

B
eh

av
io

rs
in

B
u
sin

ess
P

ro
cesses

5
1

As:R1

d1:R1

d2:R1

Ac:R1 Bs:R2 d3 :R2 Bc:R2 Cs:R2 d4:R2 Cc:R2 Ds:R2 d5:R2 Dc:R2

Ac:R1

Bs:R1

pp1

Bc:R1 Cs:R1 Cc:R1As:R1 Fs:R1 Fc:R1

Pp2

Pp3

Pp4

Pp5

Pp6

Pp7
Pp8 Pp9 Pp10 Pp11

Op1:R1 Op2:R1 Op3:R1

pd4pd1 pd2 pd3

Pp12

CA

CB

CC

CF

As Ac Bs Bc CcCs

d3 d1

Cost 0

Cost 2

Cost 2

Cost 2
Cost 2 Cost 2 Cost 2 Cost 2 Cost 2

Cost 2 Cost 2 Cost 2 Cost 2 Cost 2

Cost 0

Cost 0 Cost 0

Cost 2

Cost 2

Cost 2

Cost 2 Cost 2 Cost 2 Cost 2 Cost 2

Cost 2 Cost 2 Cost 2

Cost 0 Cost 0

Cost 0 Cost 1

Cost 1 Cost 1 Cost 1Cost 1

pm1

pm2

pm4

pm3

pm5

pm6 pm9 pm12 pm15
pm7 pm8 pm10 pm11 pm13 pm14

(tm6, >>, >>) (tm7, >>, >>) (tm8, >>, >>) (tm9, >>, >>) (tm10, >>, >>) (tm11, >>, >>)(tm12, >>, >>) (tm13, >>, >>) (tm14, >>, >>) (tm15, >>, >>)(tm1, >>, >>)

(tm4, >>, >>)

(tm5, >>, >>)

(tm2, >>, >>)

(tm3, >>, >>)

(tm1 , tp1, >>) (tm6 , tp3, >>) (tm7 , tp4, >>) (tm9 , tp6 , >>) (tm10 , tp7 , >>) (tm12 , tp8 , >>)

(>>, tp2, >>)(>>, tp1, >>)

(>>, tp3, >>)

(>>, tp4, >>)

(>>, tp5, >>) (>>, tp6, >>) (>>, tp7, >>) (>>, tp8, >>) (>>, tp9, >>) (>>, tp10, >>)

(tm2 , >> , td1) (tm8 , >> , td2)

(>>, >>, td1) (>>, >>, td2) (>>, >>, td3)

Fig. 4. Full run of the synchronous product corresponding to an optimal alignment, assuming a multi-layer cost function for the running example
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Definition 1 (Multi-Layer Alignment Cost function). Let (tm, tp, td) be a move in

alignment between a model, process trace and a data trace. The cost K(tm, tp, td) is:

K(tm, tp, td) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2, if (tm, tp, td) is a move on process log

or move on data log, or move on model

0, if (tm, tp, td) is Process/Data sync. move

with legitimate role

1, if (tm, tp, td) is process/Data sync. move

with illegitimate role

Note that, to include the cost for deviations related to the privacy layer, we considered

a penalty cost equal to 1 in our cost function. If the actor of observed behavior was not

allowed to perform activity and/or data operation we add the penalty cost.

The alignment with the lowest cost is called an optimal alignment. We define Opti-

mal Multi-Layer Alignment as follows:

Definition 2 (Optimal Multi-Layer Alignment). Let N be a WFR-net, σc and βc

be a process trace and data trace, respectively. Assuming AN as the set of all legal

alignment moves, a cost function K assigns a non-negative cost to each legal move:

AN → R
+
0 . The cost of an alignment γ between σc, βc and N is computed as the sum

of the cost of all constituent moves K(γ) =
∑

(tm,tp,td)∈γ K(tm, tp, td). Alignment γ

is an optimal alignment if for any alignment γ′ of σc, βc and N , K(γ) ≤ K(γ′).

For finding the optimal alignments we employed A* algorithm. Figure 4 illustrates

an optimal alignment for running example, depicted on top of the synchronous prod-

uct shown in Fig. 3. It shows that there are six kinds of deviations between observed

behavior and modeled behavior, namely synchronous moves with illegitimate roles on

transitions Bs, Bc, Cs, and Cc in light blue color, data synchronous move with illegit-

imate role showing spurious data operation on transitions d3 in orange color, model

moves showing missing data operations on transitions d4 and d5 and model moves

showing skipped activities on transitions Ds and Dc in purple color, process log moves

indicating unexpected activities on transitions Fs and Fc in yellow color, and a data log

move showing unexpected data operations on transition op3 in red color.

3 Evaluation

To evaluate the applicability of our approach to real-life scenarios, we used the event log

recording the loan management process of a Dutch Financial Institute provided by BPI

challenge 2017 [5]. After splitting the provided event log, the resulting process log and

data log contain 301,709 workflow events and 256,767 data operations, respectively.

These logs were recorded from managing 26,053 loan applications. The activities and

data operations were performed by 146 resources (employees or system).

Figure 5 shows the loan management process in Petri net notation. In this process,

there are four main milestones: receiving applications, negotiating offers, validating

documents, and detecting potential fraud. The execution of activities may require per-

forming certain mandatory or optional data operations. The data model of this pro-

cess which presents the relationship between activities and data operations is shown in
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Fig. 5. Loan management process model [10]

Table 1. Such data model is created according to domain knowledge and also indicates

whether the user is allowed to repeat the execution of the data operations. As shown in

the process model (Fig. 5), three roles are supposed to conduct the activities. Most of the

activities are supposed to be done by the role clerk. Activities related to fraud detection

are supposed to be done by a fraud analyst. The activity “W Shortened completion”

Table 1. Data model of the loan management process. Type: Mandatory (M), Optional (O). Rep-

etition: is allowed (True), is not allowed (False). A: Application, O: Offer, W: Workflow [10].

Activity Data operation Type Repetition

A-Create Application Create: (applicationID) M False

W-Shortened Completion start Read: (applicationID, email) M False

A-Accepted Create: (offerID) M False

Read: (offerID) M False

Read: (address, email) M False

Read: (address) O False

A-Cancelled Update: (OCancelledFlag) M True

W-Call after offer start Update: (ACompletedFlag) M False

W-Call after offer complete Update: (OAcceptedFlag) M False

W-Call after offer withdraw Update: (OReturnedFlag) M False

W-Call after offer ate abort Update: (OCancelledFlag) M False

W-Validate application start Update: (AValidatedFlag) M False

A-Pending Update: (OAcceptedFlag) M False

A-Denied Update: (ORefusedFlag) M True

W-Validate application ate abort Update: (OCancelledFlag) M True

W-Call incomplete files start Update: (AInCompleteFlag) M False
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Table 2. The result of experiment with real-life data

Category Anomaly Occurence

1 Ignored mandatory data operation “Update(OCancelledFlag)” 40,869

2 Unexpected data operation “Update (OReturnedFlag)” 18,291

3 Unexpected data operation “Read (offID)” 11,874

4 Unexpected data operation “Create (offID)” 11,874

5 Unexpected data operation “Read (address- email)” 9,640

6 Ignored mandatory data operation “Create(appID)” 9,354

7 Unexpected data operation “Update (OCancelledFlag)” 5,624

8 Unexpected activity “W Call incomplete files complete” 2,565

9 Skipped activity “W Call incomplete files ate abort” 1,919

10 Unexpected data operation “Read (email)” 1,874

can only be executed by a manager. Managers also have the authority to perform all the

activities related to a clerk.

We implemented our approach as a package in the ProM framework called Multi

Layer Alignment in the “MultiLayerAlignmentWithContext” plugin. Using this tool,

we applied our approach on the described business process. A summary of our results

that shows ten most frequent anomalies is reported in Table 2. In addition to detect-

ing multi-layer deviations, the experiment remarks that the approach is capable to

reconstruct and provide the link between performed activities in the process layer and

executed data operations in the data layer to present the contexts of data processing.

For example, Table 2 shows mandatory data operation “Update(OCancelledFlag)” was

ignored 40,869 times. We have also developed a view that provides detailed informa-

tion, described in [10], which finds that this anomaly happened 16,735 times in the

context of activity “W-Validate application ate abort”, 16,184 times in the context of

activity “W-Call after offers ate abort”, and 7,950 times in the context of activity “A-

Cancelled”. Furthermore, it could detect who (in terms of roles and users) had the

anomalous or suspicious behaviors during process executions.

4 Conclusion

In this work, we presented an approach for detecting complex anomalous behaviors

in business processes. Through an example, we showed the structure of our multi-

layer synchronous product model which is the foundation of conformance checking

and applying alignment algorithms.

In existing multi-perspective conformance checking approaches, control flow per-

spective is a priority thus many deviations stay hidden and uncovered. In contrast, in

our approach, different perspectives of a business process such as control flow, data

and privacy aspects are considered simultaneously to detect complex anomalies which

relates to multiple perspectives of a business process.

We showed the applicability of our approach using real-life event logs of a loan

management process from a financial institute. The experiment demonstrated the app-

roach’s capability to return anomalies such as ignored data operations, suspicious activ-

ities and data operations, spurious and unexpected data operations. Additionally, our
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method could reconstruct the link between process layer and data layer from executed

behavior and present the contexts of data processing. Thus, it can discover data accesses

without clear context and purposes.

As future step, we plan a qualitative analysis of how useful the results of our app-

roach are to the business analysts to detect anomalous and suspicious behaviors in busi-

ness processes.

Reproducibility. The inputs required to reproduce the experiments can be found at

https://github.com/AzadehMozafariMehr/Multi-PerspectiveConformanceChecking
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Abstract. During the last years, a number of studies have experimented
with applying process mining (PM) techniques to smart spaces data. The
general goal has been to automatically model human routines as if they
were business processes. However, applying process-oriented techniques
to smart spaces data comes with its own set of challenges. This paper
surveys existing approaches that apply PM to smart spaces and analy-
ses how they deal with the following challenges identified in the litera-
ture: choosing a modelling formalism for human behaviour; bridging the
abstraction gap between sensor and event logs; and segmenting logs in
traces. The added value of this article lies in providing the research com-
munity with a common ground for some important challenges that exist
in this field and their respective solutions, and to assist further research
efforts by outlining opportunities for future work.

Keywords: Process mining · Smart spaces · Sensor logs

1 Introduction

Over the last few years, facilitated by the development of smart spaces,
researchers and manufacturers have shown interest in analysing human
behaviour via data collected by Internet of Things (IoT) devices. This infor-
mation is then used to get insights about the behaviour of the user (e.g., sleep
tracking), or to perform automated actions for the user (e.g., automatically open-
ing the blinds).

While both PM and smart spaces have been evolving quickly as separate fields
of study during the last years, researchers have recently explored combining both
disciplines and obtained interesting results. Applying PM techniques to smart
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spaces data, enables modelling and visualising human habits as processes [19].
However, even though process models could be extracted from smart spaces data,
multiple problems arose when applying techniques designed for BPs to human
habits [19].

This paper studies how current approaches deal with well-known challenges
in applying PM to smart spaces data and human behaviour [19]: modelling
formalism for representing human behaviour, abstraction gap between sensor and
event logs, and logs segmentation in traces. The main contribution of this article
to the research community is therefore threefold: (1) providing an overview and
comparison of PM techniques applied to smart spaces, (2) analysing how these
techniques currently deal with the three challenges identified, and (3) providing
an outline for future work.

The remainder of this paper is structured as follows: Sect. 2 introduces some
background concepts and commonly used terminology in the fields of smart
spaces and PM. Section 3 describes the related work. The methodology fol-
lowed to perform the survey is defined in Sect. 4. Results are reported in Sect. 5.
Section 6 discusses the results and provides an outline for future work. Lastly,
Sect. 7 concludes the paper with an overview of the key findings.

2 Background

2.1 Smart Spaces

Smart spaces are cyber-physical environments where an information system takes
as input raw sensor measurements, analyses them in order to obtain a higher level
understanding of what is happening in the environment, i.e., the current context,
and eventually uses this information to trigger automated actions through a set
of actuators, following final user preferences. A smart space produces at runtime
a sequence of sensor measurements called sensor log in the form shown in Table 1.

The following terminology is usually employed [21]:

– Activities, i.e., groups of human atomic interactions with the environment
(actions) that are performed with a final goal (e.g., cleaning the house).

– Habits, routines, or behaviour patterns, i.e., an activity, or a group of actions
or activities that happen in specific contextual conditions (e.g., what the user
usually does in the morning between 08:00 and 10:00).

Human Activity Recognition (HAR) is a common task in smart spaces that
aims at recognizing various human activities (e.g., walking, sleeping, watching
tv) using machine learning techniques based on data gathered from IoT environ-
ments [16]. [24] argues that HAR is part of a bigger picture with the ultimate
aim to provide assistance, assessment, prediction and intervention related to the
identified activities.
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2.2 Process Mining in Smart Spaces

The main goal of applying PM in a smart space is to automatically discover
models of the behaviour of the user(s) of the smart space based on a log of the
sensors present in the environment. Models can represent activities (or habits)
that users perform in the smart space, e.g., eating, working, sleeping. It is impor-
tant to highlight the following differences between PM and smart spaces:

– Whereas smart spaces techniques usually take as input sensor logs, process
mining techniques use event logs. Events in event logs are execution of business
activities, while sensor logs contain fine grained sensor measurements.

– The term business process in PM may correspond to the terms activity, habit,
routine, or behaviour pattern in the smart space community.

– While event logs are typically split in traces (process executions), sensor logs
are not segmented and may contain information related to different activities
or habits.

Smart spaces usually produce and analyse data in the form of sensor logs.
According to [27], in order to apply techniques from the PM area, the sensor log
must be converted into an event log. The entries of an event log must contain at
least three elements: (i) the case id, which identifies a specific process instance,
(ii) the label of the activity performed and (iii) the timestamp. The conversion
from a sensor log to an event log usually consists of two steps, respectively (i)
bridging the granularity gap between sensor measurements and events and (ii)
segmenting the event log into traces, i.e., to assign a case ID to each event.

Table 1. Example of a sensor log used in smart spaces

Timestamp Sensor Value

... ... ...

2022-05-31 12:34:52 M3 ON

2022-05-31 12:34:58 M5 OFF

2022-05-31 12:35:04 M3 OFF

2022-05-31 12:35:22 T2 22

2022-05-31 12:38:17 M29 OFF

... ... ...

3 Related Work

This section provides a short summary of the surveys and reviews that have pre-
viously been performed on the application of PM on human behaviour discovery.

[21] surveyed the modelling and mining techniques used to model human
behaviour. They studied the model lifecycle of each approach and identified
important challenges that typically came up when performing HAR. However,
they reviewed all sorts of techniques used in HAR, not focusing on PM techniques.
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[24] performed a literature review and created a taxonomy on the applica-
tion of HAR and process discovery techniques in industrial environments. While
focusing on PM for HAR, this study is restricted to one application domain.

[13] analysed how classic PM tasks (i.e., process discovery, conformance
checking, enhancement) have taken advantage of artificial intelligence (AI) capa-
bilities. The survey specifically focused on two different strategies: (1) using
explicit domain knowledge and (2) the exploitation of auxiliary AI tasks. While
[13] briefly covers the application of PM to smart spaces, this section is rather
short as their focus lies on PM in general.

No recent survey has identified which existing PM approaches were applied to
smart spaces and how these approaches deal with the challenges identified in [19].

4 Methodology

To perform the survey, a systematic literature review protocol was followed to
maximise the reproducibility, reliability and transparency of the results [17]. The
protocol consists of six phases: (1) specify research questions, (2) define search
criteria, (3) identify studies, (4) screening, (5) data extraction and (6) results.
Figure 1 shows the number of studies reviewed and excluded in each phase and
the reasoning behind the exclusion.

Fig. 1. Search methodology: included and excluded papers.

4.1 Research Questions

In this article, we will study the following research questions (RQs), focusing on
the challenges identified in [19]:

– RQ-1: how do primary studies represent human behaviour? One of the chal-
lenges when applying PM to smart spaces data is to choose an appropriate
formalism that can model human behaviour.

– RQ-2: how do PM techniques address the gap between sensor events and pro-
cess events? The low-level sensor logs from smart spaces have to be translated
to higher-level event logs [32,35].

– RQ-3: how do PM techniques tackle logs that are not split in traces? PM
requires the log to be segmented into traces, which is typically not the case
of sensor logs.
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4.2 Search Criteria and Studies Identification

Since this paper is about using PM to model human behaviour from smart spaces
data, three groups were identified: group 1 represents PM, group 2 represents
human behaviour modelling and group 3 represents the smart space environment.
Frequently used synonyms were added to ensure full coverage of the relevant
literature on each topic, yielding the following search query:

(“process mining” OR “process discovery”) AND (“behaviour pattern” OR
“behavior pattern” OR “habit” OR “routine” OR “activity of daily living” OR
“activities of daily living” OR “daily life activities” OR “daily-life activities”
OR “daily behaviour” OR “daily behavior”) AND (“smart space” OR “smart
home” OR “smart environment” OR “smart building”)

The base set of papers was identified by searching the title, abstract and
keywords using the Scopus and Limo online search engines, providing access to
articles published by Springer, IEEE, Elsevier, Sage, ACM, MDPI, CEUR-WS,
and IOS Press. The final set of articles was retrieved on 05/04/2022.

4.3 Screening

The papers identified by the search string must pass a quality and relevance
assessment in order to be included in the survey. The assessment consists of
exclusion and inclusion criteria.

The exclusion criteria EQ-x are defined as follows:

– EQ-1: the study is not written in English.
– EQ-2: the item is not fully accessible through the university’s online libraries.
– EQ-3: the paper is a duplicate of an item already included in the review.
– EQ-4: the study is a survey or literature review primarily summarising previ-

ous work where no new contribution related to the research topic is provided.

The inclusion criterion IQ-x is defined as follows:

– IQ-1: the study is about discovering and modelling human behaviour using
PM techniques using smart spaces data and answers at least one research
question.

The first set of primary studies was formed by all articles that remain after
the inclusion and exclusion criteria screening. Once these studies were selected,
forward and backward snowballing was performed. Articles identified through
snowballing were screened using the same criteria.

4.4 Data Extraction

First, generic information was extracted such as title, authors, year of publica-
tion, and the environment in which the included study is situated. Afterwards,
the research questions were answered based on the content of each article.
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Table 2. Overview of included primary studies

ID Ref Title Year Environment Dataset Type(s) of sensors Labelled Segmentation

S1 [11] Process Mining for Individualized Behavior Modeling Using
Wireless Tracking in Nursing Homes

2013 Healthcare Own Proximity / T

S2 [4] Learning and Recognizing Routines and Activities in SOFiA 2014 Office Own Motion, Brightness, Light,
Temperature, Pressure,
Touch and Magnetic

Yes A

S3 [5] Incremental Learning of Daily Routines as Workflows in a Smart
Home Environment

2015 Home [6] Motion, Temperature and
Magnetic

Yes A > A

S4 [7] Process-Based Habit Mining: Experiments and Techniques 2016 Home [6] Motion Partially T

S5 [34] Heuristic approaches for generating Local Process Models through
log projections

2016 Home [38] Motion, Magnetic and Power Yes T

S6 [23] Revealing daily human activity pattern using PM approach 2017 Home [25] Motion, Magnetic and Float Yes T

S7 [3] Discovering Process Models of Activities of Daily Living from
Sensors

2018 Home [6] Motion, Temperature and
Magnetic

Yes A > A

S8 [36] Event Abstraction for Process Mining Using Supervised Learning
Techniques

2018 Home [38] Motion, Magnetic and Power Partially T

S9 [29] Addressing multi-users open challenge in habit mining for a
PM-based approach

2018 Home Own Proximity / T

S10 [33] Generating time-based label refinements to discover more precise
process models

2019 Home [38] Motion, Magnetic and Power No T

S11 [9] Analyzing of Gender Behaviors from Paths Using Process Mining:
A Shopping Mall Application

2019 Commerce Own Proximity No T > T

S12 [2] Extraction of User Daily Behavior From Home Sensors Through
Process Discovery

2020 Home [6] Motion, Temperature and
Magnetic

Yes A > A

S13 [20] Visual process maps: a visualization tool for discovering habits in
smart homes

2020 Home [6] Motion Yes A

S14 [37] Process Mining for Activities of Daily Living in Smart Homecare 2020 Healthcare [30] Not Specified Yes A

S15 [8] Discovering Customer Paths from Location Data with Process
Mining

2020 Commerce Own Proximity No T > T

S16 [26] A Multi-case Perspective Analytical Framework for Discovering
Human Daily Behavior from Sensors using Process Mining

2021 Home [31] Proximity Yes A

S17 [15] Process Model Discovery from Sensor Event Data 2020 Home [6] Motion Partially T

S18 [10] Unsupervised Segmentation of Smart Home Logs for Human
Habit Discovery

2022 Home [6] Motion, Temperature and
Magnetic

No T > T

S19 [22] Interactive Process Mining in IoT and Human Behaviour
Modelling

2021 Home Own Motion No T

S20 [28] Supporting Users in the Continuous Evolution of Automated
Routines in their Smart Spaces

2021 Home Simulated Motion Yes T

S21 [18] The Benefits of Sensor-Measurement Aggregation in Discovering
IoT Process Models: A Smart-House Case Study

2021 Home Simulated Motion Yes T > T
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5 Results

Table 2 gives an overview of the studies included in the survey, and provides
general information about each study. Figure 2a shows the publication trend
over the years.

5.1 Modelling Formalisms

An overview of the modelling formalisms used by the papers surveyed is shown
on Fig. 2b (note that some papers used more than one modelling language). Petri
Nets are by far the most used formalism, consistent with the fact that it is a very
popular process modelling formalism and the output to several state-of-the-art
discovery algorithms.

Petri Nets is followed by weighted directed graphs, mostly as the output of
the fuzzy miner algorithm [14], which allows to mine flexible models.

A third noteworthy modelling language is timed parallel automata, a for-
malism introduced in [12] that is designed to be particularly expressive. Other
formalisms are less spread, only used by at most two studies. In addition, only
S20 uses a modelling formalism that incorporates the process execution context.
Also note that S9 only derived an event log from the sensor log and did not mine
a model, hence no formalism is used.

Fig. 2. Statistics about the studies.

5.2 Abstraction Gap Between Sensor Events and Process Events

This section gives an overview of the techniques that the primary studies use to
convert sensor events into process events. Among them, S14, S15, S20 and S21
do not require any conversion step because they already work with event logs
instead of sensor logs. In particular, S20 and S21 make use of synthetic event logs
produced by a simulator. All the other studies have validated their approaches
with real-life datasets, as shown in Table 2. Six studies (S1, S2, S9, S11, S15,
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S19) have performed the validation step on datasets they generated themselves,
all the other ones have applied their methodologies on state-of-the-art datasets,
namely [6,25,30,31,38].

Two general approaches to make groups of sensor measurements that corre-
spond to higher-level events can be identified from the literature: (i) classical
window-based, time-based or event-based segmentation, and (ii) more complex
time-series analysis.

In order to translate raw sensor measurements into proper event labels, the
most common method is to derive information from the sensor’s location, as
in S1, S5, S11, S12, S15, and S19. E.g., if the triggered sensor is above the
bed then the activity “sleeping” is derived. However, this method has its draw-
backs, acknowledged in S4: the information provided by motion sensors is not
always detailed enough to derive activities accurately. These ambiguities could
be addressed by introducing other types of sensor in the environment (e.g., cam-
eras), but making the approach more intrusive.

In S13, authors perform the conversion task by adapting an already exist-
ing algorithm to automatically segment and assign human actions’ labels (i.e.,
MOVEMENT, AREA or STAY), combined with their relative location inside
the smart environment (e.g., STAY Kitchen table).

Using a labelled dataset facilitates this conversion task. Studies S8, S10 and
S16 have used such labelling to manually deduce event names. However, this app-
roach can be very time consuming and error prone, and labels often corresponds
to activities at a higher level of abstraction with respect to atomic events.

5.3 Log Segmentation into Traces

PM techniques typically need a log to be segmented in traces with a case ID [27],
a requirement that is often not met by sensor logs (only the sensor log in S10
meets this requirement). To account for this, most of the included studies use
a form of segmentation to obtain an event log made of distinct cases, as shown
in Table 2, where T is time-based and A is activity-based. We assume that all
studies, even those that do not state it explicitly, at least segment the sensor log
in one trace per day to meet the requirement posed by PM techniques.

There are two types of segmentations applied in the studies: manual vs auto-
matic. The following studies perform a manual activity-based segmentation:

– S7 performs activity-based segmentation to segment a log by creating one
trace per day. Their approach uses the ‘sleeping’ activity to determine when
two consecutive days should be split.

– S12 uses activity-based segmentation to segment a day into activities. Based
on the annotations added by the user, artificial trace start and end events are
added to the sensor log (e.g., when a user indicates that he or she is starting
the ‘cooking’ activity, a start event is added to the sensor log).

Alternatively, some approaches try to automatically segment the log. This
solution appears more feasible in real scenarios than manual labelling, which is
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time-consuming and error-prone. In the analysed works, automatic segmentation
is performed according to the time dimension following different strategies:

– Using the time-based technique to split days using midnight as cut-off point;
such as in S4 and S5.

– Segmenting each day into activities or visits by measuring the gap between
two sensor events. When the gap is larger than a predefined threshold, the
log is split in two traces; such as S11 or S21.

In addition, if the sensor log contains different human routines a clustering
step is usually implemented, such as in S21.

6 Discussion

This section discusses the invistagated challenges and identifies future lines of
research.

6.1 Modelling Formalisms

As discussed in Sect. 5.1, papers applying PM to smart spaces data must explic-
itly or implicitly choose a formalism to represent human processes.

Interestingly, while it is suggested in [19] that human routines are volatile and
unpredictable, the most used formalism in the reviewed studies is Petri Nets, an
imperative modelling language. This may simply be because Petri Nets are one
of the most widely used languages in PM, which allow, a.o., process checking,
simulation and enactment.

A certain number of studies opted for more flexible formalisms, e.g., weighted
directed graphs. This enables the discovery of clearer and potentially better fit-
ting models, though less precise and actionable. A solution to make those more
actionable is to implement prediction techniques, as in S8. It is also remark-
able that none of the studies mined declarative models, a widespread flexible
paradigm that could be able to cope with the volatility of human behaviour.
This may be explained by the fact that declarative models are usually harder
to understand than imperative models, making it more complex for the users to
interact with the smart space system.

Finally, another important aspect in smart spaces is context-awareness: the
process model should be context-aware to adapt to the changes in the environ-
ment [1]. This is surprisingly still neglected in current research about PM applied
to smart spaces. Only S20 supports the modelling of context adaptive routines
by using context-adaptive task models and process trees.

6.2 Abstraction Gap Between Sensor Events and Process Events

The abstraction gap has been recognized as one of the main challenges in BP
applied to IoT data [40].
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The main challenge here is that the solutions proposed in the literature are
dataset- and/or sensor-specific. In most cases only PIR sensor data are available,
witnessing the human performing actions in specific areas of the house. This also
makes the techniques proposed very sensitive to the distribution of sensors across
the environment. In addition, the scarce availability of datasets makes it difficult
to evaluate the proposed approaches across multiple scenarios. In most cases,
datasets from the CASAS project1 are used. This does not provide a sufficient
heterogeneity to ensure a reliable evaluation.

Finally, input from the broader PM literature could help address this issue.
More specifically, generic event abstraction techniques used in PM could also
be used to abstract sensor events into process events (see [39]). In addition to
this, IoT PM methodologies also propose techniques to extract an event log from
sensor data such as, e.g., in S17; a deeper dive in this literature could identify
relevant abstraction techniques for smart spaces.

6.3 Log Segmented into Traces

The proposed approaches for segmentation are usually naive (e.g., automatic
daily based segmentation) or relying on extensive output from the user (i.e., in
manual activity-based segmentation). From this point of view, the open research
challenge is to perform segmentation by using the process semantics and the
context. An initial proposal has been given in [10] where process model quality
measures are used to iteratively segment the log.

In addition to this, segmentation is only a part of the problem, as traces
must be clustered in order to produce event logs that are homogeneous from the
point of view of instances, which is a prerequisite for PM. This is analogous to
the general issue of case ID definition in PM, i.e., pinpointing what an instance
of the process is.

6.4 Future Work

First of all, the study of the best modelling formalism for human behaviour is to
be continued, as many different languages are used and some languages show-
ing potentially useful characteristics have not been used yet (e.g., declarative
models). The choice on the formalism may need to be adapted to the specific
application, and transformations between formalisms may also be a viable option
to meet diverse needs (understandability, actionability, expressiveness, flexibility,
etc.). In addition, the use of contextual information to create more meaningful
models remains for a large part unexplored.

Another issue that stands out is the frequent usage of the same datasets by
the included studies. A large portion of the included studies use one of the most
common datasets from smart homes to perform their research (see Table 2). The
scarce availability of these datasets may explain the trend of studies focusing on
the home environment (see Table 2). While the use of a common dataset makes

1 See http://casas.wsu.edu/datasets/.

http://casas.wsu.edu/datasets/
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it easier to compare the different methods, it might make some of the techniques
less generalisable to other data and other environments.

Another suggestion for future work is to source datasets from more varying
environments. Diversifying the application scenario could benefit the research
community as this might lead to new insights or techniques. Additionally, sim-
ulators could also be developed to generate labelled datasets that can be used
to develop and validate PM techniques for different kinds of smart spaces and
types of sensors.

7 Conclusions

In this paper, we surveyed the application of PM to smart spaces data. A total
of 21 studies were included in the survey and classified according to how they
handle three main identified challenges PM techniques need to deal with when
analysing smart spaces’ data [19]: 1) use of a suitable formalism to represent
human behaviour; 2) abstraction gap between sensor events and process events;
3) log segmentation into traces.

The results showed that there are already some suitable solutions for these
challenges, achieving the mining from sensor measurements to activities, and
sometimes going a step further by identifying habits. However, some important
issues still need to be addressed in future work, such as the selection of an
appropriate modelling formalism for human behaviour mining, the exploitation
of context information, the generalisability of the developed techniques or the
challenge of multi-user environments.
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Abstract. To improve the user experience, service providers may sys-
tematically record and analyse user interactions with a service using
event logs. User journeys model these interactions from the user’s per-
spective. They can be understood as event logs created by two indepen-
dent parties, the user and the service provider, both controlling their
share of actions. We propose multi-party event logs as an extension of
event logs with information on the parties, allowing user journeys to be
analysed as weighted games between two players. To reduce the size
of games for complex user journeys, we identify decision boundaries

at which the outcome of the game is determined. Decision boundaries
identify subgames that are equivalent to the full game with respect
to the final outcome of user journeys. The decision boundary analysis
from multi-party event logs has been implemented and evaluated on the
BPI Challenge 2017 event log with promising results, and can be con-
nected to existing process mining pipelines.

Keywords: User journeys · Event logs · Weighted games · Decision
boundaries

1 Introduction

In a competitive market, a good user experience is crucial for the survival of
service providers [1]. User journeys model the interaction of a user (or customer)
with a company’s services (service provider) from the user’s perspective. One
of the earliest works to map user journeys was proposed by Bitner et al. in the
form of service blueprinting [2]. Current tools can model and analyse individual
journeys with the aim to improve services from the customers’ point of view [3,4].

User journey analysis methods based on event data exploit events recording
the user interactions with a service and its underlying information systems. Due
to the sequential nature of user-service interactions, process mining techniques
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that assume grouped sequences of events as input, have been used to analyse
user journeys [5–8]. For example, Bernard et al. explore and discover journeys
from events [7] and Terragni and Hassani use event logs of user journeys to give
recommendations [5]. Input events are treated in the same way as for the analysis
of business processes: each journey is an instance of a process (case) recorded in
a sequence of events (trace) where each event represents an activity occurrence.

In contrast to a business process, which may include numerous actors and
systems, a user journey is a sequence of very specific interactions between two
parties: the user, and one or more service providers. This invites a specific view on
the source event log, where some events are controlled by the user and others by
service providers. At the end of the journey, some events represent desirable out-
comes for the service provider (positive events) whereas others represent unde-
sirable outcomes (negative events). Such partition of the event log into desired
and undesired cases or process outcomes has been explored before. Deviance
mining classifies cases to investigate deviations from expected behaviour [9]. A
binary partition of the event log into positive and negative cases was used in, e.g.,
logic-based process mining [10,11] and error detection [12]. Outcome prediction
aims to predict the outcome of a process case based on a partial trace [13,14].
However, these works do not consider the interactions between user and service
providers in user journeys as interactions between independent parties. Results
of game theory have previously been used by Saraeian and Shirazi for anomaly
detection on mined process models [16] and by Galanti et al. for explanations in
predictive process mining [17]; in contrast to our work, these works do not use
game theory to account for multiple independent parties in the process model.

In this paper, we propose a multi-party view for user journeys event logs
and present a model reduction based on game theory. We have recently shown
how to model and analyse a user journey as a two-player weighted game, in a
small event log (33 sequences) from a real scenario that could be manually anal-
ysed [15]. However, in scenarios with a large number of complex user journeys,
the resulting game can be challenging for manual analysis. This paper intro-
duces a k-sequence transition system extension on the directly follows graph of
the multi-party game approach presented in [15], and proposes a novel method to
automatically detect decision boundaries for user journeys. The method can be
useful for the analysis of the journeys since it identifies the parts from where the
game becomes deterministic with respect to the outcome of the journey, i.e., the
service provider has no further influence on the outcome afterwards. We apply
our method to the BPIC’17 dataset [18] as an example of complex user-service
interactions, which is available in a public dataset. BPIC’17 does not include
information on which activities are controlled by the user (a customer is apply-
ing for a loan) and which are controlled by the service provider (a bank). We add
this information based on domain knowledge and define multi-party event logs as
an extension of event logs with party information for user journeys. The appli-
cation on BPIC’17 demonstrates the feasibility and usefulness of our approach.
Our results show that we can automatically detect the most critical parts of the
game that guarantees successful and, respectively unsuccessful, user journeys.
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Fig. 1. Construction of the decision boundary reduction.

This analysis could be extended with automated methods targeting predictive
and prescriptive analysis, e.g., recommendations for process improvement.

The outline of our paper is illustrated in Fig. 1. Section 2 introduces necessary
definitions and summarizes user journey games. These are extended with a novel
game theoretical reduction method in Sects. 3 and 4. Section 5 illustrates our
reduction method and the results on BPIC’17 and Sect. 6 concludes the paper.

2 User Journey Games

This section provides background on our previous work on user journey
games [15]. The input to the user journey analysis is an event log [19] stor-
ing records of observations of interactions between a user and one or more ser-
vice providers. An event log L is a multiset of observed traces over a set of
actions [19]. Given a universe A of actions, traces τ ∈ L are finite, ordered
sequences 〈a0, . . . , an〉 with ai ∈ A , i.e., L ∈ B(A ∗). Given an event log L, we
introduce the concept of a multi-party event log L = 〈L,P, I〉 in which each event
belongs to a party, where P is the set of parties and the function I extends the
traces τ ∈ L with information for each event about the initiating party from P .

Transition systems S = 〈Γ,A,E, s0, T 〉 have a set Γ of states, a set A of
actions (or labels), a transition relation E ⊆ Γ×A×Γ , an initial state s0 ∈ Γ and
a set T ⊆ Γ of final states. A weighted transition system S extends a transition
system S, with a weight function w indicating the impact of every event [20].
Weighted games partition the events and consider them as actions in a weighted
transition system, controllable actions Ac and uncontrollable actions Au [21].
Only actions in Ac can be controlled. Actions in Au are decided by an adversarial
environment. When analysing games, we look for a strategy that guarantees a
desired property, i.e. winning the game by reaching a certain state. A strategy is
a partial function Γ → Ac ∪ {λ} deciding the actions of the controller in a given
state (here, λ denotes the “wait” action, letting the adversary move).

User journeys capture how a user moves through a service by engaging in
so-called touchpoints, which are either actions performed by the user or a com-
munication event between the user and a service provider [3]. User journeys are



74 P. Kobialka et al.

inherently goal-oriented. Users engage in a service to reach a goal, e.g. receiv-
ing a loan or visiting a doctor. If they reach the goal, the journey is successful,
otherwise unsuccessful. This can be modelled by a transition system with final
states T , and successful goal states from a subset Ts ⊆ T : every journey end-
ing in t ∈ Ts is successful. A journey’s success does not only depend on the
actions of the service provider—the journey can be seen as a game between ser-
vice provider and user, where both parties are self-interested and control their
share of actions. We define user journey games as weighted transition systems
with goals and self-interested parties [15]:

Definition 1 (User journey games). A user journey game is a weighted
game G = 〈Γ,Ac, Au, E, s0, T, Ts, w〉, where

– Γ are states that represent the touchpoints of the user journey,
– Ac and Au are disjoint sets of actions respectively initiated by the service

provider and the user,
– E ⊆ Γ × Ac ∪ Au × Γ are the possible transitions between touchpoints,
– s0 ∈ Γ is an initial state,
– T ⊆ Γ are the final states of the game,
– Ts ⊆ T are the final states in which the game is successful, and
– w : E → R specifies the weight associated with the different transitions.

The analysis of services with a large number of users requires a notion of user
feedback [3]: Questionnaires provide a viable solution for services with a limited
number of users, but not for complex services with many users. In a user journey
game, the weight function w denotes the impact that an interaction has on the
journey. A user journey game construction is described in [15]. When building
user journey games from event logs, we used Shannon entropy [22] together with
majority voting to estimate user feedback without human intervention. The more
certain the outcome of a journey becomes after an interaction, the higher the
weight of the corresponding edge. Gas extends weights to (partial) journeys so
they can be compared. Given an event log L and its corresponding weighted
transition system S, the gas G of a journey τ ∈ L accumulates the weights when
replaying τ along the transitions in S, G(τ) :=

∑
ai∈τ w(ai).

Formal statements about user journey games can be analysed using a model
checker such as Uppaal Stratego [23]. Uppaal Stratego extends the
Uppaal system [24] by games and stochastic model checking, allowing proper-
ties to be verified up to a confidence level by simulations (avoiding the full state
space exploration). If a statement holds, an enforcing strategy is computed. To
strengthen the user-focused analysis of user journeys, we assume that an adver-
sarial environment exposes the worst-case behaviour of the service provider by
letting the service provider’s actions be controllable and the user’s actions uncon-
trollable. For example, let us define a strategy pos for always reaching a successful
final state. Define two state properties positive for a successful and negative

for an unsuccessful final state. The keyword control indicates a game with an
adversarial environment and A<> searches for a strategy where the flag positive

eventually holds at some state in all possible paths of the game:
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Algorithm 1. Decision Boundary Detection

Input: User journey game G = 〈Γ, Ac, Au, E, s0, T, Ts, w〉, unrolling constant n

Output: Decision Boundary M ⊂ Γ

1: Assert Termination of Model Checker
2: Initialize mapping R : Γ → {True,False}
3: for State s ∈ Γ do

4: Game G′ ← Descendants(s)
5: Game G′′ ← Acyclic(G′, n)
6: Update R(s) ← Query(G′′)

7: Set ΓP ← {s ∈ Γ |
∧

R(s′) ∀s′ ∈ Descendants(s)}
8: Set ΓN ← {s ∈ Γ |

∧
¬R(s′) ∀s′ ∈ Descendants(s)}

9: Add State spos and sneg to G ⊲ States implying outcome
10: for State s ∈ Γ do

11: if s ∈ ΓP then Merge(G, spos, s)
12: else if s ∈ ΓN then Merge(G, sneg, s)

13: M ← ∅
14: for State s ∈ Γ do ⊲ Build decision boundary
15: if {spos, sneg} = {t | t ∈ (s, t) ∈ E} then M ← M ∪ {s}

16: return M

strategy pos = control: A<> positive .

If the strategy pos exists, it can be further analysed and refined to, e.g., minimize
the number of steps or gas to reach a final state within an upper bound time T:

strategy min = minE(steps) [t<= T] : <> positive under pos .

Strategies can be stochastically evaluated using a number of runs X, e.g., evaluate
the minimal gas of the refined strategy within an upper bound time T:

E[t<=T; X] (min: gas) under min.

3 Decision Boundaries

A decision boundary abstracts a game to focus on crucial parts from where the
future outcome is decided. Finding the decision boundary in a complex game can
be useful; e.g., there might be no guarantee to find a successful game strategy
pos (see Sect. 2). Such a strategy can only be found for certain states in the
game, which may be scattered around and therefore hard to analyse when using
non-automatic methods. Moreover, detecting the decision boundary that lead
to outcomes in the game from where there is no possibility of recovery can be
used to propose further recommendations for service improvement. Figure 1b
and 1c illustrate the game abstraction using decision boundaries. The red and
green marked parts of the game in Fig. 1b display guaranteeing areas. Once the
journey reached a state within those areas, the outcome becomes deterministic.
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Since all reachable states from a red or green state share the same outcome, they
can be abstracted away (Fig. 1c).

Algorithm 1 computes the decision boundary for a game G. The mapping R,
from states s to Boolean, stores whether there exists a successful strategy pos

that starts from each state s ∈ Γ (Lines 2–6). The algorithm computes a reach-
able sub-game G′ for every state s using the function Descendants(s), which
computes the parts of G which are reachable from s by path exploration. Func-
tion Acyclic(G′, n) unrolls n times all loops in G′, e.g. by a breadth-first search
strategy. An example of loop-unrolling in games is displayed in Fig. 2. The result-
ing acyclic game G′′ is then model checked with Query(G′′) to look for a suc-
cessful strategy pos. The result is stored in R(s).

Furthermore, some states are segregated into two sets, ΓP and ΓN , based
on the results from the previous computation (Lines 7–8). States from which
it is only possible to reach positive, respectively negative, results are assigned
to ΓP , respectively ΓN . States in these sets guarantee the outcome of the game.
The game is simplified by abstracting all states in ΓP , respectively ΓN , into one
state spos, respectively sneg, using the function Merge (Lines 9–12). Once one
of these states is reached, the journey becomes deterministic; the service provider
has no further influence on the final outcome. The states which point to spos and
sneg form the decision boundary (Lines 13–15).

4 Mining Decision Boundaries

Fig. 2. Unrolling example.

Event logs obtained from user journeys
record actions performed by several parties.
A user can send messages to a service offered
by a service provider and a service provider
can send messages to a user currently using
the service. It is common practice that arte-
facts of these actions are recorded in the ser-
vice provider’s event logs, particularly the
order of actions. However, knowledge about
which party has triggered which action is
commonly ignored while collecting such logs.

In this paper, we approximate multi-party
event logs L by pre-defining a party func-
tion I mapping actions a in event log L to
a party in P = {C,U}, where C denotes the
service provider and U the user. For simplicity, we assume that different service
provider parties are captured by the same party C.

We can now build a user journey game from a multi-party event log fol-
lowing [15] (see Fig. 1 for an overview). We then extend the obtained directly
follows graph to a k-sequence transition system Sk

L = 〈Γ,A,E, s0, T 〉 [25], which
considers states that record the last k actions happening in the traces of L

and stores them in a single state; e.g., the 2-action states of trace 〈a, b, c〉
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are {〈a〉, 〈a, b〉, 〈b, c〉}. This abstraction captures more information in the game,
improving the precision of the game and the alignment between game and log.

We insert an initial state s0 at the beginning of each trace τ ∈ L, and a
final state t ∈ T at the end of each trace τ ∈ L. Let H denote the set of states
corresponding to the k-sequence abstraction for all traces in L, then the states
are defined by Γ ⊆ {s0} ∪ T ∪ H. The transition relation E is constructed over
adjacent actions in all traces τ ∈ L. An edge (si, ai+1, si+1) is in E if there is a
trace τ ∈ L where the last action in state si is followed by the last action ai+1 in
si+1. A transition with action ai+1 in Sk

L, means that the corresponding action
has also been performed in τ .

The constructed transition system Sk
L is transformed into a user journey

game by computing the weights on the transitions (see Sect. 2), and applying
function I to compute the set Ac = {a | I(a) = C} of actions controlled by the
service provider and the set Au = {a | I(a) = U} of actions controlled by the
user. The user journey game is used to compute its decision boundary (Sect. 3).
States behind the decision boundary are merged into successful and unsuccessful
states (Fig. 1c). The result is a strongly reduced game preserving all information
on the decision structure.

5 Evaluation on BPIC’17

The BPI Challenge 2017 (BPIC’17) [18] provides an event log recording actions
in loan applications from a Dutch financial institute. Since this event log has
records of interactions between users and a service provider, including calls, it
is a suitable event log for user journey analysis. However, we needed to make
assumptions to complete the missing information for our scenario, e.g., which
journeys are successful or unsuccessful and infer the party function I with knowl-
edge about which actions are triggered by which party.

The event log contains activities from the following groups: Application (A),
Offer (O) and Workflow (W) [26]. Recorded journeys in the log can end with
three different states: (1) an offer is accepted, (2) the application is declined, or
(3) the application is cancelled. We define a party function I, based on domain
knowledge and official information given in the BPIC’17 forum.1 We assume that
only users can cancel, submit or complete an application, and that users decide
whether calls take place. We further assume that accepted offers are successful
journeys, cancellations are unsuccessful journeys: both parties would prefer a
different outcome since the user spent time in the service and the bank invested
resources, and declined applications are neither successful nor unsuccessful jour-
neys: users followed the whole process without achieving their goal (the bank has
to decline certain offers to protect the users, e.g., from unsustainable debt). We
exclude declined application journeys from the analysis, given their ambiguity.

BPIC’17 is known to include a substantial change in the service provider’s
process, called a concept drift [27], in July 2016. To investigate how this change
impacts the user journey game, we split the log at this month and investigate

1 https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017.

https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017
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both parts separately. The first part contains traces until 30.06.2016, while the
second part contains traces after 01.08.2016.

5.1 User Journey Game Generation

We now report on the generation of the user journey game for the BPIC’17 event
log, with focus on the preprocessing of the data. The full implementation is given
in the accompanying artefact.2 We pre-processed BPIC’17 by discretising the call
durations according to their length, tagging different offers inside one trace, and
ignoring incomplete journeys. This was necessary since records of call durations
vary between seconds to hours and several call interactions in one journey consist
of repeated adjacent occurrences of events associated to one call. To discretise the
duration, we first aggregate repeated and adjacent calls. After the aggregation,
we consider calls with duration under 10 min as “short”; between 10 min and 4 h
as “long”; and above 4 h as “super long”. Single calls with a speaking time below
60 s are omitted in the aggregation. Records of multiple offers can be present in
the same journey. One of these offers can be accepted while the remaining are
cancelled. To simplify journeys, every event associated to an offer or cancellation
is ignored after one of the offers is accepted. Offers are automatically cancelled
if there is no response after 20 days. We differentiate between actively cancelled
offers and cancellations due to time-out, and ignore incomplete journeys and
journeys with declined applications.

We further simplify the event log by removing events that do not influence
the journey; e.g., W Call after offers is always followed by A Complete, therefore
one of them can be removed systematically. We removed outliers and only kept
journeys whose variance is present in the corresponding log more than once.
Journeys resulting in a cancellation are considered unsuccessful, thus Sneg is
attached to them; Spos is attached to the successful ones. After preprocessing,
we generated the user journey game, following the method of Sect. 4. We first
generated the transition system S3

L, with sequence history 3. The party func-
tion I and weight w transformed S3

L into a user journey game.

5.2 Simulation

Fig. 3. Simulations under different
strategies.

Stochastic simulations can help a service
provider to evaluate strategies, to guide their
users along their services, before implement-
ing them. We evaluated different strategies
on the user journey game for BPIC’17 until
July, using Uppaal Stratego to learn and
compare the outcomes. In the experiments
reported in this section, we consider three
strategies. In the strategy max, the service

2 https://github.com/smartjourneymining/bpi games/releases/tag/EdbA22.

https://github.com/smartjourneymining/bpi_games/releases/tag/EdbA22
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provider can guide the user through the service by maximizing the final gas,
while in the strategy step the service provider is minimising the expected num-
ber of steps. We also consider a strategy with the combination of both, both.
Furthermore, we treat the user as controllable to allow a comparative analysis
between the strategies, so that all the strategies reach a positive final state.

Fig. 4. Decision boundaries (Blue) for both
BPIC’17 Event Logs. (Color figure online)

The simulations in Fig. 3 show
the developments of the gas value
under different strategies. The sim-
ulations reveal that users have to
endure a dip in their gas at the
beginning of their journey to reach
the positive final state. From the
customer’s perspective, it is not
optimal to have negative expe-
riences (negative gas) to com-
plete the service successfully. The
strategy max achieves the highest
amount of gas, 33% above step,
but it also causes the largest mini-
mum, 50% more than step, within
the dip. The strategy step reduces
the number of taken steps by 30%,
and improves the gas minimum by
33%, but it also reduces the final
gas by 25%. The combined strategy
both maximizes the final gas while
minimising the expected number
of steps, and yields a comparable
high maximum as max, while reduc-
ing the number of steps by 22%
and holding steps’s improved min-
imum.

5.3 Decision Boundary

An exhaustive search over all
states revealed the decision bound-
aries for both BPIC’17 event
logs, using the algorithm in Algo-
rithm 1. Figure 4a shows the deci-
sion boundary for the first part, i.e.
until July, and Fig. 4b for the sec-
ond part. The states positive and negative incorporate all states with a certain
outcome. Blue states mark the decision boundary. Time-out cancellation edges
are violet, edges with a positive weight are green and edges with a negative
weight are red.
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We first report on the outcomes of the analysis for the first event log and then
for the second one. Our analysis revealed the existence of few paths to successful
final states, and that several journeys time-out very far into the application
process.

Analysing the decision boundary reveals that most states are negatively
biased and have a direct connection to negative. With uncontrollable user actions,
the service provider has no means to guide the user to a successful outcome,
except for a small positive cluster around positive. Most positive states require
long journeys. A detailed analysis reveals that four out of five states in the deci-
sion boundary are related to calls. The action “W Call incomplete files” leads to
the decision boundary from two states and “O Sent (online only)” (only sending
the offer online) from two other states.

The figure reveals many time-out cancellations from various states during
the journey, even for paths that are very far into the application process. Such
cancellations are unsatisfactory for both the service provider and user, since both
parties invested time and resources into the journey and preferred a different
outcome. The service provider can draw two action recommendations: reaching
the positive outcome should be simplified, thus the decision boundary could be
extended, and well-progressed journeys should be increasingly prevented from
time-outs, thus reducing the number of time-outs of progressed journeys.

Figure 4b shows the process model for the later data set. The figure shows
that the process model changed significantly after the concept drift in Juli 2016.
The new decision boundary inherits all states except one and contains one new
state. The positioning of the new boundary has improved. The decision bound-
ary improved in two parts: it reaches further into the negative part of the game
and increased in size. While the previous decision boundary contained only five
states, the updated decision boundary contains seven states. The updated deci-
sion boundary includes four out of five states of the previous decision boundary
and the fifth state lies now before the decision boundary. Additionally, it con-
tains three new states: one was previously in the positive cluster, one was prior
to the decision boundary and one new state.

Besides the total number of nodes also the reachability of the decision bound-
ary improved. The number of nodes reaching the decision boundary increased
by 1

3 . The amount of timeouts within advanced journeys is reduced. Customers
that continue far into the journey are more prone to finish successfully or to can-
cel by themselves. The average number of actions from start to time-out reduced
from 5.4375 to 5, thus the user journey improved generally.

The service provider can now start to investigate the actions related to states
in the decision boundary.

6 Conclusion

This paper proposes a novel view on user journey event logs by introducing multi-
party event logs that differentiate between the actors of actions leading to events.
To promote a user-centric view, the service provider is modelled as controllable
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and the user as uncontrollable. Based on such a multi-party event log, we show
how to use user journey games to model the interaction between user and service
provider, and use model checking to find strategies with guaranteed outcomes.

We introduce an analysis to identify decision boundaries; these constitute a
crucial part of a game at which the outcome of the user journey is determined.
Decision boundaries are useful since strategies that guarantee a positive out-
come for all paths are unlikely in complex user journeys. The decision boundary
additionally serves to reduce the size of the game. This enables us to apply the
user journey game approach to the BPIC’17 dataset, which is a real-life event
log of a complex user journey that can be transformed to a multi-party event
log. The decision boundary gives clear insights into determining factors for the
BPIC’17 user journey before and after a concept drift. Our analysis reveals the
changes done in the workflow and demonstrates the support and applicability for
further analysis through our method, assuming a transformation of the BPIC’17
event log into a multi-party event log, and assuming that users actually have an
influence on their journey through their active decisions.

User journey games and decision boundary analysis open many interesting
directions for future work. We plan to combine user journey games with well-
established process mining tools to discover process models for behaviour leading
to determining states. Furthermore, we would like to automate recommendations
for improvement, based on the decision boundary. While the decision boundary
is helpful for analysing the interaction between a user and service providers, the
analysis is still hand-made. We also plan to generalise the approach to cyclic
models to make it agnostic to the current unrolling bound n in each cycle. Fur-
thermore, we would like to investigate probabilistic games to capture ambiguities
within user actions. Finally, we would like to implement a multi-party event log
in cooperation with companies to study real interactions between user and ser-
vice provider.
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Abstract. Complexity is an important aspect of business processes.
Numerous metrics have been introduced to measure process complexity,
however, existing metrics view processes merely as sequences of activi-
ties, disregarding the corresponding data. This is a major omission since
much of the complexity of business processes stems from the variation of
data that is associated with it. In this paper, we refer to recent research
on how behavioral complexity of business processes can be defined. More
specifically, we extend entropy-based complexity metrics such that they
are capable of capturing the variation of event data. We provide some
first insights into the implications of applying these newly proposed
metrics.

Keywords: Process complexity · Event data · Graph entropy

1 Introduction

The central objectives of Business Process Management (BPM) is the improve-
ment of process performance [5]. One of the factors hampering process perfor-
mance is complexity. For this reason, it is key prerequisite for process improve-
ment to be able to, first, measure process complexity in an appropriate way and,
then, define measures to address it.

Prior research has contributed to our understanding of how process complex-
ity can be measured based on event logs [1]. However, it is an important omission
that these event-log measures are defined purely based on the behaviour aspects
of event sequences. This neglects observations from work on process standard-
ization that identified eleven theoretical dimensions that are tied to process
standardization [13]. Notably, two of them relate to inputs & outputs and to
data. Also other fields like Machine Learning acknowledge the importance of
data complexity and its impact on results of, e.g., prediction models. So far,
there is no process complexity measure that reflects the complexity of data.

In this paper, we address this research problem and discuss how the complex-
ity of process-related data can be integrated with process complexity measures.
To this end, we extend an existing entropy-based process complexity metric with
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aspects of process-related event data. We provide a preliminary evaluation on an
artificial as well as a real-life event logs and discuss directions for future work.

The remainder of this paper is organized as follows. Section 2 introduces
existing complexity metrics and their limitations. Section 3 presents our app-
roach. Section 4 shows the preliminary evaluation, its discussion and limitations
of this paper. Section 5 concludes the paper.

2 Background

This section discusses the background of our research. We first reflect upon prior
contributions to measuring process complexity based on event logs. Then we turn
to approaches from neighboring fields on how to measure data complexity.

2.1 Process Complexity Metrics

Over the years, several process complexity metrics have been introduced. They
have focused on one of the following aspects: size, variability and distance. Size-
based metrics count properties of an event log, such as the number of events,
traces, average trace length, etc. Metrics related to variability show the variation
in the event log, they often build transition matrices based on directly-follows
relations observed in the event log [1] or use the number of unique sequences
in the log [12]. Distance-based metrics measure the difference between traces in
the event log, e.g. affinity of two event sequences, i.e. the extent to which the
directly-follow relations of the sequences overlap [6].

Recently, complexity metrics based on graph entropy have been introduced:
variant entropy, normalized variant entropy, sequence entropy and normalized

sequence entropy [1]. The latter one has been proven to capture all the three
aspects of process complexity and also correlate with the complexity of the dis-
covered process models. A major drawback of all these metrics is, however, that
they are sill solely focused on the behavior and ignore event data.

2.2 Data Complexity Metrics

Machine Learning domain has a long history of measuring data complexity. This
is not surprising as the complexity of the input data is expected to influence the
performance of the predictions. Researchers in the Machine Learning domain
generally used three kinds of complexity metrics proposed in [7] and [8]:

1. Measure of overlap: Fisher’s discriminant ratio (F1), volume of overlap region
(F2), feature efficiency (F3).

2. Measure of class separability: The minimized sum of the error distance of a
linear classifier (L1), training error of linear classifier (L2), the ratio of average
intra/inter class nearest neighbor distance (N2), leave one out error rate of
the 1-NN classifier (N3).
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3. Measure of geometry, topology and density of manifolds: Nonlinearity of lin-
ear classifier by Linear programming (L3), nonlinearity of 1-NN classifier
(N4), space covering by ǫ-neighborhoods (T1), average number of points per
dimension (T2), density (D1).

These metrics have been widely used for different tasks, e.g. [9] uses them
for the selection of suitable normalization technique for a particular classifica-
tion problem, [10] uses some of the data complexity measures to estimate the
significant intervals for oversampling.

However, such complexity metrics have limited applicability in the process
mining domain. First, these metrics measure assume the data has class labels
and, moreover, implicitly assume that these labels are fixed. They then measure
complexity with respect to this classes, e.g. overlap between classes or class sep-
arability. While such metrics seem useful for some applications, e.g. categorical
outcome prediction in Predictive Process Monitoring, they would provide little
help when the data is not split into classes at all or these classes are not relevant
for the problem at hand, e.g. remaining time prediction. Furthermore, even if
useful, such metrics would give different results for the same data depending on
the problem, e.g. if the same dataset is used for categorical outcome and next
activity prediction, the classes for two problems would be different and thus
the complexity measurements. Second, a study has shown that while some of
the data complexity metrics provide useful information, e.g. are connected with
classifier performance, they cannot be used to compare different datasets wihh
different characteristics [2]. Finally, these metrics ultimately treat the data as a
sample of independent observations, ignoring the process notion and the corre-
sponding relations between the data points, i.e. events. This might be a critical
drawbacks for process mining applications.

While the former drawbacks could theoretically be fixed by taking a step back
and using entropy or Gini index of the entire dataset as a metric of complexity,
the latter problem of losing the process notion would still persist. Thus, our
goal in this paper is to extend an existing process complexity metric with the
capability of considering data complexity as well.

3 Approach

In order to incorporate data complexity into a process complexity metric, we
extend the existing complexity metrics based on graph entropy [1]. First, we
introduce Enriched Extended Prefix Automata that include event data. Second,
we introduce cumulative complexity metrics that allow to study in more detail
how the complexity changes as new events are observed.

Extended Prefix Automata (EPA), introduced in [1], are a representation
of business processes without abstraction. However, in its basic form, an EPA
only contains information about the behavior. It means, the transitions between
states are only labeled with activity labels, and the events in the EPA only
contain activity label, case ID timestamp and a link to the predecessor event.
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Enriched EPAs, or EEPAs for short, are EPAs enriched with other event data.
In essence, it is achieved in the following way. First, an event in the EEPA does
not only contain its basic attributes (case ID, activity label, timestamp and pre-
decessor) but also an Attribute Container, where all trace and event attributes
are stored. The distinction between trace and event attributes is made in order
to prevent name collisions, otherwise these attributes are treated equally, and
each event in the trace contains all trace attributes of its trace. The EEPA con-
taining such events is then a state automaton with guards. Thus, the transitions
of an EEPA are labeled not only with activity labels but also with correspond-
ing attribute values. In order to follow a transition on EEPA, the event thus
should have not only a matching activity label but also matching attributes.
In case there is no matching transition, a new partition with new state and a
corresponding new transition is added to an EEPA, in the same way as a new
partition is added to an EPA on a previously unobserved prefix. One can then
apply the same complexity metrics to an EEPA as to an EPA – variant entropy,

normalized variant entropy, sequence entropy and normalized sequence entropy

– but they will now take data into account as well because the underlying EEPA
is partitioned based on behavior and the data.

Fig. 1. Difference between an extended prefix automaton and an enriched extended
prefix automaton built from the same event log.

Figure 1 shows the difference between an EPA and an EEPA built from the
same event log L = [〈a, b, c〉2, 〈a, c, d〉] where in of the 〈a, b, c〉 traces the activity
b carries event data value1 and in the second one value2. While the EPA only
has 2 partitions and both 〈a, b, c〉 traces belong to partition 1, the corresponding
EEPA makes difference between these two traces based on the event data and
thus puts these traces in 2 different partitions and has 3 partitions in total.
This necessarily means an EEPA would have more states and partitions than
an EPA built from the same log, leading to higher variant entropy. An EEPA is
also expected to have higher sequence entropy and normalized sequence entropy
as it has more partitions with the same number of events. This is, however, not
necessarily the case for normalized variant entropy exactly because an EEPA has
more partitions but at the same time more states than a corresponding EPA.
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It is important to note though that attribute selection plays a crucial role in
building an EEPA. If an event log is rich in attributes, including them all might
lead to an EEPA where every trace is represented with a separate partition,
which is not too insightful. First, it is recommended to use only categorical vari-
ables, since numeric ones have a much lower probability to coincide on different
events. Thus, existing numerical attributes should either be disregarded or trans-
formed into categorical bins, where the size of the bins also has significant impact
and thus should be chosen with caution. Second, for the same reason it might
be meaningful to also perform similar binning even on categorical attributes in
case they have a large number of values. Finally, one should consider based on
the value ranges as well as the attribute description whether the attribute is
relevant at all and possibly reduce the pool of attributes used.

Our claim is that data adds an additional layer of complexity on top of
behavior. Thus, it is interesting to observe how complexity of a process increases
over time by adding new data values while the behavior stays exactly the same.
In order to do so, we also introduce the concept of cumulative complexity. That
is, we want to not only measure the total complexity of the entire log but also
want to see how it evolved, i.e. how new behavior and/or data influenced the
complexity. To this end, we introduce the concept of an active event which is
an event in the (E)EPA that happened (arbitrarily far in the past) before some
threshold timestamp, i.e. an event having a timestamp smaller than some given
threshold. Similarly, an active state is a state in an (E)EPA that includes at
least one active event. Then we only consider active events/states for measuring
sequence and variant entropy, respectively.

By gradually increasing the threshold, we can add more and more events
to the (E)EPA as if we were building it in real time and get the complexity
metrics at each point in time, e.g. at the end of each week, month, year, etc.
It is equivalent to measuring complexity after each period and then continuing
to build the (E)EPA, however, can be repeated indefinitely with different time
granularity over the same automaton. In addition, it enables to use two kinds of
normalization.

Normally, the variant and sequence entropy are calculated using all
states/events in an EPA. Then, the normalization is done by dividing the met-
ric by |X|log(|X|), where |X| is the total number of states/events in the EPA.
When normalizing cumulative metrics, however, there are two possibilities. While
variant and sequence entropy are obviously measured over active states/events,
when it comes to normalization these metrics can be divided by either the num-
ber of active states/events or by the total number of the states/events in the full
(E)EPA (containing the full event log). The former option would be indeed equiv-
alent to measuring normalized metrics at the end of each time period, and the lat-
ter one allows to observe cumulative growth of the normalized metrics over time.
These 6 cumulative complexity metrics – variant entropy, variant entropy nor-

malized over active states, variant entropy normalized over all states, sequence

entropy, sequence entropy normalized over active events, sequence entropy nor-
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malized over all events – equip us with the means of observing how new events
(carrying new behavior and/or data) influence the complexity.

4 Evaluation

In this section, we present the preliminary evaluation of our approach. First,
with an artificial event log and then with real-life event logs. Next, we discuss our
results and report current limitations. The implementation is publicly available
on GitHub1.

4.1 Artificial Event Log

We use an example loan process application from [5] shown in Fig. 2. We manu-
ally created an event log with 10 traces. All events have a user associated with
it. The event Loan application received is always associated with a user System,
which is not considered further. The events associated with the activity Assess

loan risk have a categorical variable Risk and the events associated with the
activity Appraise property have a numerical variable Price. In the first month,
there are 4 traces following 2 variants with 1 user and 2 risk levels. In the second
month, additional 2 variants are introduced. In the third month, additional user
is added who follows the same variants. Finally, in the fourth month additional
risk level is added, while the users and variants are kept the same. The prices
vary over the entire event log.

Reject
applicat ion

Send
acceptance

pack
Acceptance
pack sent

Loan
applicat ion

rejected
Assess

eligibility

Prepare
acceptance

pack

Check credit
history

Appraise
property

Loan
applicat ion

received

Assess loan
risk

applicant
eligible

applicant
not eligible

Fig. 2. Loan process, reused from [5].

We then computed the four complexity metrics – variant entropy, normalized
variant entropy, sequence entropy and normalized sequence entropy – for this log
but varied the data that we took into consideration. Table 1 shows the results.
The first row corresponds to an EPA that only considers the behavior and uses no
data. The second row corresponds to an EEPA that only uses the User variable
of the events, and so on. We also split the numeric price into 3 bins to show how
numeric data can also be incorporated.

As we can see, the complexity of the EEPAs using additional data on top
of behavior is considerably higher than the complexity of an EPA. We also see

1 https://github.com/MaxVidgof/process-complexity.

https://github.com/MaxVidgof/process-complexity
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Table 1. Complexity of the artificial event log using different amount of event data.

Data Variant
entropy

Normalized
variant entropy

Sequence
entropy

Normalized
sequence
entropy

None 16.25 0.4 47.16 0.17

User 42.58 0.53 95.64 0.35

User & Risk 80.0 0.56 118.52 0.44

User & Risk

& Price (binned) 109.12 0.59 135.94 0.50

User & Risk

& Price (numeric) 109.12 0.59 135.94 0.50

that all metrics continue to grow as we consider more variables since it leads to
higher partition counts in the EEPA.

Fig. 3. Cumulative variant entropy for simple EPA and an enriched EPA with User

and Risk event data.

Cumulative complexity metrics also enable us to observe how the complexity
changes as new events are observed. For instance, Fig. 3 shows the development
of variant entropy. When only behavior is considered (Fig. 3a), the complexity
stops growing as soon as all variants are observed. When the event data is also
taken into account (Fig. 3b), however, variant entropy continues to grow even
when all variants are observed because of the new data: new user introduced in
March and new risk level added in April.

4.2 Real-Life Event Logs

We also conducted a preliminary evaluation of our technique on the Business
Process Intelligence Challenge logs from years 2012 [4], 2013 [11] and 2015 [3].
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For each event log, we did the following. First, we filtered the event logs such
that they contain only categorical attributes, i.e. we removed all attributes hav-
ing numeric values or representing dates. Second, we generated an Extended
Prefix Automaton from each log. We will further refer to these automata as sim-
ple EPAs. We calculated variant entropy, normalized variant entropy, sequence
entropy and normalized sequence entropy for each of these simple EPAs. Further-
more, we calculated cumulative metrics – variant entropy, variant entropy nor-
malized over active states, variant entropy normalized over all states, sequence
entropy, sequence entropy normalized over active events, sequence entropy nor-
malized over all events – for each month from the month of the rirst event in the
respective log to the month of the last event. Then, we generated Enriched
Extended Prefix Automata (enriched EPAs or EEPAs) from the same logs
repeated the same procedures, i.e. calculated the 4 total complexity metrics as
well as 6 cumulative complexity metrics over time. As a result, for each log we
had 4 complexity metrics for the corresponding simple EPA, 4 complexity met-
rics of the corresponding EEPA, 6 time series of cumulative complexity metrics
for the EPA and 6 time series of cumulative complexity metrics for the EEPA.

First, we wanted to evaluate whether the new metrics adequately depict
the additional complexity introduced by event data. Two-sided t-test reported
significant difference between normalized sequence entropy of the enriched and
the simple EPA. In all cases, except the normalized variant entropy, the metric
for the enriched EPA was greater than of its simple counterpart. Thus, we also
performed one-sided t-tests. While the p-values were considerably smaller in all
cases, normalized sequence entropy still remained the only one with significant
difference (p-value 0.01). Interestingly, difference in variant entropy was also
close to significant (p-value 0.09). More observations might render it significant
as well.

For each of the logs we also compared the time series of the 6 cumulative com-
plexity metrics measured with the simple and enriched EPAs. Here, we not only
performed two-sided t-tests that would say whether the difference in means of
the two samples is significant but also performed two-sided Kolmogorov-Smirnov
tests that would assess whether two samples come from the same continuous dis-
tribution. It is important to note that some event logs carry events from before
the observation period, e.g. BPIC 2012 includes some events from late 2011.
This introduces periods having only 1 event and thus entropy metrics equalling
0, which might influence the value distribution. Thus, in such cases we also filter
the metrics for the corresponding event log, keeping only non-zero observations.
Periods with non-zero observations are naturally the same for the metrics com-
puted with EPA and EEPA.

The results of these tests can be seen in Table 2. The columns in the table
represent the metric, the rows are different time series pairs (for a simple and
enriched EPA) and cells indicate whether there was a significant difference
between two time series. T means t-test reported significant difference and K

means Kolmogorov-Smirnov test reported significant difference. We say the dif-
ference is significant when the p-value is below 0.05.



92 M. Vidgof and J. Mendling

Table 2. Differences in cumulative complexity metrics of enriched extended prefix
automata and extended prefix automata for real-life event logs. T stands for sig-
nificant difference reported by t-test, K stands for significant difference reported by
Kolmogorov-Smirnov test.

Data Variant
entropy

Normalized
variant
entropy
(active)

Normalized
variant
entropy
(all)

Sequence
entropy

Normalized
sequence
entropy
(active)

Normalized
sequence
entropy (all)

BPIC12 TK TK

BPIC13 K

BPIC13 filtered TK

BPIC15 1 TK K TK

BPIC15 2 K

BPIC15 2 filtered TK

BPIC15 3 TK K TK

BPIC15 3 filtered TK K TK

BPIC15 4 K K K

BPIC15 4 filtered T K TK

BPIC15 5 T K

BPIC15 5 filtered T K TK

As we can see, sequence entropy normalized over active events significantly
differs for all event logs with Kolmogorov-Smirnov test and for almost all event
logs with t-test. Variant entropy shows significant difference with Kolmogorov-
Smirnov test in 4 logs and with t-test in 7 logs. Variant entropy normalized over
active states shows significant difference in Kolmogorov-Smirnov test in 6 logs.
Finally, sequence entropy normalized over all events shows significant difference
with Kolmogorov-Smirnov test in 1 log.

4.3 Discussion

The evaluation on the artificial log shows that the new metrics are capable of
highlighting the complexity introduced by new event data. While some of this
increased complexity could be uncovered by using existing process complex-
ity metric in conjunction with auxiliary metrics, e.g. the added user could be
also spotted with Social Network Analysis and multimple risk levels could be
extracted from internal documentation or a BPMS, this would not necessarily
work with all data, especially if this data comes from external sources. It is also
important to note that while binning indeed allows taking numerical data into
consideration, the efficiency of such method largely depends on the granularity,
since if set too high it might bring no additional value compared to directly using
numerical data.

Evaluation on the real-life logs further confirms these results. Normalized
sequence entropy seems to highlight the increase in complexity due to data in
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the most effective way. This is not surprising as normalized sequence entropy
also the only one that significantly correlates with, e.g. model complexity [1]
and may just be a better metric.

When it comes to the cumulative metrics, sequence entropy normalized over
active events shows best significance, also confirming the above stated ideas. As
expected, also the differences in variant entropy are significant. The underlying
idea that with the same behavior more distinct data would lead to more branch-
ing and more partitions in the EEPA than in the EPA of the corresponding log,
which would also logically lead to higher variant entropy, seems to have found
its confirmation. The fact that such effect is observed not in all event logs may
be attributed to lower difference in data in the other logs. However, it needs
further and more detailed investigation.

4.4 Limitations

This paper is a work in progress and thus suffers from a range of limitations.
First, there are limitations in terms of the implementation. While it is capable
of handling smaller event logs, it does not scale well, thus restricting evaluation
and, more importantly, real-life application of the metrics. Second, the attribute
selection in the real-life log evaluation was superficial. It considered all of the
categorical attributes and none of the numeric ones. More thorough selection
of categorical attributes as well as meaningful binning of the numeric ones is
expected to give more adequate results. Third, only basic statistical methods
were used for the analysis, especially when it comes to cumulative metrics. While
they are definitely time series, no analysis techniques specific to this kind of data
has been applied yet.

5 Conclusion and Future Work

Complexity is important aspect of business processes that requires thorough
studying. While existing process complexity metrics are successful in measuring
behavioral complexity of the processes, they completely ignore the data associ-
ated with the events and thus miss the next layer of complexity that is added
by this data. On the other hand, there exist data complexity metrics, however,
they do not have the notion of process and also have other implicit assumptions
that limit their usability in process mining.

In this paper, we proposed a set of new process complexity metrics that take
into account event data in addition to behavior. These metrics are based on
existing complexity metrics for Extended Prefix Automata but use an updated
version of such automata – Enriched EPAs. We conducted preliminary evaluation
on a small artificial example as well as on a set of real-life event logs.

The initial results show that our new metrics capture the data complexity
in addition to behavior complexity. We plan to extend our evaluation on more
real-life logs, improve the implementation and analyse the results in more detail.
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3rd Workshop on Responsible Process Mining (RPM)

Process mining has been successfully applied in analyzing and improving processes

based on event logs in all kinds of environments. Responsible Process Mining (RPM)

is highly relevant to our more and more data-driven society and has received less focus.

FACT (Fair, Accurate, Confidential, and Transparent) and similar other principles for

data science and machine learning have been proposed1 to guide the development and

application of data science. Issues such as lacking data quality in event logs, identifiable

personal data in event logs, biased event logs, learning, discovery techniques with opaque

parameters, uncertain event data, and many more aspects threaten compliance with these

principles in process mining. However, process mining could also be applied to help with

the “FACT-ful” application of machine learning and other data-driven techniques by

bringing transparency. All such aspects of RPM were in the scope of the RPM workshop

thereby covering a wide range of concepts and challenges such as fairness, accuracy,

confidentiality, privacy, transparency, explainability, trust, data quality, ethics, security,

and other related topics.

The main objective of the RPM workshop was to create a forum where researchers

and practitioners can meet each other and start new collaboration points to promote

responsible process analytics. We also considered topics from the ethics aspect to clar-

ify real ethical issues for the process mining community with respect to the rules and

regulations. We invited researchers and industry to share their research, ideas, experience

reports, and challenges in this area.

For this year’s edition, we received seven papers that cover all three topics and both

perspectives. From them, we were able to accept three full papers for presentation and

inclusion in the workshop proceedings. In addition, we invited one submission for a

presentation-only session.

Our workshop program was joined together with the workshop on the related topic

on Data Quality and Transformation in Process Mining (DQT-PM). We started with an

inspiring keynote on “Sustainability at Celonis” by Janina Nakladal. “Discrimination-

Aware Process Mining: a Discussion” was presented as the first paper in the workshop.

It gave an overview on how fairness metrics can be applied in a process mining setting.

The second paper “BERMUDA: Participatory Mapping of Domain Activities to Event

Data via System Interfaces” proposes a solution for mapping domain activities to specific

events. The full paper session was wrapped up with the paper “TraVaS: Differentially

Private Trace Variant Selection for Process Mining” which is a novel approach for the

differential private publication of trace-variant counts. Finally, we discussed the question

“Can we trust Process Mining results?” for which we invited Anne Rozinat (Fluxicon)

and Sander Leemans (RWTH Aachen) to bring their views from practice and research.

Around 30 attendees were present during the keynote, workshop presentations, and

panel discussions. Due to the generous support of the ICPM organizers, we could award

the best presentation. The Best Paper Award of the RPM workshop in 2022 went to

1 https://redasci.org.

https://redasci.org
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Majid Radfiei, Frederik Wangelik, and Wil M.P. van der Aalst for “TraVaS: Differentially

Private Trace Variant Selection for Process Mining”.

November 2022 Felix Mannhardt

Flavia Maria Santoro

Majid Rafiei

Stephan Fahrenkrog-Petersen



Organization

Organizing Committee

Felix Mannhardt Eindhoven University of Technology,

The Netherlands

Flavia Maria Santoro University of the State of Rio de Janeiro,

Brazil

Majid Rafiei RWTH Aachen University, Germany

Stephan Fahrenkrog-Petersen Humboldt-Universität zu Berlin, Germany

Program Committee

Agnes Koschmider Kiel University, Germany

Alessandro Stefanini University of Pisa, Italy

Florian Tschorsch Technical University Berlin, Germany

Gamal Elkoumy University of Tartu, Estonia

Luciano Garcia Bañuelos Tecnologico de Monterrey, Mexico

Martin Kabierski Humboldt-Universität zu Berlin, Germany

Moe Wynn Queensland University of Technology,

Australia

Nicola Zannone Eindhoven University of Technology,

The Netherlands

Renata de Carvalho Eindhoven University of Technology,

The Netherlands

Shangping Ren San Diego State University, USA

Xixi Lu Utrecht University, The Netherlands



Discrimination-Aware Process Mining:

A Discussion
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Aachen, Germany

timo.pohl@rwth-aachen.de, {m.s.qafari,wvdaalst}@pads.rwth-aachen.de

Abstract. Organizations increasingly use process mining techniques to
gain insight into their processes. Process mining techniques can be used
to monitor and/or enhance processes. However, the impact of processes
on the people involved, in terms of unfair discrimination, has not been
studied. Another neglected area is the impact of applying process mining
techniques on the fairness of processes. In this paper, we overview and
categorize the existing fairness concepts in machine learning. Moreover,
we summarize the areas where fairness is relevant to process mining and
provide an approach to applying existing fairness definitions in process
mining. Finally, we present some of the fairness-related challenges in
processes.

Keywords: Process mining · Fairness · Discrimination

1 Introduction

Organizations interact with and affect people, such as customers, employees,
or stockholders in many forms. They operate in various sensitive environments
such as education, employment, healthcare, and finance. Processes taking place
in such sensitive environments often have important and life-changing effects on
the people involved. Moreover, such processes typically involve several decision-
makings which are performed by human resources or (supported by) machine
learning algorithms trained on historical data. These decision-makings are one of
many factors that make processes vulnerable to various forms of discrimination.
See [20] for real-life examples of discriminatory outcomes produced by algorith-
mic decision makers. As the impact of processes on the people involved can be
very drastic, it is crucial to be able to identify instances of discrimination within
processes in order to minimize negative impacts.

Process mining is a set of techniques that combine data science with model-
based process analysis to enable the understanding and improvement of opera-
tional processes. Even though the concept of responsible data science has been
investigated in process mining related literature, [2,4], to the best of our knowl-
edge, in this area, [23] is the only work dedicated to fairness. In this work, making
fair conclusions, which is one of the main aspects of fairness in process mining, is

c© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 101–113, 2023.
https://doi.org/10.1007/978-3-031-27815-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27815-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-27815-0_8
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investigated. Here, we mainly focus on another main aspect of fairness in process
mining: detecting unfair discrimination against cases and resources. Intuitively,
(unfair) discrimination is the act of treating similar individuals in the same sit-
uation differently based on one or more protected attributes, such as ethnicity,
race, gender, (dis)ability, or sexual orientation [11].

Typically, process mining techniques are categorized into three types: process
discovery, conformance checking, and process enhancement. Figure 1 (adapted
from [1]) shows the interaction between the processes, the environment they
take place in, and the process mining techniques. Processes impact their envi-
ronment, which may intentionally or unintentionally pose discrimination towards
the people in their environment. This discrimination might have stemmed from
the process itself, its resource(s), or learned from the historical data. The inter-
action between the process and its environment is captured by the information
systems and manifests itself in the event log. The discrimination level of the
process can get aggravated by applying the results of process mining techniques
on event logs containing discrimination.

Fairness is a context-sensitive concept. Consequently, there is a huge number
of fairness definitions in the literature, some of which are in contradiction with
each other [8]. Furthermore, there is a lack of consensus, both in academia and
society, on which definition of fairness is the correct one [14,16]. This makes it
hard to decide on the proper definition of fairness to audit a process.

This issue is aggravated when there are multiple human entities with different
roles and desires in an organization as each one may entail a different notion
of fairness. Therefore, in this paper, we categorize the fairness concepts and
definitions based on their properties such that it makes it easier for the user to
select the appropriate one. We discuss some of the applications and challenges
of applying fairness in process mining. Moreover, we elaborate on a mapping
between the existing techniques to measure fairness and process mining.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief
overview of fairness considerations in literature and describe common fairness

Fig. 1. Process evolution diagram; positioning of the three main types of process mining
[1]. Some of the areas where discrimination can play a role in process mining are shown
in this picture.
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concepts and measures. In Sect. 3, we discuss the possible applications of fairness
in process mining. In Sect. 4 we elaborate on mapping the existing fairness defi-
nitions to process mining. Finally, in Sect. 5, we conclude and provide directions
for future work.

2 Literature Review

In this section, we provide an overview of the fairness understandings, concepts,
and measures defined in the literature. We start by defining relevant terms and
concepts. Then, we present a taxonomy that provides an overview of various
fairness measures. Due to the extensive amount of fairness-related scientific lit-
erature, we present only concepts and measures potentially relevant to the area
of process mining. For a comprehensive overview of fairness research, we refer
interested readers to [8,16,20,25].

2.1 Relevant Terms

Here, we briefly discuss terms relevant to fairness. For a detailed discussion on
such fairness fundamentals, we refer readers to Chap. 3 of [10].

– Discrimination: The word discrimination means “to divide”, “separate”, “dis-
tinguish”, which is exactly the goal of classification. Therefore, discrimination
itself is not necessarily unjust or unfair. However, discrimination is considered
unfair if individuals receive harmful treatment based on their membership to
a specific group [3].

– Protected groups/Sensitive attributes. A protected group is a subgroup of the
population. The attributes indicating if an individual belongs to a protected
group are called sensitive attributes.

– Outcome. Outcome is an attribute that captures an aspect of the system that
is supposed to be fair. It is important to note that not just the outcome is
context-dependent, but also its desirability. For example, in a hospital con-
text, less waiting time for visiting a doctor is more desirable while more wait-
ing time (up to a threshold) between an elaborate surgery and the discharge
of a patient is more desirable.

2.2 Fairness Taxonomy

In this subsection, we present fairness concepts and measures defined in machine
learning literature. We structure these measures in a taxonomy (Fig. 2), which is
an extension of the fairness tree presented by Saleiro et al. in [25]. The fairness
definitions in machine learning can be conceptually divided into group fairness
definitions and individual fairness definitions [7,24,28].

Group Fairness assesses the (approximate) parity of some statistical measure
across all demographic sub-populations [7,15]. The group fairness measures are
further divided into three categories: disparate distribution, disparate represen-
tation, and disparate error.



104 T. Pohl et al.

1. Distribution-based fairness. Here, the main idea is that the distribution of
the predictions should be similar across all subgroups [21]. Another example
of distribution-based fairness measures is proposed in [9].

2. Measures assessing representation. The fairness measures in this category
are based on the representation of the various subgroups in the outcome of
a classifier or a subset selection method [13]. Based on the application and
context, the measures are further divided into the following two categories.

– Coverage-based fairness. In this category of measures, the main concern
is either having the same number of people from each group or having a
number proportional to their relative representation in the whole popu-
lation in the selected/sampled groups [25].

– Ranking-based fairness [17] defines measures for assessing representation
tailored for scenarios in which individuals are ranked according to some
predicted score. It also assumes a notion of ground truth which indicates
the correct ordering. In essence, this definition requires that every sub-
group has an equal representation in the top-n candidates in both rank-
ings, one ranked by ground truth, the other by predicted score. Another
example of ranking-based fairness is defined in [27]. Here, the fairness cri-
terion is that the number of protected elements in the top-n candidates
(for every n) is the same number that would be expected if the top-n
candidates were picked at random from the overall population.

3. Measures assessing error. This group of measures assesses the discrimination
made via errors made by the predictor and requires the existence of some
predicted value, as well as a notion of ground truth [6,16]. These measures
are further subdivided into three contextual categories: assistive, punitive,
and neutral.

– Assistive context. In this context, a positive classification is assumed
to bring benefits to the individuals, therefore false negatives are more
undesirable in terms of fairness than false positives.

– Punitive context. This context is exactly the other way around, i.e., a
positive classification is assumed to bring negative consequences for the
individuals. Hence, false positives are more undesirable in terms of fairness
than false negatives.

– Neutral contexts. Here, we assume that false negatives and false positives
are equally undesirable.

The main advantage of group fairness definitions is their simplicity. They can
be easily explained and verified [8]. However, their main drawback comes from
the fact that this category of fairness definitions provides guarantees only to
“average” members of the protected groups. Consequently, they do not provide
guarantees to individuals or subgroups within the protected groups. Moreover,
some of these measures can be at odds with one another [8].

It is important to note, that group fairness measures based on parity require
some assumptions. The main assumption is that differences between groups are
due solely to unwarranted bias and that all warranted differences have been
eliminated (for example by removing them from the data) [15]. This includes
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the assumption that the reasons for existing differences do not lie in the choices
of individuals but in factors outside of their control [15]. If these assumptions
apply, these measures can help in correcting the unjust bias. However, if these
assumptions do not apply, enforcing them can lead to outcomes that are unfair
from the perspective of an individual or it can lead to a form of reverse discrim-
ination towards the rest of the population [16].

Individual Fairness assesses the similarity of the outcome of pairs of similar
individuals ignoring their differences in terms of protected attributes [9]. Two
main techniques for assessing individual fairness are similarity-based fairness
and counterfactual fairness (highlighted in yellow in Fig. 2).

1. Similarity-based fairness assesses individual fairness by using two similar-
ity metrics. The first metric estimates the similarity of two individuals. The
second metric estimates the similarity of the outcomes that two individuals
received. To assess the fairness from individual A’s perspective, one simply
matches A to the most similar individual(s) in the data. Then, the similar-
ity of the two individuals is compared with the similarity of their outcomes.
By doing this for every individual in our data, we can measure how sim-
ilarly similar individuals are treated. Examples of similarity-based fairness
measures can be found in [9,28].

2. Counterfactual fairness is formulated in the context of fair classifications. The
main idea is to investigate the question of “how would the prediction change if
the protected attribute of an individual were different” [12]. Under this app-
roach, a decision is considered fair towards an individual if the outcome of the
decision is the same in (a) the actual world and (b) a counterfactual world
where the individual belonged to a different demographic group [19]. Coun-
terfactual fairness can also be used to assess group fairness. By studying in
what direction the prediction changes when changing protected attributes, it
is possible to infer which groups are given preferential outcome(s). For exam-
ple, if by changing the group membership from G to G′, the prediction always
changes from a negative to a positive outcome, this indicates discrimination
against either group G or G′.

The main advantage of individual fairness definitions is their semantics, as
they provide guarantees to individuals and not average members. However, they
require making significant assumptions. For example, similarity-based fairness
measures are built on similarity measures, the definition of which can require a
large amount of domain knowledge that even domain experts rarely possess.

3 Fairness Applications in Process Mining

Fairness has three key applications in process mining. In the following, we briefly
discuss each application and provide promising lines of research for each one. It
is worth noting that fairness is not relevant in all processes. For example, in
fully automated processes with no human involvement, fairness does not play a
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Fig. 2. Taxonomy of fairness measures

role. The relevance of fairness to a process depends on (1) how much it involves
humans (for example, as cases or resources) and (2) how strong the impact of
the process on the lives of the involved people is.

Discrimination in Processes. Processes involve at least two discrimination-
relevant entities: resources and cases. The general idea is, that cases cannot
directly influence the process but may suffer from discrimination. From a case
perspective, waiting times in and between activities, the number of re-do’s,
the success rate, occurrences of deviations, and the allocation of resources are
some examples of possible outcomes (as defined in Sect. 2). Resources, in turn,
can cause discrimination by making biased decisions. However, they can also
be affected by discrimination. From a resource perspective, possible outcomes
include the assigned workload and the complexity of the assigned tasks. Some of
the interesting lines of research concerned with discrimination in processes are:
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– developing process mining specific measures to assess the level of discrimina-
tion in event logs and process models,

– developing methods for on-time monitoring of fairness in a process so that
process owners can react on time and prevent unfair discrimination, and

– providing methods to improve/enhance fairness in a process by reducing the
discrimination level in the event log or process model.

Making Fair Conclusions.1 Root cause analysis is one of the main steps before
designing re-engineering steps to enhance a process. Traditionally, root cause
analysis is performed using machine learning techniques that are based on pat-
tern recognition and correlation. However, correlation does not necessarily imply
causation. Thus, applying these results, especially when affecting people (e.g., by
blaming, firing, promoting), can result in unfairness. For example, in a hospital,
is it fair to say that the cardiac surgeon with the highest mortality rate among
his/her patients is the worst surgeon? Or is he/she the most experienced one
who gets the hardest cases? Several factors must be considered to infer causal
relationships. Possible reasons for situations where correlation does not imply
causality include the Simpson-paradox [26] and (sampling) bias in the data. Two
interesting lines of research for this application are:

– providing methods to distinguish causality from mere correlation, and
– providing methods for evaluating the extent to which a particular cause is

responsible for an effect (outcome)

Impact of Process Mining Techniques on Fairness. There are several algorithms
and heuristics for performing process mining tasks, each of which can be fine-
tuned by adjusting various parameters. These methods have been developed
to optimize various metrics, but not fairness. Moreover, some process mining
techniques could distort the results of a fairness analysis. For example, it is
a commonly used rule of thumb, that the discovered model should be able to
explain 80% of the cases in the event log. However, how this filtering step affects
the results of a fairness analysis, has not been studied. In general, any process
mining technique that its process analysis pipeline involves filtering, ranking,
or decision making (e.g., in the form of clustering or classification) is prone to
causing or amplifying discrimination. Promising lines of research in this area
include:

– investigating the effect of process mining techniques in terms of the possibility
of causing/reinforcing discrimination,

– developing fairness-aware quality measures for process models and event logs,
– investigating the effect that applying confidentiality preserving techniques has

on the fairness of event logs, and
– providing methods to find and remove the root cause of discrimination in

processes.

1 Even though this aspect of fairness is not the main focus of this paper, we mention
it for completeness.
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Fig. 3. An example of a simple process.

4 Mapping Existing Fairness Definitions to Process

Mining

Many fairness definitions and measures in fair machine learning have been
defined in the context of classification ([8,16], also see Table 2 in [20]). Most
of these classification-based measures require the following inputs that are not
always clearly defined in a process mining context:

1. a dataset, in tabular form, containing one or more sensitive attributes and
possibly some descriptive attributes,

2. a model to analyze its outcome in terms of fairness. In a classification context,
the outcome corresponds to the prediction made by the classifier.

3. a notion of ground truth is needed for measures assessing the errors made by
the model. Such ground truth indicates how things should have been in a fair
and ideal world, which in a classification context, corresponds to the ideal
predictions.

To measure fairness in process mining, we are interested in assessing the
fairness of the process (corresponding to model), in terms of its manifestation
(analogous to outcome), compared to how it should have been (analogous to
ground truth). We can assume that the ground truth is provided by a domain
expert or can be computed (approximated) using a normative model. To be able
to assess the discrimination level using the techniques mentioned in Sect. 2, we
need to extract the data in a tabular form. Here, we briefly mention how to
extract a data table from an event log. An event log is a collection of events,
where each event refers to the occurrence of a specific activity at a specific point
in time, for a specific case (identified with a specific case identifier). A case is
defined as the chronologically ordered sequence of events with the same case
identifier in the event log. An example of a simple process is shown in Fig. 3.
Table 1 shows an event log with two cases t1 = 〈e1, e2, e3〉 and t2 = 〈e4, e5, e6〉 for
the process in Fig. 3. To turn an event log to a tabular data, we use the method
explained in [23]. This method involves three steps: 1) enriching the event log,
2) extracting a set of outcome-sensitive prefixes of the cases in the event log,
and 3) extracting the tabular data called situation feature table (Fig. 4). In the
following, we explain these three steps in more detail.

Enriching the Event Log. In this step, the event log is enriched with several
derivative attributes extracted from the event log and possibly other sources.
For example, we may add the decision made in a choice place as an attribute
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Table 1. An event log with two cases for the process shown in Fig. 3.

Event identifier Case id Activity name Timestamp Resource Gender

e1 1 Register 19.03.3019 Alice Female

e2 1 Check 20.03.3019 Alice Female

e3 1 Reject 22.03.3019 Bob Female

e4 2 Register 22.03.3019 Sara Male

e5 2 Check 24.03.3019 Bob Male

e6 2 Accept 27.03.3019 Bob Male

Fig. 4. The steps of extracting a situation feature table from an event log.

to the event that happened just before that choice place. More examples of
attributes that can be used to enrich the event log include the event duration,
waiting time for each event, throughput time of a case, the duration of a case
on a normative model, or some ground truth indicated by a process expert.

Extracting the Set of Situations. In this step, we map each case to multiple
prefixes of it, where each prefix ends with the occurrence of the outcome. These
prefixes are called situations. Examples of situations include:

– If the outcome is a decision made in a choice place, each situation corresponds
to the prefix of a case recorded before that place. For example, in the process
of Fig. 3, if the outcome is the choice made in p2, then the two cases in Table 1
are mapped to the situations s1 = 〈e1, e2〉 and s2 = 〈e4, e5〉.

– If the outcome is an event attribute of a group of events, then each situation
is a prefix of a case in the event log where the prefix ends with one of the
events of that group. For example, in the process of Fig. 3, if the outcome is
the duration of the event with activity name “check”, then the two cases in
the Table 1 are mapped to two situations s1 = 〈e1〉 and s2 = 〈e4〉.

– If the outcome is a case-level attribute, then each situation corresponds to a
case. For example, in the process of Fig. 3, if the outcome is the “throughput
time”, then the two cases in the Table 1 are mapped to two situations s1 =

〈e1, e2, e1〉 and s2 = 〈e4, e5, e6〉.

Extracting the Situation Feature Table. In the third step, tabular data is
extracted from the set of the situations in the previous step. The resulting table
is called a situation feature table. The set of features extracted from the set of sit-
uations includes sensitive attributes and the outcome (and possibly the ground
truth). This tabular data can be used to measure the level of discrimination. An
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Table 2. A situation feature table extracted from the event log in Table 1 in which the
outcome is the choice made at p2 and the sensitive attribute is “gender”.

Duration-register Resource-check Gender p2-choice

1 day Alice Female Reject

2 days Bob Male Accept

example of a situation feature table extracted from the event log in Table 1 is
shown in Table 2 in which the outcome is the choice made in place p2 (Fig. 3)
and the descriptive attributes are the duration of the event with activity name
“register”, the resource of the event with activity name “check”, and the “gender”.
In this example “gender” is the sensitive attribute.

5 Conclusion

Organizations operate in many important areas of life, sometimes with a life-
changing impact on people. This makes inspecting their impact in terms of dis-
crimination (as one aspect of unfairness) an important topic. However, the fair-
ness aspects of processes have rarely been considered in literature. In this paper,
we discussed the placement of fairness in the process mining realm.

We discussed fairness primarily in terms of equal and non-discriminatory
treatment of individuals and groups and provided an overview of various fair-
ness definitions to detect discrimination. We presented these definitions in a
structured way using a taxonomy. Furthermore, we discussed three potential
key contributions that fairness can have in process mining, again with a focus
on discrimination. We also provided an approach on how to map existing fairness
definitions to process mining by using situation feature tables.

In conclusion, the main question one should ask before enhancing a process
with fairness-related objectives is whether the differences between groups or
individuals are the result of an unjust bias towards them and whether this bias
needs to be corrected. Not all cases of discrimination are unfair. A methodology
to quantify the explainable and illegal discrimination in data has been presented
in [18]. Moreover, to assess the fairness of a system, it is crucial to be able to
justify the selected fairness measurement from a moral perspective. Therefore,
it is important to consider the assumptions behind each measure. For example,
in similarity-based fairness measures, it is assumed that the similarity metric
expresses ground truth (or the best available approximation of it) [9]. Also, the
assumptions connected to statistical parity have been discussed in great detail
in the academic literature [9,15,24]. Another point to note while planning to
enhance a process with fairness objectives is that the costs (such as reduction
in accuracy) are often immediately realized, whereas its benefits are usually not
immediate and less tangible [8].
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ing our research.
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18. Kamiran, F., Žliobaitė, I.: Explainable and non-explainable discrimination in classi-
fication. In: Custers, B., Calders, T., Schermer, B., Zarsky, T. (eds.) Discrimination
and Privacy in the Information Society. Studies in Applied Philosophy, Epistemol-
ogy and Rational Ethics, vol. 3, pp. 155–170. Springer, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-30487-3_8

19. Kusner, M.J., Loftus, J.R., Russell, C., Silva, R.: Counterfactual fairness. In:
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach,
CA, USA, pp. 4066–4076 (2017)

20. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35
(2021)

21. Pfohl, S.R., Foryciarz, A., Shah, N.H.: An empirical characterization of fair
machine learning for clinical risk prediction. J. Biomed. Inform. 113, 103621 (2021)

22. Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informed-
ness, markedness and correlation (2020). arXiv preprint arXiv:2010.16061

23. Qafari, M.S., van der Aalst, W.: Fairness-aware process mining. In: Panetto, H.,
Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM
2019. LNCS, vol. 11877, pp. 182–192. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-33246-4_11

24. Räz, T.: Group fairness: independence revisited. In: Elish, M.C., Isaac, W., Zemel,
R.S. (eds.) FAccT 2021: 2021 ACM Conference on Fairness, Accountability, and
Transparency, Virtual Event/Toronto, Canada, 3–10 March 2021, pp. 129–137.
ACM (2021)

25. Saleiro, P., et al.: Aequitas: a bias and fairness audit toolkit. CoRR abs/1811.05577
(2018)

26. Simpson, E.H.: The interpretation of interaction in contingency tables. J. R. Stat.
Soc. Ser. B (Methodol.) 13(2), 238–241 (1951)

27. Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., Baeza-Yates, R.:
FA*IR: a fair top-k ranking algorithm, pp. 1569–1578. CoRR (2017)

28. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representa-
tions. In: Proceedings of the 30th International Conference on International Con-
ference on Machine Learning, vol. 28, pp. III-325-III-333. ICML 2013, JMLR.org
(2013)

https://doi.org/10.1007/978-3-642-30487-3_8
http://arxiv.org/abs/2010.16061
https://doi.org/10.1007/978-3-030-33246-4_11
https://doi.org/10.1007/978-3-030-33246-4_11


Discrimination-Aware Process Mining: A Discussion 113

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


TraVaS: Differentially Private Trace

Variant Selection for Process Mining

Majid Rafiei(B) , Frederik Wangelik , and Wil M. P. van der Aalst

Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany

majid.rafiei@pads.rwth-aachen.de

Abstract. In the area of industrial process mining, privacy-preserving
event data publication is becoming increasingly relevant. Consequently,
the trade-off between high data utility and quantifiable privacy poses
new challenges. State-of-the-art research mainly focuses on differentially
private trace variant construction based on prefix expansion methods.
However, these algorithms face several practical limitations such as high
computational complexity, introducing fake variants, removing frequent
variants, and a bounded variant length. In this paper, we introduce a
new approach for direct differentially private trace variant release which
uses anonymized partition selection strategies to overcome the afore-
mentioned restraints. Experimental results on real-life event data show
that our algorithm outperforms state-of-the-art methods in terms of both
plain data utility and result utility preservation.

Keywords: Process mining · Differential privacy · Event data

1 Introduction

In recent years, process mining and event data analysis have been successfully
deployed in many industries. The main objectives are to learn process models
from event logs for further behavioral inference (so-called process discovery), to
extend existing models using event logs (so-called model enhancement), or to
assess the alignment between a process model and an event log (so-called con-
formance checking) [2]. However, often the underlying event data are bound to
personal identifiers or other private information. A prominent example is the pro-
cess management of hospitals where the cases are patients being treated by staff.
Without means of privacy protection, any adversary is able to extract sensitive
information about individuals and their properties. Thus, privacy regulations,
such as GDPR [1], typically restrict data storage and access which motivates the
development of privacy preservation techniques.

The majority of state-of-the-art privacy preservation techniques are built on
Differential Privacy (DP), which offers a noise-based privacy definition. This is
due to its important features, such as providing mathematical privacy guaran-
tees and security against predicate-singling-out attacks [3]. The goal of techniques
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Table 1. A simple event log from the healthcare context including trace variants and
their frequencies.

Trace variant Frequency

〈register, visit, blood-test, release〉 10

〈register, blood-test, visit, release〉 8

〈register, visit, release〉 20

〈register, visit, blood-test, blood-test, release〉 5

based on DP is to hide the participation of an individual in the released output
by injecting noise. The amount of noise is mainly determined by the privacy
parameters, ǫ and δ, and the sensitivity of the underlying data. State-of-the-
art research targeting (ǫ, δ)-DP methods in process mining focuses on releasing
raw privatized activity sequences performed for cases, i.e., trace variants. Table 1
shows a sample of such event data in the healthcare context, where each trace
variant belongs to a case, i.e., a patient, and one case cannot have more than one
trace variant. This format describes the control-flow of event logs that is basis
for the main process mining activities. The trace variant of a case is considered
sensitive information because it contains the complete sequence of activities per-
formed for the case that can be exploited to conclude private information, e.g.,
patient diseases in the healthcare context.

To achieve differential privacy for trace variants, the state-of-the-art approach
[12] inserts noise drawn from a Laplacian distribution into the variant distribu-
tion obtained from an event log. This approach has several drawbacks including:
(1) introducing fake variants, (2) removing frequent true variants, and (3) limited
length for generated trace variants. A recent work called SaCoFa [9], attempts to
mitigate drawbacks (1) and (2) by gaining knowledge regarding the underlying
process semantics from original event data. However, the privacy quantification
of all extra queries to gain knowledge regarding the underlying semantics is not
discussed. Moreover, the third drawback still remains since this work, similar
to [12], employs a prefix-based approach. The prefix-based approaches need to
generate all possible unique variants based on a set of activities to provide dif-
ferential privacy for the original distribution of variants. Since the set of possible
trace variants that can be generated given a unique set of activities is infinite, the
prefix-based techniques need to bound the length of generated sequences. Also,
to limit the search space these approaches typically include a pruning parameter
to exclude less frequent prefixes.

We introduce an (ǫ, δ)-DP approach for releasing the distribution of trace
variants that focuses on the aforementioned drawbacks. In contrast to the prefix-
based approaches, the underlying algorithm is based on (ǫ, δ)-DP for partition
selection that allows for a direct publication of arbitrarily long sequences [4].
Employing differentially private partition selection techniques, the actual fre-
quencies of all trace variants can directly be queried without guessing (gener-
ating) trace variants. Internally, random noise drawn from a specific geometric
distribution is injected into the corresponding frequencies, and all variants whose
privatized frequencies fall beyond a threshold are removed. Hence, no fake trace
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variants are introduced, and only some infrequent variants may disappear from
the output. Moreover, no tedious fine-tuning has to be conducted and no compu-
tationally expensive search needs to be included. In Sect. 5, we introduce different
metrics to evaluate the data and result utility preservation of our approach. We
also run our experiments for the state-of-the-art prefix-based methods and show
superior data and result utilities compared to these methods.

The remainder of this paper is structured as follows. In Sect. 2, we provide
a summary of related work. Preliminaries and notations are provided in Sect. 3.
Section 4 introduces the theoretical background of differentially private parti-
tion selection, and describes our TraVaS algorithm. In Sect. 5, the experimental
results based on real-life event logs are shown. Section 6 concludes the paper.

2 Related Work

The research area of privacy and confidentiality in process mining is recently
growing in importance. Several techniques have been proposed to address the
privacy and confidentiality issues. In this paper, our focus is on the so-called
noise-based techniques that are based on the notion of differential privacy. In
[12], the authors apply an (ǫ, δ)-DP mechanism to event logs to privatize directly-
follows relations and trace variants. The underlying principle uses a combina-
tion of an (ǫ, δ)-DP noise generator and an iterative query engine that allows an
anonymized publication of trace variants with an upper bound for their length.
SaCoFa [9] is the most recent extension of the aforementioned (ǫ, δ)-DP mecha-
nism that attempts to optimize the query structures with the help of underlying
semantics. Another extension of [12] is the PRIPEL approach, where more event
attributes can be secured using the so-called sequence enrichment [8].

Whereas most of the aforementioned ideas target raw event logs, in [7], the
focus is on directly-follows graphs. During the edge generation, connections are
randomized using (ǫ, δ)-DP mechanisms to balance utility preservation and pri-
vacy risks. As the main benchmark model for our work, we choose the technique
by Mannhardt et al. [12] since it focuses on trace variants and is the basis of most
of the other techniques. Moreover, its privacy guarantees are directly proven by
(ǫ, δ)-DP mechanisms, i.e., no extra privacy analysis is required. Nevertheless,
we also compare our results with SaCoFa as the most recent extension of the
benchmark to demonstrate the superior performance of our approach.

3 Preliminaries

In this section, we introduce the necessary mathematical concepts and definitions
utilized throughout the remainder of the paper. Let A be a set. B(A) is the
set of all multisets over A. A multiset A can be represented as a set of tuples
{(a,A(a))|a ∈ A} where A(a) is the frequency of a ∈ A. Given A and B as two
multisets, A ⊎ B is the sum over multisets, e.g., [a2, b3] ⊎ [b2, c2] = [a2, b5, c2].
We define a finite sequence over A of length n as σ = 〈a1, a2, . . . , an〉 where
σ(i) = ai∈A for all i∈{1, 2, . . . , n}. The set of all finite sequences over A is
denoted with A∗.



TraVaS: Differentially Private Trace Variant Selection for Process Mining 117

3.1 Event Data

The data used by process mining techniques are typically collections of unique
events that are recorded per activity execution and characterized by their
attributes. We denote E as the universe of events. Then, a trace σ, which is a sin-
gle process execution, is represented as a sequence of events σ = 〈e1, e2, ..., en〉 ∈
E∗ belonging to the same case and having a fixed ordering based on timestamps.
Note that events are unique and cannot appear in more than one trace. More-
over, each case (individual) contributes to only one trace. An event log L can
be represented as a set of traces L ⊆ E∗. Our work focuses on the control-flow
aspect of an event log that only considers the activity attribute of events in
traces. We define a simple event log based on activity sequences, so-called trace
variants.

Definition 1 (Trace Variant). Let A be the universe of activities. A trace
variant σ = 〈a1, a2, ..., an〉 ∈ A∗ is a sequence of activities performed for a case.

Definition 2 (Simple Event Log). A simple event log L is defined as a
multiset of trace variants L ∈ B(A∗). L denotes the universe of simple event
logs.

3.2 Differential Privacy

In the following, we introduce the necessary concepts of (ǫ, δ)-DP for our
research. The main idea of DP is to inject noise into the original data in such a
way that an observer who sees the randomized output cannot tell if the infor-
mation of a specific individual is included in the data [6]. Considering simple
event logs, i.e., the distribution of trace variants, as our sensitive event data,
differential privacy can formally be defined as Definition 3.

Definition 3 ((ǫ,δ)-DP for Event Logs). Let L1 and L2 be two neighbour-
ing event logs that differ only in a single entry, e.g., L2 = L1⊎[σ] for any
σ∈A∗. Also, let ǫ∈R>0 and δ∈R>0 be two privacy parameters. A randomized
mechanism Mǫ,δ:L→L provides (ǫ, δ)-DP if for all S ⊆ A∗×N: Pr[Mǫ,δ(L1) ∈
S] ≤ eǫ×Pr[Mǫ,δ(L2) ∈ S]+δ. Given L ∈ L, Mǫ,δ(L) ⊆ {(σ, L′(σ)) | σ ∈
A∗ ∧ L′(σ) = L(σ) + xσ}, with xσ being realizations of i.i.d. random variables
drawn from a probability distribution.

In Definition 3, ǫ as the first privacy parameter specifies the probability ratio,
and δ as the second privacy parameter allows for a linear violation. In the strict
case of δ = 0, M offers ǫ-DP. The randomness of respective mechanisms is typ-
ically ensured by the noise drawn from a probability distribution that perturbs
original variant-frequency tuples and results in non-deterministic outputs. The
smaller the privacy parameters are set, the more noise is injected into the mech-
anism outputs, entailing a decreasing likelihood of tracing back the instance
existence based on outputs.

A commonly used (ǫ, 0)-DP mechanism for real-valued statistical queries is
the Laplace mechanism. This mechanism injects noise based on a Laplacian dis-
tribution with scale ∆f/ǫ. ∆f is called the sensitivity of a statistical query f .
Intuitively, ∆f indicates the amount of uncertainty we must introduce into the
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output in order to hide the contribution of single instances at (ǫ, 0)-level. In our
context, f is the frequency of a trace variant. Since one individual, i.e., a case,
contributes to only one trace, ∆f = 1. In case an individual can appear in more
than one trace, the sensitivity needs to be accordingly increased assuming the
same value for the privacy parameter ǫ. State-of-the-art event data anonymiza-
tion frameworks such as our benchmark often use the Laplace mechanism.

4 Partition Selection Algorithm

We first highlight the problem of partition selection and link it to event data
release. Then, the algorithmic details are presented with a brief analysis.

4.1 Partition Selection

Many data analysis tasks can be expressed as per-partition aggregation opera-
tions after grouping the data into an unbounded set of partitions. When iden-
tifying the variants of a simple log L as categories, the transformation from L
to pairs (σ, L(σ)) becomes a specific instance of these aggregation tasks. To ren-
der such queries differentially private, two distinct steps need to be executed.
First, all aggregation results are perturbed by noise addition of suitable mecha-
nisms. Next, the set of unique partitions must be modified to prevent leakage of
information on the true data categories (differentially private partition selection)
[4,6]. In case of publicly known partitions or bounded partitions from a famil-
iar finite domain, the second step can be reduced to a direct unchanged release
or a simple guessing-task, respectively. However, for the most general form of
unknown and infinite category domains, guessing is not efficient anymore and
an (ǫ, δ)-DP partition selection strategy can be used instead.

Recently, in [4], the authors proposed an (ǫ, δ)-DP partition selection app-
roach, where they provided a proof of an optimal partition selection rule which
maximizes the number of released category-aggregation pairs while preserving
(ǫ, δ)-DP. In particular, the authors showed how the aforementioned anonymiza-
tion steps can be combined into an explicit (ǫ, δ)-DP mechanism based on a
k-Truncated Symmetric Geometric Distribution (k-TSGD), see Definition 4. We
exploit the analogy between partition selection and simple event log publication
and transfer this mechanism to the event data context. Definition 5 shows the
respective definition based on a k-TSGD.1

Definition 4 (k-TSGD).Given probability p ∈ (0, 1), m = p/(1+(1−p)−2(1−p)k+1),
and k ≥ 1, the k-TSGD of (p, k) over Z formally reads as:

k-TSGD[X = x | p, k] =

{

m · (1 − p)|x| ifx ∈ [−k, k]

0 otherwise
(1)

Definition 5 ((ǫ,δ)-DP for Event Logs Based on k-TSGD). Let ǫ∈R>0

and δ∈R>0 be the privacy parameters, and Mk−TSGD
ǫ,δ : L → L be a randomized

1 A respective proof can be found in Sec. 3 of [4].
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mechanism based on a k-TSGD. Given L ∈ L as an input of the randomized
mechanism, an event log L′ = {(σ, L′(σ)) | σ∈L∧L′(σ) > k} ∈ rng(Mk−TSGD

ǫ,δ )
is an (ǫ, δ)-DP representation of L if L′(σ) = L(σ)+xσ is the noisified frequency
with xσ being realization of i.i.d random variables drawn from a k-TSGD with
parameters (p, k), where p = 1−e−ǫ and k = ⌈1/ǫ×ln((e

ǫ+2δ−1)/δ(eǫ+1))⌉.

Definition 5 shows the direct (ǫ, δ)-DP release of trace variants by first per-
turbing all variant frequencies and then truncating infrequent behavior. Addi-
tionally, optimality is guaranteed w.r.t. the number of variants being published
due to the k-TSGD structure [4]. Note that the underlying k-TSGD mechanism
assumes each case only contributes to one variant. In case this requirement needs
to be violated, sensitivity considerations force a decrease in (ǫ, δ).

The development of differentially private partition selection enables signifi-
cant performance improvements for private trace variant releases. As there are
infinite activity sequences defining a variant, former approaches had to either
guess or query all of these potentially non-existing sequences in a cumbersome
fashion due to the ex-ante category anonymity in (ǫ, δ)-DP. On the contrary,
partition selection only needs one noisified aggregation operation followed by a
specific truncation. Hence, the output contains only existing variants that are
independent of external parameters or query patterns.

4.2 Algorithm Design

Algorithm 1 presents the core idea of TraVaS which is based on Definition 5. We
also propose a utility-aware extension of TraVaS, so-called uTraVaS, that utilizes
the privacy budgets, i.e., ǫ and δ, by several queries w.r.t. data utility. In this
paper, we focus on TraVaS, the details of uTraVaS are provided on GitHub.2

Algorithm 1 (TraVaS) allows to anonymize variant-frequency pairs by inject-
ing k-TSGD noise within one run over the according simple log. After a simple
log L and privacy parameters (ǫ > 0, δ > 0) are provided, the travas function
first transforms (ǫ, δ) into k-TSGD parameters (p, k). Then, each variant fre-
quency L(σ) becomes noisified using i.i.d k-TSGD noise xσ (see Definition 5).
Eventually, the function removes all modified infrequent variants where the
perturbed frequencies yield numbers below or equal to k. Due to the partition

Algorithm 1: Differentially Private Trace Variant Selection (TraVaS)

Input: Event log L, DP-Parameters (ǫ, δ)
Output: (ǫ, δ)-DP log L′

1 function travas (L, ǫ, δ)
2 p = 1 − e−ǫ

// compute probability

3 k = ⌈1/ǫ × ln ((eǫ + 2δ − 1)/(δ(eǫ + 1)))⌉ // compute threshold

4 forall (σ, L(σ)) ∈ L do

5 xσ = rTSGD (p, k) // generate i.i.d k-TSGD noise

6 if L(σ) + xσ > k then

7 add (σ, L(σ) + xσ) to L′

8 return L′

2 https://github.com/wangelik/TraVaS/tree/main/supplementary.

https://github.com/wangelik/TraVaS/tree/main/supplementary
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selection mechanism, the actual frequencies of all trace variants can directly be
queried without guessing trace variants. Thus, TraVaS is considerably more effi-
cient and easier to implement than current state-of-the-art prefix-based methods.

5 Experiments

We compare the performance of TraVaS against the state-of-the-art benchmark
[12] and its extension (SaCoFa [9]) on real-life event logs. Due to algorithmic dif-
ferences between our approach and the prefix-based approaches, it is particularly
important to ensure a fair comparison. Hence, we employ divergently structured
event logs and study a broad spectrum of privacy budgets (ǫ, δ). Moreover, the
sequence cutoff for the benchmark and SaCoFa is set to the length that covers
80% of variants in each log, and the remaining pruning parameter is adjusted
such that on average anonymized logs contain a comparable number of vari-
ants with the original log. Note that TraVaS guarantees the optimal number
of output variants due to its underlying differentially private partition selection
mechanism [4], and it does not need to limit the length of the released variants.
Thus, the aforementioned settings consider the limitations of the prefix-based
approaches to have a fair comparison.

We select two event logs of varying size and trace uniqueness. As we discussed
in Sect. 4, and it is considered in other research such as [9,12], and [14], infrequent
variants are challenging to privatize. Thus, trace uniqueness is an important
analysis criterion. The Sepsis log describes hospital processes for Sepsis patients
and contains many rare traces [11]. In contrast, BPIC13 has significantly more
cases at a four times smaller trace uniqueness [5]. The events in BPIC13 belong
to an incident and problem management system called VINST. Both logs are
realistic examples of confidential human-centered information where the case
identifiers refer to individuals. Detailed log statistics are shown in Table 2.

5.1 Evaluation Metrics

To assess the performance of an (ǫ, δ)-DP mechanism, suitable evaluation metrics
are needed to determine how valuable the anonymized outputs are w.r.t. the
original data. In this respect, we first consider a data utility perspective where
the similarity between two logs is measured independent of future applications.
For our experiments, two respective metrics are considered. From [13], we adopt
relative log similarity that is based on the earth mover’s distance between two
trace variant distributions, where the normalized Levenshtein string edit distance
is used as a similarity function between trace variants. The relative log similarity

Table 2. General statistics of the event logs used in our experiments.

Event log #Events #Cases #Activities #Variants Trace uniqueness

Sepsis 15214 1050 16 846 80%

BPIC13 65533 7554 4 1511 20%
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Fig. 1. The relative log similarity and absolute log difference results of anonymized
BPIC13 logs generated by TraVaS, the benchmark, and SaCoFa. Each value represents
the mean of 10 runs.

metric quantifies the degree to which the variant distribution of an anonymized
log matches the original variant distribution on a scale from 0 to 1.

In addition, we introduce an absolute log difference metric to account for sit-
uations where distribution-based metrics provide only different expressiveness.
Exemplary cases are event logs possessing similar variant distributions, but sig-
nificantly different sizes. For such scenarios, the relative log similarity yields high
similarity scores, whereas absolute log difference can detect these size dispari-
ties. To derive an absolute log difference value, we first transform both input
logs into a bipartite graph of variant vertices. Then a cost network flow problem
[15] is solved by setting demands and supplies to the absolute variant frequencies
and utilizing a Levenshtein distance between variants as an edge cost. Hence,
the resulting optimization value of an (ǫ, δ)-DP log resembles the number of
Levenshtein operations to transform all respective variants into variants of the
original log. In contrast to our relative log similarity metric, this approach can
also penalize a potential matching impossibility. More information on the exact
algorithms is provided on GitHub.3

Besides comparing event logs based on data utility measures, we addition-
ally quantify the algorithm performance with process discovery oriented result
utilities. We use the inductive miner infrequent [10] with default noise threshold
of 20% to discover process models from the privatized event logs for all (ǫ, δ)
settings under investigation. Then, we compare the models with the original
event log to obtain token-based replay fitness and precision scores [2]. Due to
the probabilistic nature of (ǫ, δ)-DP, we average all metrics over 10 anonymized
logs for each setting, i.e., 10 separate algorithm runs per setting.

3 https://github.com/wangelik/TraVaS/tree/main/supplementary.

https://github.com/wangelik/TraVaS/tree/main/supplementary
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Fig. 2. The relative log similarity and absolute log difference results of anonymized Sep-
sis event logs generated by TraVaS, the benchmark, and SaCoFa. Each value represents
the mean of 10 runs.

5.2 Data Utility Analysis

In this subsection, the results of the two aforementioned data utility metrics are
presented for both real-life event logs. We compare the performance of TraVaS
against our benchmark and SaCoFa based on the following privacy parameter
values: ǫ ∈ {2, 1, 0.1, 0.01, 0.001} and δ ∈ {0.5, 0.1, 0.05, 0.01, 0.001}.

Figure 1 shows the average results on BPIC13 in a four-fold heatmap. The
grey fields represent a general unfeasibility of the strong privacy setting ǫ = 0.001
for our benchmark method. Due to the intense noise perturbation, the corre-
sponding variant generation process ncreased the number of artificial variant
fluctuations to an extent that could not be averaged in a reasonable time. Apart
from this artifact, both relative log similarity and absolute log difference show
superior performance of TraVaS for most investigated (ǫ, δ) combinations. In
particular, for stronger privacy settings, TraVaS provides a significant advan-
tage over SaCoFa and benchmark. Whereas more noise, i.e., lower (ǫ, δ) values,
generally decreases the output similarity to the original data, TraVaS results
seem to particularly depend on δ. According to Definition 5, this observation
can be explained by the stronger relation between k and δ compared to k and ǫ.

The evaluation of the Sepsis log is presented in Fig. 2. In contrast to BPIC13,
Sepsis contains many variants occurring only once or twice. While our absolute
log difference shows a similar expected trend with (ǫ, δ) as Fig. 1, the relative log
similarity metric indicates almost constant values for the prefix-based techniques
and a considerable δ-dependency for TraVaS. We explain the resulting patterns
by examining the underlying data structure in more detail. As mentioned, the
frequency threshold k of TraVaS strongly correlates with δ. Hence, event logs
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Fig. 3. The fitness and precision results of anonymized BPIC13 event logs generated
by TraVaS, the benchmark, and SaCoFa. Each value represents the mean of 10 runs.

with prominent infrequent traces, e.g., Sepsis, are significantly truncated for
strong (ǫ, δ)-DP. Since this variant removal leads to a distribution mismatch
when being compared to the original log, the relative log similarity forms a
step-wise pattern as in Fig. 2. In contrast, the prefix-based techniques iteratively
generate variants that may or may not exist in the original log. In logs with high
trace uniqueness, there exist many unique variants that are treated similarly to
non-existing variants due to close frequency values, i.e., 0 and 1. Thus, in the
anonymized logs, unique variants either appear with larger noisified frequencies
or are replaced with fake variants having larger noisified frequencies. This process
remains the same for different privacy settings but with larger frequencies for
stronger privacy guarantees. Hence, the relative log similarity metric stays almost
constant although the noise increases with stronger privacy settings. However,
the absolute log difference metric can show differences. uTraVaS shows even
better performance w.r.t. the data utility metrics.4

5.3 Process Discovery Analysis

We conduct a process discovery investigation based on fitness and precision
scores. For the sake of comparability, the experimental setup remains unchanged.
Figure 3 shows the results for BPIC13, where the original fitness and precision
values are 0.995 and 0.877, respectively. TraVaS provides almost perfect replay
behavior w.r.t. fitness while the prefix-based alternatives show lower values. This
observation can be explained by the different algorithmic approach of TraVaS
and some characteristics of BPIC13. TraVaS only adopts true behavior that

4 https://github.com/wangelik/TraVaS/tree/main/experiments.

https://github.com/wangelik/TraVaS/tree/main/experiments
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Fig. 4. The fitness and precision results of anonymized Sepsis event logs generated by
TraVaS, the benchmark, and SaCoFa. Each value represents the mean of 10 algorithm
runs.

results in a simplified representation of the original process model. Due to the
rather low trace uniqueness and comparably large log-size of BPIC13, this sim-
plification is minor enough to allow an almost perfect fitness. In contrast, the
fake variants generated by prefix-based approaches negatively affect their fitness
scores. The precision metric evaluates the fraction of behavior in a model dis-
covered from an anonymized log that is not included in the original log. Due to
the direct release mechanism of TraVaS that only removes infrequent variants,
we achieve more precise process models than the alternatives. Furthermore, the
correlation between threshold k and noise intensity enables TraVaS to even rise
precision for stronger privacy guarantees. Conversely, the fake variants generated
by prefix-based approaches can lead to inverse behavior.

Figure 4 shows the fitness and precision results for Sepsis, where the original
fitness and precision values are 0.952 and 0.489, respectively. Whereas TraVaS
dominates the prefix-based approaches w.r.t. precision as in Fig. 3, our fitness
score shows a slight under-performance. Unlike BPIC13, the high trace unique-
ness and smaller log-size prohibit the underlying partition selection mechanism
to achieve negligible threshold for infrequent variant removal. Thus, the discov-
ered process models from anonymized logs miss parts of the original behavior.
This shows that carefully tuned prefix-based mechanisms might have an advan-
tage in terms of fitness for small logs with many unique traces. We particularly
note that this limitation of TraVaS vanishes as soon as the overall log-size grows.
The reason lies in the size-independent threshold k while the pruning parameter
of prefix-based approaches intensifies with the data size. The process discovery
analyses for uTraVaS, available on GitHub, show even better performance.
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6 Discussion and Conclusion

In this paper, we demonstrated a novel approach to release anonymized dis-
tributions of trace variants based on (ǫ, δ)-DP mechanisms. The corresponding
algorithm (TraVaS ) overcomes the variant generation problems of prefix-based
mechanisms (see Sect. 1) and directly queries all true variants. Our experiments
with two differently structured event logs showed that TraVaS outperforms the
state-of-the-art approaches in terms of data utility metrics and process-discovery-
based result utility for most of the privacy settings. In particular, for large event
logs containing many long trace variants, our implementation has no efficient
alternative. Regarding limitations and future improvements, we generally note
that the differentially private partition selection mechanism only works for δ>0,
whereby limits of small values can be problematic on large collections of infre-
quent variants. Thus, all use cases that require strict ǫ-DP still need to apply
prefix-based mechanisms. Finding a more efficient solution for δ = 0 seems to be
a valuable and interesting future research topic.
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Abstract. We present a method and prototype tool supporting partic-
ipatory mapping of domain activities to event data recorded in informa-
tion systems via the system interfaces. The aim is to facilitate respon-
sible secondary use of event data recorded in information systems, such
as process mining and the construction of predictive AI models. Another
identified possible benefit is the support for increasing the quality of data
by using the mapping to support educating new users in how to regis-
ter data, thereby increasing the consistency in how domain activities are
recorded. We illustrate the method on two cases, one from a job center
in a danish municipality and another from a danish hospital using the
healthcare platform from Epic.

Keywords: Data quality · Secondary use · Event extraction · Event
matching · Participatory design

1 Introduction

The abundance of data recorded in information systems and easily accessible
technologies for data processing, such as predictive AI models and process mining
[1,2], have created huge expectations of how data science can improve the society.

However, there has also been an increasing voicing of concerns [3,11,18,39],
pointing out that merely having access to data and technologies is not sufficient
to guarantee improvements. In the present paper we focus on data quality and
responsible event extraction in the context of secondary use of event data [34]
recorded in information systems. That is, data representing events in the domain
of use, such as the start and completion of work tasks which has as primary use
to support case workers and document the progress of a case, but is intended
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to be used for secondary purposes, such as building predictive AI models or the
discovery of processes using process mining tools.

The challenges of event data quality are manifold [9], including handling event
granularity, incorrect or missing data and incorrect timestamps of events [17].
A more fundamental problem in the context of secondary use of event-data is
that of ensuring a consistent and correct matching of event data to business
activities [7].

The lack of research in the area of event log creation has been pointed out
in several papers [2,7,9,16,21,26,29,30,36,38]. This task is in general associated
with words and expressions like: costly, time consuming, tedious, unstructured,
complex, garbage-in garbage-out. Historically, research for data-driven innova-
tion and improving productivity has shown to pay little to no attention to how
data is created and by who. Data is often created within a system and its user
interface where a given context for capturing and using data has been established
through continuous sense-making between people that have local and often indi-
vidual understanding of why data is generated and for what. Studies claim [22,41]
that data science initiatives are often initiated at high-level and allocated from
domain of data creation while the data science product is re-introduced as a
model that needs to be adapted by the practice where data is created. While
data driven systems can be evaluated with good results on artificial data from
the data domain, it is often a struggle to create value for the domain users. This
is due to trust of data origin, what it represents and how new intents for its pur-
pose comes through what could be considered a back-door top-down method.
A Participatory Design(PD)-study [18] investigated a mismatch between data
extraction findings at an administration level of cross-hospital management and
how doctors and clinical secretaries represented their ways of submitting data,
highlighting a need for re-negotiating data creation and its purpose in a way so
data scientists can contribute to better data capture infrastructures as well as
giving health-care workers a saying in how such data capture infrastructures are
prioritized in their given domains of non-digital work. In PD [8,23,32] as a field
such presented tensions are not new. Here PD as a design method and practice
has sought to create alignment between workers existing understanding of own
work and emerging systems through design as a practice for visualising such
tensions across actors of an innovation or IT project. PD is from here seeking,
in a democratic manner, to find solutions and interests that can match partners
across hierarchies.

As a means to facilitate responsible secondary use of event data, we propose
in this paper the BERMUDA (Business Event Relation Map via User-interface
to Data for Analysis) method to capture and maintain the link between domain
knowledge and the data in the information system. The method supports involve-
ment of domain experts in the mapping of activities or events in the business
domain to user-interface elements, and of system engineers in the mapping of
user-interface elements to database records used by data scientists. In other
words, the method helps documenting the inter-relationship in the “BERMUDA
triangle” between the domain concepts, the user interface and the database,
which often disappears. We see that by breaking down the barrier between
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data-creators and data scientists and building tools for involvement and iter-
ative feedback of data infrastructures and their user front-end, new discussions
for data cooperation can occur. The mapping is independent of any specific data
analysis, but should of course include the activities and events of relevance for
the analysis at hand. In particular, the method contributes to the responsible
application of process mining [27] by supporting a collaborative creation of event
logs.

The motivation for the method came from research into the responsible engi-
neering of AI-based decision support tools in Danish municipalities within the
EcoKnow [19] research project and later the use of the method was also found
relevant in a study of a Danish hospital wanting to create an AI-based predictive
model for clinical no-shows. The method and prototype were initially evaluated
by a consultant employed in a process mining company and a municipal case
worker collaborating with the authors in the EcoKnow research project.

The paper is structured as follows. Prior and related work is discussed in
Sect. 2. Sect. 3 explains our proposed BERMUDA method, where we also show
a prototype tool. Sect. 4 introduces two specific case studies in a job center and
a danish hospital. A brief evaluation of the use of the method in the first case
along with a discussion on the results is made in Sect. 5. Lastly, in Sect. 6 we
conclude and discuss future work.

2 Prior and Related Work

Within health-care informatics, problems arising from having a primary use of
data (original intend of health-care delivery and services) and different, sec-
ondary use of data (emergence of new possibilities through statistics and data
science) has been highlighted in several studies [5,28,37]. The authors of [5]
found that underlying issues for data quality and reuse was attributed to differ-
ential incentives for the accuracy of the data; flexibility in system software that
allowed multiple routes to documenting the same tasks; variability in documenta-
tion practices among different personnel documenting the same task; variability
in use of standardized vocabulary, specifically, the internally developed stan-
dardized vocabulary of practice names; and changes in project procedures and
electronic system configuration over time, as when a paper questionnaire was
replaced with an electronic version.

Such underlying socio-technical issues to data capturing can attribute to an
overall lower degree of data integrity resulting in little to no secondary usefulness
of data representing health-care events. A similar [18] study conducted by this
papers co-authors highlighted the need for iteratively aligning data creation and
use with domain experts and data creators (i.e. doctors, nurses, secretaries, etc.)
when conducting data science on operational data from hospitals.

We see event abstraction [40] as a related topic to our paper, however we
approach the problem in a top-down manner i.e. from domain knowledge down
to the data source. A similar top-down approach exists in database systems [12]
where an ontology of domain concepts is used to query the databases. We do not
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aim to propose techniques for process discovery as there are a plethora of tools
already in use for this task, some of which [35] also allow for domain expert
interventions. We propose BERMUDA both for pre-processing of data before
moving to process discovery or building predictive models, and for training of
new users in how to consistently record data suitable for the secondary uses.

The paper [21] provides a procedure for extracting event logs from databases
that makes explicit the decisions taken during event log building and demon-
strates it through a running example instead of providing tool support. The
paper [7] present a semi-automatic approach that maps events to activities by
transforming the mapping problem into the a constraint satisfaction problem,
but it does not directly handle the event log extraction.

In [29] the authors describe a meta model that separates the extraction and
analysis phases and makes it easy to connect event logs with SQL queries. In [30]
they associate events from different databases into a single trace and propose an
automated event log building algorithm. They point towards the lack of domain
knowledge as a driving force for an automated and efficient approach. They
discuss that their definition of event log “interestingness” as an objective score
ignores aspects of domain level relevance. Both papers bind database scripts and
event log concepts in order to build ontologies/meta-models, but do not link to
domain knowledge in order to provide traceability to domain experts, such that
the limitations of the “interestingness” score may be overcome.

To summarize, most work [6,9,10,16,17,24,25,33,38] on event data quality
so far has focused on technical means to repair and maintain the quality of
event logs [15]. Our approach complements these approaches by focusing on the
socio-technical problem of aligning what is done in practice by the users of the
information systems, i.e. how is a domain activity registered within the system,
and at the other hand, where is this event stored in the database.

3 BERMUDA: Mapping Domain Events to Data

Our method relies on so-called BERMUDA triples (e, i, d) as illustrated in
Fig. 1, recording the relation between respectively a domain event e, a user
interface element i of the information system in which the domain event is
registered and the location of the resulting data element d in the database.
A concrete example from one of our case studies can be seen in Fig. 2. Here a
domain event“Register ... during the first interview” is described in a textual
audit schema. This is linked by a screen shot to the drop down menu in the user
interface, where the case worker performs this concrete registration. And finally,
the location of the resulting data element is recorded by an SQL statement that
extracts the event.

There are typically three roles involved in the recording such BERMUDA
triples: Data scientist (or analyst), domain expert and system engineer. As guid-
ance towards applying our method we recommend following these steps:

1. Domain to user interface. For each domain event e, the domain experts
record an association (e, i) between the domain event e and an (user or
system) interface element i.
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Fig. 1. BERMUDA method

2. User interface to data. Through code inspection or simulation, system
engineers develop the correct database query d to extract the data recording
the event e created via the interface element i resulting in a triple (e, i, d).

3. Triples to event log. The data scientist merges and refines the database
queries and creates the initial version of the event log. The event log entries
are enriched with extra attributes that hold a reference to the domain event,
the interface element and the data source from where the entry originated.

Prototype Tool. To facilitate the adoption of the BERMUDA method we present
a prototype tool to illustrate how the triples can be created and an event log
extracted. A screenshot from the prototype is shown in Fig. 2. Briefly, the UI
consists of 3 input areas in the top for documenting the individual parts of
triples (description of domain event, system interface, script for extracting the
event from the system), an input area at the bottom for adding and selecting a

Fig. 2. BERMUDA method Prototype
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triple to document, and a display area (not shown in the figure) for the resulting
event log.1

The prototype has a simple role base access control supporting the use of the
method in practice. All roles have access to the description of domain events, in
order to build trust through a common domain understanding. Domain experts
have access to domain events and the user interface input areas. System engineers
need access to all areas, but not the production data in the information system.
Data scientists are allowed access to all areas except they can not see the data
extraction scripts, if they are covered by intellectual propriety rights. They can
however run the scripts on the production system, to extract the event data.

4 Cases: Secondary Use of Municipal and Health Data

We discuss the method in relation to two concrete cases from Denmark where
data in respectively a municipality and a hospital were intended to be used
for AI-based decision support. Case 1 is elicited at a municipal job center in
Denmark and case 2 covers our work with a regional research hospital where a
project aiming for producing and using an AI model for no-shows. Both cases
unveiled a gap between how data is produced in a local context for its primary
purpose of case management and what it represents when extracted and used
for decision support. We made an evaluation of our BERMUDA prototype for
case one and speculate how it could be used in case two.

Case 1: As part of the EcoKnow research project [19], we had by the software
vendor KMD (kmd.dk), been given access to interact with the system engineers
that developed the case management system used in danish job centers. Collab-
orating with colleagues in the EcoKnow research project performing field studies
at the job center [4,20,31], we also had the opportunity to gather domain knowl-
edge through workshops, semi-structured interviews and informal methods from
job center employees. Finally, we had access to historical data from about 16000
citizens with the purpose of researching the possibilities for improving compli-
ance and the experienced quality of case management in municipalities.

In addition to our case we interviewed a consultant at a process mining
company Infoventure (infoventure.dk), doing conformance checking, using the
same case management system but a different data source. Their current practice
relies on first co-creating a document with employees at the job center, which
contained the necessary domain knowledge and screenshots of user interface
elements with relevant explanations. Next it was the task of the consultant to
build extraction scripts for the identified domain events. During this phase there
was ongoing communication with the software vendor and job center employees
through meetings, calls or emails, in order to build up the necessary domain and
system knowledge. Often he would observe specific data (an exact timestamp or
citizen registration number) in the user interface and proceed to search for that
exact information in the database. This process was done either offline, with the

1 The prototype is available at: https://github.com/paul-cvp/bermuda-method.

https://www.kmd.dk/
https://github.com/paul-cvp/bermuda-method
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aid of screenshots, or on site by sitting next to a case worker. The links between
domain events and the data extracted from the database was recorded in an
ad-hoc way and only available to the consultant.

Domain Activities/Events: We used a management audit schema comprised of 21
questions. From these questions we define the domain activities/events relevant
for the case compliance analysis. For example: From the audit question “Is the
first job interview held within one week of the first request? Legal basis: LAB
§31(3)” we can identify several domain event data of interest: first request, first
job interview, first week passed.

Graphical User Interface (GUI) Areas for Recording Domain Events. A case-
worker employed at the job center associated the domain events identified in the
audit questions with areas of the user interface where caseworkers record the
event. From the 21 questions, 11 domain events could be identified that could
be given a user interface association. For 3 of the domain events, the caseworker
was unsure where to record it. A data scientist was able to associate 12 of the
21 domain events to a field in the user interface. This relatively low number
of associations can be explained by the fact that the audit schema was created
by the municipality and not the vendor of the it-system, and thus, some of the
domain events relevant for the audit did not have a direct representation in the
user interface. Therefore certain events were completely missing or documented
in free text fields, while others require access to other systems used by the munic-
ipality. In particular, as also observed in [4], the free text field was sometimes
used to describe the categorisation of the unemployed citizen (as activity or job
ready) or the reason for the choice of categorisation, by selecting the reason
“other”, instead of using one of the specific predefined values available in the
system interface.

Data and Database Organization. The database contains 133 tables with 1472
columns in total. By having access to source code and the system engineers, we
mapped the identified GUI elements to the database. Furthermore this limited
our inspection to 8 main tables from which the data was extracted and 4 tables
used for mapping table relations, thus ensuring data minimisation as specified
in the General Data Protection Regulation (GDPR) [14].

Case 2: In the wake of a grand scale implementation of an EPIC2 Regional
Electronic Health Record-system (EHR-system) purchase and implementation,
we have since 2017 been engaged in a longitudinal case-study of facilitating and
developing an AI-model for predicting patient no-shows based on clinical event
and demographic data. The project was pioneering as the first test of the models
developed from local data and appointed a small endoscopy unit at Bispebjerg
hospital (a research hospital in the capital region of Denmark). The project
have a foundation in participatory design and end-user involvement in pursuit

2 epic.com.

https://www.epic.com/
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of creating visions for use of data and AI, as well as creating synergy effects for
data creation among clinicians, nurses and clinical secretaries as domain experts
creating clinical event data used to predict future no-shows.

We extracted 8 different data sets together with the regional data team to
learn about implications for applying such data for machine-learning purposes.
We here learned, that missing data values and incomplete submissions were
largely representing the first data sets and that due to missing guidelines and
coordinated workflows each individual health care person had different under-
standing of the categories used to report clinical appointment statuses.

Domain Events: Interpretations of the events. We conducted 2 follow-up inter-
views with clinical secretaries to understand the local flow of data submission
into the EHR-system. The clinical secretaries demonstrated their data submis-
sion practices and their understanding of how to document clinical appointment
statuses into the EHR-system. We further conducted four 2-h workshops involv-
ing the clinical secretaries in putting context to their workflow and use of cate-
gories to assign meaning to no-show categories. In the same period, we invited
Regional data management and extraction teams to learn from practices and
iteratively extract data sets with no-show data.

Data and Database Organization. 8 data sets were extracted in total over a
period of 3 months before a machine learning algorithm could be fed with a
data set with sufficient domain contexts to remove categories that didn’t have
meaning for secondary use. The best example of this was again the free text
category “other” as a category for assigning reason for no-shows or cancellations
of appointments. This category was heavily used by all clinical staff due to its
ability to avoid reading through 16 other categories of reason for mentioned out-
come. The first data set had 81.000 rows and observations with 2/3 of those past
appointments being assigned “other” with text-field inputs sometimes represent-
ing the same categories as suggested in the drop-down menu and sometimes left
empty or with “other” written in the text-field. A further 11.000 appointments
were deemed incomplete or “in process” several months after appointment date.
When sorting out unassigned events for appointment status the department only
had 2880 observations left for the machine learning algorithm.

5 Initial Evaluation

As an initial qualitative evaluation of the usefulness of the method, we conducted
two semi-structured interviews, one with a municipal case worker acting as a
domain expert and another with a data scientist working as consultant in the
process analysis company Infoventure. Both interview respondents collaborated
with the authors in the Ecoknow research project. The municipal case worker was
given the task of mapping business activities to user-interface elements of a case
and document management system. The consultant was asked about the current
practice of documenting event log extraction for process mining, illustrated by
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a concrete case, and how the Bermuda prototype could support or improve this
practice.

Overall, the evaluation indicated, that the BERMUDA method exhibits the
following positive proprieties:

– Transparency, Accountability, and Traceablity. The BERMUDA
triples make it possible to trace the relation between events extracted from
a data base, e.g. for the creation of an event log, and domain events. Both
interviewees saw the advantage in unambiguously referencing domain events
across different roles of a data science project (domain expert, software engi-
neer, data scientist), thereby providing accountability for the data prove-
nance/lineage, while also building trust across different roles.

– Accuracy. Through the participatory co-creation of the event log it is pos-
sible to observe that the event log correctly captures the relevant domain
knowledge. As each of the roles interact with each other, they can observe
that the correct steps were taken in the extraction of event data for sec-
ondary use. This was already to some extend part of the current practices,
but BERMUDA supported the consistent documentation.

– Maintainability and Training. The interview participants indicated that
the Bermuda method is useful for maintaining event logs over time when
changes happen in the domain or system, because the information is docu-
mented consistently in one place. They also pointed out, that the method
and tool for the same reason could be valuable both in training new data
scientists and new case workers.

– Protection of Intellectual Property. Since each link in the BERMUDA
triangle can be defined independently, the system engineers can provide map-
pings that can be used to extract events without revealing the code of the
system. We observed this in the interaction between the data science consul-
tant and the system engineers developing the job center solution.

Limitations. Firstly, the tool is not mature enough to replace a general SQL
scripting environment. Secondly, it does not yet account for data that are not
stored in an SQL database, nor for data that is not recorded via user interface,
as for instance data recorded automatically by system events.

6 Conclusion and Future Work

In this paper we presented BERMUDA, a method for facilitating the respon-
sible secondary use of event data in data science projects by supporting the
collaboration between domain experts, system engineers and data scientists on
associating domain events, via user interfaces to data in the database. This facil-
itates transparent extraction of event logs for analysis and thereby accountable
data lineage. We discussed its use through cases of data science projects at a job
center in a Danish municipality and a Danish hospital. In particular, both cases
highlight the frequent use of the category “other” in the registration of reasons
for domain events, instead of using pre-defined values in drop down menus. We
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showed through a prototype tool how BERMUDA can facilitate the interactions
between domain experts, system engineers and data scientists. Furthermore we
conducted interviews in order to lightly evaluate its usefulness and limitations.

In the future we expect to conduct more field trials of the method and inter-
view more practitioners in order to do a thematic analysis for better qualitative
feedback. We aim to investigate how the results of applying BERMUDA can
be used when training domain experts to use the appropriate categories instead
of“other”. We also aim to extend the tool with an automatic signaling system
to monitor for changes in the user interface and in the database structure to
notify the data scientist of possible misalignment in existing processes. We hope
to increase the robustness of the tool and its compatibility with existing process
mining tools. We also aim to provide the prototype as an online tool in order to
facilitate remote cooperative work. Finally we aim to support a broader range of
input and output formats by applying the method on diverse data sources from
information systems in relevant domains.

Acknowledgements. Thanks to Infoventure, KMD Momentum, Bispebjerg Hospi-
tal, The Capital Region of Denmark, Gladsaxe and Syddjurs municipalities, and the
reviewers.
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online recommender systems for processes), scalable big data solutions for process

mining and the general scope of online event mining. In addition to many other techniques

that are all gaining interest and importance in industry and academia. The SA4PM

workshop aims at promoting the use and the development of new techniques to support

the analysis of streaming-based processes. We aim at bringing together practitioners

and researchers from different communities, e.g., Process Mining, Stream Data Mining,

Case Management, Business Process Management, Database Systems, and Information

Systems, who share an interest in online analysis and optimization of business processes

and process-aware information systems with time, storage, or complexity restrictions.

Additionally, SA4PM aims to attract research results on scalable algorithmic process

mining solutions in general, given that the work addresses how such efficient solutions

would function under streaming settings. The workshop aims at discussing the current

state of ongoing research and sharing practical experiences, exchanging ideas, and setting

up future research directions.

This third edition of the workshop attracted 4 international submissions, one of

which was redirected to another workshop before the reviewing due to relevance. Each

paper was reviewed by at least three members of the Program Committee. From these

submissions, the top 2 were accepted as full papers for presentation at the workshop.

Both presenters got the chance to interact with the audience through panel discussions.

The SA4PM’22 workshop shared the program this year with the EdBA’22 workshop,

which further enriched the discussions among various audience members. The papers

presented at SA4PM’22 provided a mix of novel research ideas and focused on online

the customer journey optimization and streaming declarative processes.

Lisan Wolters et al. focus on online process predictions by introducing a frame-

work that continuously retrains machine learning models to predict the occurence of

activities of interest in the remainder of the customer journey. The proposed framework,

called HIAP, uses process mining techniques to analyze the customer journeys. Different

prediction models are researched to investigate which model is most suitable for high

importance activity prediction. Furthermore the effect of using a sliding window or land-

mark model for (re)training a model is investigated. The framework is evaluated using

a health insurance real dataset and a benchmark data set. The efficiency and prediction

quality results highlight the usefulness of the framework under various realistic online

business settings.

Next, Andrea Burattin et al. addressed the problem of online process discovery

through an algorithm that extracts declarative processes as dynamic condition graphs
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from event streams. Streams are monitored to generate temporal representations of the

process, later processed to create declarative models. The authors validated the technique

by identifying drifts in a publicly available dataset of event streams. The used metrics

extend the Jaccard similarity measure to account for process change in a declarative

setting. The technique and the data used for testing are available online.

We hope that the reader will find this selection of papers useful to keep track of the

latest advances in the stream process mining area. We are looking forward to showing

new advances in future editions of the SA4PM workshop.
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Abstract. Customer journey analysis is important for organizations to
get to know as much as possible about the main behavior of their cus-
tomers. This provides the basis to improve the customer experience within
their organization. This paper addresses the problem of predicting the
occurrence of a certain activity of interest in the remainder of the customer
journey that follows the occurrence of another specific activity. For this,
we propose the HIAP framework which uses process mining techniques
to analyze customer journeys. Different prediction models are researched
to investigate which model is most suitable for high importance activity
prediction. Furthermore the effect of using a sliding window or landmark
model for (re)training a model is investigated. The framework is evaluated
using a health insurance real dataset and a benchmark data set. The effi-
ciency and prediction quality results highlight the usefulness of the frame-
work under various realistic online business settings.

Keywords: Process mining · Process prediction · Customer journey
analysis · Streaming data · Machine learning · Deep learning

1 Introduction

Customer journey analysis is useful for companies trying to understand how the
customer interacts with the company. Next to understanding the customer jour-
ney it can also be used to improve the customer experience [1]. Customers can
interact with a company over multiple channels, such as website visits, phone
calls, physical presence at stores, etc. Not all interactions (or touchpoints) pro-
vide the same customer experience and satisfaction [2]. Next to understand-
ing current customer journeys, it is also interesting for companies to predict
whether customers will interact with a certain touchpoint on a later moment in
their journey. Knowing in advance which customer will encounter certain touch-
points, might provide the option to prevent the occurrence of touchpoints that
often indicate a negative feeling towards the journey which in turn might result
with saving resources. Current research has already shown interest in next event
prediction and final outcome prediction for running customer cases [3,6]. In this
paper, the research conducted will investigate whether the customer will interact
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with a certain activity in the remainder of its journey. Therefore, neither next
activity prediction nor final outcome prediction will alone be sufficient. Filling
the gap in future touchpoint of interest prediction is achieved by providing a
repeatable framework for future high importance activity prediction (HIAP).
The main use case of this work comes from a health insurer company that we
will refer to as Yhealth. Yhealth wants to retrieve insights in which customers are
most likely to call Yhealth. Performing a call is often experienced bad; therefore,
it is interesting to prevent such interactions. A first step in prevention is knowing
which customer will call. For this purpose, a data set containing declaration data
of the customer is provided. The goal is to predict at a certain moment in the
customer journey which customers will call Yhealth in the remainder of their
journey. The solution proposed in this paper uses online process mining tech-
niques to analyze the current customer journeys. The insights gathered serve
as basis to indicate the decision moment (DeM) and potential activity (PoAc).
For customer journeys reaching the DeM it should be predicted whether the
customer will interact with the PoAc in the remainder of its journey. Machine
and deep learning models are trained to perform predictions. The solution pro-
vides a repeatable framework to predict the occurrence of a PoAc in a customer
journey. The performance of the different prediction models is evaluated. Next,
research is conducted in the resources needed to keep a model up to date to
recent customer journeys with respect to the quality gain, using online settings
with a sliding window model and a landmark window model. This research shows
that it is important to focus on recent traces to observe and react on changing
behaviour of the customer.

The paper is structured as follows: Sect. 2 provides an overview of related
work. Section 3 contains notations used in the paper and explains the research
problem in more details. Section 4 defines the proposed framework, which is then
evaluated in Sect. 5. Section 6 concludes the paper with an outlook.

2 Related Work

Predicting next events and timestamps in a running trace is discussed in several
works. Though none of these works have the same assumptions, data or goal. In
[7] a technique to analyze and optimize the customer journey by applying pro-
cess mining and sequence-aware recommendations is proposed. These techniques
are used to optimize key performance indicators to improve the customer jour-
ney by providing personalized recommendations. The goal of predicting what
a customer will like differs from predicting what a customer will do. Especially
predicting whether a customer will encounter an action that is often experienced
badly is a different goal. Therefore, the second phase of sequence-aware recom-
mendations is not applicable in the current context. Predicting a next event and
its associated timestamp in a customer journey is discussed in [6]. They propose
a RNN with the LSTM architecture for both next event and suffix prediction.
Suffix prediction is applied by iteratively predicting the next event. This may
result in a poor suffix quality as an error in a previous prediction is propa-
gated to the next prediction. This approach encounters difficulties with traces
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in which the same event occurs multiple times as in that case the model will
predict overly long sequences of that event. In the case of a health insurer, some
events are expected to reoccur. Therefore, a solution for this limitation should
be implemented to be applicable in the current context. Another approach on
suffix prediction is applied in [5] by using an encoder-decoder GAN. The encoder
and decoder are both represented by an LSTM network and allow the creation of
variable length suffixes. This technique is used to predict suffixes up to the end
of the trace. Furthermore, a suffix is not generated at a certain point in the cus-
tomer journey, which is of high importance in the current research. Different ML
and DL techniques for outcome predictions are evaluated in [4]. The outcome of
a trace is predicted for a journey up to x events in which x has values from 1 to
10. Predicting the final outcome of a case is not the same as predicting whether
a certain activity will occur. However, it should be possible to adapt the final
outcome to high importance activity prediction. But nonetheless the technique
is not applicable in the current research as a prediction should be provided as
soon as a certain proposition holds for that trace, instead of after x events. In
[8], the authors propose a framework for online prediction of the final outcome
of retailer consumer behaviour using several aggregation methods.

3 Problem Exposition

This section defines the notation needed to understand the HIAP framework
and describes the research problem in more details. Let CJ = (cj1, cj2, ..., cjn)
be a log containing the customer interactions. Each row in the log cj r =
(cuj , t, i, ia1, ..iam) defines a single interaction of customer cuj . The customer
conducted touchpoint i at time t. The interaction of the customer may have
interaction attributes (ia1, ...iam). Later, CJ is converted into an event log. Let
L = (e1, e2, ...en) be the event log of the customer journey. Each row in the log
er = (ci, t, a, d1, ..dk) defines a single event performed by one case identifier ci.
Each customer cuj can be mapped to a ci. The touchpoint of the interaction
of the customer is renamed to an activity a and the activity is performed at
time t. Each touchpoint i will be mapped to an activity a, but multiple touch-
points might be mapped to the same activity a. Furthermore, events can have
attributes d1, ...dk, extracted from the interaction attributes. The log L contains
all traces of the customers in CJ . Let σi =< e1, e2, ..., e|σi| > define the trace of
case identifier ci. The α-prefix is the trace up to and including the first α events.
The suffix is defined as event (α + 1) until the end of the trace.

This work aims to use process mining techniques to improve customer journey
analysis and use the insights to improve the customer experience. A repeatable
framework for future touchpoint prediction in a customer journey is proposed.
The result can be used to make the customer journey smoother, which will
result in a more satisfied customer. For a customer journey a PoAc and DeM
in the trace will be defined. Based on DeM x, we know the x-prefix <e1, ...ex>

of a customer journey. Using the information in the x-prefix, the goal is to
predict whether PoAc y will occur in the x-suffix of the customer. Where the x-
suffix is <ex+1, ..., e|trace|>. Customer journeys may change rapidly, therefore the
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prediction models should facilitate updates and the framework is tested by means
of data streams. Using data streams stresses the effect of incorporating changing
behaviour of customers. Without using data streams, models are based on older
customer data and in the case of changing customer behaviour the prediction
will become unreliable. When models are retrained over time the recent changes
in customer behaviour is still considered and models will provide predictions
with a higher performance.

4 High Importance Activity Prediction Framework

This chapter introduces the high importance activity prediction (HIAP) frame-
work to predict the occurrence of an interesting touchpoint in the remainder
of the customer journey based on the journey up to a specific point in time.
The prediction uses information of the event log prefixes and possible customer
information to predict for a specific customer whether (s)he will have a specific
interaction in the future. Figure 1 shows an overview of the framework. This
chapter explains the steps of the framework.

Fig. 1. Schematic overview of the proposed framework

The goal of the first step is to create a preprocessed event log L that can
be used for the research. Preprocessing is needed to combine data of different
sources, infer missing data and remove unnecessary data [9]. Different scenarios
require different data harmonization techniques. Examples are data cleaning,
transforming interactions and transforming a customer journey to an event log.

4.1 Critical Moments

The process model of event log L is used for defining critical moments. The crit-
ical moments are the decision moment(DeM) and the potential activity (PoAc).

Decision Moment Definition. The goal of HIAP is to predict whether a
certain activity will occur based on a predefined moment in the trace. This
specific moment can be defined either by a specific activity or by a proposition
based on the events in the trace. The first time that such an activity occurs or
the proposition holds will be taken as the DeM of the trace. When determining
the DeM two criteria should be considered. First, the goal of the prediction is
to be able to adjust the remainder of the trace and prevent the occurrence of a
certain activity or to be able to save resources. As a result, the prediction should
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be early in the process. Second, the prediction should be as accurate as possible.
In general, more accurate predictions can be provided at the moment that more
information is available about the current process. Therefore, a balance should
be found between choosing an early DeM and the quality of the prediction [10].
As the prediction takes place at a certain moment, only the traces in L that at
some moment satisfy the condition of a DeM should be considered. The traces
that do not satisfy the DeM should be removed from the log.

Potential Activity Definition. The PoAc is the activity of which it is pre-
ferred to know whether it will occur in the remainder of the customer journey.
The DeM should be a proposition that is met earlier in the trace than that
the PoAc occurs. However, the PoAc may be an activity that is occurring at a
random moment in the suffix of the trace with respect to the DeM.

4.2 Data Preparation

Prior to the prediction phase a training, a validation and a test set should be
created. Two methods are used to create those sets, one being a static method
and the second method a streaming setting. Method one uses chronological in
time the first 70% of the data as training data, the next 10% as validation data
and the last 20% as test data. For the second method, a sliding window and
a landmark model are used to investigate the effect on the training time and
prediction performance. These results provide insights in the need to use all
historical data or only recent historical data to keep the prediction models up
to date. Using a wider period of time results in a considering more customer
journeys and more likely a wider spectrum of use cases. While narrowing the
time window provides a more detailed focus on recent customer journeys and
provides more details on recent behaviour. In this case, a start date and end date
of the window is defined. The training and the validation sets are composed of
the traces that are completed in this window. The test set is constructed of the
set of traces of which the proposition defining the DeM is satisfied in this time
window, but that are not yet completed.

4.3 Prediction of the Potential Activity

In this paper three models are considered for the prediction of the PoAc to
determine which model is most suited. The possible methods for prediction are
not limited to these models; therefore, it is possible to consider other models
too.

Random Forest Classifier. In order to train a RFC, the traces first need to be
represented as a set of features [11]. These features consist of a set of independent
variables and one dependent variable. This set of independent variables should
be deduced from the trace that is available up to the DeM as well as available
customer details. The dependent variable represents the occurrence of the PoAc
in the suffix of the trace. Resulting in a binary decision.
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Long-Short-Term-Memory Network. The LSTM used in the research is
inspired on the implementation of [4] for final outcome prediction. Their prepro-
cessing entails multiple steps. First, they defined the number x of events which
should be considered while creating the feature vector. The feature vectors only
entail information of the event and trace attributes that are available up to
that moment of the trace. The traces that did not contain at least x events are
removed from the log. Last, the label indicating the final outcome of the current
trace is assigned to the feature vector. This part of the feature vector is used to
compare the prediction with the ground truth and to train model parameters.
This preprocessing is not directly applicable in the current research. The event
number of the DeM may differ from one trace to another, but for each trace
the prediction should be provided at the DeM. For each trace, the number of
events prior to the DeM can be extracted. Furthermore, a number y of events
is defined, defining the preferred prefix length for each trace. Traces containing
more than y events up to the DeM, should be shortened. Only the last y events
up to the DeM should be kept. Traces that have less than y events up to the
DeM should lengthened with artificial events, added to the start of the trace.
The events occurring later than the DeM, should still be preserved. The trace
suffix will be used to determine the dependent variable, indicating whether the
PoAc occurs. The feature vectors are used as input to a LSTM network classifier.
The model is trained with a two-stage learning strategy as explained in [4].

Generative Adversarial Network. The GAN described is an adaption of
the model in [5] for suffix prediction. The implementation needed some modifi-
cation regarding the creation of the training, the validation and the test set and
the number of prefix and suffixes created for each trace. [5] created the train-
ing, the validation and the test sets by randomly selecting instances from the
complete log. In this research those are defined based on the timestamp of the
DeM or based on the timeframe. Secondly, one prefix-suffix combination should
be created per trace based on the DeM. The PoAc activity prediction could be
determined by the occurrence of the PoAc in the suffix returned by the model.

4.4 Model Comparison and Future Model Use

The next step is to evaluate the performance of each classifier to judge the
trustworthiness of the classifiers and to compare the different models. Depending
on the research field and goal of the research the quality of each model will
be accessed by the F1-score and/or recall. Generally, a higher score implies
that the model is outperforming the other models [9]. Furthermore, the three
models should also be compared to a baseline model. As baseline model a random
predictor is used. The random predictor uses the distribution of the occurrence
of the PoAc in the training set and predicts for the test set that the PoAc will
occur in the same percentage of cases. The average prediction performance over
1000 runs is used as result for the baseline model. After training a model, the
goal is to predict for new cases, as soon as the DeM property holds, whether
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the PoAc will occur. Predictions should be as reliable as possible in such cases;
therefore, the model that is expected to be most trustworthy should be used.

The model that is evaluated to be the best model, can be used for future
instance predictions. After training a model, the model can be stored, such that
the model can be used for future predictions of the PoAc. At the moment that
the proposition defining the DeM holds for a new customer journey, it can be
represented with the same feature representation as the original data. A predic-
tion on the occurrence of the PoAc will be provided by the model. The prediction
can be used to act upon to improve the customer experience.

5 Experimental Evaluation

This section evaluates the application of the HIAP research on the Yhealth and
benchmark BPI 2012 dataset.

5.1 Health Insurer Data Set

The Dutch health insurer data set contains details about the declaration process
for customers. The log CJ covers a time period of two months, recording for
all interactions cjr the touchpoint i, its timestamp t and the customer identifier
cuj . In addition, anonymized customer details are available and touchpoints are
related to further attributes, for example for a call the question is recorded.
The data harmonization is conducted with the help of Yhealth. Steps taken
are filtering of phone calls based on the subject, mapping of touchpoints to
belong to a declaration and filtering incomplete traces. This resulted in an event
log L consisting of 95, 457 traces accounting for nearly 400, 000 events. Most
traces are relatively short as 95% of the traces had less than 10 events. The
goal for Yhealth is to determine whether a customer will call as a follow-up to
obtaining the result of the declaration. Calling is often perceived negatively by
the customer; therefore, Yhealth would like to prevent the occurrence of a call.
The first step to prevent the call is to know who will call. For that reason, the
PoAc is defined as a call. The DeM is the moment that the result of a declaration
is sent to the customer. This moment is chosen as earlier in the trace, for a lot
of traces not enough information is available for the prediction and the result of
the declaration will provide valuable information for the prediction. The log is
imbalanced, as only 3.5% of the traces contain a call event on a later moment
than receiving the result on a declaration. The set is used to create a training,
a validation and a test set. The training set is undersampled such that the
occurrence of the PoAc is more evenly distributed in the suffix with respect to
the DeM.

The next step is to convert the traces to input for the RFC, LSTM and GAN.
For all three models the traces up to the moment that the customer receives the
results of a declaration is used as input to train a model for predictions. In the
case of the RFC the traces have to be converted in a set of independent decision
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variables and one dependent variable which is the PoAc. The independent vari-
ables contain information of trace and event attributes. The input features of the
LSTM network contain information on trace attributes and event attributes. All
input features should have the same length; therefore, each trace is preprocessed
such that it contains 5 events up to the DeM. The preprocessing of [4] is used to
create the feature representation. The GAN network uses the original prefixes
up to the DeM. The input of the training set also contains the suffixes which
are either the suffix up to the PoAc or the complete suffix when PoAc is not
in the suffix. The feature representation as proposed in [7] is the input for the
encoder-decoder GAN.

Fig. 2. Performance measures of the prediction models in offline setting

To determine which model can be used best, the three models and baseline
model should be compared. The result is shown in Fig. 2(A). None of the models
is performing best on all four performance measures. For the case of Yhealth it
is most important to know whether a customer is likely to call. Therefore recall
together with F1-score are the most import performance measures. On these
two measures the LSTM and RFC model are performing best. The F1 score of
both these models is doubled with respect to the random classifier; therefore,
outperforming the baseline model. Without affecting the quality of the model,
LSTM networks usually require a higher hardware requirement to train and use
the model [4], which is not always available. Furthermore, RFC models are easier
to understand and explain for humans. Accordingly, the RFC might be selected
as the best prediction model for Yhealth.

Next to comparing the three prediction models on the complete data set,
research is conducted in applying a sliding window and landmark model. A slid-
ing window model only trains over the most recent instances, while a landmark
model trains on the complete history of available data. Therefore, it is expected
that a landmark model needs more resources to train a model. However, it is
also expected that the quality of the predictions will be higher, as more training
data is available. For this purpose, sub windows of the complete data are used
to create the training, the validation and the test set for the sliding window
and landmark model. In the current research, all models are trained on a CPU.
If a GPU would be available the models could benefit from improved parallel
computations. A GAN and LSTM network are expected to benefit more from a
GPU, while the RFC is expected to be faster on a CPU.
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Fig. 3. Sliding window and landmark model results for the Yhealth data set.

The results of using a sliding window and landmark model on the Yhealth
data set is shown in Fig. 3. For the sliding window, each window contains two
weeks of data and the window shifts with one week for each new window. For the
landmark model the first window contains two weeks of data, the next windows
each increase with the data of one extra week. As can be seen in Fig. 3 the
training time of the landmark model increases as the window size increases.
Considering the same window, the RFC model is trained faster than the LSTM
model and the LSTM models is faster than the GAN model. The inference time
for the RFC and LSTM model is similar, but the GAN model is slower. For
each model, the precision and F1-score of the landmark model is at least as
high as their counterparts of the sliding window. This shows that the landmark
model is eager to learn using more journeys, even if these journey are already
a little older. Considering the recall score, up to the window ending at June
22, the landmark model is performing better than the sliding window for each
prediction model. For the window ending at June 29, the GAN and the LSTM
models trained over the sliding window have higher recall scores than the two
models trained over the landmark model. The GAN model is performing worst
for almost all windows. As of the window ending at June 15, the LSTM model on
the sliding window and landmark model scores are slightly higher than the RFC
model. However, the training time of the RFC model is considerably shorter. For
a model to provide predictions, it is important to regularly update the model
to new instances. Updating a model is easiest if training takes as less time as
possible, but the results should not be affected by the reduction of the training
time. Especially the time to train the LSTM model on the landmark model is
too long for the last window. Therefore, the landmark LSTM model is not the
most preferred model. The gain in performance for the LSTM sliding window
model is small with respect to the RFC model on the landmark model. The
performance of the RFC model with the sliding window is again slightly lower.
However, the model with the lowest performance requires the shortest training
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time. As the RFC model is easier to understand, the RFC model is the preferred
model to use. The running time of the landmark model of the RFC is not yet
too long; therefore, the landmark model is preferred over the sliding window.

5.2 BPI 2012 Data Set

Since the data of Yhealth is confidential, the HIAP framework is replicated on the
public available BPI 2012 event log. The BPI 2012 challenge event log contains
data of the application process for a personal loan or overdraft within a Dutch
financial institute. Only events with the life cycle attribute value ‘complete’ are
considered and only traces that either have an approved, cancelled or declined
application. The event log covers a time period of 6 months and contains around
12, 700 cases and 156, 000 events. The process model of the event log is used to
determine the critical moments. A new sub-process in the log is initiated if a
customer requests a loan, in that case the Dutch financial institute determines
whether an offer will be sent to the customer. In order to determine whether
an offer will be sent, human resources are needed to complete the application
and to create an offer. If it is known early enough whether an offer will be
sent, the resources could be used only for cases in which indeed an offer will be
provided to the customer. Therefore, the PoAc is the activity ‘O_SENT’. At
the activities of ‘W_Completeren_aanvraag’ (Complete application,W_C_a)
and ‘A_PREACCEPTED’ (A_p) the remainder of the process can still contain
the activity ‘O_SENT’, but the process might also finish without the activity
‘O_SENT’. Accordingly, two DeMs are defined, 1) the moment at which ‘A_p’
occurs and 2) the moment at which ‘W_C_a’ occurs. For the prediction task on
the DeM of ‘A_p’ only traces in which the activity ‘A_p’ occurs are considered.
Resulting in 6968 traces. For the activity ‘W_C_a’ the event log also consist
of 6968 traces. The occurrence of ‘O_SENT’ is 67, 2% and 44, 1% respectively.
After creating a training, a validation and a test set for both DeMs, the training
set is balanced on the occurrence of ‘O_SENT’.

The next step is to convert the traces to inputs for the RFC, LSTM and
GAN for both DeMs. For all three models the traces up to the moment ‘A_p’
as well as the moment ‘W_C_a’ are used separately as input to train a model
for predictions. In the case of the RFC the traces have to be converted to a
feature representation. The independent variables contain information of trace
and event attributes. The input features of the LSTM network contain similarly
information on trace attributes and event attributes. The trace length is set to
3 for ‘A_p’ and 6 for ‘W_C_a’ up to the DeM. The preprocessing of [4] is
used to create the feature representation. For each trace, additional independent
variables are created, which are the amount of loan or overdraft requested by the
customer, the number of activities so far, the types of these activities and time
between them. The GAN network uses the original prefixes up to the DeM. The
input of the training set also contains the suffixes which are either the suffix up
to the PoAc or the complete suffix when PoAc is not in the suffix. The feature
representation as proposed in [7] is the input for the encoder-decoder GAN.
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To determine the best prediction model, the three models and the baseline
model should be compared. The result is shown Fig. 2(B) and (C). For both
DeMs the three models are outperforming the baseline model, as the models
score higher on all performance measures. For DeM ‘A_p’ the F1-score for all
three models is comparable. The recall is best on the LSTM model. Therefore,
the LSTM model is preferred in predicting ‘O_SENT’. For DeM ‘W_C_a’ the
RFC and LSTM model score equally on the F1-score and slightly better than the
GAN model. The recall score of the RFC is outperforming those of the LSTM
and GAN model. The RFC model is best for the current prediction task.

Fig. 4. Sliding window and landmark model results on the BPI 2012 data set.

Next the results of using a sliding window and a landmark model are dis-
cussed. The first window consists of 50 days and for each timeframe it either
shifts by 25 days (Sw) or 25 days of data are added (Lm). The results for both
‘A_p’ and ‘W_C_a’ are shown in Fig. 4. For both DeMs it is the case that the
training time of the sliding window models is relatively consistent over the differ-
ent windows, while the training time of the landmark model increases. Resulting
in a longer training time for the landmark model for later windows. Furthermore
the training time and the inference time of the GAN is longer than the coun-
terparts of the LSTM and RFC model. Considering the performance measure,
the GAN model shows some poor performance results for some of the windows.
This might be caused by the goal of training for suffix prediction, which is a
different goal than predicting a PoAc. For both the RFC and LSTM model the
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performance (recall and F1-score) for the landmark model are comparable to
the sliding window results. Therefore models are not learning form more data
and only retraining on the most recent data is needed. For prediction moment
‘A_p’ the LSTM model is performing better than the RFC model on most win-
dows. Therefore, considering training time, inference time, recall and F1-score
the LSTM model with sliding window is preferred. On the other hand, for pre-
diction moment ‘W_C_a’ the RFC on both windows and the LSTM model on
the landmark window perform better than the LSTM with the sliding window.
Considering the training time, inference time, recall and F1-score the RFC on
the sliding window is preferred.

6 Conclusion

In this paper the HIAP framework is proposed as a repeatable framework for
predicting the occurrence of a PoAc at a DeM in the customer journey. Differ-
ent machine and deep learning models are compared for future predictions of
touchpoint of interest using two windowing methods. To show the relevance of
the framework, we tested it using two datasets showing the prediction power
and the impact of using a sliding window or a landmark window. Showing that
the preferred prediction model and windowing technique depends the type of
customer journey data. Interesting future research is to predict the moment at
which the expected activity is expected to occur [6]. This provides information
on the possibility to prevent the activity to occur.
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Abstract. Process discovery is a family of techniques that helps to comprehend

processes from their data footprints. Yet, as processes change over time so should

their corresponding models, and failure to do so will lead to models that under-

or over-approximate behaviour. We present a discovery algorithm that extracts

declarative processes as Dynamic Condition Response (DCR) graphs from event

streams. Streams are monitored to generate temporal representations of the pro-

cess, later processed to create declarative models. We validated the technique by

identifying drifts in a publicly available dataset of event streams. The metrics

extend the Jaccard similarity measure to account for process change in a declara-

tive setting. The technique and the data used for testing are available online.

Keywords: Streaming process discovery · Declarative processes · DCR graphs

1 Introduction

Process discovery techniques promise that given enough data, it is possible to output

a realistic model of the process as is. This evidence-based approach has a caveat: one

needs to assume that inputs belong to the same process. Not considering process vari-

ance over time might end in under- or over-constrained models that do not represent

reality. The second assumption is that it is possible to identify full traces from the

event log. This requirement indeed presents considerable obstacles in organizations

where processes are constantly evolving, either because the starting events are located

in legacy systems no longer in use, or because current traces have not finished yet.

Accounting for change is particularly important in declarative processes. Based on a

“outside-in” approach, declarative processes describe the minimal set of rules that gen-

erate accepting traces. For process mining, the simplicity of declarative processes has

been demonstrated to fit well with real process executions, and declarative miners are

currently the most precise miners in use1. However, little research exists regarding how

declarative miners are sensitive to process change. The objective of this paper is to study

how declarative miners can give accurate and timely views of partial traces (so-called

event streams). We integrate techniques of streaming process mining to declarative

1 See https://icpmconference.org/2021/process-discovery-contest/.

Alphabetical order, equal authors contribution.

c© The Author(s) 2023

M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 158–170, 2023.

https://doi.org/10.1007/978-3-031-27815-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27815-0_12&domain=pdf
https://icpmconference.org/2021/process-discovery-contest/
https://doi.org/10.1007/978-3-031-27815-0_12


Uncovering Change: A Streaming Approach for Declarative Processes 159

Time

E
v
e

n
ts

 g
e

n
e

ra
te

d
 o

v
e

r 
�

m
e A B

C D

A B

C
S

tr
e

a
m

 m
in

e
r

M
o

d
e

l 
to

 m
o

d
e

l 
M

e
tr

ic

Processes repository

…

“The process currently 

executed is exactly Process v2”

“The process currently executed 

resembles Process v1”

Contribu�on of this paper

…

Simple idea sketched 

on this paper

Long-term goal

Fig. 1. Contribution of the paper

modelling notations, in particular, DCR graphs [14]. While previous works of streaming

conformance checking have addressed other declarative languages (e.g.: Declare [23]),

these languages are fundamentally different. Declare provides a predefined set of 18

constraint templates with an underlying semantics based on LTL formulae on finite

traces [12]. Instead, DCR is based on a minimal set of 5 constraints, being able to cap-

ture regular and omega-regular languages [13]. In comparison with Declare, DCR is

a language adopted by the industry: DCR is integrated into KMD Workzone, a case

management solution used by 70% of central government institutions in Denmark [22].

Event streams present challenges for discovery. Streams are potentially infinite, mak-

ing memory and time computation complexities major issues. Our technique optimizes

these aspects by relying on intermediate representations that are updated at runtime.

Another aspect is extensibility: our technique can be extended to more complex work-

flow patterns via the combination of atomic DCR constraints. Figure 1 illustrates our

contribution: a streaming mining component, capable of continuously generating DCR

graphs from an event stream (here we use the plural graphs to indicate that the DCR

model could evolve over time, to accommodate drifts in the model that might occur).

Towards the long-term goal of a system capable of spotting changes in a detailed fash-

ion, we will also sketch a simple model-to-model metric for DCR, which can be used

to compare the results of stream mining with a catalogue or repository of processes.

An implementation of our techniques together with tests and datasets is available in

Beamline2 [6].

The rest of the paper is structured as follows: related works are presented in Sect. 2;

theoretical background is covered in Sect. 3. The streaming discovery is presented in

Sect. 4 and the approach is validated in Sect. 5. Section 6 concludes.

2 Related Work

This is the first work aiming at discovering DCR graphs from event streams. We find

related work in offline discovery of DCR graphs and stream process mining for Declare.

Offline Process Discovery Techniques. The most current discovery technique for DCR

graphs is the DisCoveR algorithm [4]. In their paper, the authors claim an accuracy of

2 See https://github.com/beamline/discovery-dcr.

https://github.com/beamline/discovery-dcr
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96,1% with linear time complexity (in PDC 2021 the algorithm achieved 96.2%). The

algorithm is an extension of the ParNek algorithm [21] using an efficient implementa-

tion of DCR mapping via bit vectors. In its most recent version [24], DisCoveR has been

extended with the idea of having both positive and negative examples to produce a more

precise process model. Other related works derive from conformance checking [10] and

process repair [1] techniques. Both fields aim at understanding whether executions can

be replayed on top of an existing processes model. However, in our case, we wanted to

separate the identification of the processes (i.e., control-flow discovery) from the calcu-

lation of their similarity (i.e., the model-to-model metric) so that these two contributions

can be used independently from each other. Conformance checking and process repair,

on the other hand, embed the evaluation and the improvement into one “activity”.

Online Discovery for Declarative Models. In [7] a framework for the discovery of Declare

models from streams was introduced as a way to deal with large collections of datasets

that are impossible to store and process altogether. In [20] this work was generalized to

handle the mining of data constraints, leveraging the MP-Declare notation [9].

Streaming Process Mining in General. In his PhD thesis [29], van Zelst proposes process

mining techniques applicable to process discovery, conformance checking, and process

enhancement from event streams. An important conclusion from his research consists

of the idea of building intermediate models that capture the knowledge observed in the

stream before creating the final process model. In [5] the author presents a taxonomy for

the classification of streaming process mining techniques. Our techniques constitute a

hybrid approach in the categories in [5], mixing a smart window-based model which is

used to construct and maintain an intermediate structure updated, and a problem reduc-

tion technique used to transform the such structure into a DCR graph.

3 Background

In the following section, we recall basic notions of Directly Follows Graphs [1] and the

Dynamic Condition Response (DCR) graphs [14]. While, in general, DCR is expressive

to capture multi-perspective constraints such as time and data [15,26], in this paper we

use the classical, set-based formulation first presented in [14] that contains only four

most basic behavioural relations: conditions, responses, inclusions and exclusions.

Definition 1 (Sets, Events and Sequences). Let C denote the set of possible case iden-

tifiers and let A denote the set of possible activity names. The event universe is the set

of all possible events E = C × A and an event is an element e = (c, a) ∈ E . Given a

set N
+
n = 1, 2, . . . , n and a target set A, a sequence σ : N

+
n �→ A maps index values to

elements in A. For simplicity, we can consider sequences using a string interpretation:

σ = 〈a1, . . . , an〉 where σ(i) = ai ∈ A.

We can now formally characterize an event stream:

Definition 2 (Event stream). An event stream is an unbounded sequence mapping

indexes to events: S : N
+ → E .

Definition 3 (Directly Follows Graph (DFG)). A DFG is a graph G = (V,R) where

nodes represent activities (i.e., V ⊆ A), and edges indicate directly follows relations

from source to target activities (i.e., (as, at) ∈ R with as, at ∈ V , so R ⊆ V × V ).
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Definition 4 (Extended DFG). An extended DFG is a graph Gx = (V,R,X) where

(V,R) is a DFG and X contains additional numerical attributes referring to the nodes:

X : V × Attrs → R, where Attrs is the set of all attribute names. To access attribute α1

for node v we use the notation X(v, α1).

We use the following attributes: avgFO: average index of the first appearance of an

activity in a trace; noTraceApp: current number of traces containing the activity;

avgIdx: average index of the activity in a trace; and noOccur: number of activity occur-

rences.

Definition 5 (DCR Graph). A DCR graph is a tuple 〈A,M,→•, •→,→+,→%〉,
where A is a set of activities, M ⊆ P(A)×P(A)×P(A) is a marking, and φ ⊆ A×A
for φ ∈ {→•, •→,→+,→%} are relations between activities.

A DCR graph defines processes whose executions are finite and infinite sequences

of activities. An activity may be executed several times. The three sets of activities in

the marking M = (Ex,Re, In) define the state of a process, and they are referred to

as the executed activities (Ex), the pending response (Re)3 and the included activities

(In). DCR relations define what is the effect of executing one activity in the graph.

Briefly: Condition relations a→•a′ say that the execution of a is a prerequisite for a′,

i.e. if a is included, then a must have been executed for a′ to be enabled for execution.

Response relations a•→a′ say that whenever a is executed, a′ becomes pending. In

a run, a pending event must eventually be executed or be excluded. We refer to a′

as a response to a. An inclusion (respectively exclusion) relation a→+a′ (respectively

a→%a′) means that if a is executed, then a′ is included (respectively excluded).

For a DCR graph4 P with activities A and marking M = (Ex,Re, In) we write P•→

for the set of pairs {(x, y) | x ∈ A ∧ y ∈ A ∧ (x, y) ∈ •→} (similarly for any of the

relations in φ) and we write PA for the set of activities. Definition 5 omits the existence

of a set of labels and labelling function present in [14]. This has a consequence in the

set of observable traces: Assume a graph G = 〈{a, b}, (∅, {a, b}, {a, b}), ∅, ∅, ∅, ∅〉 as

well as a set of labels L = {p} and a labelling function l = {(a, p), (b, p)}. A possible

run of G has the shape σ = 〈p, p〉, which can be generated from 1) two executions of a,

2) two executions of b or 3) an interleaved execution of a and b. By removing the labels

from the events (or alternatively, assuming an injective surjective labelling function in

[14]), we assume that two occurrences of the event in the stream imply event repetition.

4 Streaming DCR Miner

This section presents the general structure of the stream mining algorithm for DCR

graphs. The general idea of the approach presented in this paper is depicted in Fig. 2:

constructing and maintaining an extended DFG structure (cf. Definition 4) starting from

the stream and then, periodically, a new DCR graph is extracted from the most recent

version of the extended DFG available. The extraction of the different DCR rules starts

from the same extended DFG instance. For readability purposes, we split the approach

3 We might simply say pending when it is clear from the context.
4 We will use “DCR graph” and “DCR model” interchangeably in this paper.
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Fig. 2. Conceptual representation of the discovery strategy in this paper.

Algorithm 1: General structure of Streaming DCR Miner

Input: S: stream of events; mt: maximum number of traces to store; me: maximum number of events per trace to

store; 〈T, ≤〉: Pattern poset

1 Initialize map obs ⊲ Maps case ids to the sequence of activities
2 Initialize map deps ⊲ Maps case ids to one activity name
3 Initialize extended DFG GX = (V, R, X)
4 forever do

⊲ Step 0: Observe new activity a for case c

5 (c, a) ← observe(S)

⊲ Step 1: Update of the extended DFG
6 if c ∈ obs then

7 Refresh the update time of c

8 if |obs(c)| ≥ me then

9 Remove oldest (i.e., earliest update time) event from list obs(c)
10 Update V and X of GX to be consistent with the event just removed

11 else

12 if |obs| ≥ mt then

13 Remove the oldest (i.e., earliest update time) trace from obs and all its events

14 Update V and X of GX to be consistent with the events just removed

15 obs(c) ← 〈〉 ⊲ Create empty list for obs(c)

16 obs(c) ← obs(c) · 〈a〉 ⊲ Append a to obs(c)
17 V ← V ∪ {a}
18 Update frequency and avg appearance index in X component of GX ⊲ The average appearance index is

updated considering the new position given by |obs(c)|
19 if c ∈ deps then

20 R ← R ∪ {(deps(c), a)}

21 deps(c) ← a

22 if trigger periodic cleanup then ⊲ Periodic cleanup of deps
23 Remove the oldest cases from deps

⊲ Step 2: Periodic update of the DCR model (enough time/new behaviour)
24 if trigger periodic update of the model then

25 M ← mine(〈T, ≤〉, GX) ⊲ See Algorithm 2
26 Notify about new model M

into two phases. The former (Algorithm 1) is in charge of extracting the extended DFG,

the latter (Algorithms. 2, 3, 4) focuses on the extraction of DCR rules from the extended

DFG.

Algorithm 1 takes as input a stream of events S, two parameters referring to the

maximum number of traces mt and events to store me and a set of DCR patterns to

mine. The algorithm starts by initializing two supporting map data structures obs and

deps as well as an empty extended DCR graph GX (lines 1–3). obs is a map associating
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Algorithm 2: Mining of rules starting from the extended DFG

Input: 〈T, ≤〉: Pattern poset, GX = (V, R, X): extended DFG

1 P ← 〈V, Minit, →• = ∅, •→ = ∅, →+ = ∅, →% = ∅〉 ⊲ Initial DCR graph
2 Rels, CompRels ← ∅, ∅
3 foreach t ∈ MinimalElements(〈T, ≤〉) do ⊲ Baseline for atomic patterns
4 Rels ← Rels ∪ MineAtomic(GX , t)

5 foreach t ∈ T\MinimalElements(〈T ≤〉) do ⊲ Composite case
6 CompRels ← CompRels ∪ MineComposite(GX , t, Rels)

7 if CompRels = ∅ then

8 P ← P ⊕ CompRels

9 else

10 P ← P ⊕ Rels

11 return RemoveRedundancies(P ) ⊲ Apply transitive reduction

case ids to sequences of partial traces; deps is a map associating case ids to activity

names. After initialization, the algorithm starts consuming the actual events in a never-

ending loop (line 4). The initial step consists of receiving a new event (line 5). Then, two

major steps take place: the first step consists of updating the extended DFG; the second

consists of transforming the extended DFG into a DCR model. To update the extended

DFG the algorithm first updates the set of nodes and extra attributes. If the case id c of

the new event has been seen before (line 6), then the algorithm refreshes the update time

of the case id (line 7, useful to keep track of which cases are the most recent ones) and

checks whether the maximum length of the partial trace for that case id has been reached

(line 8). If that is the case, then the oldest event is removed and the GX is updated to

incorporate the removal of the event. If this is the first time this case id is seen (line 11),

then it is first necessary to verify that the new case can be accommodated (line 12) and,

if there is no room, then first some space needs to be created by removing oldest cases

and propagating corresponding changes (lines 13–14) and then a new empty list can

be created to host the partial trace (line 15). In either situation, the new event is added

to the partial trace (line 16) and, if needed, a new node is added to the set of vertices

V (line 17). The X data structure can be refreshed by leveraging the properties of the

partial trace seen so far (line 18). To update the relations in the extended DFG (i.e., the

R component of GX ), the algorithm checks whether an activity was seen previously for

the given case id c and, if that is the case, the relation from such activity (i.e., deps(c))
to the new activity just seen (i.e., a) is added (lines 19–20). In any case, the activity just

observed is now the latest activity for case id c (line 21) and oldest cases (i.e., cases

not likely to receive any further events) are removed from deps (line 23). Finally, the

algorithm refreshes the DCR model by calling the procedure that transforms (lines 25-

26) the extended DFG into a DCR model (cf. Algorithm 2). Updates can be triggered

based on some periodicity (line 24) or based on the amount of behaviour seen. The

mechanics of such periodicity are beyond the scope of the paper.

Algorithm 2 generates a DCR graph from an extended DFG. First, it (1) defines

patterns that describe occurrences of atomic DCR constraints in the extended DFG, and

then it (2) defines composite patterns that describe the most common behaviour. Given

a set of relation patterns T , 〈T,≤〉 denotes a pattern dependency poset with ≤ a partial

order over T . Similarly MinimalElements(〈T,≤〉) = {x ∈ T |� ∃y ∈ T.y ≤ x}. Pat-

terns as posets allow us to reuse and simplify the outputs from the discovery algorithm.

Consider a pattern describing a sequential composition from a to b (similar to a flow
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Algorithm 3: Atomic miner

Input: GX = (V, R, X): extended DFG, u: DCR Pattern

1 Rels ← ∅ ⊲ Empty dictionary of mined relations
2 foreach (s, t) ∈ R do

3 switch u ⊲ Pattern match with each atomic pattern
4 do

5 case RESPONSE

6 if X(s, avgIdx) < X(t, avgIdx) then

7 Rels[u] ← Rels[u] ∪ (s, t, •→)

8 case CONDITION

9 if X(s, avgFO) < X(t, avgFO) ∧ X(s, noTraceApp) ≥ X(t, noTraceApp) then

10 Rels[u] ← Rels[u] ∪ (s, t, →•)

11 case SELFEXCLUDE

12 if X(s, noOccur) = 1 then

13 Rels[u] ← Rels[u] ∪ (s, s, →%)

⊲ Further patterns here...
14 return Rels

Algorithm 4: Composite miner

Input: GX = (V, R, X): extended DFG, u: DCR Pattern, Rels : Mined Relations

1 switch u do

2 case EXCLUDEINCLUDE

3 return Rels[SELFEXCLUDE] ∪ Rels[PRECEDENCE] ∪ Rels[NOTCHAINSUCCESION] ⊲ Removes
redundant relations

4 ⊲ Further patterns here

in BPMN). A DCR model that captures a sequential behaviour will need 4 constraints:

{a→•b, a•→b, a→%a, b→%b}. Consider T = {T1 : Condition, T2 : Response, T3 :
Exclusion, T4 : Sequence}. The pattern poset 〈T, {(T4, T1), (T4, T2), (T4, T3)}〉 defines

the dependency relations for a miner capable of mining sequential patterns. Additional

patterns (e.g. exclusive choices, escalation patterns, etc.), can be modelled similarly.

Pattern posets are finite, thus there exist minimal elements. The generation of a DCR

model from an extended DFG is described in Algorithm 2. We illustrate the mining of

DCR conditions, responses and self-responses, but more patterns are available in [25].

The algorithm takes as input an extended DFG GX and a pattern poset. It starts by creat-

ing an empty DCR graph P with activities equal to the nodes in GX and initial marking

Minit = {∅, ∅, V }, that is, all events are included, not pending and not executed. We then

split the processing between atomic patterns (those with no dependencies) and compos-

ite patterns. The map Rel stores the relations from atomic patterns, that will be used for

the composite miner. We use the merge notation P ⊕ Rels to denote the result of the

creation of a DCR graph whose activities and markings are the same as P , and whose

relations are the pairwise union of the range of Rels and its corresponding relational

structure in P . Line 11 applies a transitive reduction strategy [4], reducing the number

of relations while maintaining identical reachability properties.

The atomic and composite miners are described in Algorithms 3, and 4. The atomic

miner in Algorithm 3 iterates over all node dependencies in the DFG and the pattern

matches with the existing set of implemented patterns. Take the case of a response
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constraint. We will identify it if the average occurrence of s is before t (line 6). This

condition, together with the dependency between s and t in GX is sufficient to infer a

response constraint from s to t. To detect conditions, the algorithm verifies another set

of properties: given a dependency between s and t, it checks that the first occurrence of

s precedes t and that s and t appeared in the same traces (approximated by counting the

number of traces containing both activities, line 9). The composite miner in Algorithm

4 receives the DFG, a pattern, and the list of mined relations from atomic patterns. We

provide an example for the case of include and exclude relations. This pattern is built

as a combination of self-exclusions, precedence, and not chain successions. As these

atomic patterns generate each set of include/exclude relations, the pattern just takes the

set union construction.

Suitability of the Algorithms for Streaming Settings. Whenever discussing algorithms

that can tackle the streaming process mining problem [5], it is important to keep in

mind that while a stream is assumed to be infinite, only a finite amount of memory can

be used to store all information and that the time complexity for processing each event

must be constant. Concerning the memory, an upper bound on the number of stored

events in Algorithm 1 is given by mt · me where me is the number of unique events

and mt is the number of parallel traces. Moreover, note that the extended DFG is also

finite since there is a node for each activity contained in the memory. Concerning the

time complexity, Algorithm 1 does not perform any unbounded backtracking. Instead,

for each event, it operates using just maps that have amortized constant complexity or

on the extended DFG (which has finite, controlled size). The same observation holds

for Algorithm 2 as it iterates on the extended DFG which has a size bounded by the

provided parameters (and hence, can be considered constant).

5 Experimental Evaluation

To validate our approach we executed several tests, first to validate quantitatively the

streaming discovery on synthetic data, then to qualitatively evaluate the whole approach

on a real dataset. Due to lack of space, we only report quantitative tests, while perfor-

mance and the qualitative evaluation can be found in a separate technical report [8].

5.1 Quantitative Evaluation of Streaming Discovery

Recall from the previous section that time/space complexity are constant for streaming

settings. Thus, our analysis will focus on studying how the algorithm behaves when

encountering sudden changes in a stream. We compare with other process discovery

algorithms for DCR graphs, in this case, the DisCoveR miner [4]. The tests are per-

formed against a publicly available dataset of events streams [11]. This dataset includes

(1) a synthetic stream inspired by a loan application process, and (2) perturbations to

the original stream using change patterns [28]. Recall that the DisCoveR miner is an

offline miner, thus it assumes an infinite memory model. To provide a fair evaluation

we need to parameterize DisCoveR with the same amount of available memory. We

divided the experiment into two parts: a simple stream where the observations of each

process instance arrive in an ordered manner (i.e., one complete process instance at a
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Fig. 3. Performance comparison between the offline DisCoveR miner and the streaming DCR

Miner with equal storage available (capacity of up to 100 and 500 events).

time) and a complex stream where observations from many instances arrive intertwined.

As no initial DCR graph exists for this process, and no streaming DCR miner exists,

we used the DisCoveR miner in its original (offline) setting to generate a baseline graph

using the entire dataset. This model (the one calculated with offline DisCoveR) was

used to calculate the model-to-model similarity between the DCR stream miner and

the DisCoveR miner with memory limits. For the sake of simplicity, in this paper, we

considered only the case of sudden drifts, while we discuss other types of drift in future

work.

We introduce a metric that quantifies the similarity between two DCR graphs. It

can be used, for example, to identify which process is being executed with respect to

a model repository, or by quantifying the change rate of one process over time. The

metric takes as input two DCR graphs P and Q as well as a weight relation W that

associates each DCR relation in φ (cf. Definition 5) with a weight, plus one additional

weight for the activities. Then it computes the weighted Jaccard similarity [17] of the

sets of relations and the set of activities, similarly to what happens in [2] imperative

models:

Definition 6 (DCR Model-to-Model metric). Given P and Q two DCR graphs, and

W : φ∪{act} → R a weight function in the range [0, 1] such that
∑

r∈φ∪{act} W (r) =
1. The model-to-model similarity metric is defined as:

S(P,Q,W ) = W (act) ·
|PA ∩ QA|

|PA ∪ QA|
+

∑

r∈φ

W (r) ·
|Pr ∩ Qr|

|Pr ∪ Qr|
(1)
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The similarity metric compares the relations in each of the two DCR graphs, thus

returning a value between 0 and 1, where 1 indicates a perfect match and 0 stands for

no match at all. A brief evaluation of the metric is reported in Appendix A.

The results of the quantitative evaluation are reported in Fig. 3. Each figure shows

the performance of the incremental version of DisCoveR and the streaming DCR miner

against 2 different configurations over time. The vertical black bars indicate where a

sudden drift occurred in the stream. While the performance for the simple stream is very

good for both the DisCoveR and the streaming DCR miners, when the stream becomes

more complicated (i.e., Fig. 3b), DisCoveR becomes less effective, and, though its aver-

age performance increases over time, the presence of the drift completely disrupt the

accuracy. In contrast, our approach is more robust to the drift and more stable over time,

proving its ability at managing the available memory in a more effective way.

5.2 Discussion

One of the limitations of the approach regards precision with respect to offline min-

ers. A limiting aspect of our work is the choice of the intermediate structure. A DFG

representation may report confusing model behaviour as it simplifies the observations

using purely a frequency-based threshold [27]. A DFG is in essence an imperative data

structure that captures the most common flows that appear in a stream. This, in a sense,

goes against the declarative paradigm as a second-class citizen with respect to declara-

tive constraints. We believe that the choice of the DFG as an intermediate data structure

carries out a loss of precision with respect to the DisCoveR miner in offline settings.

However, in an online setting, the DFG still provides a valid approximation to observa-

tions of streams where we do not have complete traces. This is far from an abnormal sit-

uation: IoT communication protocols such as MQTT [16] assume that subscriber nodes

might connect to the network after the communications have started, not being able

to identify starting nodes. Specifically, in a streaming setting it is impossible to know

exactly when a certain execution is complete and, especially in declarative settings, cer-

tain constraints describe liveness behaviours that can only be verified after a whole trace

has been completely inspected. While watermarking techniques [3] could be employed

to cope with lateness issues, we have decided to favour self-contained approaches in

this paper, leaving for future work the exploration of watermarking techniques.

6 Conclusion and Future Work

This paper presented a novel streaming discovery technique capable of extracting

declarative models expressed using the DCR language, from event streams. Addition-

ally, a model-to-model metric is reported which allows understanding if and to what

extent two DCR models are the same. An experimental evaluation, comprising both

synthetic and real data, validated the two contributions separately as well as their com-

bination in a qualitative fashion, which included interviews with the process owner.

We plan to explore several directions in future work. Regarding the miner, we plan

to extend its capabilities to the identification of sub-processes, nesting, and data con-

straints. Regarding the model-to-model similarity, we would like to embed more seman-
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tic aspects, such as mentioned in [18]. A possible limitation of the streaming miner algo-

rithm approach followed here relates to the updating mechanism. Currently lines 22–24

of Algorithm 1 perform updates based entirely on periodic updates triggered by time,

which will generate notifications even when no potential changes in the model have

been identified. A possibility to extend the algorithm will be to integrate the model-to-

model similarity as a parameter to the discovery algorithm, so models only get updated

after a given change threshold (a similarity value specified by the user) is reached.

A Quantitative Evaluation of Model-to-Model Metric
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Fig. 4. Correlation between the model-to-model metric

and the number of model changes. The colour indicates

the density of observations. (Color figure online)

To validate our metric we used

a dataset of 28 DCR process

models collected from previ-

ous mapping efforts [19]. For

each model, we randomly intro-

duced variations such as: adding

new activities connected to the

existing fragments, adding dis-

connected activities, deleting

existing activities, adding and

removing constraints, and swap-

ping activity labels in the pro-

cess. By systematically apply-

ing all possible combinations of

variations in a different amount

(e.g., adding 1/2/3 activities and

nothing else; adding 1/2/3 activ-

ities and removing 1/2/3 con-

straints) we ended up with a total of 455,826 process models with a quantifiable

amount of variation from the 28 starting processes. Figure 4 shows each variation on

a scatter plot where the x axis refers to the number of introduced variations and the y

axis refers to the model-to-model similarity. The colour indicates the number of mod-

els in the proximity of each point (since multiple processes have very close similar-

ity scores). For identifying the optimal weights we solve an optimization problem,

aiming at finding the highest correlation between the points, ending up with: W =
{(→•, 0.06), (•→, 0.07), (→⋄, 0.06), (→+, 0.07), (→%, 0.13), (act, 0.61)} leading to

a Pearson’s correlation of −0.56 and a Spearman’s correlation of −0.55. These values

indicate that our metric is indeed capable of capturing the changes. As the metric is very

compact (value in [0, 1]) and operates just on the topological structure of the model, it

cannot identify all details. However, the metric benefits from a fast computation.
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3rd International Workshop in Leveraging Machine

Learning for Process Mining (ML4PM 2022)

Over the past several years, interest in combining Machine Learning (ML) and Process

Mining (PM) methods has grown, as well as the challenges posed by using properly both

methods. It is becoming more and more popular to apply ML to PM and to automate

PM tasks, which is fostering a new research area.

By bringing together practitioners and researchers from both communities, the 3rd

International Workshop on Leveraging Machine Learning for Process Mining aimed

to discuss recent research developments at the intersection of ML and PM. The open

call for contributions solicited submissions in the areas of outcome and time prediction,

classification and clusterization of business processes, application of Deep Learning for

PM, Anomaly detection for PM, Natural Language Processing and Text Mining for PM,

Multi-perspective analysis of processes, ML for robot process automation, Automated

process modeling and updating, ML-based Conformance checking, Transfer Learning

applied to business processes, IoT business services leveraged by ML, Multidimensional

PM, Predictive Process Monitoring, Prescriptive Learning in PM and Convergence of

ML and Blockchain in Process Management.

The workshop attracted sixteen submissions confirming the liveliness of the field. Of

the received sixteen submissions, eight submissions passed through the review process

and were accepted for presentation at the workshop. Each paper was reviewed by three

or four members of the program committee. Papers presented at the workshop were also

selected for inclusion in the post-proceedings. These articles are briefly summarised

below.

The paper of Kwon and Comuzzi presented a framework for AutoML in Predictive

Process Monitoring (PPM). Through genetic algorithms, PPM-specific parameters and

traditional hyperparameters for machine learning models have been explored creating a

rich configuration space to provide pipeline recommendations.

The paper of Peeperkorn et al. discusses the negative impact of mislabelling cases

as negative, particularly using XGBoost and LSTM neural networks. Promising results

have been presented by changing the loss function used by a set of models during training

to those of unbiased Positive-Unlabelled or non-negative Positive-Unlabelled learning.

The paper of Warmuth and Leopold, another regarding PPM, focuses on eXplainable

Artificial Intelligence (XAI). The authors investigated the combination of textual and

non-textual data used for explainable PPM. Furthermore, they analyzed the trade-off

regarding the incorporation of textual data in predictive performance and explainability.

The paper of Faria Junior et al. presented an exploratory study based on frequent

mining and trace clustering analysis as a mechanism for profile characterization. The

clustering method has been fashioned over a vector representation from an object-centric

event log.
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The paper of Lahann et al. compared deep learning-based anomaly detection of pro-

cess instances, creating a baseline and providing insights. They suggested minor refine-

ment to build a simple LSTM detector capable of outperforming the existing approaches

on several event log scenarios.

The paper of Grohs and Rehse proposed the attribute-based conformance diagnosis

(ABCD) method. ABCD is a novel approach for correlating process conformance with

trace attributes based on ML. The idea is grounded on identifying trace attributes that

potentially impact the process conformance allowing proper processing.

The paper of Zbikowski et al. proposed a new representation for modelling multi-

process environment with different process-based rewards. The proposal is based on

Deep Reinforcement Learning to reach an optimal resource allocation policy based on

a representation of a business process.

The paper of Kohlschmidt et al. shared some assumptions regarding those areas

where a process enhancement is possible but the process presents a significantly different

performance from their similar situations. They have defined a process enhancement area

as a set of situations where the process performance is surprising.

In addition to these eight papers, the program of the workshop included the technical

talk “Process Mining in Python: Basics and Integrations to Other Python Libraries”

presented by Sebastiaan van Zelst.

We would like to thank all the authors submitted papers for publication in this book.

We are also grateful to the members of the Program Committee and external referees

for their excellent work in reviewing submitted and revised contributions with expertise

and patience.
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Abstract. Assigning resources in business processes execution is a
repetitive task that can be effectively automated. However, different
automation methods may give varying results that may not be optimal.
Proper resource allocation is crucial as it may lead to significant cost
reductions or increased effectiveness that results in increased revenues.

In this work, we first propose a novel representation that allows the
modeling of a multi-process environment with different process-based
rewards. These processes can share resources that differ in their eligi-
bility. Then, we use double deep reinforcement learning to look for an
optimal resource allocation policy. We compare those results with two
popular strategies that are widely used in the industry. Learning optimal
policy through reinforcement learning requires frequent interactions with
the environment, so we also designed and developed a simulation engine
that can mimic real-world processes.

The results obtained are promising. Deep reinforcement learning based
resource allocation achieved significantly better results compared to two
commonly used techniques.

Keywords: Resource allocation · Deep reinforcement learning ·
Double DQN · Process optimization

1 Introduction

In process science, there is a wide range of approaches that are employed in
different stages of operational processes’ life cycles. Following [1], these include,
among others, optimization and stochastic techniques. Business processes can
be also categorized according to the following perspectives: control-flow, orga-
nizational, data, and time perspective [2]. Resource allocation is focused on the
organizational perspective utilizing optimization and stochastic approaches.

As it was emphasized in [3] resource allocation, while being important from
the perspective of processes improvement, did not receive much attention at the
time. However, as it was demonstrated in [4] the problem received much more
attention in the last decade, which was reflected in the number of published
scientific papers.

c© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 177–189, 2023.
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This paper addresses the problem of resource allocation with the use of meth-
ods known as approximate reinforcement learning. We specifically applied recent
advancements in deep reinforcement learning such as double deep q-networks
(double DQN) described in [5]. To use those methods we firstly propose a rep-
resentation of a business processes suite that helps to design the architecture of
neural networks in terms of appropriate inputs and outputs.

To the best of our knowledge, this is the first work that proposes a method
utilizing double deep reinforcement learning for an on-line resource allocation for
a multiple-process and multi-resource environment. Previous approaches either
used so-called “post mortem” data in the form of event logs (e.g. [6]), or applied
on-line learning, but due to the usage of tabular algorithms were limited by
the exploding computational complexity when the number of possible states
increased.

In the next section, we provide an overview of reinforcement learning meth-
ods and outline improvements of deep learning approaches over existing solu-
tions. Then we analyze and discuss different approaches to resources allocation.
In Sect. 3 we outline our approach for modeling operational processes for the
purpose of training resource allocation agents. In Sect. 4 we describe the simu-
lation engine used in training and its experimental setup. In Sect. 5 we evaluate
the proposed approach and present outcomes of the experiments. In Sect. 6 we
summarize the results and sketch potential future research directions.

2 Background and Related Work

2.1 Deep Reinforcement Learning

Following [7], reinforcement learning is “learning what to do – how to map situ-
ations to actions – so as to maximize a numerical reward signal”. There are two
main branches of reinforcement learning, namely tabular and approximate meth-
ods. The former provide a consistent theoretical framework that under certain
conditions guarantees convergence. Their disadvantage is increasing computa-
tional complexity and memory requirements when the number of states grows.
The latter are able to generalize over a large number of states but do not provide
any guarantee of convergence.

The methods that we use in this work find optimal actions indirectly, identify-
ing optimal action values for each state-action pair. Following recursive Bellman
equation for the state-action pair [7], where p(s′, r|s, a) is a conditional proba-
bility of moving to state s′ and receiving reward r after taking action a in state
s; π(a|s) is the probability of taking action a in state s; γ ∈ [0, 1] is a discount
factor:

qπ(s, a) =
∑

s′,r

p(s′, r|s, a)[r + γ
∑

a′

π(a′|s′)qπ(s′, a′)], (1)

an optimal policy is a policy that at each subsequent step takes an action that
maximizes state-action value, that is q∗(s, a) = maxπqπ(s, a).

When we analyze Eq. 1 we can intuitively understand problems with iterative
tabular methods for finding optimal policy π∗ for high-dimensional state spaces.
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Fortunately, recent advancements in deep learning methods allow for further
enhancement of approximate reinforcement learning methods with a most visible
example being human-level results for Atari suite [8] obtained with the use of
double deep Q-network [9].

2.2 Resource Allocation

In [4] we can find a survey of human resource allocation methods. The spectrum
of approaches is wide. In [10–14] we can find solutions based on static, rule based
algorithms.

There is a number of approaches for resource allocation that rely on applying
predictive models. In [15] an offline prediction model based on LSTM is combined
with extended minimum cost and maximum flow algorithms.

In [16] authors introduce Reinforcement Learning Based Resource Allocation
Mechanism that utilizes Q-learning for the purpose of resource allocation. For
handling multiple business processes, the queuing mechanism is applied.

Reinforcement learning has been also used for the task of proactive business
process adaptation [17,18]. The goal there is to monitor the particular business
process case while it is running and intervene in case of any detected upcoming
problems.

The evaluations conducted in the aforementioned works are either based
on simulations [16,18] or on analysis of historical data, mostly from Business
Process Intelligence Challenge [15,17,19]. The latter has the obvious advantage
of being real-world based dataset while simultaneously being limited by the
number of available cases. The former offers a potentially infinite number of
cases, but alignment between simulated data and real business processes is hard
to achieve.

In [20] authors proposed a deep reinforcement learning method for business
process optimization. However, their research objective is concentrated on ana-
lyzing which parameters of DQN are optimal.

3 Approach

This section describes the methods that we used to conduct the experiment.
First, we will introduce concepts related to business process resource allocation.
Then we will present double deep reinforcement learning [21] for finding optimal
resource allocation policy. By optimal resource allocation policy, we mean such
that maximizes the number of completed business process cases in a given period.

As it was pointed out earlier, both tabular and approximate algorithms in
the area of reinforcement learning require frequent interaction with the execution
environment. For the purpose of this work, we designed and developed a dedi-
cated simulation environment that we call Simulation Engine. However, it can
serve as a general-purpose framework for testing resource allocation algorithms
as well. Concepts that we use for defining the business process environment
assume the existence of such an engine. They incorporate parameters describing
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the level of uncertainty regarding their instances. The purpose here is to replicate
stochastic behavior during process execution in real-world scenarios.

We imagine a business process workflow as a sequence of tasks1 that are
drawn from the queue and are being executed by adequate resources (both
human and non-human). Each task realization is in fact an instance of a task
specification described below. The task here is considered as an unbreakable unit
of work that a resource can be assigned to and works on for a specified amount
of time.

Fig. 1. Training architecture diagram. The learning process is centered around Sim-
ulation Engine that takes action from the main network and returns the reward and
the next state. The architecture above follows the double deep Q-network (DDQN)
approach [21].

Definition 1 (Task). Let the tuple (i , C i , d , s, b) define a task ti that is a single
work unit represented in the business process environment where:

– i is a unique task identifier where i ∈ {0, 1, 2, ...},
– C i is a set of transitions from a given task i,
– d ∈ R

+ is a mean task duration with s being its standard deviation and
– b ∈ {0, 1} indicates whether it is a starting task for a particular business

process.

Each task in the business process (see e.g. Figure 2a) may have zero or more
connections from itself to other tasks.
1 Task here should not be confused with the task definition used in reinforcement

learning literature where it actually means the objective of the whole learning pro-
cess. In the RL sense, our task would be to “solve” Business Process Suite (meaning
obtaining as much cumulative reward as possible) in the form of Definition 6.
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Definition 2 (Task Transition). For a given task ti a task transition c i
j is a

tuple (j , p) where j is a unique identifier of a task that this transition refers to
and p is a probability of this transition. If i = j it is a transition to itself.

Definition 3 (Resource). Let the tuple (k ) define a single resource rk where
k ∈ {0, 1, 2, ...} is a unique resources identifier. To refer to the set of all
resources, we use R̂ .

Definition 4 (Resource Eligibility). If a resource rk can be assigned to a
task ti it is said it is eligible for this task. Set E i = {e i

k : e i
k ∈ R+} contains all

resource eligibility modifiers for a given task i . The lower the e i
k , the shorter is

the expected execution of task ti . To refer to the set of all properties of eligibility
for all defined resources R̂ we use Ê.

The expected execution time of a task ti is calculated by multiplying its
duration by the resource eligibility modifier e i

k .

Definition 5 (Business Process). Let a tuple (m, fm , Rm , Tm) define a busi-
ness process Pm where m is a unique identifier of a process Pm and Tm is a set
of tasks belonging to the process Pm and ti ∈ Tm =⇒ ¬∃n : n �= m ∧ ti ∈ Tn . The
relative frequency of a particular business process is defined by fm . By Rm we
refer to the reward that is received by finishing this business process instance. To
refer to the set of all defined business processes, we use P̂ .

An example of a business process can be found in Fig. 2a. Nodes represent tasks
and their identifiers. Arrows define possible task transitions from particular
nodes. The numbers on the arrows represent transition probabilities to other
tasks.

Definition 6 (Business Process Suite). Let a tuple (R̂ , Ê , P̂ ) define a Busi-
ness Process Suite that consists of a resources set R̂ , resources eligibility set Ê

and business processes set P̂ such that: ∀rk ∈ R̂ ∃m, i e i
k ∈ Ê ∧ ti ∈ Tm ∧ Pm ∈ P̂

Business Process Suite is a meta definition of the whole business processes
execution environment that consists of tasks that aggregate to business processes
and resources that can execute tasks in accordance with the defined eligibility.
We will refer to the instances of business processes as business process cases.

Definition 7 (Business Process Case). Let a tuple (Pm , i , o) define a busi-
ness process case P̃m where Pm is a business process definition, i is a current task
that is being executed and o ∈ {0, 1} is information whether it is running (0) or
was completed (1).

Definition 8 (Task Instance). Let a tuple (i , rk ) be a task instance t̃i . At a
particular moment of execution, there exists exactly one task instance matching
business process case property i . The exact duration is determined by properties
d and s of task definition ti .
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Definition 9 (Task Queue). Let the ordered list (N t0 , N t1 , N t2 , ..., N ti ) define
a task queue that stores information about the number of task instances N ti for
a given task ti .

Property 1. Direct consequence of Definitions 5, 7, 8 and 9 is that number of
task instances in the task queue matching the definition of task with identifiers
from particular business processes is equal to the number of business process
cases.

The process of learning follows the schema defined in [5] and [9]. We use two
sets of weights θ and θ′. The former is used for online learning with random
mini-batches sampled from a dedicated experience replay queue D. The latter is
updated periodically to the weights of the more frequently changing counterpart.
The update period used in tests was 104 steps. The detailed algorithm, based
on [21], is outlined in Listing 1.

Algorithm 1. Double DQN training loop

1: Initialize number of episodes E, and number of steps in episode M

2: Initialize batch size β ⊲ Set to 32 in tests
3: Initialize randomly two sets of neural network weights θ and θ′

4: D := {} ⊲ Replay memory of size E ∗ M ∗ 0.1
5: Initialize environment E

6: for e=0 in E do

7: S := Reset(E)
8: for m=0 in M do

9: if Random() < ǫ then

10: a := SelectRandomAction()
11: else

12: a := argmaxaQ(S, a; θ)
13: end if

14: S
′, R := Step(E , a)

15: Put a tuple (S, a, R, S′) in D

16: Sample β experiences from D to (S, A, R, S′)
17: Qtarget := R + δ ∗ Q(S′, argmaxaQ(S′, a; θ); θ′)
18: Qcurrent := Q(S, a; θ)
19: θt+1 = θt + ∇θt

(Qtarget − Qcurrent)
2

20: Each 104 steps update θ′ := θ

21: end for

22: end for

In Fig. 1 an architecture of a system used in the experiment is presented in
accordance with main data flows. It is a direct implementation of the training
algorithm described in Algorithm 1. We used two neural networks: main and tar-
get. Both had the same architecture consisting of one input layer with |R | + |T |
inputs, two densely connected hidden layers containing 32 neurons each, and one
output layer with |R |x |T | outputs. After each hidden layer, there is a Batch Nor-
malization layer [22]. Its purpose is to scale each output from the hidden neuron
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layer before computing the activation function. This operation improves train-
ing speed by reducing undesirable effects such as vanishing/exploding gradient
updates.

The input configuration we used is defined as follows:

S = [ρ0, ρ1, ...ρ|R |−1, ζ0, ζ1, ..., ζ|T |−1] (2)

where ρk = i refers to the resource assignment to one of its eligible tasks, and

ζi = N ti/
∑|T |−1

l=0 N tl is a relative load of a a given task with respect to all the
tasks present in the task queue.

Outputs of the neural network are an approximation of a q-value for each
of the available actions. The action here is assigning a particular resource to
a particular task or taking no action for a current time step. Thus, number
of outputs equals |R ||T | + 1. This number grows quickly with the number of
resources and tasks. This, in turn, may lead to a significant increase in training
time or even an inability to obtain adequate q-value estimation.

In RL there exists a separation between continuing and episodic RL tasks
[7]. The former are ending in a terminal state and differ in the rewards for the
different outcomes. The latter are running infinitely and accumulate rewards over
time. The business processes suite is a continuing RL task in its nature. However,
in our work, we artificially terminate each execution after M steps simulating
an episodic environment. We observed that it gave much better results than
treating the whole set of business processes as a continuing learning task. As
it is shown in Sect. 4 agents trained in such a way can be used in a continuing
setup without loss of their performance.

4 Experimental Setup

This section briefly describes the setup of the experiments that we have con-
ducted to assess the proposed methods and parametrization of a business process
suite used for the evaluation.

Fig. 2. Business processes used in the evaluation.

To evaluate the proposed method we devised a business processes suite con-
taining two business processes m = 0 and m = 1. Although they are quite small
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in terms of the number of tasks, the tasks transitions are nondeterministic which
intuitively makes the learning process harder.

In Figs. 2a and 2b we can see both processes’ graphs along with information
about their tasks’ parametrization. In Table 1 we can see available resources from
the testing suite along with the information about their eligibility in regard to
particular tasks.

Both processes have the same reward R0 = R1 = 1, which is received for each
completed business process case. They differ in their relative frequency, which
for the first process is f0 = 1 and f1 = 6 for the second one.

The resources we use in our experimental setup are of the same type, differing
only in their eligibility in regard to the tasks.

Table 1. Resource eligibility. Values in cells define resource efficiency that is used in
Simulation Engine. Final duration is obtained by multiplying duration d of a particular
task by the adequate value from the table. A lack of value indicates that a particular
resource is not eligible for a given task.

Task ID Resources

0 1 2

0 – 0.75 2.8

1 1.4 0.3 –

2 0.3 – 2.7

3 – 2.7 0.1

4 0.6 2.6 –

5 0.4 – 10.5

6 1.1 – 1.7

7 0.4 0.6 2.5

In terms of algorithm parametrization, we set the number of episodes E to
600 and the number of steps in a single episode to 400. ǫ according to [5] was
linearly annealed from 1 to 0.1 over first E∗M ∗0.1 steps. The size of the memory
buffer was set to E ∗ M ∗ 0.1 elements.

5 Results and Discussion

We run 30 tests for the test suite. The results are presented in Fig. 3a. We can see
that the variance in the cumulative sum of rewards is tremendous. Best models
achieve up to 20 units of reward while the worst keep their score around zero.

Our findings are consistent with the general perception of how deep rein-
forcement learning works [23]. In particular, a training model that achieves sat-
isfactory results strongly depends on weights initialization.

As we can see in Fig. 3b the value of a loss function also varies significantly.
Moreover, its value after the initial drop steadily increases with subsequent
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Fig. 3. Training on the test suite over 30 training runs.

episodes. This is a phenomenon that is characteristic of DQN. The error mea-
sures the difference between training and main network outputs. This value is
not directly connected with the optimization target - maximizing the cumulative
reward over all steps.

In [5] authors recommend saving model parameters if they are better than
the best previously seen (in terms of cumulative reward) during the current
training run. This approach allows addressing - to some extent - a catastrophic
forgetting effect and overall instability of approximate methods. For each run we
save both the best and last episode’s weights. After the training phase, we got
30 models as a result of keeping parameters giving the highest rewards during
learning and 30 models with parameters obtained at the end of training. The
distribution over all runs can be seen in Fig. 4a. We can see that the models
with the best parameters achieve significantly higher cumulative rewards. The
median averaged over 100 episodes was 14.04 for the best set of parameters and
12.07 for the last set.

To assess the results obtained by the deep learning agent we implemented
two commonly used heuristics:

– FIFO (first in, first out) - the first-in-first-out policy was implemented in
an attempt to avoid any potential bias while resolving conflicts in resource
allocation. In our case, instead of considering task instances themselves, we
try to allocate resources to the business process cases that arrived the earliest.

– SPT (shortest processing time) - our implementation of the shortest process-
ing time algorithm tries to allocate resources to the task instances that take
the shortest time to complete (without taking into account resource efficien-
cies for tasks). Thanks to this policy, we are able to prevent the longest tasks
from occupying resources when these resources could be used to complete
other, much shorter tasks and therefore shorten the task queue.

We conducted the same test lasting 100 episodes for both heuristics. Results
are presented in Fig. 4b. The median averaged over 100 episodes was 11.54 for
FIFO and 3.88 for SPT. SPT results were far below the FIFO. Comparing the
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Fig. 4. Results over 30 runs.

results of the best model from the left side of Fig. 4a with results for FIFO from
the left side of Fig. 4b, we can see that the cumulative reward for deep learning
models is larger in the majority of episodes.

The improvement achieved by the deep RL model with each episode lasting
400 steps is not large considering its absolute value. The median FIFO agent’s
reward oscillates around 11, while the median deep RL’s around 14. The question
that arises here is whether this relation will hold with long (potentially infinitely)
lasting episodes? To answer it, we conducted an experiment with 100 episodes
with 5000 steps each. The results are presented in Fig. 5. We can see that the gap
between rewards for DQN model and for FIFO increased. The average episode
reward for DQN was 210.52, while for FIFO 145.84 and 80.2 for SPT.

Fig. 5. Long run test for best model achieved during training compared to FIFO and
SPT approaches. Each episode lasted 5000 time steps.

6 Conclusions and Future Work

In this paper, we applied double deep reinforcement learning for the purpose
of resource allocation in business processes. Our goal was to simultaneously
optimize resource allocation for multiple processes and resources in the same
way as it has to be done in real-world scenarios.
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We proposed and implemented a dedicated simulation environment that
enables an agent to improve its policy in an iterative manner obtaining infor-
mation about the next states and rewards. Our environment is thus similar to
OpenAI’s Gym. We believe that along with processes’ definitions, it may serve as
a universal testing suite improving the reproducibility of the results for different
resource allocation strategies.

We proposed a set of rules for defining business processes suites. They are
the formal representation of real-world business process environments.

The results of the double DQN algorithm for resources allocation were com-
pared with two strategies based on common heuristics: FIFO and SPT. The
deep RL approach obtained results that are 44% better than FIFO and 162%
better than SPT. We were not able to directly compare our results to previously
published studies as they are relatively hard to reproduce. This was one of the
main reasons for publishing the code of both our simulation engine and training
algorithm. We can see this as a first step toward a common platform that will
allow different resource allocation methods to be reliably compared and assessed.

As for future work, it would be very interesting to train a resource allocation
agent for a business process suite with a larger number of business processes
that would be more deterministic compared to those used in this study. Such a
setup would put some light on a source of complexity in the training process.

The number of potential actions and neural networks’ outputs is a significant
obstacle in applying the proposed method for complex business process suites
with many processes and resources. In our future work, we plan to investigate
other deep reinforcement learning approaches, such as proximal policy optimiza-
tion, which tend to be more sample efficient than standard double DQN.

Reproducibility. Source code: https://github.com/kzbikowski/ProcessGym
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Abstract. Predictive process monitoring techniques leverage machine
learning (ML) to predict future characteristics of a case, such as the pro-
cess outcome or the remaining run time. Available techniques employ
various models and different types of input data to produce accurate pre-
dictions. However, from a practical perspective, explainability is another
important requirement besides accuracy since predictive process moni-
toring techniques frequently support decision-making in critical domains.
Techniques from the area of explainable artificial intelligence (XAI) aim
to provide this capability and create transparency and interpretability
for black-box ML models. While several explainable predictive process
monitoring techniques exist, none of them leverages textual data. This is
surprising since textual data can provide a rich context to a process that
numerical features cannot capture. Recognizing this, we use this paper
to investigate how the combination of textual and non-textual data can
be used for explainable predictive process monitoring and analyze how
the incorporation of textual data affects both the predictions and the
explainability. Our experiments show that using textual data requires
more computation time but can lead to a notable improvement in pre-
diction quality with comparable results for explainability.

Keywords: Predictive process monitoring · Explainable Artificial
Intelligence (XAI) · Natural language processing · Machine learning

1 Introduction

In recent years, machine learning (ML) techniques have become a key enabler for
automating data-driven decision-making [14]. Machine learning has also found
its way into the broader context of business process management. Here, an
important application is to predict the future of business process executions
- commonly known as predictive business process monitoring [7]. For example,
a machine learning model can be used to predict the process outcome [20], the
next activity [9] or the remaining time of a running process [21].

From a practical point of view, one of the critical shortcomings of many
existing predictive process monitoring techniques is that their results are not

c© The Author(s) 2023
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explainable, i.e., it remains unclear to the user how or why a certain prediction
was made [17]. Especially in critical domains, such as healthcare, explainabil-
ity, therefore, has become a central concern. Techniques in the area of explain-
able artificial intelligence (XAI) aim to shed light on black box ML models
and provide transparency and interpretability [1]. Recognizing this, several so-
called explainable predictive process monitoring techniques have been proposed
[10,14,18]. They rely on well-established explainability approaches such as SHAP
[12] and LIME [16] to support users in better understanding the predictions of
the employed techniques.

What existing explainable predictive process monitoring techniques have in
common is that they solely rely on numerical and categorical attributes and do
not leverage textual data. This is surprising given that textual data often pro-
vides rich context to a process. Recognizing the potential value of textual data
for explainable predictive process monitoring, we use this paper to empirically
explore how the combination of textual and non-textual data affects the predic-
tion quality, the explainability analysis, and the computational effort. To this
end, we propose two novel strategies to combine textual and non-textual data
for explainable predictive process monitoring and conduct extensive experiments
based on an artificial dataset.

The remainder of this paper is organized as follows: Sect. 2 illustrates the
problem and the potential of using textual data for explainable predictive process
monitoring. Section 3 elaborates on our study design. The code for all experi-
ments can be found on GitHub1. Section 4 presents the results. Section 5 discusses
related work before Sect. 6 concludes our paper.

2 Problem Illustration

Predictive process monitoring techniques aim to predict the future state of cur-
rent process executions based on the activities performed so far and process
executions in the past [7]. Given a trace, we might, for instance, aim to predict
the outcome of a trace [20]. Depending on the context, such an outcome could
relate to the successful completion of a production process or the successful cur-
ing of a patient. Predicting the outcome of a process execution at an early stage
enables early interventions, such as allocating additional resources or taking a
different course of action still to reach the desired process outcome [22].

A central problem in process monitoring techniques leveraging ML is that it
is nearly impossible for humans to understand why a particular prediction was
made. This led to the development of techniques for explainable artificial intel-
ligence, which aim to produce more explainable models without deterioration of
the predictive performance. The goal is to help humans comprehend, effectively
use, and trust artificial intelligence systems [1]. One widely employed XAI strat-
egy is to produce a simpler, understandable model that approximates the results
of the original prediction model [12] such as SHAP [10,18] or LIME [14] which
are commonly used in the context of predictive process monitoring.

1 https://github.com/christianwarmuth/explainable-predictive-process-monitoring-
with-text.

https://github.com/christianwarmuth/explainable-predictive-process-monitoring-with-text
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All existing techniques for explainable predictive process monitoring have in
common that they rely on numerical and categorical features only and do not
consider textual data. This is surprising since textual data often can provide rich
insights into the context of a process execution.

For example, consider a loan application process where customers may pro-
vide written statements about their financial situation, the purpose of the
requested loan, and details of the repayment plan. This data might allow to more
accurately predict whether the customer will pay back the loan and explain that
prediction better. Figure 1 illustrates such a setting using an exemplary event
log. We can see two cases where one applicant intends to spend the money on
a wedding and the other on a new car. From the bank’s perspective, this might
make quite a difference since purchasing a car results in a physical asset that
can be resold if the customer cannot pay it back.

Fig. 1. Exemplary eventlog with textual context data

Recognizing the potential value of textual data in the context of explainable
predictive process monitoring, we use this paper to investigate how the combi-
nation of textual and non-textual data can be used for explainable predictive
business process monitoring and analyze how the incorporation of textual data
affects both the prediction quality and the explainability.

3 Study on the Impact of Textual Data on Explainable

Predictive Process Monitoring

In this section, we describe the design of our study to investigate the potential of
textual data for explainable predictive process monitoring. In Sect. 3.1, we first
explain the different strategies we use for combining textual and non-textual
data and the models chosen for their instantiation. In Sect. 3.2, we introduce the
dataset and its creation. In Sect. 3.3, we elaborate on the preprocessing and in
Sect. 3.4 we explain the training and explanation setup for the experiments.

3.1 Strategies and Models

Combining textual and non-textual data for explainable predictive process mon-
itoring is not trivial. That is because these different types of input data must
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be combined in a useful way for both model building and inference and the
explainability analysis. We propose two novel strategies:

Class Label or Probability Combination. Strategy one is to have two models (one
for the textual data and one specific for the non-textual data). For inference,
we can combine the class labels or the class probabilities output by the different
models for prediction on real input. We have two separate explainability analyses
as we have two individual models (Fig. 2).

Fig. 2. Conceptual architecture strategy 1

Two-Stage Model. In a two-stage model approach, we have one model using
solely textual information as stage 1. We then filter out the n most important
features (e.g., words or smaller parts of a sentence) and feed them into the stage
2 model alongside non-textual information. The explainability analysis would be
performed on the second-stage model, considering both data sources (Fig. 3).

Fig. 3. Conceptual architecture strategy 2

We needed to choose a model for each input type to instantiate these strate-
gies. For non-textual data, i.e., categorical and numerical input, we selected the
XGBoost model since it has been found to deliver the best average performance
in predictive process monitoring across various datasets with good scalability for
large datasets [20]. XGBoost uses gradient tree boosting, a common ensemble
learning technique (i.e., combining multiple machine learning models to derive
a prediction) which performs boosting on decision trees [4]. For textual data, we
use BERT (Bidirectional Encoder Representations from Transformers), a state-
of-the-art NLP model introduced by Devlin et al., which outperforms previous
methods on various NLP tasks and datasets. BERT can be described as a large
language model and belongs to the family of transformer models, the current
state-of-the-art models dealing with sequences [6].
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3.2 Dataset

There is no public event log dataset available that contains rich textual context
data. We, therefore, artificially augment an existing event log with textual data.
We chose to augment the BPIC17 dataset with textual context data on case level
in a parameterizable fashion with the LendingClub dataset. The BPI Challenge
dataset from 2017 refers to a credit application process filed by customers of a
Dutch financial institution through an online system [8]. Overall, 12792 of the
31413 loans were granted, which leaves us with a 0.41 minority class ratio for this
binary process outcome prediction problem on loan acceptance. The Lending-
Club dataset we use for dataset augmentation only includes textual descriptions
of accepted loan applications, and we therefore have to redistribute the existing
textual loan goal descriptions [11]. The redistribution is based on the topics dis-
cussed by the loan applicants in their loan goal description. In an initial data
analysis, we identified the dominant topics using Latent Dirichlet Allocation,
an NLP technique to retrieve topics in text corpora [2]. We assigned multiple
topics to the two process outcomes and thus introduced in a controlled fash-
ion, for example, that people who talk about medical issues in their loan goal
description tend to be less likely to receive a loan offer. This approach creates
a latent structure for the machine learning model to pick up in the prediction
process. The topic attribution is performed based on the word occurrences per
topic in the document. After determining the topic memberships, the dataset is
augmented with the schematic depicted in Fig. 4 with a varying parameter of
impurity, which adjusts the proportion of randomly assigned texts samples from
the dataset during the data augmentation process. The loan goal descriptions
are added to the original BPIC17 event log as an additional feature in the first
event for each case (the filing of the loan application).

Fig. 4. Dataset augmentation strategy with impurity parameter

With an impurity of zero, the accepted cases are solely assigned the textual
descriptions talking about topics in topic group 1. As the newly introduced
textual features do not correlate with existing features, we thus introduce an
additional dimension to differentiate between accepted and rejected cases. An
impurity of 0.0 allows for an apparent differentiation in textual features. In
contrast, an impurity of 1.0 would be a baseline with purely randomly sampled
text for both outcomes, so there is no way to differentiate between the outcomes
on the textual data. We henceforward define purity = 1 − impurity. For all
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experiments described in the following, we create 11 synthetically augmented
dataset variants with an impurity ranging from 0.0 to 1.0 in steps of 0.1. We
reduce measurement deviations by running each experiment 10 times and taking
the arithmetic mean.

3.3 Data Preprocessing

We conduct several preprocessing steps. First, we need to retrieve the class labels
“accepted” and “rejected” by choosing respective end activities. Then, we need
to transform the input such as it is suitable for the employed models. For the
XGBoost model, we have multiple events per case with various attributes that
change during the process executions. However, the XGBoost model expects
static (non-sequential input). We, therefore, preprocess the data to derive static
properties (i.e., one n-dimensional vector of features per case) and convert all
activities performed into categorical variables (encoding whether they occurred
or not). All further categorical variables are one-hot-encoded (resulting in one
additional feature per category level) to represent categorical variables using
numerical values. Numerical variables are then standardized by removing the
mean and scaling them to unit variance. Since we use BERT models for the
textual data, we do not need extensive preprocessing steps. The model can pro-
cess the textual data without significant assumptions and in considerable length.
We, however, need to tokenize the dataset before feeding it into the BERT model
with the model-specific tokenizer (in our case “BERT base model (uncased)”).

3.4 Model Training and Explanation

For strategy 1, we focus on combining the class attribution probability of an
XGBoost Model and a BERT model, which is fine-tuned on our dataset. We
then decide per case which of the models’ predictions results in a more sig-
nificant absolute difference to the probability of 0.5 and, therefore, provide a
clearer decision. Both models are fed into the SHAP explainer module and are
individually explained. The SHAP framework is generally model-agnostic, but
model-specific optimizations for faster calculation exist. The SHAP framework
relies for BERT on the so-called PartitionExplainer and for XGBoost on Tree-
Explainer.

For strategy 2, we first use the identical BERT setup described above. How-
ever, we then perform an explainability analysis using the SHAP framework
to filter out the n most important words. We then feed these n features into
an XGBoost model as the second stage to derive the final prediction. As men-
tioned above, BERT will be explained using the SHAP PartitionExplainer. As
we use XGBoost in the second stage, we delete the stopwords before feeding
these features into the XGBoost model. XGBoost disregards a word’s left and
right context and its sequential nature. The n most important features of the
BERT explainability analysis after stopwords removal are represented using the
well-known TF-IDF approach before using the XGBoost model. For the explain-
ability analysis of strategy 2, we only consider the second-stage XGBoost model.
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4 Results

Effect on Model Performance. The two strategies and their performance
on the different augmented datasets are assessed using an F1-score and ROC
AUC, which are common evaluation metrics for classification problems. We also
introduce another baseline with “baseline unilateral” predicting all inputs with
the majority class. Overall, we differentiate between strategies 1 and 2 on the
augmented dataset and a baseline model on non-textual data only. The results
in Fig. 5 show that already for purity of above 0.1, the proposed strategies lead
to a net improvement of both ROC AUC and F1-score. The results suggest that
the strategies provide a benefit even at low levels of textual data purity and
improve the model performance. The combined incorporation of textual and
non-textual information shows value in light of a low level of textual data purity
as neither model alone can score these results. Using a pure textual model also
creates similar results for high textual data purity (around 1.0), as shown by the
pure BERT performance. Therefore, we can conclude that both strategies are
valuable in that they provide higher predictive quality, especially for low levels
of textual data purity, while the performance of the models converges for a very
high purity on textual features. There is a slight difference discernible between
strategies 1 and 2.

Effect on Rediscovery Rate. We calculate a metric of rediscovery to deter-
mine whether the artificial latent structures introduced during the dataset aug-
mentation are uncovered and manifested in the explainability analysis. The redis-
covery rate will be measured by the overlap between the most important textual
features derived by the SHAP calculations and the input features used during
the dataset augmentation via word2vec vector similarity. Word2vec represents
words in a high-dimensional vector space [13]. We used the pre-trained word2vec
vectors based on the Google News dataset2. In our rediscovery calculation, we
consider two words as rediscovered if the cosine similarity between the two words
on the pre-trained word2vec vectors is above 0.3 and if the mean absolute feature
importance via SHAP is above 0.005. Since both strategies show high rediscovery
rates, one can conclude that the right latent structures seem to be found, and the
strategies seem to work as intended. There is a difference between strategies 1 and
2, which indicates that strategy 1 rediscovers more of the latent features intro-
duced during dataset augmentation. Strategy 2 incorporates a limited amount
of features and thus leads to a lower yet still considerable rediscovery rate.

Effect on Quantitative Explainability Metrics. Stevens et al. propose an
approach to quantitatively evaluate the explainability of ML models, particularly
for the process domain. Their approach distinguishes interpretability (measured
by parsimony), as well as faithfulness (measured by monotonicity) [18].

Parsimony. Parsimony as a property can describe the explainability models’
complexity. Parsimony describes the number of features in the final model and
can quantify the simplicity of a model. For post-hoc explainability analysis using

2 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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feature importance, the non-zero feature weights are considered. The maximal
value of the parsimony property is the number of features. A simple (or parsi-
monious) model is characterized by a small parsimony value [18]. To compare
the parsimony, we take the parsimony for the baseline model, for strategy 1 (as
a sum of both models’ feature counts), and the second-stage model of strategy
2. We can see a significant difference between the baseline model and strategy 1
in Fig. 5. For strategy 2, the parsimony is only slightly higher than the baseline
and converges against an upper boundary since we limit the number of textual
features n in the second-stage model.

Fig. 5. F1-score and parsimony for augmented datasets with varying impurity

This implies that strategies 1 and 2 naturally consider substantially more
features than the baseline. For strategy 1, even more features are incorporated
in an explainability analysis with a higher purity of the augmented datasets
and overall better model performance. As parsimony is a metric to determine
how interpretable an explainability analysis is, this consequently means that
models considering textual information (strategy 1 and strategy 2) are more
challenging to interpret. We have to note here that the parsimony of strategy 2
is significantly below the parsimony of strategy 1. Therefore, the interpretability
of strategy 2 is better as we limit the number of features to incorporate by the
parameter n. In their elaboration on feature importance techniques specifically
in the area of NLP, Danilevsky et al. argue in their work that “[t]ext-based
features are inherently more interpretable by humans [...]” [5]. Following this
line of reasoning, it is not entirely correct to assign non-textual and textual
features the same negative impact on interpretability, which puts the results
into relative terms.

Monotonicity. Monotonicity can be used as a metric to describe the faithfulness
between the model and the explanation. Monotonicity describes the faithfulness
between the feature importance resulting from the explainability analysis and the
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feature importance of the task model. For models that require post-hoc explain-
ability, the monotonicity is denoted by the Spearman’s correlation coefficient
between the absolute values of the feature weights for the task model and the
absolute values of the feature weights of the explainability model [18]. The range
of the monotonicity lies between [−1, 1] and describes the association of rank,
where a perfectly faithful model would have a Monotonicity M of +1. In con-
trast, a less faithful model would score values closer to 0. A negative Spearman
correlation coefficient implies a negative association of rank between the task
model’s feature importance and the explainability model’s feature importance.
For strategy 2 in the second stage and the baseline model, we use XGBoost as a
model of choice, which provides inherent task model-specific feature importance.
While there are multiple ways to assess XGBoost-specific feature importance, we
will focus on the importance by the number of times a feature is used to split
the data across all trees of the decision tree approach. We will not consider the
monotonicity metric for strategy 1 because it is a BERT model for which task
model-specific feature importance cannot be directly obtained.

We see that the monotonicity of the baseline model and the second-stage
model in strategy 2 are almost similar. While there is only a small difference in
monotonicity initially, it disappears with higher dataset purity. The results on
monotonicity showed little to no difference between strategy 2 and the baseline.
This indicates no notable difference in the faithfulness of the explainability anal-
ysis in comparison with the original prediction model. As elaborated before, we
cannot calculate the monotonicity score for strategy 1 due to a lack of task model
feature importance from the BERT model. Therefore, the statement relates to
strategy 2 only.

Effect on Computation Time. For strategy 1, we add up both models’ train-
ing time and the explanation time. For strategy 2, we add the training time of
both stages together for training. At the same time, we only consider the expla-
nation time of the second stage as we only perform an explanation computation
via SHAP for this second stage.

The results show a significant difference between the baseline and strategies
1 and 2 for model training and explainability calculation. For the baseline, the
training is performed quicker than the explanation, while this holds not true
for strategies 1 and 2. The training and explanation of strategy 2 take only
marginally longer than for strategy 1 but are considerably more expensive than
for the baseline. There is also a noteworthy difference between training time and
time for the SHAP calculations. The evaluations showed that the training times
and explainability analyses required significantly more time for the proposed
strategies than for the baseline. Our experiments suggest that for a high number
of features and complex models, the computation for the explainability analysis
far outweighs the training time. We can, however, not draw a conclusion regard-
ing the ratio of training and explainability times, as this is highly dependent on
the model choice and the dataset used for evaluation.
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Prototype. To contemplate the practical implications of using textual data
for explainable predictive monitoring of business processes, we developed a
prototype illustrating how this might affect users. We differentiate between
local explainability (for individual process instances) and global explainability
(overview over all process instances). This screenshot shows a local analysis of
strategy 1 divided into two separate models for the prediction as well as the
explanation. A red color in the individual explainability plots indicates a posi-
tive change (towards a loan acceptance); blue color indicates a negative change
in the expected model prediction (towards a loan rejection) (Fig. 6).

Fig. 6. Prototypical implementation of local explainability analysis (Strategy 1)

5 Related Work

Predictive process monitoring techniques have been developed for a wide range
of purposes. The most prominent use cases include the prediction of the process
outcome [19,22] and the prediction of future process behavior, such as the next
activity [9]. While most techniques build on categorical and numerical features
to accomplish their prediction goal, some also take into account textual data.
For instance, Pegoraro et al. use different strategies such as TF-IDF, Doc2Vec,
or LDA to represent textual information and, in this way, integrate it into an
LSTM architecture with further categorical and numerical data [15]. Teinemaa
et al. perform predictive monitoring with structured and unstructured data by
concatenating the textual features to the feature vector of the non-textual fea-
tures. The text is represented, among others, using bag-of-n-grams, TF-IDF, and
LDA [19]. A recent technique from Cabrera et al. [3] uses contextualized word
embeddings to predict the next activity and the next timestamp of running cases.
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Recognizing the need for explainability, several so-called explainable pre-
dictive process monitoring techniques have been developed. These techniques
mostly rely on model-agnostic approaches such as SHAP [10,18] or LIME [14].
SHAP unifies existing model explanation techniques (which include six existing
methods, amongst others, LIME [16]). SHAP is a unified measure to calcu-
late post-hoc feature importance by using the Shapley values of the conditional
expectation function of the original model [12]. All explainable predictive process
monitoring techniques have in common that they rely on numerical and categor-
ical features only and do not consider textual data. Hence, this paper empirically
demonstrates the potential of explainable predictive process monitoring based
on textual and non-textual data.

6 Conclusion and Future Work

This paper empirically explored the potential of combining textual and non-
textual data in the context of explainable predictive process monitoring. To
this end, we conducted extensive experiments on a synthetic dataset we cre-
ated for this purpose. We found that using textual data alongside non-textual
data requires more computation time but can lead to better predictions even
when the quality of the textual data is poor. While the explainability metrics
might decrease slightly depending on the chosen strategy, textual information
is inherently more interpretable by humans, which allows for a more human-
understandable explanation. Therefore, we conclude that combining textual and
non-textual data in the context of explainable predictive process monitoring is
a promising approach.

As for future work, we see two main directions. First, after an explainability
analysis, it is unclear whether a variable is merely correlated with the outcome
or causally related. Therefore, future work should combine the explainability
analysis with a subsequent causality analysis. Second, it would be interesting to
relate the results of an explainability analysis to real interventions.
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attention). In: Del Ŕıo Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020.
LNBIP, vol. 397, pp. 321–333. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-66498-5 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-66498-5_24
https://doi.org/10.1007/978-3-030-66498-5_24
http://creativecommons.org/licenses/by/4.0/


Attribute-Based Conformance Diagnosis:

Correlating Trace Attributes with Process

Conformance

Michael Grohs(B) and Jana-Rebecca Rehse

University of Mannheim, Mannheim, Germany

mgrohs@mail.uni-mannheim.de, rehse@uni-mannheim.de

Abstract. An important practical capability of conformance checking
is that organizations can use it to alleviate potential deviations from
the intended process behavior. However, existing techniques only iden-
tify these deviations, but do not provide insights on potential expla-
nations, which could help to improve the process. In this paper, we
present attribute-based conformance diagnosis (ABCD), a novel app-
roach for correlating process conformance with trace attributes. ABCD
builds on existing conformance checking techniques and uses machine
learning techniques to find trace attribute values that potentially impact
the process conformance. It creates a regression tree to identify those
attribute combinations that correlate with higher or lower trace fitness.
We evaluate the explanatory power, computational efficiency, and gen-
erated insights of ABCD based on publicly available event logs. The
evaluation shows that ABCD can find correlations of trace attribute
combinations with higher or lower fitness in a sufficiently efficient way,
although computation time increases for larger log sizes.

Keywords: Process mining · Conformance checking · Correlations ·

Trace attributes · Root cause analysis

1 Introduction

The goal of conformance checking is to analyze the relation between the intended
behavior of a process, captured in a process model, and the observed behavior
of a process, captured in an event log [7]. It generates insights on where and
how the observed behavior aligns with or deviates from the intended behavior.
Organizations can use these insights for example to check whether their process
execution is compliant with the originally designed process [22]. Over the last
years, multiple conformance checking techniques have been developed, including
rule checking, token-based replay, and alignments [7]. The techniques differ with
regards to their algorithmic approach, computational complexity, and generated
results, but they have one output in common: A measure of the conformance
between log and model, called fitness, which quantifies the capability of a model
to replay the behavior observed in the log [22].
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One problem of existing conformance checking techniques is that they do
not enable practitioners to reach their underlying goal, which is to improve
the process [19]. As an example, consider a loan application process in a bank,
where the application of a conformance checking algorithm yielded an overall
fitness value of 0.8. From this number, a process analyst can conclude that
some deviations between log and model occurred, but they do not know where,
how, and—most importantly—why the process execution deviated and what the
effects of the potential problem are. Therefore, explaining and understanding the
underlying causes of conformance problems is an important part of leveraging the
practical benefits of conformance checking [22]. Existing conformance checking
techniques focus only on the identification of deviations and do not provide
any potential reasons for their occurrence [5], although this would be a vital
prerequisite for any deeper process analysis. For our exemplary loan application
process, if the process analyst knows that loans with a higher amount more likely
deviate from the intended process, they could specifically analyze those process
instances to find and eventually address the root cause of those deviations.

In this paper, we present a novel approach for finding correlations between
process conformance and trace attributes. This approach, called attribute-based
conformance diagnosis (ABCD), builds on the results of existing conformance
checking techniques and uses machine learning to find trace attribute values
that potentially impact the conformance. Specifically, it creates a regression
tree to identify those attribute combinations that correlate with higher or lower
trace fitness. These correlations can be considered as potential explanations for
conformance differences and therefore as a starting point for further analysis
steps to find and address the causes of lower process conformance. ABCD is
(1) inductive, i.e., it requires no additional domain or process knowledge, (2)
data-driven, i.e., it requires only an event log and a process model as input, (3)
universally applicable, i.e., it does not depend on process-specific characteristics,
and (4) flexible, i.e., it can be configured to fit a specific case.

In the following, the ABCD approach is introduced in Sect. 2. Its explanatory
power, computational efficiency, and potential practical insights are evaluated
based on publicly available event logs in Sect. 3. We discuss related work in
Sect. 4 and conclude with a discussion of limitations and future work in Sect. 5.

2 Approach

The goal of the ABCD approach is to find attribute value combinations in an
event log that correlate with differences in conformance. Therefore, it analyzes
trace attributes and correlates them with trace-level fitness, which is the most
common way to measure conformance [22]. A schematic overview of ABCD can
be found in Fig. 1. The approach requires two inputs, an event log and a cor-
responding process model, and consists of two major steps. In the first step,
explained in Sect. 2.1, we enrich the event log with the trace-level fitness values
with regard to the provided process model. This enriched log serves as input
for the second step, called Inductive Overall Analysis (IOA) and explained in



Attribute-Based Conformance Diagnosis 205

Fig. 1. Illustration of the Attribute-Based Conformance Diagnosis (ABCD) approach

Sect. 2.2. It determines the correlations between combinations of attribute values
and process conformance. Therefore, it computes a regression tree. Regression
trees are a data mining technique that relate a set of independent variables, in
our case all trace attributes in an event log, to a real-valued dependent variable,
in our case, i.e., average trace fitness in a log. To build the regression tree, the
event log is iteratively split into sub-logs, based on trace attribute values. Each
split defines a new node in the tree. These nodes are then used to predict the
value of the dependent variable [10]. To find the best fitting tree, the algorithm
minimizes the sum of errors in the prediction. An error is the difference between
the predicted value in a leaf node and the actual value of the respective sub-log.
The percentage of the true variation that can be explained by the predictions,
i.e., 1 minus the sum of errors, is the coefficient of determination R2, which can
be used to determine the prediction quality of the regression tree [9].

2.1 Log Enrichment

Because the goal of ABCD is to correlate trace attributes with variations in
conformance, it needs the trace-level fitness to perform any further analysis.
Therefore, we compute the fitness of each trace with regard to the provided pro-
cess model and add the value to the event log as a trace attribute. The user can
choose between token-replay fitness and alignment-based fitness [7]. The latter
is the default choice used in the remainder of this paper. This parametrization
allows users to flexibly choose the best-suited technique, for example choosing
token-based fitness if alignments require too much computation time.

After computing the trace fitness value, we also enrich each trace by its overall
duration, defined as the time difference between start and end event in a timely
ordered trace. This ensures that at least one trace attribute will always occur in
the log. We decided on the trace duration as the default trace attribute, because
it can be computed for every (time-stamped) event log and because the relation
between process performance and process conformance is potentially relevant for
all processes, independent of their context [24].

2.2 Inductive Overall Analysis

Following the log enrichment, Inductive Overall Analysis (IOA) determines cor-
relations between combinations of attribute values and process conformance.
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Fig. 2. Illustration of Inductive Overall Analysis (IOA)

Therefore, it first preprocesses the data and then constructs a regression tree
that uses the trace attribute values as determinants for the fitness value. Figure 2
shows the schematic overview. IOA consists of two steps: preprocessing the data
and building the regression tree.

Data Preprocessing. For the data pre-processing, we distinguish between cat-
egorical and numerical attributes. Due to requirements of the tree algorithm,
pre-processing is necessary for both. First, because a regression tree can only
handle numerical attributes, categorical variables need to be encoded to be used
as a determinant. For this purpose, we use One-Hot-Encoding, which constructs
one binary trace attribute per categorical attribute value. Second, the regres-
sion tree algorithm cannot handle missing data. If there are values missing for
numerical attributes, we need to perform imputation, i.e., replace missing val-
ues with other values [31]. Assuming that raw data is the best representation of
reality, no imputation will be the default. If it must be performed due to missing
values, potential imputation strategies include replacing missing values with the
mean, the median, the most frequent value, or a constant value. For IOA, users
can select the imputation strategy as a parameter. Additional to no imputation,
we allow for imputing with the most frequent value, a constant value of 0, the
mean, and the median value. Imputation will only be necessary for numerical
attributes since the encoding transforms the categorical attributes into binary
attributes with no missing values. Missing values in categorical attributes will
therefore lead to a 0 in all binary attributes.

Regression Tree Building. After the preprocessing, we build the regression
tree. The goal is to find those combinations of attribute values that best predict
variations in conformance. Therefore, the regression tree consists of nodes that
split the event log based on one attribute value. A splitting node includes a
condition for the attribute value, e.g., a duration smaller than 4 days. For all
traces below the splitting node on the left side of the tree, the node condition is
true. For all traces below on the right side, it is false. Leaf nodes do not state
a condition, either because the tree has reached its maximum depth or because
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an additional split will not improve the result. Traversing the tree from root to
leaves, each node divides the log according to its condition, iteratively dividing
the log into one sub-log per leaf node. The sub-log of an internal node is the
union of all sub-logs of its children. Each node reports on the average fitness for
the sub-log created by all splits above it, which is used as a predictor for the
fitness of the individual traces. The tree algorithm chooses attribute values and
conditions by minimizing the total errors in the prediction, i.e., the sum of the
differences between the true fitness value of each trace and the average fitness
in the leaf node. The final tree consists of splitting nodes and leaf nodes. The
leaf nodes indicate the overall prediction for the sub-logs created by the splitting
nodes. The combination of conditions leading down to a leaf node indicates a
combination of attribute values that well predicts the fitness of the given sub-log,
i.e., it consistently determines the conformance level of these traces.

For building the tree, we use the sklearn-environment in Python1. As a
parameter, we require the maximum tree depth, i.e., the number of node layers
the algorithm may use to split the log. When choosing this depth, we need to
balance the explanatory power of the tree with its visual clarity and the gran-
ularity of sub-logs. The returned regression tree includes those attribute value
combinations that are correlated with higher or lower fitness and thus offer a
potential explanation for differences in conformance.

3 Evaluation

We implemented the ABCD approach in Python.2 Using this implementation, we
conduct an evaluation to show that ABCD has explanatory power, is computa-
tionally efficient, and generates practical insights. For our evaluation, we used
three publicly available data sets consisting of seven event logs (see Table 1):

MobIS-Challenge 2019 [26]. This event log from a travel management process
contains trace attributes. It also comes with a matching process model that
describes that process and can be used as a reference for conformance checking.

BPI Challenge (BPIC) 2020 [30]. This collection of five event logs, also from
a travel management process, contains many trace attributes, which makes it well
suitable to test ABCD’s abilities to provide insights. Because there is no to-be
model available for this process, we applied the PM4Py auto-filter on the event
log to filter all common variants3 and discovered a model using the Inductive
Miner. This way, we check conformance against the most frequent behavior.

BPI Challenge (BPIC) 2017 [29]. This event log from a loan application
process is comparably large, which makes it well suitable to test ABCD’s compu-
tational feasibility. Because there also is no to-be model available for this process,
we discovered one using the above-described method.

1 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegre
ssor.html.

2 https://gitlab.uni-mannheim.de/mgrohs/attribute-based-conformance-diagnosis/-/
tree/main.

3 https://pm4py.fit.fraunhofer.de/documentation.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://gitlab.uni-mannheim.de/mgrohs/attribute-based-conformance-diagnosis/-/tree/main
https://gitlab.uni-mannheim.de/mgrohs/attribute-based-conformance-diagnosis/-/tree/main
https://pm4py.fit.fraunhofer.de/documentation
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Table 1. Public event logs used for evaluation

ID Dataset Name Traces Events Trace attributes

(1) MobIS MobIS 6,555 83,256 Duration (Dur), Costs

(2) BPIC 2020 Domestic
Declarations

10,500 56,437 Dur, Amount (Amn), Budget Number
(BudNo), Declaration Number
(DeclNo)

(3) BPIC 2020 International
Declarations

6,449 72,151 Dur, Adjusted Amn, Amn, BudNo,
DeclNo, Original Amn, Act. No., Org.
Entity, Req. Bud

(4) BPIC 2020 Request for
Payment

6,886 36,796 Dur, Act., Cost Type, Org. Entity,
Project, Req. Amon., Task, Rfp No.

(5) BPIC 2020 Prepaid Travel
Costs

2,099 18,246 Dur., Act., Cost Type, Org. Entity,
Project No., Bud. No., Red. Budget,
Project, Task

(6) BPIC 2020 Travel Permit 7,065 86,581 Dur., Bud. No., Cost Type, Org.
Entity, Overspent Amn, Project, Req.
Amn

(7) BPIC 2017 Loan
Application

31,509 1,202,267 Dur, Application Type, Loan Goal,
Requested Amn

3.1 Explanatory Power

To measure the explanatory power of ABCD, we use the coefficient of determi-
nation R2, which shows the goodness of fit of the regression [8]. To determine
the influence of our parameters, our evaluation setting varies the imputation
strategy (none, mean, median, zero, constant), and the tree depth (from 3 to 7;
a larger tree would not be visually clear anymore).

We first inspect the influence of the imputation strategy. This is shown in
Table 2, where we list the R2 for the four imputation strategies for the MobIS
event log. No imputation is not possible for this event log due to missing attribute
values. We do see not see any difference in R2 for the different imputation strate-
gies in the MobIS data. This is also the case for all other logs.4 We can conclude
that the imputation strategy has no effect on the explanatory power of ABCD.
However, this might be different for highly variable real-life event logs, so the
imputation option is necessary to remain universally applicable.

Table 3 shows the R2 values for all event logs and tree depths. As expected,
R2 grows with tree depth, due to more allowed splits in the tree. This increase
is log-dependent and ranges between 1% for log (2) and 13% for log (3). It
is generally impossible to determine a universal threshold for a good R2 value
[25]. However, we see that ABCD is capable of explaining at least one fifth of
the fitness variation in all logs and as much as 84% in one, meaning that it is
capable of finding correlations of data attributes with (non-)conformance. All in
all, our evaluation showed that for our inspected datasets, ABCD has moderate
to high explanatory power and is not sensitive to imputation and tree depth.

4 The full evaluation documentation is available in the GitLab repository.
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Table 2. R2 for the MobIS data set
for working imputation strategies and tree
depths 3 to 7

Log Imp. 3 4 5 6 7

(1) Mean 0.163 0.178 0.195 0.203 0.218

(1) Median 0.163 0.178 0.195 0.203 0.218

(1) Zero 0.163 0.178 0.195 0.203 0.218

(1) Freq 0.163 0.178 0.195 0.203 0.218

Table 3. R2 for tree depths 3 to 7

Log Imp. 3 4 5 6 7

(1) All 0.163 0.178 0.195 0.203 0.218

(2) All 0.744 0.747 0.75 0.753 0.756

(3) All 0.303 0.344 0.374 0.405 0.433

(4) All 0.819 0.824 0.829 0.835 0.84

(5) All 0.483 0.513 0.54 0.569 0.596

(6) All 0.416 0.434 0.448 0.462 0.476

(7) All 0.322 0.336 0.348 0.357 0.368

3.2 Computational Efficiency

For assessing the computational efficiency of ABCD, we measure the execution
times, separated into the enrichment step in Table 4 and the analysis step in
Table 5. Each reported value in those tables is an average of three separate exe-
cutions, to account for outliers. For the analysis time, we only report the average
execution time over all imputation strategies since there were no significant devi-
ations between them.

Table 4. Enrichment times

Log Traces Events Attr. Time [s]

(1) 6,555 83,256 2 33.75
(2) 10,500 56,437 5 2.26
(3) 6,449 72,151 18 61.98
(4) 6,886 36,796 9 1.38
(5) 2,099 18,246 17 3.65
(6) 7,065 86,581 168 859.47
(7) 31,509 1,202,267 4 9,216.35

We see that the enrichment time
increases with the number of traces
and the number of events, because
especially alignments become compu-
tationally expensive [7]. Additionally,
the number of trace attributes nega-
tively influences the enrichment time,
which is visible for the Travel Permit
log (6). At most, the enrichment takes
2.6 h for the largest log (7).

Like the enrichment time, the analy-
sis time for IOA depends heavily on
the number of traces and the num-
ber of trace attributes, again visi-
ble for logs (6) and (7). However,
this increase is less significant com-
pared to the increase in enrichment
time and the maximum duration is
below 25 min. 25 min. In case of more
trace attributes, we consider more
independent variables and in case of
many traces we have a larger sample
size, both increasing the explanatory
power of ABCD. We conclude that

Table 5. Average computation time for
IOA over all imputation strategies for tree
depths 3 to 7 in s

Log 3 4 5 6 7

(1) 64.61 65.13 64.98 65.69 64.77

(2) 180.99 180.02 181.69 183.07 187.44

(3) 132.15 132.71 132.45 134.88 132.98

(4) 99.51 100.42 99.78 100.14 101.1

(5) 15.95 16.03 16.0 16.19 16.33

(6) 602.4 618.54 591.85 590.82 651.73

(7) 1,395.65 1,357.93 1,353.86 1,352.12 1,375.79

ABCD is computationally feasible even for larger logs, although the execution
times are a potential drawback. Neither imputation strategy nor tree depth have
a significant impact on the analysis time.
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Overall, we see a negative influence of the log size on the computational
efficiency. Still, execution takes less than 3 h for event logs with up to 1.2 million
events. Considering the potential value of ABCD, the execution time does not
limit its applicability. As alignment are the main cause for long executions, larger
event logs could still be analyzed by means of a different fitness technique.

3.3 Practical Insights

The main benefit of ABCD is that it generates process insights without prior
knowledge, which is supposed to provide value for practitioners. These insights
are correlations between trace attributes and process conformance that serve
as a starting point for further process analyses. To demonstrate some of these
insights, we further examine the regression trees generated for the event logs. It
is important to note that for all event logs except MobIS, the process model is
generated based on variant filters. This means that conformance and fitness are
based on the most common variants and not on a constructed process model. In
the following, conformance of the BPI logs has to be interpreted as conformance
to the most common variants. Detailed information about the practical insights
provided by ABCD can be derived from the computed regression trees for all
logs (available in the GitLab repository).

Fig. 3. Exemplary regression tree for the MobIS Log

MobIS. An exemplary
regression tree with depth
3 is provided in Fig. 3.
It splits the log into six
different sub-logs repre-
sented by the six leaf
nodes. For example, the
top node splits the log
based on whether the
trace has a duration
above 0 (more than one
event). The color indi-
cates the fitness value:
high fitness leads to
darker color. We see that
short duration above 0
correlates with better conformance. For traces with one event, lower costs cor-
relate with slightly better fitness.

BPI Challenge 2020. Not knowing the trace ID, e.g., the declaration number,
correlates with lower conformance in logs (2), (3), (4), and (5). For all five logs,
the duration is an important feature in the trees, which shows the value of
separately enriching this attribute. Longer traces conform better in log (2), but
they conform worse in log (4). Another relevant trace attribute is the requested
amount or budget, which also correlates with lower conformance in most cases.
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BPI Challenge 2017. Longer traces conform better for log (7). Further, an
unknown loan goal and a smaller requested amount correlate with lower fitness.

We conclude that ABCD can generate practical insights in form of correla-
tions between trace attributes and trace fitness without relying on process or
domain knowledge. These correlations can serve as starting points to identify
causalities that explain conformance deviations. We show that it finds signif-
icant attribute values correlating with worse conformance, both for available
to-be models and for mined models that represent the most common behavior.
The identified correlations can be used to further examine the deviations that
occur in the sub-logs created by the regression tree nodes. Comparing all sub-logs
of MobIS data based on the leaf nodes in Fig. 3 could yield additional insights
into conformance variation, including, e.g., the location and type of deviation
that occurs in the individual sub-logs. For example, we see that for the leaf node
with size 184, the deviations occur primarily in the reporting part of the travel
management process.

4 Related Work

In this section, we elaborate on work related to the ABCD approach. Many other
approaches combine data attributes and conformance checking. For example,
data attributes are used while performing the conformance check to incorporate
other perspectives into the optimal alignment of data-enriched process models
and event logs [20–22]. Data attributes can also be used to define response moves
(i.e., log moves that change data attributes that have been incorrectly changed by
another log move in advance) [28] and to perform multi-perspective conformance
checks on declarative models [6]. In all approaches, the data attributes refine the
check itself but are not used to potentially explain conformance problems.

Data attributes can also be used to create sub-logs or sub-models in so called
process cubes. Users can then analyze the differences between the sub-logs or sub-
models and draw conclusions about what data attributes lead to the differences
[1]. Main applications are process discovery [14,17] and performance analysis
[2,4]. Applying process cubes for various purposes implicitly tries to use data
attributes to explain differences in an event log or process model, often related to
performance. This resembles attribute-based conformance diagnosis, but focuses
on aspects other than conformance and metrics other than fitness.

The research stream that resembles ABCD the most closely is called root
cause analysis (RCA). It aims to identify causal structures between different
variables and show the influence these variables have on each other [23]. This
can be achieved by using structural equation models based on data attributes
[23], Granger-causal feature pairs, conventional correlations [3,18], or clustering
techniques [12]. Also, to find reasons for deviations in processes, fuzzy mining
and rule mining with data attributes can be applied without performing any
conformance check [27]. Consequently, no deviations against a to-be model are
investigated.

Another prominently used RCA technique are regression trees [10,16]. In pro-
cess mining, regression trees have been applied to detect causes for performance
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issues [16], for example by analyzing data attributes not referring to the control-
flow [10]. Also, tree structures can be applied to identify causes for control-flow
deviations located through sub-group discovery [11]. However, all approaches
require domain knowledge to identify deviations or validate root causes after
the automated analysis. Further, current approaches do not use conformance as
the dependent variable. The automation is limited and the approaches are very
specific [10].

Correlation-based RCA is also supported by process mining tools like Appian
Process Mining, ARIS PM, Celonis, Lana Labs and Mehrwerk Process Mining.
Those tools among others have been identified as relevant in a recent study [15].
However, none of them include a to-be model in the analysis but try to find root
causes for variations in the data instead variations in conformance.

ABCD further resembles approaches like [11,12] where correlations between
data attributes and process flow metrics other than conformance are identified.
However, no to-be models are included in the analysis and therefore no confor-
mance checking can be performed.

5 Discussion and Conclusion

The goal of the ABCD approach is to identify combinations of trace attribute
values that correlate with variations in process conformance. Therefore, we first
enrich the event log with fitness values. After that, we investigate the correlation
between process conformance and attribute combinations. Our evaluation shows
that ABCD is able to generate practical insights with explanatory power in
an acceptable computation time. ABCD is inductive because it does not rely
on domain knowledge and data-driven because it only needs an event log and a
corresponding process model. It is universally applicable because is only depends
on generic event log attributes, such as timestamps, and flexible because users
can parametrize it to fit their specific case.

ABCD is subject to multiple limitations, which should be addressed in future
research. First and most importantly, ABCD identifies correlations between
attribute values and process conformance. It is not capable to determine whether
and how the identified values actually caused the process to deviate. Instead, they
are meant as an orientation for practitioners that try to improve the conformance
of their process. In future research, ABCD could be extended by causal analysis
techniques that are capable of identifying causal relations between attribute val-
ues and process conformance. Currently, the causal identification is performed
manually based on the found correlations (i.e., potential explanations).

Second, the computation times indicate that the enrichment might take long
for larger event logs, mainly due to the duration of the alignments. To still
make ABCD applicable to larger event logs, we could compute the trace fitness
with other techniques such as token-based replay or heuristics [7]. This was
not necessary for our evaluation, because the duration of under three hours at
maximum was acceptable, but it might become necessary for larger data sets.

Third, we enriched traces by their duration only. This attribute was use-
ful since the case study found it to be a potential explanatory factor in many
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regression trees. However, additional enrichment by other generic trace attributes
might further increase the explanatory power. Possibilities are the weekday in
which the trace started or the number of other active cases at the point of ini-
tiation. Such attributes could also relate to events, such as the occurrence of
certain activities in a trace or the number of executions of the same activity.
More sophisticated encoding approaches might be used [13].

Fourth, we limited our dependent variable to fitness. Therefore, we treat
different causes for fitness differences similar. However, it might be better to
include deviation information to find root causes of these fitness differences.

A limitation of our evaluation is that no to-be models were available for the
BPI logs, meaning that our evaluation results have to be interpreted carefully. We
tried to mitigate this limitation by applying ABCD in a case with to-be model.
However, we acknowledge that the insights of ABCD heavily depend on the
availability of these models. This could be addressed by data-driven approaches
for deriving to-be models, reducing the necessary effort for the organizations.

Finally, ABCD only identifies that a certain attribute value or combination of
attribute values is correlated with process conformance, but it does not explain
how the conformance is influenced. As discussed in Sect. 3.3, the next step could
be to incorporate a post-processing that investigates the alignments of the sub-
logs generated in the leaf nodes and analyzes where and how a deviation occurs.
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Abstract. Process mining is a set of techniques that are used by orga-
nizations to understand and improve their operational processes. The
first essential step in designing any process reengineering procedure is
to find process improvement opportunities. In existing work, it is usu-
ally assumed that the set of problematic process instances in which an
undesirable outcome occurs is known prior or is easily detectable. So the
process enhancement procedure involves finding the root causes and the
treatments for the problem in those process instances. For example, the
set of problematic instances is considered as those with outlier values
or with values smaller/bigger than a given threshold in one of the pro-
cess features. However, on various occasions, using this approach, many
process enhancement opportunities, not captured by these problematic
process instances, are missed. To overcome this issue, we formulate find-
ing the process enhancement areas as a context-sensitive anomaly/outlier
detection problem. We define a process enhancement area as a set of sit-
uations (process instances or prefixes of process instances) where the
process performance is surprising. We aim to characterize those situa-
tions where process performance is significantly different from what was
expected considering its performance in similar situations. To evaluate
the validity and relevance of the proposed approach, we have imple-
mented and evaluated it on a real-life event log.

Keywords: Process mining · Process enhancement · Context-sensitive
outlier detection · Surprising instances

1 Introduction

Considering the current highly competitive nature of the economy, it is vital
for organizations to continuously enhance their processes in order to meet the
best market standards and improve customer experience. Process enhancement
involves many steps, including finding the process areas where improvements are
possible, designing the process reengineering steps, and estimating the impact of
changing each factor on the process performance. By conducting all these steps,
organizations can benefit from applying process mining techniques. The first step
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of process enhancement is detecting those process areas where an improvement
is possible. Process mining includes several techniques for process monitoring
and finding their friction points. However, these techniques have the hidden
assumption that all the process instances (cases) are the same. So the set of
problematic cases can be easily identified. For example, the problematic cases can
be identified as the ones with an outlier value with respect to a process feature.
Another common method is using a threshold for a specific process feature.
However, considering the variety of the cases, it is possible that a solution solves
the problem for one group of cases while aggravating the problem for another
group. Moreover, using the current techniques, the performance of the process
in some cases can be considered normal and acceptable compared to the overall
behavior of the process, while it can be considered surprising (i.e. anomalous
or undesirable) when just considering their similar cases. This phenomenon can
lead to overlooking some of the process enhancement opportunities.

As another issue, there are several process instances where the process per-
forms significantly better than other similar process instances. Analyzing the
process behavior while performing these process instances can lead to invalu-
able clues on how to improve the process. Usually, this source of information is
neglected by the current process mining techniques.

To overcome these issues, we formulate finding those areas where a process
enhancement is possible as the problem of finding those groups of process situa-
tions where the process performance is significantly different from their similar
situations. Here, we define a process situation (or simply a situation) as a process
instance or a prefix of it. The proposed method includes four steps (1) enriching
and extracting the data from the event log (2) finding a set of sets of similar
situations (which we call a vicinity cover and each set of similar situations is
a vicinity). Naturally, a measure is needed to measure the similarity between
instances and identify vicinities. However, having access to such a measure is a
strong assumption. Thus we use a machine learning technique to determine the
vicinities in the absence of such a measure. (3) The next step involves finding
the set of surprising situations in each vicinity (if any exist). (4) Finally, a list
of detected sets of surprising situations is presented to the user ordered by their
effect on the process and how surprising they are. These findings can be fur-
ther analyzed to understand the reason for the different behavior of the process
in these surprising situations and gain insights on how to improve the process.
Figure 1 shows the general overview of the proposed method.

For example, consider that in a loan application process with 20 cases, we
are interested in finding those cases where their throughput is surprising. In

Fig. 1. The general overview of the proposed method.
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Fig. 2. A graph representing the similarity of situations in a loan application example.
Each node represents a situation (a process instance). Two situations are similar if
the Levenshtein distance of their activity sequences is at most one. The vicinity of a
node is the set of process instances in the same community. Three vicinities have been
detected in this example, which are colored red, blue, and green. Surprising situations
are highlighted with a darker color. The throughput of each situation is proportional
to the size of its corresponding node. (Color figure online)

this example, each process instance (case) is a situation. Also, we consider two
situations similar if the Levenshtein distance of their activity sequence is at most
one. Figure 2 shows the graph for the cases of this loan application, where each
case corresponds to a node. Two cases are connected if they are similar. The
size of each node is proportional to its throughput. The colors (blue, green, and
red) indicate the vicinities found by the Louvain community detection algorithm
[3]. The nodes highlighted with darker colors are the surprising cases where the
throughput is significantly different from the other cases in the same vicinity. In
this example, the throughput was worse than expected for cases 5 and 16 and
better than expected for cases 4 and 10. The process owner can gain actionable
insights by analyzing the behavior of the process in these cases, particularly in
comparison with their vicinity, to enhance the performance of the process in
other similar cases in the future. Note, if we just had considered the overall
performance of this process, these four cases would not have been detected as
their throughput are not far from the average throughput of all cases.

The rest of the paper is organized as follows. In Sect. 2, a brief overview
of the related work is given. In Sect. 3, the proposed method is presented. The
experimental results are discussed in Sect. 4. Finally, in Sect. 5, the conclusion is
presented.

2 Related Work

Existing research on context-aware anomaly detection in process mining is closest
to our work. Here we provide an overview of anomaly detection techniques.

Most existing methods investigate anomalies considering the control-flow per-
spective (e.g., [1,2,7,9,10,16]). These methods generate a reference model from
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the event log and apply conformance checking to detect anomalous behavior.
A subgroup of these methods known as deviance mining approaches investigate
performance anomalies [9]. In [16], the authors identify deviations and bottle-
necks by replaying the event log on an enrich process model with performance
information. In [7], the authors analyze the deviations between a process model
and an event log to identify which deviations enforce positive performance. In
[8], the anomalous cases in event logs are detected using window-based and
Markovian-based techniques. The drawback of control-flow approaches is that
they ignore a wide range of non-control-flow data, which can be used for more
sophisticated context-sensitive anomaly detection methods.

The authors of [4] propose an anomaly detection approach that incorporates
perspectives beyond the control-flow perspective, such as time and resource-
related information. This approach marks events as anomalies based on a certain
likelihood of occurrence, however, case anomalies are not considered.

Other approaches in this category only focus on specific use cases. The
authors of [13] analyze suspicious payment transactions to identify money laun-
dering within a money transfer service. They propose an approach to match
the transactions with the expected behavior given by a process model to iden-
tify many small transactions that end up on the same account. [14] identifies
surprisingly short activity execution times in a process by automatically infer-
ring a Bayesian model from the Petri net representation of the process model.
The authors of [15] use fuzzy association rule learning to detect anomalies. As
these approaches specialize in specific use cases, they do not apply to identify
anomalies in a general process.

A third category is domain-based anomaly detection. For example, the
authors of [11] propose an approach that supports the identification of unusual
or unexpected transactions by encoding the cases and assigning an anomaly
score to each case. They use the domain knowledge of domain experts to update
the assigned anomaly scores. The approaches in this category require domain
knowledge to label cases, which limits their applicability.

3 Method

Process mining techniques usually start by analyzing an event log. An event log
is a collection of cases where each case is a sequence of events, in which each
event refers to a case, an activity, and a point in time. More formally,

Definition 1 (Event, Case, Event log). Let C be the universe of case identi-
fiers, A be the universe of activities, T be the universe of timestamps. Moreover,
let D = {D1, . . . ,Dn} be the universe of domain-dependent data attributes. We
define the universe of events as E = C ×A×T ×D1 ×· · ·×DN and each element
e = (c, a, t, d1, . . . , dn) ∈ E an event. Let E+ be the universe of (non-empty)
finite and chronologically ordered sequences of events. We define a case as a
sequence of events γ ∈ E+ in which all events have the same case identifier; i.e.
∀ei, ej ∈ γπc(ei) = πc(ej) where πc(e) returns the case identifier of event e ∈ E.
We define an event log, L, as a set of cases in which each case has a unique
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case identifier; i.e., ∀γ, γ′ ∈ L(∃e ∈ γ∃e′ ∈ γπc(e) = πc(e
′)) =⇒ γ = γ′. We

denote the universe of all event logs with L.

We assume that we know the process feature that captures the property of
the process that the process owner is interested in its optimization. We call this
feature target feature and denote it with tf where tf ∈ T F = A × D. Note that
the target is composed of an attribute name and an activity name, which indicate
the attribute value should be extracted from the events with that activity name.
The attribute name can be any of the attributes captured by the event log or a
derived one. Moreover, we assume that we know descriptive features, which are
the set of process features that are relevant in measuring the similarity of the
situations. In the following, we explain the surprising situation detection steps.

3.1 Situation Feature Table Extraction

To find the surprising situations, we have to extract the data in the form of
tabular data from the event log. As the detected surprising situations are meant
to be used for root cause analysis, it is important to respect the temporal prece-
dence of cause and effect, indicating that the cause must occur before the effect.
Therefore, we extract the data from that prefix of the case that has been recorded
before the target feature. We call such a prefix a situation. More formally:

Definition 2 (Situation). Let L ∈ L, γ = 〈e1, . . . , en〉 ∈ L, prfx (〈e1, . . . , en〉)
= {〈e1, . . . , ei〉 | 1 ≤ i ≤ n}, a function that returns the set of non-empty prefixes
of a given case, and tf ∈ T F = A × D a target feature. We define the universe
of all situations as S =

⋃

L∈L SL where SL = {σ | σ ∈ prfx (γ) ∧ γ ∈ L} is
the set of situations of event log L. We call each element σ ∈ S a situation.
Moreover, we define sit ∈ (L × T F) × 2S to be the a function that returns
{σ ∈ SL | πa(σ) = act} for a given L ∈ L and tf = (att , act), where πa(σ)
returns the activity name of the last event of σ.

We call the data table created by extracting data from situations a situation
feature table. Please note that each row of the situation feature table extracted
from sit(L, tf ) corresponds to a situation in it and this correspondence forms a
bijection. To enrich the event log and extract the situation feature table, we use
the method presented in [12].

3.2 Vicinity Detection

Informally, a vicinity is a set of similar situations and a vicinity cover of S ⊆ S
is a set of vicinities of its situations such that their union covers S. Let cov ∈
2S → 22S

in which ∀S ⊆ S∀S′ ∈ cov(S)
(

S′ �= ∅ ∧ (∀σ, σ′ ∈ S′sim(σ, σ′) = 1)
)

and ∀S ⊆ S ∪S′∈cov(S) S′ = S. Here, sim ∈ S × S → {0, 1} is an indicator
function indicating if σ and σ′ are similar, for σ, σ′ ∈ S.

Using a coverage function, we define a vicinity cover of a set of situations
extracted from an event log with respect to a specific target feature as follows:
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Definition 3 (Vicinity and Vicinity Cover). Let S = sit(L, tf) be the set
of situations extracted from L ∈ L with respect to the target feature tf ∈ T F and

cov ∈ 2S → 22S

be a coverage function. We simply define a vicinity cover of S

as cov(S) and we call each member of V ∈ cov(S) a vicinity of S. We denote
the universe of all vicinities by V.

In the sequel, we explain the vicinity detection method separately for the
case where we know the similarity measure and the case where such a similarity
measure is not known.

Vicinity Detection with a Similarity Measure. Let d ∈ S × S → R be
a distance measure. Then we can say a situation is similar to another situation
if their distance is less than α. Now, we can define the similarity function as
simd,α ∈ S × S → {0, 1} such that simd,α(σ1, σ1) returns 1 if d(σ, σ′) ≤ α and 0
otherwise, for all σ, σ′ ∈ S. In this case, we can determine the vicinity cover of the
set of situations through the coverage function (Definition 3) in which simd,α(., .)
is the similarity function. Another method is to create a graph G = (S,E) in
which each node corresponds to one of the situations extracted from the event
log. There is an edge between two nodes if the distance of their corresponding
situations is smaller than α. Using a community detection algorithm on this
graph, we can determine the vicinities. Note that in this case two situations
are similar if their corresponding nodes are in the same community and each
detected community is a vicinity. A community detection function aims at finding
(potentially overlapping) sets of nodes that optimize the modularity within the
similarity graph. Modularity measures the relative density of edges inside the
communities compared to edges outside the communities.

As another option we can use a clustering method to detect vicinities. We
use k-means as the clustering model to explain the method; however, the general
idea is similar to using other clustering models. To find the surprising situations
using a clustering model, we first cluster the situations using k-means, with a
predefined k, based on their descriptive features. In this method, two situations
are similar if they belong to the same cluster and each cluster forms a vicinity.
Please note that in this case the similarity measure is used to measure the
distance between each situation and the centroids of clusters.

Vicinity Detection without a Similarity Measure. The availability of a
distance function is a strong assumption. Considering the complexity of the real-
life event data, even for specialists, it is a challenging task to determine such a
distance function. Hence, we use machine learning techniques to detect surprising
situations in the data. In this case, the process expert needs to know the set of
process features relevant to measuring the similarity of the situations and not the
exact distance measure. Here we briefly mention the vicinity detection method
using a classification model.

We mainly use a decision tree as the classification model. We train a decision
tree on the data trying to predict the target feature tf using descriptive features.
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In this method, we consider two situations similar if they belong to the same
node of the tree. Moreover, we consider the set of situations corresponding to
each node of the decision tree (or each node in a subset of nodes of the decision
tree, such as leaves) as a vicinity.

3.3 Surprising Situation Detection

We define the surprising situations in each vicinity as those situations in that
vicinity that significantly differ from the other situations (in that vicinity). Sup-
pose that D ∈ V →

⋃

V ∈V 2V where ∀V ∈ V : D(V ) ⊆ V is a function that, given
a set of similar situations (a vicinity), returns its subset of surprising ones. We
call such a function a detector. For example, a detector function can be a func-
tion that returns the subset of situations that exceed a user-defined threshold
value for the target feature. Using this function, we define the set of surprising
situations of a vicinity as follows:

Definition 4 (Surprising Situation Set). Let V ∈ V be a vicinity and D ∈
V →

⋃

V ∈V 2V where ∀V ∈ V : D(V ) ⊆ V be a detector function. We define
D(V ) as the set of surprising situations in V .

We can find the set of all sets of surprising situations of the set of situations by
applying the detector function on all the vicinities of its vicinity cover.

Definition 5 (Surprising Situation Sets). Let S = sit(L, tf) be the set of
situations extracted from L ∈ L with respect to target feature tf ∈ T F , cov(S)
a vicinity cover of S, and detection function D ∈ V →

⋃

V ∈V 2V . We define the
surprising situation sets of S as {D(V ) | V ∈ cov(S)}.

3.4 Ordering Surprising Situations

We define two criteria to order the detected surprising situations: surprisingness
and effectiveness. Suppose U is the set of surprising situations in a vicinity V .
Surprisingness of U measures how rare it is to see such a situation in its vicinity,
whereas effectiveness measures how beneficial it is to enhance the process based
on the findings of root cause analysis of U . More precisely:

Definition 6. Let V ∈ V be a vicinity and U ⊆ V the set of surprising situations
in V , and β ∈ (0, 1] a threshold. We define the surprisingness of U as:

surp(U) = β | avg(U) − avg(V \ U) | +(1 − β)
(U)

(V )

and the effectiveness of U as:

eff (U) =

{

(avg(V \ U) − avg(U)) × (V \ U) avg(U) < avg(V \ U)

(avg(U) − avg(V \ U)) × (U) avg(U) > avg(V \ U)

where (A) denotes the cardinality of A and avg(A) =
∑

s∈A
πtf (s)

(A)
for each A ⊆ S

is the average value of the target feature tf for the situations in A.
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(a) Distribution of the throughput time
for the BPI Challenge 2017 event log cap-
turing the duration from the start to the
end of each case.

(b) Detected outliers of throughput time
of cases of BPI Challenge 2017 event log
using boxplot. Cases durations above 61
days are considered anomalous.

Fig. 3. The throughput time for the BPI Challenge 2017 event log.

In the above definition, we assume that the lower values for tf are more desirable.
If this assumption does not hold, the effectiveness can be similarly defined.

4 Experimental Results

To evaluate the proposed framework1, we present the result of applying it on the
event log for BPI Challenge 2017 [5]. This event log represents an application
process for a personal loan or overdraft within a global financing organization
taken from a Dutch financial institute. We consider throughput as the target
feature. The majority of the cases in the process take between 5 and 40 days.
The average duration for all cases in the event log is around 22 days. Figure 3a
shows the distribution of the throughput time.

Boxplots are frequently used to identify performance anomalies [6]. Thus we
use boxplots as the baseline and call this approach the baseline. The resulting
boxplot is shown in Fig. 3b. Using this method, 255 cases with a throughput
of more than 61 days have been considered anomalous. These are the detected
anomalies without any context-awareness of the process.

To apply our approach, we used the following case-level attributes as descrip-
tive features: application type, loan goal, applicant’s requested loan amount, and
the number of offers which is a derivative attribute indicating how many times
the loan application institute offered a loan to the customer. Note that in this
experiment, each case is a situation.

We apply surprising situation detection using a similarity measure, a clas-
sification method (using a decision tree), and also a clustering method (using
k-means clustering). We call these three approaches similarity based method,

1 The implemented tool is available at https://github.com/ckohlschm/detecting-
surprising-instances.

https://github.com/ckohlschm/detecting-surprising-instances
https://github.com/ckohlschm/detecting-surprising-instances
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Fig. 4. Detected surprising situations in each vicinity defined by the decision tree
method.

decision tree method, and k-means clustering method respectively. In all these
methods, to maximize the applicability of the implemented tool and to minimize
the required domain knowledge, we use the boxplot as the detector function (Def-
inition 4) to find the surprising situations in each vicinity.

Decision Tree Method. For this experiment, we trained a decision (regression)
tree with a maximum depth of 5 and a minimum number of instances per leaf
of 100. We consider the vicinities described by the leaves of the tree. Figure 4
shows the detected surprising situations for the leaves in the decision tree where
each leaf is labeled with a number. Some of the highlights of the comparison of
the results of the decision tree method and the baseline are as follows:

– Application_1839367200 (Case duration 62 days) is barely considered an out-
lier in the total dataset, but in its vicinity (Vicinity 4: one offer, limit raise,
loan goal car, requested amount > 11.150) it is far from the average which is
14 days.

– Vicinity 19, where the number of offers is more than 3 and the requested
amount ≤ 13.162 includes seven surprising situations. These situations have
not been considered outliers by the baseline method. One possible interpre-
tation of this result is that high throughput is acceptable in such situations.
The same applies to vicinity 20.

– Vicinity 5 (one offer, limit raise, Unknown loan goal, requested amount ≤
3000) contains 3 surprising situations that are all overlooked by the baseline
method. The vicinity contains 338 cases with an average throughput time of
13 days which makes cases with a duration of more than 40 days surprising.
The same applies to vicinities 3 and 6.
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Figure 5 shows the surprisingness (on the left) and effectiveness (on the right)
of the sets of surprising situations detected by the decision tree method. The set
of surprising situations in vicinity 17 has the highest surprisingness. This vicinity
includes 126 situations, where 6 are surprising with an average throughput of
100 days, whereas the other situations in the vicinity have an average of 27 days.
These are the cases with two offers that use their loan to pay their remaining
home dept and the requested amount is at most 24.500. The set of surprising
situations in vicinity 7 has the highest effectiveness. These situations correspond
to the customers with one offer that apply for a new credit. Removing the prob-
lem that causes the delay in these surprising situations would reduce the average
throughput time for similar cases by more than one day.

k-means Clustering Method. In this approach, we used k-means clustering to
identify vicinities. For k we use the value 25, which is the number of the vicinities
in the decision tree method and Euclidean distance as similarity measure. This
method results in detecting a total of 280 surprising situations. The plot on the
left side of Fig. 6 shows the surprising situations detected in each vicinity.

Fig. 5. Surprisingness and effectiveness of the surprising situations identified by the
decision tree method.

Fig. 6. Detected surprising situations by the k-means clustering and similarity based
method.
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Fig. 7. Venn Diagram showing the intersection of detected surprising situations using
the different methods.

Similarity Based Method. We run the similarity based approach where the dis-
tance measure is the Euclidean distance of normalized descriptive features (using
min-max method). Then, we use 1.4, which results in 27 clusters (close to 25),
as the threshold to generate a graph. To find the vicinities, we used the Louvain
community detection method [3] on this graph. The plot on the right side of
Fig. 6 shows the surprising situations detected in each vicinity.

It is worth noting that the set of surprising situations detected by different
methods was not exactly the same. Figure 7 shows that all the methods agree
on 176 detected surprising situations and for all other situations at least one
method does not select it.

5 Conclusion

Finding the process enhancement areas is a fundamental prerequisite for any
process enhancement procedure that highly affects its outcome. It is usually
assumed that these process areas are known in advance or can be detected easily.
However, utilizing simple methods have the danger of overlooking some of the
opportunities for process enhancement or targeting the wrong ones. In this paper,
we formulate the process of finding process enhancement areas as a method for
finding surprising situations; i.e., detecting those situations where the process
behavior is significantly different from similar situations.

We have implemented the proposed framework with different methods and
evaluated it using real event logs. The experiment shows that the detected sur-
prising (anomalous) situations are overlapping but not identical to the ones of
the baseline, which is currently a common method for finding anomalies. It shows
that to find the best result, it is best to use our framework complementary to
the existing methods; i.e., using both context-sensitive and non-context-sensitive
methods for finding the process enhancement areas.

Acknowledgment. We thank Alexander von Humboldt (AvH) Stiftung for support-
ing our research.
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Abstract. Anomaly detection can identify deviations in event logs and
allows businesses to infer inconsistencies, bottlenecks, and optimiza-
tion opportunities in their business processes. In recent years, various
anomaly detection algorithms for business processes have been proposed
based on either process discovery or machine learning algorithms. While
there are apparent differences between machine learning and process dis-
covery approaches, it is often unclear how they perform in comparison.
Furthermore, deep learning research in other domains has shown that
advancements did not solely come from improved model architecture but
were often due to minor pre-processing and training procedure refine-
ments. For this reason, this paper aims to set up a broad benchmark and
establish a baseline for deep learning-based anomaly detection of pro-
cess instances. To this end, we introduce a simple LSTM-based anomaly
detector utilizing a collection of minor refinements and compare it with
existing approaches. The results suggest that the proposed method can
significantly outperform the existing approaches on a large number of
event logs consistently.

Keywords: Business process management · Anomaly detection · Deep
learning · LSTM

1 Introduction

Anomaly detection deals with the identification of rare articles, objects, or obser-
vations that differ significantly from the majority of the data and therefore raise
suspicions [16]. In the context of business process analysis, businesses apply
anomaly detection to automatically detect deviations in event logs which can be a
sign of inconsistencies, bottlenecks, and optimization opportunities in their busi-
ness processes [7]. A typical approach to detect anomalous behavior in business
processes is to apply conformance checking [12], i.e., evaluating the real occurred
behavior that is recorded in event logs against the business process model that
business experts previously designed. However, to do this, such a process model
is required beforehand. More recently, a variety of deep learning-based anomaly
detection algorithms with different architectures have been developed that are
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able to identify anomalous process behavior without requiring a process model
or other prior knowledge about the underlying process. While there are apparent
differences between the existing approaches, it is not clear how they perform in
comparison. Furthermore, deep learning research in other domains has shown
that advancements did not solely come from improved model architecture but
are often due to minor training procedure refinements [6]. Thus, this paper aims
to set up a broad benchmark between anomaly detection algorithms where we
compare the performance of existing approaches with a simple LSTM-based
anomaly detector that utilizes a number of minor refinements. The contribution
of this paper is threefold:

– We examine a collection of different processing, model architecture, and
anomaly score computation refinements that lead to significant model accu-
racy or run-time improvements.

– We show that the proposed methods lead to a significant performance
improvement in comparison with state-of-the-art process mining-based and
deep learning-based anomaly detection methods. To this end, we conduct
experiments on the data sets from the Process Discovery Contests, the Busi-
ness Process Intelligence Challenges, and additional synthetic event logs [7].

– We set up a comprehensive evaluation over a total of 328 different event logs,
which can be utilized as a benchmark for further research.

The remaining sections of the paper unfold as follows: Sect. 2 introduces the
reader to preliminary ideas of process mining and predictive process monitoring.
Section 3 gives a brief overview of the approach before it discusses the applied
refinements. Section 4 describes two experiments to evaluate the performance
of the proposed approach. Section 5 shows the evaluation results covering an
overall performance comparison with existing methods and a detailed analysis
of the impact of different design decisions and refinements. Section 6 relates
the developed approach to existing literature. Section 7 closes the paper with a
summary of the main contributions and an outline of future work.

2 Preliminaries

This section introduces some preliminary concepts. In particular, we introduce
the concepts of events, cases, and event logs and define next step prediction
and (case-level) anomaly detection as we understand it during the scope of this
paper.

Definition 1. Event, Case, Event Log

Let E be the universe of events. A case σ is a finite-length word of events, i.e.

σ ∈ E∗ ∧ |σ| = n, n ∈ N. An event log is a multi-set of cases, i.e. L ∈ B(E∗).

To describe a case σ, we also use the notation σ := 〈e1, . . . , en〉. There are
further attributes next to the activity associated with events such as resource,
timestamp, and others. These attributes can add additional information that
can also be utilized for analysis and predictive tasks.
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One process prediction task that has been researched intensively in recent
years and also plays a major role in the proposed anomaly detection approach in
this paper is next step prediction. Next step prediction aims to forecast the direct
continuation of an ongoing process instance based on all available information
regarding the process instance. We define next step prediction as follows:

Definition 2. Next Step Prediction

Given a prefix pt = 〈e1, ..., et〉 of a case σ = 〈e1, ..., en〉 with 0 <= t < n, t, n ∈
N, we define Next Step Prediction as a relation NSP ⊆ E∗ ×E that predicts the

next occurring event et+1 based of the prefix pt.

Next, we can define anomaly detection of process instances. There is a distinction
between attribute and case-level anomaly detection in the literature. While the
former detects irregular attribute values on event-level, such as false activities,
resources, or timestamps, the latter aims to classify anomalous cases. For the
scope of this paper, we are only concerned with case-level anomaly detection,
which we conceptualize as follows:

Definition 3. Case-level Anomaly Detection

We define a case-level anomaly detector as a function f that receives a case σ

and returns a label ℓ ∈ {0, 1}, where 0 indicates a normal case and 1 indicates

an anomalous case.

One may notice that we do not specify what makes a case normal or anomalous.
We argue that depending on the context, the criteria for an anomaly may differ.
Hence, a more vague definition is beneficial. In the first conducted experiment,
we understand anomaly detection similarly to conformance checking, i.e., a case
is normal if it fits a hidden process model; else, it is anomalous. In the second
experiment, synthetic events and attributes are injected into the data sets based
on a predefined rule-set. A case is considered anomalous if it contains at least
one of the injected values.

3 Proposed Approach

3.1 Overview

The proposed method investigates prediction-based anomaly detection with a
deep neural network as the predictive model. The approach can be divided into
two stages - first, we train an LSTM-based model to learn the behavior of the
process, while in the second stage, the trained model is used to assess whether
a given trace is anomalous or not. In the first stage, we train the prediction
model to solve the next step prediction task. The idea is to teach the model a
hidden representation that contains the most relevant information to predict the
possible next events. To assess whether a trace σ is anomalous or not, we use the
trained model to predict all the steps of a given case. If the predicted behavior
of the neural network and the real behavior differ significantly in at least one
of the events, we consider this observation a strong indicator that the case is
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suspicious. Therefore, we mark the case as anomalous. We introduce DAPNN
(Detection of Anomalous Processes through Neural Networks), which utilizes a
collection of changes and refinements to previous work [8,9] that together led to
significant performance improvements in the conducted experiments. We gener-
ated fixed sliding windows and switched to a LSTM-based network architecture.
Furthermore, we used multiple training methods to improve the convergence of
the neural networks. Last, we added normalization to the anomaly score com-
putation, which creates a comparable anomaly score throughout different event
logs.

3.2 Approach Characteristics and Refinements

Data Processing. DAPNN is trained on windows extracted from the cases σ

of size w. Given a window of the w − 1 previous events, DAPNN’s task is to
predict the last event in the window. Thereby, we do not have to insert padding
elements to counteract the different lengths of the prefixes. Furthermore, since
the window size is usually much smaller than the maximum length of the prefixes,
this results in a much faster training time. For a case σ := 〈e1, . . . , en〉 and a
fixed window size w, we generate n-w windows 〈et − w, et〉, where w < t ≤ n.
In the conducted experiments, we used a fixed window size of 5. Next, we add
special Start and End events to each case in the event log. Thereby, the next
step prediction model can also learn to predict the beginning and the end of a
case. This is especially effective since there are anomalous cases that only behave
wrongly at the beginning or at the end.

Model Architecture and Training. We decided to use a simple LSTM-based
architecture. Each case σ is split into separate sequences along the attributes,
which are processed by individual LSTM blocks. Each block consists of an
embedding layer, two LSTM-layer with hidden layer size 25, followed by a soft-
max layer. This allows obtaining a probability distribution �p per attribute found
in the event log, which serves as the basis to assess whether σ is anomalous or
not.

We train each neural network for up to 25 epochs utilizing early stopping, the
learning rate finder, and cyclic learning rates [13]. While early stopping primarily
reduces training time, we see a significant improvement in the robustness of the
results through the latter two methods throughout the conducted experiments.

Anomaly Score Computation. After training the prediction model, we can
utilize it to detect anomalies. To do this, we compute all windows for a given
case σ and feed them through the prediction model. For a case with n events and
m attributes, we compute m × n probability distributions �p. In order to obtain
the anomaly scores, we apply a scoring function Θ and store the anomaly scores
per case in a matrix Manomaly. We define Θ as follows:

Θ(�p, y) =
max(�p) − py

max(�p)
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Fig. 1. Illustration of the anomaly scores of a case that resembles a skip sequence
anomaly. For the 3rd predicted event, the threshold is exceeded for 4 out of 5 attributes.

y depicts the actual next occurred attribute in σ, and py represents the prob-
ability that the prediction model is assigned to the attribute y. The margin of
max(�p) and py can be interpreted as a measure of certainty for an anomaly. If
the margin is high, the prediction model is certain that another attribute should
occur instead. Hence, this is a sign of an anomaly. By normalizing with max(�p),
we make the anomaly score more robust so that it behaves similarly throughout
all predictions. Additionally, it penalizes deviations stronger if it has low con-
fidence regarding the occurred value. For example, if the predicted event has a
probability of 0.75 and the occurred event has a probability of 0.25, the obtained
anomaly score is (0.75 – 0.25)/0.75 = 0.66. However, if the predicted event has a
probability of 0.5 and the occurred event has a probability of 0.0, the obtained
anomaly score is (0.5 – 0.0)/0.5 = 1.0. The normalization pushes anomalies near
1.0 and enables easier differentiation between anomalies and normal events. Fur-
thermore, it allows us to introduce a threshold that functions similarly to a
significance measure, as the threshold is relatively stable over different event
logs. Figure 1 shows the resulting anomaly scores for one particular case.

Anomaly Classification. Based on the anomaly scores, we can then determine
if a case is anomalous, i.e., we define a function f that takes all anomaly scores
M of a case and a threshold τ as input and outputs a label l ∈ 0, 1.

f(Manomaly, τ) =

{

1, if max(Manomaly) > τ

0, otherwise

The intuition behind the formula is that if a case contains at least one anomaly
score greater or equal to the given threshold, it is flagged as an anomaly. In order
to choose a suitable threshold, we compare different options:

– Best Threshold : we select the optimal threshold based on the achieved F1-
score on the test set. I.e., we compute the F1-Score for all possible thresholds
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Table 1. Data sets of experiment 1.

# Logs # Cases # Activities # Events # Anomalies

PDC 2020 Train 192 1000 16–38 8867–70106 0/∼ 200

PDC 2020 Test 192 1000 16–38 8764–68706 412–515

PDC 2021 Train 480 1000 37–65 9867–32009 0/∼ 200

PDC 2021 Test 96 250 35–64 6612–11860 125

and choose the threshold with the highest F1-Score. Note that this heuris-
tic requires labels and thus is not applicable in practice in an unsupervised
scenario. However, it is still relevant as it allows us to measure the maximal
achievable performance with the underlying prediction model.

– Fixed Threshold: we set a fixed threshold that we use throughout all experi-
ments. We achieved reasonable results with a threshold of 0.98.

– Anomaly Ratio: we pick a threshold based on the total number or the ratio
of predicted anomalies.

– Elbow and Lowest Plateau Heuristic: we utilize heuristics based on the
anomaly ratio per potential threshold as introduced in [8].

4 Experimental Setup

4.1 Experiment 1

The first experiment compares the performance of the proposed anomaly detec-
tion approach with process discovery algorithms on the Process Discovery Con-
tests 2020 and 2021 [14,15]. The process discovery contest (PDC) aims to assess
tools and techniques that discover business process models from event logs. To
this end, synthetic data sets are generated that comply with general concepts
that influence process mining algorithms.

While the process discovery is designed to evaluate process discovery algo-
rithms, it measures their performance indirectly through a classification task,
identifying process cases that fit a hidden process model. Hence this task can
also be accomplished through anomaly detection. Regarding the experimental
setup, we follow the instructions from the process discovery contest. In particu-
lar, we consider the data sets from PDC 2020 and PDC 2021. Table 1 highlights
the most important characteristics and statistics about the data sets. To achieve
maximal comparability with the other algorithms that took part in the chal-
lenges, we also trained the next step prediction model on the training logs and
measured the performance on the test sets.

4.2 Experiment 2

The second experiment provides a comparison with other machine learning-based
anomaly detection approaches on the data sets generated by Nolle et al. [8].The
synthetic event logs are based on six process models with a different number of
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activities, model depths, and model widths, which are created randomly with the
PLG2 framework [5]. Additionally, the authors utilized the event logs from the
BPI Challenges 12, 13, 15, and 17. Subsequently, a variety of artificial anomalies
was added to some of the cases of all event logs (Table 2):

– Skip: One or multiple events are skipped.
– Insert: Random events are inserted.
– Rework: Events are executed multiple times.
– Late: Events are shifted forward.
– Early: Events are shifted backward.
– Attribute: Other attribute values of some events are altered.

Table 2. Data sets of experiment 2.

# Logs # Cases # Activities # Events # Attributes # Anomalies

BPIC12 1 13087 73 289892 0 3927

BPIC13 3 819–7554 11–27 4068–81524 7 162–2257

BPIC15 5 832–1409 417–491 46110–62667 6 232–438

BPIC17 2 31509–42995 17–53 285211–1269176 2 9398–13193

Gigantic 4 5000 152–157 38774–42711 1–4 1499–1553

Huge 4 5000 109 46919–53627 1–4 1416–1479

Large 4 5000 85 61789–67524 1–4 1482–1529

Medium 4 5000 65 38990–41991 1–4 1459–1550

P2p 4 5000 27 48477–53193 1–4 1430–1563

Paper 1 5000 27 66814 1 1466

Small 4 5000 41 53437–56695 1–4 1481–1529

Wide 4 5000 58–69 39678–41910 1–4 1436–1513

4.3 Evaluation Metrics

In order to evaluate the performance of the approach, we use the F1 score, which
is a common choice for evaluating anomaly detection. The F1 score is computed
by the harmonic mean of precision and recall. The precision measures how pre-
cisely anomalies can be identified, i.e., how many of the predicted anomalies are
actual anomalies. The recall measures how many anomalies are identified and
how many anomalies are not recognized by the model:

F1-Score =
2 ∗ (precision ∗ recall)

(precision + recall)

To comply with the specifications of the Process Discovery Contest and achieve
comparability with the existing methods, we use an adapted version of the F1-
Score in experiment 1, which is calculated by the balanced mean of the true
positive rate tpr and the true negative rate tnr:

F -Score =
2 ∗ (tpr ∗ tnr)

(tpr + tnr)
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(a) PDC 2020 (b) PDC 2021

Fig. 2. Comparison by F-Score of the DAPNN approach with existing approaches
extracted from the PDC website.

4.4 Reproducibility

All code used for this paper, including the implementation of DAPNN as well
as the quantitative comparison with traditional and machine learning-based
anomaly detection approaches, is available in our git repository1.

5 Results

5.1 Overall Performance on the Process Discovery Contest

Figure 2 shows the performance of the DAPNN approach in comparison with
existing process discovery algorithms as described in experiment 1. In PDC 2020,
the DAPNN approach reaches an F-Score of 89% with the optimal heuristic, out-
performing all other existing methods. Moreover, the DAPNN models with the
other heuristics do not perform significantly worse. In PDC 2021, DAPNN Best

and the DAPNN LP reach the highest F-Score with 98% and 97% respectively.
The DAPNN Fix-98 performs similarly to the DisCoverR CW, the DisCoveR
Light CW, and the Log Skeleton N3 model. Since the latter models have not
been applied to the PDC 2020, it would be interesting to see how they compare
with the DAPNN approach. The results suggest that the DAPNN approach can
effectively identify the non-fitting cases in the PDC contests and is able to reach
state-of-the-art performances. The DAPNN approach can not be used straight-
forwardly for process discovery as it does not directly output a process model.
However, they seem to be superior in the detection of cases that do not fit the
underlying process.

5.2 Overall Performance in Comparison with Other Anomaly

Detection Approaches

Table 3 presents the results of experiment 2. It compares the F1-Score of 19
approaches on 40 event logs. Note that the event logs are grouped together as

1 https://github.com/jolahann/dapnn.

https://github.com/jolahann/dapnn
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Table 3. Comparison by F1-Score of the DAPNN approach with existing unsupervised
anomaly detection approaches extracted from [8].

BPIC12 BPIC13 BPIC15 BPIC17 Gigantic Huge Large Medium P2P Paper Small Wide Mean

Likelihood 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

OC-SVM 0.545 0.243 0.255 0.351 0.291 0.228 0.237 0.289 0.271 0.486 0.248 0.306 0.312

Naive 0.551 0.209 0.172 0.313 0.34 0.404 0.41 0.387 0.479 0.5 0.49 0.438 0.391

Naive+ 0.551 0.209 0.173 0.276 0.383 0.454 0.49 0.439 0.48 0.5 0.488 0.469 0.409

Sampling 0.546 0.207 0.172 0.323 0.446 0.491 0.494 0.465 0.49 0.495 0.492 0.486 0.426

t-STIDE+ 0.678 0.319 0.287 0.324 0.406 0.446 0.453 0.429 0.509 0.404 0.531 0.471 0.438

DAE 0.595 0.207 0.0 0.295 0.627 0.703 0.713 0.708 0.708 0.463 0.716 0.697 0.536

Likelihood+ 0.625 0.445 0.329 0.399 0.665 0.676 0.622 0.654 0.611 0.656 0.688 0.637 0.584

BINetv2 0.607 0.397 0.375 0.43 0.68 0.704 0.71 0.719 0.768 0.757 0.775 0.733 0.638

BINetv1 0.621 0.398 0.346 0.469 0.711 0.713 0.713 0.734 0.768 0.739 0.772 0.761 0.645

BINetv3 0.664 0.446 0.362 0.489 0.662 0.693 0.692 0.709 0.769 0.791 0.762 0.738 0.648

DAPNNFIX−98 0.636 0.425 0.459 0.565 0.735 0.776 0.744 0.789 0.842 0.898 0.847 0.805 0.71

DAPNNAR−0.5 0.658 0.443 0.484 0.621 0.74 0.776 0.744 0.789 0.842 0.898 0.847 0.805 0.721

DAPNNElbow ↓ 0.656 0.448 0.465 0.564 0.766 0.84 0.817 0.824 0.932 0.965 0.945 0.887 0.759

DAPNNElbow ↑ 0.688 0.446 0.461 0.689 0.829 0.88 0.78 0.859 0.852 0.893 0.931 0.903 0.768

DAPNNLP−Min 0.72 0.473 0.475 0.569 0.813 0.939 0.927 0.899 0.973 0.996 0.973 0.955 0.809

DAPNNLP−Mean 0.72 0.473 0.475 0.569 0.813 0.939 0.927 0.899 0.973 0.996 0.973 0.955 0.809

DAPNNLP−Max 0.72 0.473 0.475 0.57 0.813 0.94 0.928 0.899 0.973 0.996 0.973 0.955 0.809

DAPNNBest 0.726 0.618 0.501 0.803 0.964 0.969 0.982 0.98 0.993 1.0 0.995 0.987 0.876

shown in Table 2 highlighting the mean F1-Score over the event logs of one data
group. For example, the column BPIC13 reports the mean F1-Score over all
three event logs of the BPIC 2013. We reported the performance of the DAPNN

approach with all heuristics. However, for the other approaches, only the perfor-
mance with the LP-Mean heuristic is reported. The DAPNN approach reached
top results on all examined event logs. In terms of the heuristics, the LP heuris-
tics achieved better results than the elbow heuristics, followed by the anomaly
ratio and the fixed threshold. Additionally, DAPNNBest reached a very high
F1-Score for all synthetic event logs. This suggests that the prediction model
is able to correctly separate anomalous and normal cases by assigning a higher
anomaly score to anomalous events for most of the cases. However, the determi-
nation of the correct threshold is still a major challenge, as the DAPNNLP−Max

with the second highest mean F1-Score performs significantly worse than the
DAPNNBest.

The results also show a clear performance gap between the synthetic event
logs and the event logs of the BPI challenges. This can be explained by two
reasons: On the one hand, the algorithms are only asked to find the artificial
anomalies. However, it is unclear whether and how many unknown anomalies
were already included in the original event logs that are not labeled as such. On
the other hand, it might be the case that the synthetic event logs cover processes
with simpler characteristics. In contrast, the processes of the BPI challenges are
more difficult to comprehend for the approaches.

5.3 Detection of Anomaly Types

Given that we have different anomaly types, one question is how well the model
can classify each anomaly type. Figure 3 compares the precision of the DAPNN
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with each heuristic for each anomaly type for the datasets from the second
experiment. Aside from the best heuristic, there is no clear winner recognizable
(Note that for multi-attribute event logs, we approximated the best heuristic
with Naive Bayes optimization. Hence it is only a lower bound for the actual
best score and can, in some cases, be lower than the scores of the other heuristics).
The Elbow, Fix-98, and AR-0.5 heuristics tend to produce more false positives
but have a slightly higher precision while detecting the anomalies. In contrast,
the LP heuristics produce fewer false positives. Thus, the heuristics should be
chosen based on the requirements of the business scenario.

(a) Synthetic Event Logs

(b) BPI Challenge Logs

Fig. 3. Detection precision of the DAPNN approach for each anomaly type and
heuristic

6 Related Work

Originally, anomaly detection on business process data was performed by evalu-
ating process cases captured in an event log against a predefined process model
[12]. However, this requires a reference model of the underlying process, which is
not always available. To overcome this problem, Bezerra et al. define an anoma-
lous case as an irregular execution that differs from a process model that was
dynamically discovered by a process discovery algorithm [1]. The approach fol-
lows the hypothesis that anomalous cases are rare and differ significantly from
normal cases. Therefore, the process discovery algorithm will focus on model-
ing the normal cases. Hence, the mined process model will require considerable
modifications in order to fit anomalous cases leading to a high alignment score.
According to this idea, the authors propose an anomaly detection approach that
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samples process cases from a discovered process model. If a case in the origi-
nal event log does not correspond to one of the sampled cases, it is flagged as
an anomaly. Building on this, Bezerra et al. introduce two parameters, fitness
model degree and appropriateness of a process model, in order to formalize the
degree of an anomaly [3]. Furthermore, they introduce two new variants of their
anomaly detection approach, including a threshold and an iterative version [2].
Both of the approaches make use of the conformance fitness of each case accord-
ing to the discovered model. Similarly, in the Process Discovery Contest, the
detection of anomalous cases is used to measure the quality of the process dis-
covery approaches [14,15]. Each process discovery approach is first trained on a
training event log before assessing the F1-Score over a test log with normal and
anomalous process cases, i.e., process cases that fit or do not fit a hidden process
model.

More recently, a variety of model-less anomaly detection approaches have
been developed that are able to detect anomalous process behavior without
requiring an explicit process model. Böhmer et al. proposed a multivariate tech-
nique that builds up an extended likelihood graph on multiple event attributes
in order to identify the anomalies [4]. Nolle et al. introduced three different
deep learning-based anomaly detection approaches. In [7] they proposed a deep
autoencoder to capture anomalous process cases. First, an autoencoder is trained
by mapping each process case to itself. Afterward, the reconstruction error is cal-
culated for each case. If the reconstruction error succeeds a predefined threshold,
the case is flagged as an anomaly. Then, the same authors proposed BINET,
which consists of a next step prediction model and a heuristic [8]. The heuristic
determines if the deviation of the model predictions is a significant sign of a
potential anomaly. Last, the same authors proposed DeepAlign [10], an exten-
sion of the previous approach that can also be used to correct the anomalous
process behavior. The core components of the model are bidirectional LSTMs
and beam search. Finally, Pauwels et al. developed an anomaly detection method
based on Bayesian Networks [11].

7 Conclusion

This paper analyzed multivariate anomaly detection for detecting anomalous
process instances (case-based anomaly detection) through LSTM neural net-
works. We showed that by various refinements in terms of data processing, neu-
ral network architecture, and anomaly score computation, we could improve the
anomaly detection quality significantly. We evaluated the proposed approach
against existing approaches on 328 different real-life and synthetic event logs.
We were able to improve the mean F-Score on the PDC 2020 by 6% and the
PDC 2021 by 2.3%. In comparison with the machine learning-based models,
we achieved a performance gain of 26.1%. Additionally, the paper provides a
benchmark for anomaly detection of process cases and can serve as a baseline
for further research. In the future, we plan to investigate which design deci-
sions lead to the highest performance improvements and which process features
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and anomalous behaviors are most difficult for neural networks to understand.
Furthermore, we want to extend the anomaly score computation to support con-
tinuous attributes.

References

1. Bezerra, F., Wainer, J.: Anomaly detection algorithms in logs of process aware
systems. In: Proceedings of the 2008 ACM Symposium on Applied Computing,
pp. 951–952 (2008)

2. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of
process aware information systems. Inf. Syst. 38(1), 33–44 (2013)

3. Bezerra, F., Wainer, J., van der Aalst, W.M.P.: Anomaly detection using process
mining. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp.
149–161. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01862-
6 13
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Abstract. In recent years, AutoML has emerged as a promising tech-
nique for reducing computational and time cost by automating the devel-
opment of machine learning models. Existing AutoML tools cannot be
applied directly to process predictive monitoring (PPM), because they do
not support several configuration parameters that are PPM-specific, such
as trace bucketing or encoding. In other words, they are only specialized
in finding the best configuration of machine learning model hyperpa-
rameters. In this paper, we present a simple yet extensible framework
for AutoML in PPM. The framework uses genetic algorithms to explore
a configuration space containing both PPM-specific parameters and the
traditional machine learning model hyperparameters. We design four dif-
ferent types of experiments to verify the effectiveness of the proposed
approach, comparing its performance in respect of random search of the
configuration space, using two publicly available event logs. The results
demonstrate that the proposed approach outperforms consistently the
random search.

Keywords: AutoML · Genetic algorithm · Predictive process
monitoring · Hyperparameter optimization

1 Introduction

Predictive process monitoring (PPM) is concerned with creating predictive mod-
els of aspects of interests of running process cases using the historical process
execution data logged in so-called event logs [1]. Typical aspects predicted are
the outcome of running cases or the next event to be executed in a running case.

PPM research has endured an exponential success in the last decade. How-
ever, the same cannot be said about the uptake of PPM solutions in practice.
Existing commercial process mining tools, like Celonis or Apromore, have intro-
duced simple PPM solutions only recently. We argue that the main reason for
such a limited uptake is the gap between the typical developer of the PPM mod-
els (a process mining expert) and the typical user of these models (a process
analyst). The latter have the knowledge to interpret the insights given by PPM
models, but they often lack the technical skills of the former to develop the PPM
models effectively. This gap can be seen as an instance of a more general gap
between machine learning experts, who develop models, and business analysts,
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who are in charge of using the insights returned by these models to take business
decisions.

AutoML [2] is one prominent solution to bridge this gap. It aims at creating
automated ways to support multiple aspects of the traditional machine learning
model development pipeline, like data preparation, feature extraction, model
selection, or hyperparameter optimisation. Specifically, given a dataset and a
machine learning problem, an AutoML framework aims at finding an optimal
model for the user, hiding most of the inner details regarding the model devel-
opment. AutoML solutions have proliferated in the last few years [3], even being
touted to represent the “death of the data scientists”.

In PPM, AutoML has received little attention. This is to some extent not
surprising, since AutoML solutions for traditional machine learning problems
cannot be directly instantiated into PPM problems. Besides the model hyperpa-
rameter optimisation, in fact, PPM requires to optimise other parameters, such
as the type of trace encoding or bucketing used, which are PPM-specific and,
therefore, cannot be directly understood by existing AutoML tools.

More broadly, the benchmark experiments for different PPM use cases [4–6]
published in the literature provide only generic guidelines regarding the effective-
ness of different ML techniques in specific PPM scenarios, but no automated solu-
tion. Nirdizati [7], i.e., a tool for automated development of PPM models, can
develop different PPM models for a given PPM problem and show the results to
the user. However, it has only limited facilities to optimise the models shown to the
user. The only approach resembling AutoML is the one proposed by Di Francesco-
marino et al. [8] (also implemented within Nirdizati), in which genetic algorithms
are adopted to optimise the parameters of outcome-based PPM models.

In this paper we propose a simple yet extensible AutoML framework for
developing well-performing PPM models. The framework aims at optimising a
set of PPM model parameters that comprise: the specific model used to create
a predictive model (e.g., decision tree vs. random forest), the hyperparameters
of the model, and other parameters specific to PPM, like the technique used to
encode traces or the number of prefix buckets used to develop a model in the
case of outcome prediction.

The presentation of the framework is split into two parts: (i) the solution
space identification and (ii) a model optimisation method based on genetic algo-
rithms (GA). In this paper, the proposed framework is instantiated in the case of
outcome-based PPM. However, we argue that only little adaptation is required
for its instantiation in other PPM use cases, like next-activity prediction, that
yield a machine learning classification problem. The framework is evaluated on
two publicly available real world event logs. We compare different experiment
configurations in respect of a baseline that involves random search of the con-
figuration parameter space.

The paper is organised as follows. Section 2 briefly discusses the related work.
Section 3 presents the parameter optimisation space in the case of outcome-based
PPM, while Sect. 4 presents the application of GA to solve the problem of finding
a high performing model. The results of the evaluation are presented in Sect. 5,
while conclusions are drawn in Sect. 6.
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Table 1. PPM-specific model configuration space

Parameter Range

drop act {2, 4, 6, 8}

bucketing [1, 2 * mean trace length]

encoding {‘aggregate’, ‘index’}

model {‘DT’, ‘RF’, ‘XGB’, ‘LGBM’}

2 Related Work

AutoML automates the process of developing the best model, e.g., the most
accurate, to address a given machine learning challenge, speeding up the model
development phase and facilitating the application of ML techniques even by
non-experts. Different AutoML frameworks, such as Auto-sklearn, the Tree-
Based Pipeline Optimization Tool (TPOT), or H2O, provide different automated
solutions for each step of the typical machine learning pipeline [2,3], such as data
preparation or hyperparameter optimisation.

Predictive process monitoring [1,9] concerns various prediction tasks such as
predicting the outcome of a process [4], the next event of a running case [6],
or time-related measures [5]. Approaches in the literature often define process
outcomes as the satisfaction of service level agreements or the satisfaction of
temporal constraints defined on the order and the occurrence of tasks in a case.
Extensive efforts have been devoted to enhancing the performance of predictive
monitoring models. Recently, deep learning is increasingly applied to solve the
problem of outcome prediction [10]. However, deep learning-based approaches
require extensive specialist skills by model developers to set the model hyperpa-
rameters effectively.

As mentioned in the Introduction, AutoML has been generally neglected
by the PPM literature, with the exception of [8]. In respect of the work of Di
Francescomarino et al. [8], the framework proposed in this paper considers differ-
ent encoding and bucketing methods, additional parameters, such as the drop-
ping of infrequent activities, a broader set of models in the evaluation, including
boosting ensemble models, and different experiment configurations instead of a
single one in which all the parameters are optimised using the GA at once.

3 A Configuration Space for Predictive Monitoring

We consider the PPM use case of outcome-based predictive monitoring, where
the aim is to predict a binary categorical outcome of running cases. An analysis
of the literature prompted us to design a configuration space that includes four
PPM-specific parameters, which are shown in Table 1 and discussed next.

Drop act: This parameter captures the process of removing low-frequency activ-
ities from an event log. This can yield the benefit of reducing the computational
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Table 2. Configuration space of hyperparameyters of classification models

Parameter Range

DT max depth (2, 20)

min samples leaf (5, 100)

criterion [‘gini’, ‘entropy’]

RF n estimators (10, 1000)

max depth (2, 20)

max features [‘auto’, ‘log2’]

bootstrap [True, False]

criterion [‘gini’, ‘entropy’]

XGB max depth (2, 20)

n estimators (10, 1000)

learning rate [0.01, 0.05, 0.1]

LGBM max depth (2, 20)

num leaves (10, 500)

min child samples (2, 10)

cost when creating a predictive model and it has been demonstrated to improve
the model performance in some cases [11]. We consider a discrete gap-based
scale for this parameters, which includes dropping the 2, 4, 6, or 8 less frequent
activities in an event log.

Bucketing: When pre-processing an event log for outcome-based prediction, the
prefixes of each trace are extracted to construct a prefix log. In this paper,
we consider prefix-length bucketing, which is concerned with grouping prefixes
of the same length. A base strategy (zero-bucketing) groups all prefixes in a
single bucket, thus training a single classifier. In prefix length bucketing, though,
each bucket contains partial traces of a specific length, and one classifier is
trained for each possible prefix length. Bucketing allows to group homogeneous
prefixes, which is supposed to improve the performance of the trained models.
For instance, if a lossless encoding that translates each event into a fixed of
number features is adopted, then bucketing avoids the need to zero-pad prefixes
of different length after encoding. Given an input event log, this parameter can
assume values comprised between 1 (corresponding to zero-bucketing) up to two
times the mean length of the traces in an event log.

Encoding: The prefixes extracted from an event log must be numerically encoded
to be fed into the model. The problem of encoding prefixes is one of complex
symbolic sequence encoding [12] and can be approached in multiple ways. In
this paper, we consider aggregation and index-based encoding. Aggregation is a
lossy encoding, which represents entire event sequence attributes into a single
entity, for example, based on frequency. Index-based is a lossless encoding that
maintains the order of events in a prefix. In index-based encoding, each event in
a prefix is encoded into a fixed number of numerical features.

Model: This parameter concerns the choice of the classification model to use for
developing the predictive model(s). Even though any classification model can be
used, the literature highlights that tree-based classifiers show good performance
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Fig. 1. GA-based framework for PPM model optimisation

in outcome-based PPM [4]. Thus, in this work we consider four kinds of tree-
based models, including both individual and ensemble classifiers: Decision Tree
(DT), Random Forest (RF), XGBoost (XGB), and LightGBM (LGBM).

Once a model is chosen, the hyperparameters of the model must be opti-
mised. This is one of the typical functionalities of AutoML tools. In this work, we
combine the optimisation of the model hyperparameters with the PPM-specific
parameters mentioned above. Table 2 lists the domain of hyperparameters for
each classifier that we consider in this work. Although several additional hyper-
parameters can be considered for each classifier, in this work we consider a
restricted set of hyperparameters that are shown to have significant effect on
the model performance in the literature [13–15]. For the hyperparemters not
mentioned in Table 2, we use the default settings of the Python implementation
(more details about this in Sect. 5).

After having introduced the PPM model configuration space above, we can
now introduce the architecture of the proposed PPM AutoML framework, which
is depicted in Fig. 1. We assume that the PPM use case has been defined, so the
input of the framework is simply an event log. First, several pre-processed fil-
tered event logs in which the low-frequency activities are dropped are generated,
i.e., one for each possible value of drop act. Then, for each filtered event log,
the prefixes are extracted for each trace, which yields a set of filtered prefix
logs. The filtered prefix logs are the input of the GA-based PPM model develop-
ment module. This comprises the GA controller—implementing the logic of the
GA-based optimisation presented in the next section—and a traditional PPM
pipeline, which is called by the GA controller to generate new PPM models for
given values of the configuration space parameters. The output of the framework
is one PPM model, i.e., the highest-performing one identified by the GA-based
optimisation.

4 GAs for Exploring the Configuration Space

GA was inspired from the Darwinian theory of evolution [16], according to which
fitter individuals survive and their genes are passed to their offspring. In a GA,
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every individual solution, i.e., a PPM model in our case, corresponds to a chro-
mosome and each parameter represents a gene of a chromosome, which assume
a certain value in the configuration space. GA evaluates the fitness of each indi-
vidual in the population using a fitness function. A selection process is used
at each iteration to select the best chromosomes. These then mate to produce
an offspring using the crossover operation. In addition, at each iteration several
chromosomes are mutated, i.e., their value is randomly changed. Ideally, as gen-
erations go on, the fitness value of the offspring increases, until a sufficiently fit
individual is identified. We describe next how the typical elements of a GA are
customised in our framework.

Initial Population: The GA algorithm starts with creating an initial population.
This population is generated by choosing the parameter values randomly within a
domain in configuration space. In our framework, the size of the initial population
is 20 individuals.

Evaluate Fitness: In this step, the GA computes the fitness value of each indi-
vidual in the present population. Fitness is considered as an evaluation metric as
well as objective function in GA. Individuals with high fitness value are likely to
be selected, mutated and mated with another for crossover. In some simple GA
implementations, fitness is defined as a single indicator, such as model accuracy.
However, relying on only one metric can provide wrong insights. For example,
when the distribution of classes is unbalanced, like in many PPM scenarios [4,6],
the accuracy is not sufficient to evaluate the performance. It is then helpful to use
multiple measures rather than only one. Thus, we designed the fitness f(i) of an
individual i, i.e., an outcome-based PPM model, to combine different measures
as follows:

f(i) =
sc(i) + re(i) + tr(i) + se(i)

4

where:

sc(i) =
AUC(i) + acc(i)

2
,

re(i) = 1 − failure rate(i),

te(i) =
max(time) − time(i)

max(time) − min(time)

se(i) =
sc(i) − min(sc)

max(sc) − min(sc)

In the formulas above, the score sc(i) combines the average Area Under the
receiving operator Curve AUC and the average accuracy acc obtained by the
model i. AUC is a more balanced performance measure that is often considered
in PPM problems.

The reliability re(i) is a measure that computes the overall reliability of the
predictions made by an individual i over the test set. A classifier assigns to each
observation in a dataset probabilities for each of the outcome labels. The label
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associated with the highest probability is chosen as the predicted one. When
such a highest probability is less than a minimum threshold, we say that the
prediction has failed, i.e. it is not reliable. In the GA, we compute the failure
rate as 1 minus the fraction of observations (running cases) in a dataset for which
the prediction failed. The minimum threshold value used in the experiments is
0.7, e.g., a prefix predicted with probability of 0.65 and 0.35 of having a positive
or negative label, respectively, is considered a failed prediction.

The time efficiency te(i) represents the relative amount of time required for
an individual to be trained and tested (in respect of the maximum and min-
imum times observed in the current population). A main purpose of AutoML
is in fact to reduce the time for identifying the best machine learning model.
In this direction, the time efficiency represents how efficient the computation of
a chromosome is compared to the other chromosomes in the same population.
Similarly to the time efficiency, the score efficiency se(i) represents the relative
value of the score of the current individual i in respect of all the other indi-
viduals of the current population. This term is introduced to consider also the
magnitude of the performance improvement when evaluating the fitness of a new
individual i.

Selection: The main objective of the selection is to give a higher chance of being a
parent to the fittest individuals in order to pass on better genes to the offspring.
In other words, the higher the fitness of an individual, the higher the opportu-
nity of selection. In this context, we adopted the roulette wheel strategy in our
framework, in which the best individual has the largest chance to be selected,
while the worst individual has the lowest chance.

Crossover and Mutation: Crossover is implemented by selecting a random point
(or points) in a chromosome where the exchange of parents’ genes happens. The
crossover then brings up a new offspring based on the exchange point chosen with
particular parts of the parents. Since we consider a limiter number of parame-
ters defining a chromosome, we use the one-point crossover, in which only one
crossover point along the chromosome is randomly selected.

The purpose of the mutation is to encourage diversity in the population, thus
alleviating the local-optima problem in a GA implementation. When mutation is
applied, a few genes in the chromosome are randomly changed to produce a new
offspring. As a result, this creates new adaptive solutions to avoid local optima.
We decided to change one gene for each mutation step.

The GA is thus characterised by the parameter crossover rate cr and the
mutation rate mr. Both range between 0 and 1. The crossover rate indicates
the chance that two chromosomes mate and exchange their genes, so that a new
offspring is produced. If cr = 1 (100%), all the offspring are obtained applying
the crossover. If cr = 0 then no mating at all occurs, i.e., a new generation is
exactly the same as the previous one. The mutation rate determines how many
chromosomes should be mutated in a generation. Setting mr = 1 (100%) results
in mutating all the chromosomes in a population, while mutation never occurs
when mr = 0. In the experiments, the values of these two parameters have been
set experimentally through grid search (more details in the next section).
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Fig. 2. Experiment configurations: illustration

New Population: A new population is generated by selection, crossover, and
mutation. If the termination test (see next) is not passed, this population
becomes the parent generation for the next population.

Termination Test: A GA algorithm must stop, returning the best solution found
as a result. Therefore, a termination condition is tested for every generation. In
the proposed framework, three conditions are tested and, if any of them are true,
the algorithm stops: (i) the maximum number of iteration is reached, (ii) the
number of times in which the average fitness of the new population is lower than
the one of the previous population exceeds a certain limit (5 in the experiments),
and (iii) the difference between the average fitness of the new population and
the last one is less than 0.001. Note that (i) guarantees that the GA algorithms
eventually stops.

4.1 Experiment Configurations

We designed four experiment configurations based on different ways of explor-
ing the configuration space using GAs (see Fig. 2). In experiment 1, all the
parameters in the configuration space are expressed by genes of the chromo-
somes and optimized using GA. In experiment 2, the hyperparameter values
of the model are not part of the GA-based optimisation. First, the GA is run
considering default parameter values for each model. Then, the hyperparame-
ters of the model selected by the best individual using GA are optmised using
random search. In experiment 3, only the PPM-specific parameters bucketing,
encoding and drop act are optimised using GA, considering XGB as the model
with default hyperparmeter values. Then the model to be used and its hyperpa-
rameters are selected using random search. The fourth experiment is a totally
random search (RS) baseline, in which all the values of all the parameters are
optimised using random search. As can be seen in Fig. 2, all the experiments are
configured to generate between 400 and 500 trials, i.e., models to train and test.
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5 Experimental Evaluation

First, we discuss the experimental settings (datasets, GA parameter settings,
implementation details) and then we present the experimental results. The
framework is implemented in Python and the code to reproduce the experiments
is publicly available at https://github.com/eekfskgus/GA based AutoML/.

We consider 2 event logs publicly available at https://data.4tu.nl/ published
by the Business Process Intelligence Challenge in 2012 and 2017. The BPIC
2012 and BPIC 2017 event logs are from a process of managing loan requests at
a Dutch financial institution. These logs have been chosen because they contain
an outcome label and have been used by previous research on outcome-based
process predictive monitoring. In the BPIC 2012 and BPIC 2017 event logs the
outcome label captures whether a loan request is eventually accepted or not.

The design of GAs requires to set the values of several parameters. The value
of the GA parameters can impact greatly on the solution found, even determining
whether a solution is found at all by the algorithm [17].

Table 3. Grid search test for GA parameter setting

Parameter Best score Elapsed time(s)

cr = 0.9, mr = 0.1 0.76 4611

cr = 0.9, mr = 0.05 0.75 4538

cr = 0.9, mr = 0.01 0.82 3848

cr = 0.8, mr = 0.1 0.75 3947

cr = 0.8, mr = 0.05 0.71 4486

cr = 0.8, mr = 0.01 0.76 4233

cr = 0.7, mr = 0.1 0.77 4468

cr = 0.7, mr = 0.05 0.73 5424

cr = 0.7, mr = 0.01 0.7 4554

To find the best value of cr and mr, we conducted a grid search exper-
iment using the BPIC 2012 dataset, in which cr ∈ [0.9, 0.8, 0.7] and mr ∈

[0.1, 0.05, 0.01]. It is known that high crossover rate and low mutation rate effec-
tively works in GA, since the low crossover rates lead to low rates of exploration,
whereas high mutation rates increase the randomness of the search [18,19]. For
every combination, we evaluated the best individual found and the elapsed time
using the experiment 1 configuration. The results of this test are shown in Table 3
(the selected parameter values are in bold). For the other GA parameters, the
initial population size is 20, with 5 individuals randomly generated for each of the
4 classification models considered. For the termination condition, the maximum
number of iteration is 20.

For the training and testing of new individuals in a generation, the (train-
ing:test) ratio is set to (4:1). In addition, if the imbalance ratio of the minority

https://github.com/eekfskgus/GA_based_AutoML/
https://data.4tu.nl/
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Table 4. Best solutions and corresponding parameter values

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

BPIC2012 time(s) 93532 95454 83139 84823 113432 51252 157937 123628 82579 113952 119033 117269

sc 0.83 0.74 0.96 0.94 0.78 0.89 0.78 0.92 0.99 0.84 0.82 0.84

model XGB DT RF LGBM RF LGBM LGBM LGBM XGB RF RF RF

drop act 8 8 4 4 6 2 8 4 8 6 8 6

bucketing 30 29 13 22 34 26 39 23 6 2 2 1

encoding index index index index index index index index aggregate aggregate index index

BPIC2017 time(s) 77644 83140 101942 80839 54720 76564 102004 96954 109210 119351 93833 165861

sc 0.83 0.96 0.96 0.94 0.84 0.73 0.76 0.99 0.96 0.75 0.74 0.78

model RF RF XGB LGBM XGB RF LGBM XGB LGBM DT RF DT

drop act 6 4 6 8 8 8 4 4 4 6 8 8

bucketing 25 13 6 7 28 34 37 18 9 1 1 3

encoding index index aggregate index index index index index index index index index

Fig. 3. Mean parameters values over generations in the GA-based experiments (BPIC
2017 event log)

class over the majority class is less than 0.33, then the dataset is automatically
re-sampled using synthetic minority over-sampling, widely known as SMOTE.
SMOTE sampling could lead to benefit the performance of classification in class
imbalance problem, by improving the class boundary region especially with
extremely imbalanced datasets.

Table 4 compares the best solution obtained by the four types of experiments.
Given the randomness intrinsic to the experiments, for each type of experiment
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we show the results of three different runs. We compare the execution time,
the accuracy-AUC-based score (sc), and the values of the parameters of the
configuration space. The proposed GA-based framework (adopted in experiments
1, 2, and 3) generally outscore the RS (experiment 4), on both execution time
and quality of the solution (score). Interestingly, the classifiers XGB and LGBM
(especially the latter) are frequently selected in the experiments that use the
proposed framework, whereas RF or DT are often selected by the RS experiment.

The RS baseline in experiment 4 selects the best individual from 400 sam-
ples obtained using parameter values randomly selected. These 400 individuals
are independent of each other, i.e., their selection is not affected by the con-
straints on fitness, execution time and failure rate of the proposed GA-based
framework. Therefore, a random search of the configuration space could work
better for individual classifiers (like DT) or bagging-based classifiers (like RF),
which do not try to improve iteratively the performance of the model. Another
difference between XGB and LGBM when compared with DT and RF is that
they use boosting. Boosting involves iterations, whereby the prediction results of
a previous model affects the results of the next one. Based on the results shown
in Table 4, the overlapping effect of boosting over generations improves the GA
performance. In addition, LGBM is selected more frequently than XGB because
of its superiority in terms of execution time. Being lightweight on execution time,
LGBM is likely to lead to higher fitness of the solution found in a shorter time.

Regarding the other parameters, index encoding is more dominant in the
solutions found than aggregation encoding. It appears also that dropping a higher
number of infrequent activities leads to better results. Finally, Table 4 shows
that the bucket size of the best chromosome tends to be higher when using the
proposed framework when compared to the RS baseline.

To show the inner dynamic of the GA-based experiments, Fig. 3 shows the
mean values across experiments 1, 2, and 3 of the three parameters fitness,
score, and reliability over the generations for the BPIC 2017 dataset. We can
see that the value of each parameter tend to converge to 1 as the number of
generation increases, which shows the suitability of the GA-based approach as
an optimisation strategy for identifying a PPM model.

6 Conclusions

This paper has presented an AutoML framework for identifying a high-
performing PPM model. The framework relies on genetic algorithms for exploring
a solution space that includes both traditional and PPM-specific model hyper-
parameters. In the future, we plan to extend the configuration space to more
dimensions and use cases, e.g., next event prediction, and to compare the pro-
posed GA-based approach with other bio-inspired heuristics, e.g. swarm or par-
ticle intelligence.
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Abstract. A lot of recent literature on outcome-oriented predictive pro-
cess monitoring focuses on using models from machine and deep learning.
In this literature, it is assumed the outcome labels of the historical cases
are all known. However, in some cases, the labelling of cases is incomplete
or inaccurate. For instance, you might only observe negative customer
feedback, fraudulent cases might remain unnoticed. These cases are typi-
cally present in the so-called positive and unlabelled (PU) setting, where
your data set consists of a couple of positively labelled examples and
examples which do not have a positive label, but might still be examples
of a positive outcome. In this work, we show, using a selection of event
logs from the literature, the negative impact of mislabelling cases as neg-
ative, more specifically when using XGBoost and LSTM neural networks.
Furthermore, we show promising results on real-life datasets mitigating
this effect, by changing the loss function used by a set of models during
training to those of unbiased Positive-Unlabelled (uPU) or non-negative
Positive-Unlabelled (nnPU) learning.

Keywords: Process mining · Predictive process monitoring ·
OOPPM · XGBoost · LSTM · PU learning · Label uncertainty

1 Introduction

Outcome-Oriented Predictive Process Monitoring (OOPPM) refers to predict-
ing the future state (labels) of ongoing processes, using the historical cases of
business processes. Most recently, the literature in OOPPM has been focused on
training machine and deep learning models on labelled historical data. However,
to the best of our knowledge, no research has focused on training such models
when the labels given to these historical cases are incomplete, uncertain, or even
wrong. Accordingly, in this paper, a situation is investigated where part of the
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positive historical cases have been unnoticed and therefore mistakenly classified
as negative in the data. A situation like this might be found when the positive
label represents, e.g., detected outliers or fraud in a loan application, or cus-
tomer (dis)satisfaction through a survey (which might not always be filled out)
for a production process [10,26]. Other examples can be found in medicine, e.g.,
when trying to predict the chances of complications which might go unnoticed, or
when dealing with overall low-quality data and therefore uncertain labels [10,14].
Other examples can be found in multi-organisational processes, where informa-
tion flow can sometimes be limited. This setting can be understood as one-sided
label noise, in which some seeming negatives are actually positive [1]. One-sided
label noise is a common interpretation of positive and unlabelled (PU) data.
In this setting, data consists of positive and unlabelled instances, in which an
unlabelled example can be either positive or negative. Consequently, this field
of machine learning research is called PU learning. We focus on methods based
on the Expected Risk Minimization (ERM) in the literature of PU learning.
Particularly, we use unbiased PU learning and non-negative PU learning [7,11]
because of the state-of-the-art performance. These two methods have been suc-
cessfully utilised in other domains such as imbalanced learning [21], and graph
neural networks [27].

In our experimental setup, we flip different percentages of the positive labels
in the training logs to a negative label, replicating a real-world situation with
missing positive labels. By training models on these different training sets and
evaluating their performance on the untouched test set, we can evaluate the
impact of missing positive training labels on the models’ actual performance.
The models in question are gradient boosted trees (more specifically eXtreme
Gradient Boosting, known as XGBoost or XGB) [3] and the Long Short-Term
Memory neural networks (LSTM) [9]. Furthermore, we investigate the impact
of replacing the binary cross-entropy loss functions with functions inspired by
the Positive and Unlabelled (PU) learning literature. This can be summarised
in the following hypotheses:

Hypothesis 1 (H1): Incorrectly labelling deviant (positive) behaviour as nor-
mal (negative), can have an important impact on the (future) performance of a
predictive model.

Hypothesis 2 (H2): Using loss functions from PU-learning, the problem above
can be (partially) mitigated.

To investigate these hypotheses, our setup has been applied to a selection
of nine real-life process event logs from the literature. The rest of the paper
is organised as follows. We start by discussing some relevant related work in
Sect. 2. Second, Sect. 3 introduces essential background information, followed by
an introduction to PU learning in Sect. 4. In Sect. 5, the experimental setup is
described, before introducing the data and the hyperparameter search. This is
succeeded by showing and discussing the results (Sect. 6). Finally, Sect. 7 pro-
vides a conclusion and some possible approaches for future research. The data,
results, and code used and presented in this paper are available online1.

1 https://github.com/jaripeeperkorn/PU-OOPPM.

https://github.com/jaripeeperkorn/PU-OOPPM
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2 Related Work

Predictive Process Monitoring (PPM) is concerned with many tasks such as
predicting the remaining time [25], next activity [22] or the outcome of the
process [4,12,24]. The latter is also known as Outcome-Oriented Predictive Pro-
cess Monitoring (OOPPM), a field of study that predicts the final state of an
incoming, incomplete case. One of the pioneer studies in this field is [24], where
they benchmark the state-of-the-art trace bucketing techniques and sequence
encoding mechanisms used for different machine learning models. However, the
use of classical machine learning models has been superseded by an avalanche
of deep learning techniques. Here, the most frequent used predictive model in
general predictive process monitoring literature has become LSTM neural net-
works, initiated by [22]. The introduction of this recurrent neural network has
been motivated by the ability of this model to handle the dynamic behaviour
of high-dimensional sequential data. In recent, many other sophisticated mod-
els have been benchmarked against this model in the field of predictive process
monitoring, such as Convolutional Neural Networks (CNN) [16] or Generative
Adversarial Networks (GAN) [23]. Some studies have already compared the pre-
dictive performance of different deep learning models [12,15,18].

Nonetheless, the predictions made by the majority of these works are based on
data from past process instances, i.e. event logs, and therefore implicitly assume
that the labelling made corresponds with the ground truth. Work on incremental
predictive process monitoring [17,19] does provide a flexible alternative to deal
with the rigidity of predictive models. Moreover, these incremental learning algo-
rithms allow for the predictive model to deal with the variability and dynamic
behaviour of business processes (i.e. different time periods have different char-
acteristics [17]). Other recent work discusses a semi-supervised approach, also
leveraging the power of deep neural networks, to handle scarcely labelled process
logs in an OOPPM setting [8]. However, to the best of our knowledge, none of
the related works has already used PU learning in the context of OOPPM, which
incorporates that negatively labelled instances are possibly mislabelled.

3 Preliminaries

Executed activities in a process are recorded as an event in an Event Log L. Each
event belongs to one case, indicated by its CaseID c ∈ C. An event e can also
be written as a tuple e = (c, a, t, d, s), with a ∈ A the activity (i.e. control-flow
attribute) and t the timestamp. Optionally, an event might also have event-
related attributes (payload or dynamic attributes) d = (d1, d2, . . . , dmd

), which
are event specific and might evolve during a case. Other attributes do not evolve
during the execution of a single case and are called case or static attributes
s = (s1, s2, . . . , sms

). A sequence of events belonging to one case is called a
trace. The outcome y of a trace is an attribute defined by the process owner.
This attribute is often binary, indicating whether a certain criterion has been
met [24]. We use the label positive when it is met, and call these cases positive
cases. And negative cases otherwise. A prefix is part of a trace, consisting of the
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first l events (with l an integer smaller than the trace length). A prefix log L∗

contains all possible prefixes which can be extracted from all traces in L.
XGBoost is an implementation of the gradient boosting ensemble method,

which is constructed from multiple decision tree models. By adding additional
trees to correct the prediction error from the prior iteration, an efficient yet
powerful classifier can be trained [3]. Recurrent Neural Networks (RNNs) are
neural networks specifically designed to work with sequential data by letting
information flow between multiple time steps. LSTMs are a specific variant of
RNN, specifically designed to handle long-term dependencies [9].

Both of these models rely on a proper choice of loss function for training.
The loss function is used to score the model on its performance, based on the
predicted probability p ∈ [0, 1] and the actual label y ∈ {0, 1}. Formally, in the
Empirical Risk Minimisation (ERM) framework, the loss function L is utilised
within the risk function when scoring a classifier g(x):

R(g(x)) = αEf+
[L+(g(x))] + (1 − α)Ef

−

[L−(g(x))], (1)

where L+(g) and L−(g) are the losses for positive and negative examples; Ef+

and Ef
−

are the expectation over the propensity density functions of the positive
f+(x) and negative f−(x) instance space; and α is the positive class ratio or class
prior as denoted in the literature. Usually for a binary classification problem,
as is often the case in OOPPM, the binary cross entropy loss function is used.
The binary cross-entropy can be calculated from a data set when L+(g(xi)) =
−log(pi) and L−(g(xi)) = −log(1 − pi) in Eq. 1:

BCE = −
N

∑

i=1

(yi log(pi) + (1 − yi) log(1 − pi)) (2)

4 PU Learning

Despite the popularity of binary cross-entropy in the standard classification setup
in which labels are accurate and complete, some real-world applications suffer
from label uncertainty. In such scenarios, the binary cross-entropy is no longer
valid for model learning. We focus on the PU setting in which the training
data consists of only positive and unlabelled examples; the labelled instances
are always positive, but some positives remain unlabelled. In PU learning, the
label status l ∈ {0, 1} determines if an example is either labelled or unlabeled.
Formally, we assume that the positive and unlabelled instances are independent
and identically distributed from the general distribution f(x):

X ∼ f(x)

∼ αf+(x) + (1 − α)f−(x) (3)

∼ αcfl(x) + (1 − αc)fu(x), (4)

where X refers to the set of instances and the label frequency c is the probability
of a positive example being labelled P (l = 1 | y = 1). The general distribution
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can be formulated in terms of the positive distribution f+(x) and negative dis-
tribution f−(x) (see Eq. 3). In the PU setting, the general distribution consists
of the labeled fl(x) and unlabeled distribution fu(x) as shown in Eq. 4. A pro-
portion c of the positive instances of the data set is labelled, thus, a learner can
only observe a fraction αc of instances with a positive label whereas the rest is
unlabeled. Recent works have proposed methods based on the ERM framework,
which are currently considered state-of-the-art [2,7,11]. These methods incorpo-
rate the information of the class prior (i.e., positive class ratio) to weight the
PU data within the loss function. The weighting allows the empirical risk from
the PU data to be the same in expectation as in the fully labelled data. From
Eq. 1, we can transform the loss function into the PU setting as follows:

Rupu(g(x)) = αEf+
[L+(g(x))] + (1 − α)Ef

−

[L−(g(x))]

= αEf+
[L+(g(x))] + Ef [L−(g(x))] − αEf+

[L−(g(x))]

= αcEfl

[1

c
(L+(g(x)) − L−(g(x)))

]

+Ef [L−(g(x))]

= αcEfl

[1

c
L+(g(x)) + (1 −

1

c
)L−(g(x))

]

+(1 − αc)Efu
[L−(g(x))].

(5)

In the first step of Eq. 5, we can substitute the term (1 − α)Ef
−

[L−(g(x))] with
Ef [L−(g(x))] − αEf+

[L−(g(x))] based on Eq. 3: the negative distribution f− is
the difference between the general distribution f and the positive distribution
f+. In the second step, we substitute Ef [L−(g(x))] with αcEf [L−(g(x))] + (1 −
αc)Ef [L−(g(x))] based on Eq. 4. Now the unlabelled instances are considered
negative with a weight of 1. Also, all labelled examples are added both as positive
with weight 1

c
and as negative with 1 − 1

c
. The method is called unbiased PU

(uPU) because the empirical risk for PU data (Eq. 5) is equal in expectation to
the empirical risk when data is fully labelled (Eq. 1) [7]. The uPU can be used
in modern techniques that require a convex loss function for training. However,
the uPU method presents a weakness for flexible techniques that can easily
overfit: the uPU risk estimator can provide negative empirical risks. This issue is
problematic for powerful classifiers such as XGBoost [3] or deep learning models.
Thus, the non-negative PU risk estimator is proposed that improves on uPU by
adding a maximum operator [11]:

Rnnpu(g(x)) = αcEfl

[

1

c
L+(g(x))

]

+max
(

0, (1 − αc)Efu
[L−(g(x))] + αcEfl

[

(1 − 1

c
)L−(g(x))

])

. (6)

The maximum operator in Eq. 6 prevents the issue of negative empirical risks.
We can derive an appropriate loss function for PU learning that can substitute
the binary cross-entropy based on Eq. 6 and Eq. 5. Hence, the unbiased PU cross-
entropy and non-negative PU cross-entropy can be estimated from a data set:

uPUBCE = −
N

∑

i=1

(

li

[1

c
log(pi) + (1 −

1

c
) log(1 − pi)

]

+(1 − li)
[

log(1 − pi)
]

)

(7)

nnPUBCE = −
∑N

i=1

(

li

[

1

c
log(pi)

]

+ max
(

0, (1 − li)
[

log(1 − pi)
]

+li(1 − 1

c
) log(1 − pi)

))

(8)
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Unlike the binary cross-entropy, as shown in Eq. 2, the ground-truth label y is
not available but the label status l ∈ {0, 1}. Notice that a labelled instance is
always a positive example. We can, thus, use uPUBCE and nnPUBCE as the
loss function for a classification technique.

5 Experimental Setup

5.1 Setup

To address the hypotheses introduced earlier, two experimental setups were care-
fully constructed. Both share a similar setup, visualised in Fig. 1. An event log
is taken and split into a training set and a test set. This is done 80–20% out-
of-time, i.e. every case with time activity timestamps before a certain moment
is added to the training set and later cases are added to the test set (in way
that approximately 20% of the cases ends up in the test set). However, since
we do not want to discard too much data, it was opted to do a split without
discarding the whole cases in an overlapping period and only remove the specific
event with overlap to the test log period, in correspondence to other works in
literature [24]. Subsequently, we look at the different positively labelled traces
in the training, and flip different percentages (25, 50 and 75%) of these labels
to a negative label, hereby replicating situations where different positive cases
in the training set would not have been classified as such. The negative label
should therefore better be called unlabelled. We also keep one Original log, for
which no labels have been flipped. For each of these training sets, the prefix
log is obtained, which is then used to train different models. The models used
are each time an XGBoost classifier and an LSTM neural network, albeit with
varying loss functions. In Experiment 1 we solely want to investigate the pos-
sible negative effect of mislabelling positive examples. For this purpose, we opt
to use the standard binary cross entropy. After training, the classifier predicts
the labels of all prefixes in the prefix log of the test log, and these labels are
compared to the true labels. As a score, we use the area under the ROC curve
(AUC), which can be used to express the probability a classifier will give a higher
prediction to a positive example than to a negative example. This was chosen
due to it being threshold-independent and unbiased with imbalanced data sets.
Notice that we did not flip any labels in the test log, as we want to test the
model’s actual performance. The different models (trained on logs with different
label flip percentages) are compared.

In Experiment 2 we also train classifiers with the uPU and nnPU loss
functions introduced in Sect. 3. These classifiers are trained on the same training
logs (only the one with label flips this time). By comparing the AUC on the
test (untouched) examples, we can investigate the possible advantages of using
PU learning loss functions over binary cross entropy. The XGBoost model is
taken from [3] and the LSTM model is implemented by using the Python library
Keras2. The uPU and nnPU loss function implementations designed for this

2 https://keras.io.

https://keras.io
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work are also working on top of these libraries. The PU loss functions demand
the user to give a class prior. In this work, we have used the percentage of
label flips as input, to derive an estimate for the class prior. This is not a fully
realistic setting, as in real-life you might not know how many positive cases you
will have missed. However, often an adequate guess can be made based on expert
knowledge or previous samples. The class prior derived from the flip ratio does
not lead to the exact class prior as well, as it is based on traces and not prefixes.
Longer traces create more prefixes in the training log since every activity in a
trace (minus the last) is used as the last activity in a prefix. In addition, the
positive class ratio of the training log is different from that of the test set. With
this not-exact estimate of the class prior, we, therefore, deem our setup suitable
to investigate Hypothesis 2.

Out-of-time split

Train

Test

Original

25%

50%

75%

Label flips

Models

Models

Models

Models

Train

Event Log

Loss functions:

Binary Cross Entropy

nnPU

uPU

AUC

Fig. 1. Overview of the setup.

5.2 Event Logs

We have selected two sets of often used and publicly available event logs recorded
from real-life processes. The outcomes are derived from a set of LTL rules sim-
ilar as has been done in [4,13,20,24]. The first set of event logs, BPIC2011 or
Hospital Log, consists of four sublogs collected from the Gynaecology depart-
ment of a Dutch Academic Hospital [6]. The different outcome LTL rules, and
the accompanying trace cutting, are taken over from [24]. After collecting the
patient’s information, the patient’s procedures and treatments are recorded. The
BPIC2015 event log consists of 5 different sublogs, each one having recorded
a building permit application process in 5 different Dutch municipalities [5].
They share one LTL rule, checking whether a certain activity send confirmation
receipt must always be followed by retrieve missing data [24]. The event logs’
most important characteristics can be found in Table 1. Next to the number of
traces in both train and test log, the minimum, maximum and median length
of the traces can be found as well, together with the truncation length (prefixes
longer than this length are not to be used). This can be due to computational
considerations (cut off at 40 events) or earlier because the trace has reached
all events determining its outcome. Also mentioned are the positive class ratio,
R(+) in both training and test set.
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Table 1. An overview of the characteristics of the data sets used.

Dataset Min Len Med Len Max Len Trunc. Len #Train #Test R(+) Train R(+) Test

2011_1 1 25 1814 36 912 228 0.38 0.48

2011_2 1 54.5 1814 40 912 228 0.81 0.66

2011_3 1 21 1368 31 896 225 0.20 0.36

2011_4 1 44 1432 40 912 228 0.25 0.39

2015_1 2 42 101 40 555 140 0.22 0.26

2015_2 1 55 132 40 602 151 0.20 0.17

2015_3 3 42 124 40 1062 266 0.17 0.25

2015_4 1 42 82 40 460 116 0.17 0.13

2015_5 5 50 134 40 840 211 0.32 0.26

5.3 Encoding and Hyperparameters

The prepossessing pipeline of the XGBoost model is based on previous work
discussing different machine learning approaches [24]. The adjustments to the
preprocessing pipeline to use the LSTM model are taken from [20]. To ensure
proper training, some hyperparameters have to be carefully selected. For this
purpose, we have done a hyperparameters search for each of the variations (dif-
ferent label flip ratios) of each log, and this for each different model (using dif-
ferent loss functions). The hyperparameter selection is performed with the use of
hyperopt. For the LSTM models these are the size of the LSTM hidden layers,
the batch size dropout rate, learning rate and optimizer (Adam, Nadam, SGD
or RMSprop) used during training. For the XGB models these are subsample,
maximum tree depth, colsample bytree, minimum child weight and the learning
rate. The XGB models also use the aggregation encoding setting to encode the
features of a prefix, taken over from [24]. Although this sequence encoding mech-
anism ignores the order of the traces, the study of k [24] shows that it works
best for our selected data sets (and similar pipeline). For the LSTM models, the
features are encoded in an embedding layer. The rest of the model consists of
two bidirectional recurrent layers, with a dense output layer.

6 Experimental Evaluation

6.1 Experiment 1

The AUC on the independent test set is assessed for each of the models trained
on the training logs with different ratios of flipping the positive examples. The
results can be found in Table 2 and, as expected, overall we can see a decreasing
trend in AUC when adding more and more label flips to the training set. What
stands out is the relative bad AUC of the LSTM model as compared to the XGB.
The decrease in AUC when adding positive label flips to the training set, often
also seems sharper and more volatile (not always decreasing when more label
flips are added) for the LSTM classifiers. The LSTM classifier trained on the
original ‘bpic_2011_3’ training set seems to score a particularly low score, and

http://proceedings.mlr.press/v28/bergstra13.html
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Table 2. AUC on an untouched test set for XGB and LSTM models, trained on
training logs with different amounts of label flips.

Dataset Method Flip Ratio

0% 25% 50% 75%

bpic2011_1 LSTM 0.891 0.514 0.667 0.509

bpic2011_1 XGB 0.944 0.867 0.805 0.751

bpic2011_2 LSTM 0.882 0.520 0.783 0.494

bpic2011_2 XGB 0.972 0.962 0.905 0.785

bpic2011_3 LSTM 0.680 0.863 0.755 0.831

bpic2011_3 XGB 0.989 0.982 0.803 0.905

bpic2011_4 LSTM 0.873 0.680 0.680 0.736

bpic2011_4 XGB 0.865 0.855 0.813 0.720

bpic2015_1 LSTM 0.885 0.706 0.712 0.579

bpic2015_1 XGB 0.917 0.919 0.904 0.761

bpic2015_2 LSTM 0.937 0.854 0.803 0.807

bpic2015_2 XGB 0.947 0.952 0.914 0.909

bpic2015_3 LSTM 0.878 0.673 0.694 0.624

bpic2015_3 XGB 0.962 0.941 0.942 0.930

bpic2015_4 LSTM 0.858 0.784 0.715 0.465

bpic2015_4 XGB 0.917 0.898 0.837 0.847

bpic2015_5 LSTM 0.916 0.757 0.759 0.667

bpic2015_5 XGB 0.944 0.939 0.907 0.813

definitely stands out as an outlier. Another remarkable example can be found
for data set ‘bpic_2015_2’, and ‘bpic_2015_3’, for which the relatively limited
AUC decrease (for the XGB model) might be partially explained by this data
set containing a lot of longer traces. The AUC results for the XGBoost model
of [24] show that predictions for prefixes longer than length 15 are all almost
1. Intuitively, this boils down to the fact that the model is almost certain of
the label prediction for prefixes with a minimal length of 15. In addition, the
prefix log of the test set contains 63% prefixes of size larger or equal to 15, at
which point the XGB model already has almost perfect predictions, such that the
influence of the data flips in the training set has less influence on the overall AUC
score. This is however only a partial explanation since it would not explain an
actual increase of the XGB test performance when training on the training data
with 25% of the positive labels flipped as compared to a model trained on the
untouched training set. Possibly effects like the test set having a lower positive
label ratio than the training set, or other data set-specific characteristics, might
provide some extra explanation. Overall, we can confirm Hypothesis 1, however,
the extent (and volatility) of the decrease can still be process dependent, or
might even depend on which specific cases have a missing positive label.
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6.2 Experiment 2

As mentioned earlier, in a second experiment we introduce the models using the
uPU and nnPU loss functions, next to those using binary cross entropy (CE ).
We discard the original logs and only look at the logs for which positive labels
have been flipped. The results of these experiments can be found in Table 3.
Overall, an uplift can be seen in using the nnPU loss function over the BCE, for
both LSTM and XGB. However, this is not always the case and the effectiveness
of using PU learning seems to be log-dependent. Standing out again in the event
log ‘bpic_2015_2’, for which the nnPU function seems not to be effective (even

Table 3. AUC on an untouched test set for models trained with different loss functions
on training logs with different amounts of label flips.

Dataset Flip LSTM XGB

CE nnPU uPU CE nnPU uPU

bpic2011_1 25% 0.514 0.818 0.818 0.867 0.910 0.897

bpic2011_1 50% 0.667 0.736 0.565 0.805 0.889 0.800

bpic2011_1 75% 0.509 0.505 0.727 0.751 0.801 0.684

bpic2011_2 25% 0.520 0.752 0.723 0.962 0.963 0.921

bpic2011_2 50% 0.783 0.820 0.662 0.905 0.922 0.942

bpic2011_2 75% 0.494 0.530 0.612 0.785 0.827 0.545

bpic2011_3 25% 0.863 0.838 0.750 0.982 0.975 0.987

bpic2011_3 50% 0.755 0.773 0.687 0.803 0.925 0.831

bpic2011_3 75% 0.831 0.779 0.707 0.905 0.931 0.911

bpic2011_4 25% 0.680 0.773 0.775 0.855 0.868 0.861

bpic2011_4 50% 0.680 0.784 0.734 0.813 0.812 0.718

bpic2011_4 75% 0.736 0.694 0.840 0.720 0.797 0.729

bpic2015_1 25% 0.706 0.804 0.817 0.919 0.916 0.917

bpic2015_1 50% 0.712 0.803 0.663 0.904 0.918 0.865

bpic2015_1 75% 0.579 0.609 0.638 0.761 0.631 0.774

bpic2015_2 25% 0.854 0.486 0.839 0.952 0.949 0.945

bpic2015_2 50% 0.803 0.594 0.855 0.914 0.902 0.867

bpic2015_2 75% 0.807 0.742 0.653 0.909 0.858 0.821

bpic2015_3 25% 0.673 0.777 0.592 0.941 0.955 0.947

bpic2015_3 50% 0.694 0.715 0.628 0.942 0.942 0.934

bpic2015_3 75% 0.624 0.835 0.583 0.930 0.904 0.930

bpic2015_4 25% 0.784 0.821 0.801 0.898 0.898 0.923

bpic2015_4 50% 0.715 0.615 0.678 0.837 0.886 0.844

bpic2015_4 75% 0.465 0.664 0.598 0.847 0.835 0.839

bpic2015_5 25% 0.757 0.710 0.684 0.939 0.937 0.924

bpic2015_5 50% 0.759 0.755 0.693 0.907 0.921 0.912

bpic2015_5 75% 0.667 0.680 0.576 0.813 0.837 0.777
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very flawed in the LSTM’s case). This event log also showed only slight decreases
in AUC when adding the label flips. Overall, using the nnPU loss function seems
to lead to better scores than the uPU. Also in OOPPM the possibly negative risk
values the uPU loss function can obtain, seem to have a negative impact on the
learning. Depending on the process in question, using the nnPU loss function
seems to be able to increase the real performance of a classifier, so Hypothesis 2
can be (partially) confirmed. Further research will be needed to understand when
and why PU learning seems (not) to work well in OOPPM.

7 Conclusion and Future Work

In this work, we have introduced OOPPM models to a setting where our train-
ing log consists of positive and unlabelled traces. This kind of situation might
arise when the labelling of your positive cases is uncertain, e.g. when it is hard
for the process owner to obtain all the information or be sure. A key example
application is fraud detection, but also in other areas, obtaining accurate labels
for all cases might be costly or even impossible, such as labels based on customer
feedback or labels to be obtained from other parties collaborating in a multi-
organisational business process. By training different LSTM and XGB models
on different variations of an event log, each time with an increasing number of
the positively labelled traces’ label flipped to negative (and therefore changing
the negative label to unlabelled), a drop in the classifiers’ performance could
be noticed, hereby confirming Hypothesis 1. Furthermore, we investigated the
potential use of loss functions from the field of PU learning to mitigate this issue
and found that generally, on our example event logs, a model trained with the
nnPU loss function would score higher in a situation where the training data had
traces’ positive labels flipped. This was generally true, but not for all event logs,
so further investigations and fine-tuning might be interesting when applying this
to data from other processes. This paper opens up a door for future research on
OOPPM in positive and unlabelled settings.

In future work, a more extensive experiment with more event logs could be
performed. Furthermore, creating multiple variations of the log for each random
flip ratio, as well as flipping labels of examples closer or further from the decision
boundary might have an impact. It would also be interesting to test this setup
in data for which we know the labelling is uncertain by itself, in contrast to
doing the ratio flips ourselves. One other limitation of this work is that our loss
functions rely on knowing the class prior, and for this, we have used the flip
ratio as an input. Because we purely wanted to investigate the potential use of
the PU loss function (and because the class prior was still not the exact class
prior of the training set), this was deemed acceptable. However, in future work,
it might be interesting to investigate the impact of using different class prior
values (or using class priors derived from different samples). A setting with 0%
of the cases flipped has been excluded from experiment 2 since there would be
little effect in changing the loss function (as the flip ratio was given). In future
experiments on the sensitivity of having an (incorrect) class prior, this setting
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could be added, however. Other future work on dealing with unreliable negative
labels could be found in investigating options besides altering the loss function.
The process behaviour itself may also reveal valuable information concerning
which negative labels can be considered more certain.
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Abstract. Object-centric event log is a format for properly organizing
information from different views of a business process into an event log.
The novelty in such a format is the association of events with objects,
which allows different notions of cases to be analyzed. The addition of
new features has brought an increase in complexity. Clustering analy-
sis can ease this complexity by enabling the analysis to be guided by
process behaviour profiles. However, identifying which features describe
the singularity of each profile is a challenge. In this paper, we present an
exploratory study in which we mine frequent patterns on top of clustering
analysis as a mechanism for profile characterization. In our study, clus-
tering analysis is applied in a trace clustering fashion over a vector repre-
sentation for a flattened event log extracted from an object-centric event
log, using a unique case notion. Then, frequent patterns are discovered
in the event sublogs associated with clusters and organized according to
that original object-centric event log. The results obtained in prelimi-
nary experiments show association rules reveal more evident behaviours
in certain profiles. Despite the process underlying each cluster may con-
tain the same elements (activities and transitions), the behaviour trends
show the relationships between such elements are supposed to be differ-
ent. The observations depicted in our analysis make room to search for
subtler knowledge about the business process under scrutiny.

Keywords: Object-centric event log · Process mining · Trace
clustering · Association rules

1 Introduction

Process mining aims to discover knowledge about how business processes actually
occur [1]. This knowledge is primarily revealed by process model discovery and
conformance checking techniques but can also come from modeling descriptive
or predictive tasks. Once discovered, the knowledge is used for process improve-
ment, through optimization of procedures in the organizations proposed either
via human decisions or via automated prescriptive analysis.

c© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 269–281, 2023.
https://doi.org/10.1007/978-3-031-27815-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27815-0_20&domain=pdf
http://orcid.org/0000-0002-4358-5999
http://orcid.org/0000-0003-4806-0830
http://orcid.org/0000-0001-6261-1497
http://orcid.org/0000-0003-3551-6480
https://doi.org/10.1007/978-3-031-27815-0_20


270 E. R. Faria Junior et al.

For about 20 years, the main input for process mining was event logs derived
from a single business process notion, herein called traditional event logs. For
instance, in an ITIL framework context, one would only consider events related to
activities in the “incident” life cycle, leaving out the life cycle of a “problem” to
which the incident relates. Recently, the Process and Data Science Group from
RWTH Aachen University [8] proposed a new event log format for recording
events related to the life cycle of over one process notion. The new format is
called object-centric event log (OCEL). The use of this format is expanding
rapidly due to scientific community efforts to adapt process mining techniques
to work with it [2–4]. One challenge brought by this format is how to overcome
the increase in complexity it causes. Spaghetti-style process models [1] are even
more often obtained from OCEL-type event logs.

One way used in process mining with traditional event logs to deal with pro-
cess model complexity is to cluster process instances. Through clustering anal-
ysis [6,14], the discovered process behaviour profiles provide knowledge about
process particularities that simplifies subsequent applications of process mining
techniques. For a proper profile analysis, the characterization of each profile is an
important step that can be conducted by mining frequent patterns [10] existing
in each profile or subset of profiles. In this paper, we describe an exploratory
study consisted of applying clustering analysis followed by frequent pattern min-
ing to facilitate the analysis of processes related to OCEL-type event logs. Even
though the study was carried out on a synthetic and relatively simple event
log, the results show the usefulness of the applied approach. The feasibility was
also proved since the results brought knowledge for profile characterization in a
semi-automated way – a business expert is required to extract semantic informa-
tion from the frequently mined patterns. To the best of our knowledge, there is
only one recent work [9] related to clustering analysis in OCEL-type event logs.
In that work, the authors present a clustering strategy considering control-flow
information and attributes values, while our approach focus on activities and
transition occurrences. Besides, our approach goes beyond the discovery of clus-
ters and presents a semi-automated way of characterizing them, while in [9] the
authors present process models discovered upon clusters for visual analysis pur-
poses. Both studies apply cluster analysis to flattened event logs, derived from
different OCEL-type event logs, and present statistics that, although distinct,
address the simplification provided by the resulting clusters.

This paper is organized as follows: Sect. 2 presents theoretical background on
OCEL, clustering analysis and frequent pattern mining; Sect. 3 provides infor-
mation on our exploratory study; Sect. 4 discusses the results related to cluster
analysis, and the knowledge extracted from the mined frequent patterns; Sect. 5
resumes the contribution of our paper and highlights the research avenues raised
from the exploratory study.

2 Theoretical Background

This section summarizes the theoretical concepts used in the exploratory study.
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2.1 Object-Centric Event Logs

The process mining field aims to explore the knowledge latent to an event log
generated from a business process execution. A traditional event log, as estab-
lished by van der Aalst [1], contains data about events arising from the execution
of activities of a specific business case. For example, an event log may concern
the life cycle of purchase orders in an e-commerce system, while another event
log concentrates data on the life cycle of deliveries of products purchased in this
system. Therefore, each of these event logs assumes a case notion. However, the
analysis provided by each of these event logs does not consider these life cycles
are related, and a phenomenon observed in one life cycle may be because of facts
occurred in the other life cycle. To overcome this limited and possibly incomplete
analysis, the object-centric event logs were introduced [8]. In this new paradigm,
multiple notions of cases are represented with information about the relationship
between events and objects (e.g., orders, products, deliveries, etc.). According
to van der Aalst [1] and van der Aalst and Berti [2], traditional event logs and
object-centric event logs are defined as follows:

⊲ a traditional event log L is a set of cases, or process instances, L ⊆ C,
being C a universe of cases with respect to a unique business case notion. Cases
may be characterized by descriptive attributes, among which one is mandatory -
the trace. A trace corresponds to a finite sequence of events σ ∈ E∗, being E∗ a
non-empty universe of events. An event e is the occurrence of a process activity
at a given time. Events may be characterized by attributes such as timestamp,
activity label, resource, cost, etc. An event appears at most once in L.

⊲ a object-centric event log Loc is a set of events eoc ∈ Eoc partially ordered in
time, such that eoc = ( ei, act, time, omap, vmap), and ei is an event identifier,
act is an activity name, time is a timestamp, omap is a mapping indicating which
object is included for each type of object in Loc and vmap is a mapping indicating
the values assumed by each attribute in Loc. Although a Loc is partially ordered,
for practical effects, a time-based total order is applied1.

The diversity of information in the object-centric event log increases the com-
plexity of the associated analyses, prompting the search for strategies to simplify
the event log without losing relevant information. In [2], the authors present a
suitable way of filtering the object-centric event log. In the proposed strategy, the
authors suggest filtering out specific “activity - object type” combinations. Fol-
lowing this strategy, chosen objects and activities related to them are suppressed
from the log without harmful effect to activities and relationships referring to
other types of objects. Consequently, the event log can be reduced in relation
to the number of objects it contains, or events related to infrequent activities
can be deleted. Simplification by “activity - object type” combinations filtering
is a convenient alternative to flattening the log or to separately analyzing each
type of object. However, selecting the “activity - object type” combination to be
filtered requires a priori knowledge of what is relevant for the intended analysis.

1 There are definitions that assume the total order (≤) for Loc [4,9]. Such a definition
states that Loc is a tuple of events with total order.
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2.2 Clustering Analysis

The task of clustering data is defined as a separation of data points into clusters
according to a similarity metric. The goal is to allocate similar data points to
the same cluster and dissimilar data points into different clusters. Although
there are methods as density criterion or mutual information, distance measures
based on the values of the features describing the data points are commonly used
as similarity metrics [10]. The resolution of clustering tasks reveals descriptive
information about the data set under analysis in an unsupervised form.

An assortment of clustering algorithms can be found in the literature. One
category of fundamental clustering methods is the hierarchical methods, which
partition the data into groups at different levels, as in a hierarchy. The provided
hierarchical representation of the data points enables identifying that groups
of a certain level can be further divided into respective subgroups. Hierarchical
clustering methods are divided into agglomerative and divisive. We are interested
in the first one, which is described as follows [10]:

⊲ the agglomerative clustering method starts at a level in which each data
point forms a cluster and in each next level, the clusters are merged according
to a similarity metric; by the end, it reaches a level in which there is only one
cluster compound by all the data points. This method relies on measuring the
distance being clusters to decide when to merge. The way of comparing the dis-
tance between clusters has to be defined, as a cluster is a set of objects. Possible
ways are: single-linkage; complete-linkage; average-linkage; Ward’s method.

In process mining, we have observed applications of clustering analysis in the
form of trace clustering [6,14]. Trace clustering strategies can be divided into
three non-excluding categories [11]: trace sequence similarity, model similarity
and feature vector similarity. We are interested in the latter strategy:

⊲ trace clustering based on feature vector similarity relies on mapping of
traces to a vector space by extracting features from a specific profile (such as
activity, transition, performance or resource profile [6]). Clustering algorithms
are applied on such vector representation to analyze similarities and group data
points.

2.3 Frequent Pattern Mining

Patterns such as itemsets, subsequences, substructures and association or cor-
relation rules that frequently appear in a data set are called frequent patterns.
Frequent pattern mining is a data mining task whose aim is to mine relation-
ships in a given data set [10]. Mining frequent itemsets enables the discovery
of associations and correlations among data. In this paper, we are interested in
mining itemsets and association rules:

⊲ an itemset refers to a set of items. An itemset that contains k items is
a k-itemset. When an itemset is frequent in a given data set, it can be called
frequent itemset. If we have a frequent 2-itemset as {milk, bread}, it means that
such itemset is frequent in the corresponding data set.
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⊲ an association rule defines an if-then association between itemsets organized
in the antecedent and the consequent of such rule. The rule milk ⇒ bread means
that if a customer buys milk then they also buy bread, frequently.

To identify which of the mined patterns are useful, the support is defined
as an interestingness measure. The support informs the percentage of all the
existing transactions in which the pattern occurred. For association rules, on top
of the support measure, the confidence measure is defined as an interestingness
measure to bring how certain is the rule. For instance, for the association rule
milk ⇒ bread: a support of 10% means that this rule occurs in 10% of the
transactions (e.g., all the sold baskets); and a confidence of 60% means that
in 60% of the baskets in which there is milk, there is also bread. Typically,
domain experts2 define a minimum support threshold and a minimum confidence
threshold to filter the useful rules [10]. The classic algorithm Apriori [5] is widely
used for mining frequent patterns. This algorithm is based on the item’s anti-
monotonicity property. In the first phase of this algorithm, such a property allows
an efficient implementation for the frequent itemsets search. Frequent itemsets
will compose association rules mined in its second phase.

3 Exploratory Study

Figure 1 depicts the sequence of procedures performed in the exploratory study,
the resources applied (material and human resources) and the artifacts created
during the study. This exploratory study comprises two phases: in the former,
clustering analysis is used to discover existing behaviour profiles in the business
process under scrutiny; in the latter, discovered profiles are explored through
frequent pattern analysis, and the itemsets and association rules identified as
useful and meaningful are used to provide knowledge about the profiles.

Fig. 1. Workflow followed in the exploratory study

2 In this paper, the authors the authors played the role of domain experts.
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3.1 Event Log

The input to our study is a synthetic object-centric event log referring to an
“order management” process [8,9].3,4 The process underlying the event log per-
forms 11 activities on five types of objects (orders, items, packages, customers,
and products). The execution registered in the event log comprises 22,367 events
and 11,522 objects. Figure 2 represents an excerpt of this event log with all
objects and attributes. We did not use the objects product and customer, and
the attributes price and weight, since they do not represent an opportunity for
control-flow perspective of analysis5.

Fig. 2. “Order management” object-centric event log excerpt

Figure 3 shows the process model discovered from the filtered “order manage-
ment” event log, represented by a direct flow graph. Activities and transitions
are colored according to the object they refer to: green refers to object order ;
pink refers to object item; red refers to object package. Although a visual analy-
sis of the process behaviour is possible in this case, it can be tiring and imprecise,
especially when more complex processes are analyzed, justifying the application
of strategies to simplify the knowledge discovery on the process under scrutiny.

3.2 Process Behaviour Profiles Discovery: Clustering Analysis

Phase

The first phase of our study comprises the following procedures: choice of case
notion; mapping traces to vector space; trace clustering; and event filtering per
cluster. All procedures are described in this section.

Choice of Case Notion: The profile discovery proposed relies on a trace-based
clustering analysis. Thus, we need to define a case notion (a business case notion,
cf. Sect. 2.1) for establishing traces and create a flattened event log. We applied
the case notion referring to the object type order. Since this object type is the
only one related to all events in the event log, choosing such an object as case
notion allowed that profile discovery considered information of all events.

3 We used the JSON-OCEL serialized representation of the event log.
4 http://ocel-standard.org/1.0/running-example.jsonocel.zip.
5 Refer to [1] for information about control-flow perspective of analysis.

http://ocel-standard.org/1.0/running-example.jsonocel.zip
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Fig. 3. Process model discovered from the filtered “order management” event log (pro-
cess model discovered by using the package PM4Py for Python [7])

Mapping of Traces to Vector Space: We represented traces in a vector space using
two sets of descriptive features: the occurrence of activities in a trace (activity-
based representation); the occurrence of transitions in a trace (transition-based
representation). The former does not consider the order in which activities occur,
but provides a representation that incorporates similarity in the resulting data
points (e.g., traces with the same activities but not the same execution order
are mapped to the same data point). The latter represents the partial order in
which activities occur, emphasizing a process-aware similarity analysis.

Trace Clustering: Trace clustering was applied using an agglomerative hierar-
chical clustering algorithm [13]6 with Ward as the linkage method, Euclidean
distance as similarity metric and number of clusters set to six. The authors’
experience in trace clustering showed the Ward’s method allows finding clusters
with slightly higher quality than using other linkage methods. The Euclidean
distance was chosen as the first option for exploration in this study. We tested
the number of clusters ranging from three to six. A profile associated with the
“value chain” of the business process under scrutiny was found with five and six
clusters considering the activity-occurrence representation; the number six was
chosen to maximize the number of profiles for analysis. The same number was
used with transition-occurrence representation for the sake of uniformity.

Event Filtering Per Cluster: Once the trace clusters are built, we separate the
events associated with each cluster into independent files, the flattened sublogs.

3.3 Process Behaviour Profiles Characterization: Frequent Pattern

Analysis Phase

The second phase of our study comprises the following procedures: mapping to
OCEL format and activity-object type filtering; Apriori algorithm application;
and support and confidence analysis. All procedures are described in this section.

6 sklearn.cluster.AgglomerativeClustering: https://scikit-learn.org/.

https://scikit-learn.org/
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Mapping to OCEL Format and Activity-Object Type Filtering: Flattened sublogs
must be mapped back into OCEL-type event sublogs considering both the notion
of case previously chosen and the activity-object type filter that relates activities
to object types appropriately as suggested in [2]. The selection of activity-object
type combinations to be used requires a business process-oriented decision mak-
ing, usually carried out by a business expert.

Apriori Algorithm: For discovery of frequent patterns, the classic Apriori algo-
rithm7 was applied on each OCEL-type event sublog, considering the activities
and transitions associated with each object type (order, item, package) sepa-
rately. 18 sets of itemsets and association rules were created (i.e. one set per
cluster per object). The input to the algorithm is a matrix of occurrences of
activities (or transitions) in the object-type life cycle. The Apriori algorithm runs
were performed with minimum support = 0.05 (for both itemsets and association
rules) and minimum confidence = 0.9 (such values were set by experimentation).

Support and Confidence Analysis: The frequent patterns for each of the six
clusters were compared following a one-versus-all strategy. This strategy enables
selecting patterns which differs one cluster from the other clusters. Then, the
selected frequent patterns were (manually) analyzed to extract expert knowledge
about the discovered process behaviour profiles.

4 Analysis of Results

The first phase of our study aimed to reveal process behaviour profiles that
provide simpler contexts for analysis and knowledge discovery than the context
provided by the full event log. Table 2 and Table 3 show descriptive statistics
for supporting analysis about simplicity of the context referring to each discov-
ered profile (i.e. each cluster), considering activity-based and transition-based
representation for traces. The descriptive statistics for the full event log were
presented in [2] and are reproduced here for comparison purposes (see Table 1).
Statistics refers to the average and maximum number of objects per event8. In
these tables, “O”, “I” and “P” stand for orders, items and packages respectively.

The comparison of statistics shows clustering generates more simplified con-
texts in two aspects: some clusters represent process profiles in which certain
objects do not appear related to events of certain activities (e.g., there are no
items associated with the activity “item out of stock” in the process profile of
the clusters a1, a4 and a5, showing these profiles do not suffer from the problem
of an item not being found in stock while an order is processed); the occurrence
of a maximum number of objects related to events of certain activity is lower in
certain process profiles (e.g., fewer items enter the orders allocated in cluster a1

7 Package Mlxtend: https://rasbt.github.io/mlxtend/.
8 The statistic minimum number was suppressed from the Tables 1, 2 and 3 for sim-

plicity. Minimum number = 1 if maximum number ≥ 1, and = 0 otherwise.

https://rasbt.github.io/mlxtend/
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Table 1. Descriptive statistics about the full event log [2].

Activities O I P Activities O I P

Place order 1.0, 1 4.0 15 0.0 0

Confirm order 1.0, 1 4.0 15 0.0 0 Pay order 1.0 1 4.0 15 0.0 0

Item out of stock 1.0, 1 1.0 1 0.0 0 Create package 3.2 9 6.2 22 1.0 1

Reorder item 1.0, 1 1.0 1 0.0 0 Send package 3.2 9 6.2 22 1.0 1

Pick item 1.0, 1 1.0 1 0.0 0 Failed delivery 3.2 8 6.0 18 1.0 1

Payment reminder 1.0, 1 4.2 14 0.0 0 Package delivered 3.2 9 6.2 22 1.0 1

and t4 - citing only two clusters). However, in general, the averages of objects
per event increase, as the number of events present in the clusters decreases.

In the second phase, we mined and analyzed the frequent patterns to reveal
knowledge about the process profiles, alleviating the need to discover and inspect
process models related to each sublog. We organized the analyses considering the
two matrices of occurrences used as input for the Alpha algorithm.

Matrix of Activity Occurrences: We identified 13 association rules not common
to all clusters. All rules involved 1-itemsets , achieved maximum confidence and
the itemsets allocated to their consequents have maximum support. Thus, the
rules analysis was reduced to the analysis of the support of itemsets allocated
to their antecedents. The relevant knowledge that characterizes the profiles are:

– payment reminders occur on all process instances in the profiles a0 and a1 ;
– delivery failures occur in part of the process instances in profiles a0, a1, a2

and a5, with emphasis on profile a5 in which ≈60% of the process instances
present the occurrence of such a problem;

– out-of-stock items are observed in ≈30% of process instances in profiles a0,
a2 and a3.

The discovered frequent patterns concern the occurrence of activities that indi-
cate some kind of problem in the order history. None of such patterns were high-
lighted for the profile a4. All association rules highlighted to profile a4 achieve
maximum support and maximum confidence and do not involve activities related
to failures or out-of-stock items. In view of these findings, we deduced the pro-
file a4 concerns the process instances that follow the process’s “value chain”, or
follow behaviours very close to it. To validate the deduction, we discovered the
process model associated with this profile (Fig. 4).

Matrix of Transition Occurrences: We identified 26 association rules not common
to all clusters. All rules involved 1-itemsets, 17 rules achieved the maximum
confidence, the minimum confidence achieved was 0.91, and in two rules the
consequent is not composed by an itemset with maximum support. The relevant
knowledge that characterize the profiles are:
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Table 2. Descriptive statistics about profiles discovered upon activity-based represen-
tation for traces. Statistics showing simplification are in bold.

Activities O I P O I P O I P

Cluster a0 Cluster a1 Cluster a2

Place order 1.0, 1 4.7, 14 0.0, 0 1.0, 1 3.3, 7 0.0, 0 1.0, 1 4.9, 15 0.0, 0

Confirm order 1.0, 1 4.7, 14 0.0, 0 1.0, 1 3.3, 7 0.0, 0 1.0, 1 4.9, 15 0.0, 0

Item out of stock 1.0, 1 1.0, 1 0.0, 0 0.0, 0 0.0, 0 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Reorder item 1.0, 1 1.0, 1 0.0, 0 0.0, 0 0.0, 0 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Pick item 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Payment reminder 1.0, 1 4.8, 14 0.0, 0 1.0, 1 3.3, 7 0.0, 0 0.0, 0 0.0, 0 0.0, 0

Pay order 1.0, 1 4.7, 14 0.0, 0 1.0, 1 3.3, 7 0.0, 0 1.0, 1 4.9, 15 0.0, 0

Create package 3.9, 9 7.0, 22 1.0, 1 3.9, 9 7.3, 20 1.0, 1 3.7, 9 6.6, 22 1.0, 1

Send package 3.9, 9 7.0, 22 1.0, 1 3.9, 9 7.3, 20 1.0, 1 3.7, 9 6.6, 22 1.0, 1

Failed delivery 3.8, 8 6.7, 18 1.0, 1 3.8, 8 7.2, 18 1.0, 1 3.2, 8 6.1, 18 1.0, 1

Package delivered 3.9, 9 7.0, 22 1.0, 1 3.9, 9 7.3, 20 1.0, 1 3.7, 9 6.6, 22 1.0, 1

Cluster a3 Cluster a4 Cluster a5

Place order 1.0, 1 4.4, 14 0.0, 0 1.0, 1 3.2, 9 0.0, 0 1.0, 1 3.5, 10 0.0, 0

Confirm order 1.0, 1 4.4, 14 0.0, 0 1.0, 1 3.2, 9 0.0, 0 1.0, 1 3.5, 10 0.0, 0

Item out of stock 1.0, 1 1.0, 1 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0

Reorder item 1.0, 1 1.0, 1 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0

Pick item 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Payment reminder 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0

Pay order 1.0, 1 4.4, 14 0.0, 0 1.0, 1 3.2, 9 0.0, 0 1.0, 1 3.5, 10 0.0, 0

Create package 3.6, 9 6.6, 22 1.0, 1 3.8, 9 7.2, 22 1.0, 1 3.9, 9 7.2, 21 1.0, 1

Send package 3.6, 9 6.6, 22 1.0, 1 3.8, 9 7.2, 22 1.0, 1 3.9, 9 7.2, 21 1.0, 1

Failed delivery 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 0.0, 0 3.8, 8 7.1, 18 1.0, 1

Package delivered 3.6, 9 6.6, 22 1.0, 1 3.8, 9 7.2, 22 1.0, 1 3.9, 9 7.2, 21 1.0, 1

– payment of orders without sending a reminder is a majority behaviour (occurs
in ≈80% to ≈98% of process instances) in five profiles (t0, t1, t2, t4 and t5 );

– reminders before the payment of an order is made occur in ≈99% of process
instances allocated to the profile t3 ;

– repeated payment reminders occur only in profile t3 and represent ≈21% of
the processes instances allocated in this profile;

– in the profiles t0, t2, t3 and t5, there are orders (≈30%, 15%, 6% and 8%
respectively) in which the observation related to out-of-stock items occurs
after the order is confirmed;

– although not really significant (rule with support from ≈0.0 to ≈13%), deliv-
ery failures are pointed at least twice in process instances of four profiles (t1,
t2, t4 and t5 );

– packages successfully delivered on the first attempt occur in process instances
allocated in all profiles (in 71/74/76/80/83/88% of process instances allocated
respectively to profiles t1, t2, t5, t4, t0, and t3 ).
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Table 3. Descriptive statistics about profiles discovered upon transition-based repre-
sentation for traces. Statistics showing simplification are in bold.

Activities O I P O I P O I P

Cluster t0 Cluster t1 Cluster t2

Place order 1.0, 1 4.0, 14 0.0, 0 1.0, 1 3.7, 11 0.0, 0 1.0, 1 5.1, 15 0.0, 0

Confirm order 1.0, 1 4.0, 14 0.0, 0 1.0, 1 3.7, 11 0.0, 0 1.0, 1 5.1, 15 0.0, 0

Item out of stock 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Reorder item 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Pick item 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Payment reminder 1.0, 1 4.2, 14 0.0, 0 1.0, 1 3.7, 10 0.0, 0 1.0, 1 5.1, 13 0.0, 0

Pay order 1.0, 1 4.0, 14 0.0, 0 1.0, 1 3.7, 11 0.0, 0 1.0, 1 5.1, 15 0.0, 0

Create package 3.8, 9 6.8, 22 1.0, 1 3.7, 9 7.0, 22 1.0, 1 3.6, 9 6.6, 22 1.0, 1

Send package 3.8, 9 6.8, 22 1.0, 1 3.7, 9 7.0, 22 1.0, 1 3.6, 9 6.6, 22 1.0, 1

Failed delivery 3.7, 7 5.6, 17 1.0, 1 3.7, 8 6.8, 17 1.0, 1 3.4, 8 6.3, 18 1.0, 1

Package delivered 3.8, 9 6.8, 22 1.0, 1 3.7, 9 7.0, 22 1.0, 1 3.6, 9 6.6, 22 1.0, 1

Cluster t3 Cluster t4 Cluster t5

Place order 1.0, 1 3.7, 11 0.0, 0 1.0, 1 3.1, 10 0.0, 0 1.0, 1 3.9, 13 0.0, 0

Confirm order 1.0, 1 3.7, 11 0.0, 0 1.0, 1 3.1, 10 0.0, 0 1.0, 1 3.9, 13 0.0, 0

Item out of stock 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Reorder item 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Pick item 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0 1.0, 1 1.0, 1 0.0, 0

Payment reminder 1.0, 1 3.8, 11 0.0, 0 1.0, 1 3.5, 5 0.0, 0 1.0, 1 6.0, 6 0.0, 0

Pay order 1.0, 1 3.7, 11 0.0, 0 1.0, 1 3.1, 10 0.0, 0 1.0, 1 3.9, 13 0.0, 0

Create package 3.8, 8 6.9, 20 1.0, 1 4.0, 9 7.3, 22 1.0, 1 4.3, 8 7.7, 21 1.0, 1

Send package 3.8, 8 6.9, 20 1.0, 1 4.0, 9 7.3, 22 1.0, 1 4.3, 8 7.7, 21 1.0, 1

Failed delivery 3.5, 6 6.3, 13 1.0, 1 3.6, 8 6.8, 18 1.0, 1 4.2, 7 7.7, 16 1.0, 1

Package delivered 3.8, 8 6.9, 20 1.0, 1 4.0, 9 7.3, 22 1.0, 1 4.3, 8 7.7, 21 1.0, 1

5 Final Remarks

In this paper, we introduce an approach to simplify the context of analysis related
to OCEL-type event logs and present an exploratory experiment performed on
a synthetic event log. The preliminary results show the usefulness and feasibility
of our approach. The approach is useful because it allows extracting knowledge
capable of highlighting, in each profile, characteristics that can direct subsequent
in-depth analyses. It is feasible because, even in a low-complexity event log with
little potential for profiling, it was possible to find and characterize a set of
profiles. However, this is an exploratory study limited mainly by the choice of
some parameters, such as the business case notion, the similarity metric or the
number of clusters. In addition, the experiment considered a single event log,
which undermines both statistical and analytical generalizations. The execution
of this study opened up research opportunities: extension of the frequent pattern
mining to discover association rules that characterize profiles considering the
relationship among the life cycles of different objects types; using of attributes
referring to the business context and available in the OCEL-type event logs to
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Fig. 4. Process model related to profile a4 involving the “value chain”: place order,
pick item, confirm order, pay order, create package, send package, package delivered.

enrich the relationships explored in the frequent pattern mining; adding frequent
pattern mining outputs in tools for trace clustering visualization [12].

Acknowledgment. This study was partially supported by CAPES (Finance Code
001) and FAPESP (Process Number 2020/05248-4).

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fund.
Inform. 175(1–4), 1–40 (2020)

3. Aalst, W.M.P.: Object-centric process mining: dealing with divergence and con-
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Data has become a highly valuable resource in today’s world. The ultimate goal of data

science techniques is not to collect more data, but to extract knowledge and valuable

insights from existing data. To analyze and improve processes, event data is a key source

of information. In recent years, a new discipline has emerged that combines traditional

process analysis and data-centric analysis: Process-Oriented Data Science (PODS). The

interdisciplinary nature of this new research area has resulted in its application to analyze

processes in a wide range of different domains such as education, finance, and especially

healthcare.

The International Workshop on Process-Oriented Data Science for Healthcare 2022

(PODS4H’22) provided a high-quality forum for interdisciplinary researchers and prac-

titioners to exchange research findings and ideas on data-driven process analysis tech-

niques and practices in healthcare. PODS4H research includes a variety of topics rang-

ing from process mining techniques adapted for healthcare processes, to practical issues

related to the implementation of PODS methodologies in healthcare organizations.

The fifth edition of the workshop was organized in conjunction with the International

Conference on Process Mining in Bolzano (Italy). A novelty in this year’s call for papers

was that full papers could either be submitted as research papers or as case studies. While

research papers had to focus on extending the state of the art of PODS4H research, case

studies should focus on a practical application of PODS4H in a real-life context. In total,

we received 19 full paper submissions, which were thoroughly reviewed by experts

from our Program Committee such that each submission got three reviews. After the

review process, 9 full papers were accepted. The distinction between research papers

and case studies was also reflected in the accepted papers, which consisted of 5 research

papers and 4 case studies. The research papers focused on a wide range of topics:

integrating weighted violations in alignment-based conformance checking, discovering

break behaviors, developing a taxonomy for synthetic data in healthcare, creating a

semantic approach for multi-perspective event log generation, and establishing a method

to generate event logs from MIMIC-IV. The case studies also considered a variety of

healthcare-related problems and contexts: process modeling and conformance checking

in a German hospital in a COVID-19 context, the early prediction of aftercare in a Dutch

hospital, the prediction of care acuity in a Dutch hospital, and the investigation of the

impact of COVID-19 on care pathways in a UK hospital. Besides the presentation of

the full papers included in these proceedings, the workshop program also contained a

poster session and a community discussion.

This edition of the workshop also included a Best Paper Award. The Best Paper Award

of PODS4H’22 was given to Alistair Bullward, Abdulaziz Aljebreen, Alexander Coles,

Ciarán McInerney, and Owen Johnson for their paper “Process Mining and Synthetic

Health Data: Reflections and Lessons Learnt”.
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Abstract. Conformance checking is a process mining technique that
allows verifying the conformance of process instances to a given model.
Many conformance checking algorithms provide quantitative information
about the conformance of a process instance through metrics such as fit-
ness. Fitness measures to what degree the model allows the behavior
observed in the event log. Conventional fitness does not consider the
individual severity of deviations. In cases where there are rules that are
more important to comply with than others, fitness consequently does
not take all factors into account. In the field of medicine, for example,
there are guideline recommendations for clinical treatment that have
information about their importance and soundness, making it essential
to distinguish between them. Therefore, we introduce an alignment-based
conformance checking approach that considers the importance of indi-
vidual specifications and weights violations. The approach is evaluated
with real patient data and evidence-based guideline recommendations.
Using this approach, it was possible to integrate guideline recommen-
dation metadata into the conformance checking process and to weight
violations individually.

Keywords: Process mining · Conformance checking · Alignments ·
Fitness · Weighted violations · Guideline compliance

1 Introduction

Process mining is an emerging research field and fills the gap between data
mining and business process management [3]. One technique of process mining
is conformance checking, whose approaches focus on measuring the conformance
of a process instance to a process model. The results of the measurement can
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usually be output in the form of alignments [2], i.e., corrective adjustments
for process instances, or metrics. A common metric is fitness, which measures
to what degree the model allows the behavior observed in the event log that
contains all process instances.

However, conventional fitness values each deviation, i.e., a rule violation
against the specified behavior, equally. This becomes problematic in terms of
assessment for use cases in which there are rules that are more important than
others and, consequently, a violation of them is also worse. For instance, in the
domain of medicine, there are clinical guidelines. Clinical guidelines are system-
atically developed statements that reflect the current state of medical knowledge
to support physicians and patients in the decision-making process for appropri-
ate medical care in specific clinical situations [11]. These statements have meta-
data (e.g., level of evidence or consensus strength) that provide information
about their importance and soundness. Therefore, it is important to distinguish
between the degree of deviation and to weight rule violations differently in order
to obtain more accurate and meaningful results. In a scoping review, Oliart et
al. [13] systematically assessed the criteria used to measure adherence to clin-
ical guidelines and examined the suitability of process mining techniques. So
far, there is no approach that allows different weighting of guideline statements
[13]. Therefore, in this paper, we present a first approach for weighted violations
in alignment-based conformance checking that incorporates the assessment of
individual specifications in the calculation of fitness.

The approach is a promising solution to address medicine-specific character-
istics and challenges for process mining presented in Munoz-Gama et al. [12].
Regarding the characteristics, we deal with the use of guidelines (D3) in the
process mining context. In particular, concrete characteristics of guidelines are
integrated to generate more valuable results. Furthermore, we built on char-
acteristic D5, the consideration of data at multiple abstraction levels, by also
integrating medical metadata. In addition, our research involves healthcare pro-
fessionals (D6) who have made a valuable contribution to its realization. Regard-
ing challenges, we address dealing with reality (C4) as we test and evaluate our
approach with real patient data. Furthermore, the development of this approach
should foster the use of process mining by healthcare professionals (C5), as it
leads to helpful and valuable results.

The remainder of the paper is organized as follows. Section 2 provides back-
ground information on the components of our approach. Section 3 describes the
methodological approach for the alignment-based conformance checking with
weighted violations. Section 4 presents the evaluation process. In Sect. 5, the
findings are discussed, and Sect. 6 concludes the paper.

2 Fundamentals

2.1 Event Logs

Process mining is based on event logs. Event logs can be viewed as multi-sets
of cases. Each case consists of a sequence of events, i.e., the trace. Events are
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execution instances of activities. Here, the execution of an activity can be repre-
sented by multiple events. This can occur, for example, when multiple lifecycle
stages of execution are logged [15]. In addition to the control flow perspective,
event logs can also use attributes to represent other perspectives, such as the
data perspective or the resource perspective. The following defines event logs,
traces, events, attributes, and functions on them as a basis for the methodology.

Definition 1 (Universes). For this paper, we define the following universes:

– V is the universe of all possible variable identifiers
– C is the universe of all possible case identifiers
– E is the universe of all possible event identifiers
– A is the universe of all possible activity identifiers
– AN is the universe of all possible attribute identifiers.

Definition 2 (Attributes, Classifier). Attributes can be used to characterize
events and cases, e.g., an event can be assigned to a resource or have a times-
tamp. For any event e ∈ E, any case c ∈ C and name n ∈ AN , #n(e) is the
value of attribute n for event e and #n(c) is the value of attribute n for case c.
#n(e) =⊥ if event e has no attribute n and #n(c) =⊥ if case c has no attribute
n. We assume the classifier e = #activity(e) as the default classifier.

Definition 3 (Trace, Case). Each case c ∈ C has a mandatory attribute trace,
with ĉ = #trace(c) ∈ E∗\{〈〉}. A trace is a finite sequence of events σ ∈ Σ∗ where
each event occurs only once, i.e. 1 ≤ i < j ≤ |σ| : σ(i) �= σ(j). By σ ⊕ e = σ we
denote the addition of an e event to a trace σ.

Definition 4 (Event log). An event log is a set of cases L ⊆ C, in the form
that each event is contained only once in the event log. If an event log contains
timestamps these should be ordered in each trace. L̂ = {e|c ∈ L ∧ e ∈ ĉ} is the
set of all events appearing in the log L.

2.2 Alignments

To check the conformance of an event log L to a process model M , approaches
to search for alignments are common for different process modeling languages
[5]. An alignment shows how a log or trace can be replayed in a process model.

Definition 5 (Alignment, moves). Let ≫ be the indicator for no move and
E≫ = E ∪ {≫} the input alphabet including the no move. Then EA = (E≫ ×
E≫)\{(≫,≫)} is the set of legal moves. Let (s′, s′′) be a pair of values with
(s′, s′′) ∈ EA, then holds:

– is a log move if s′ ∈ E and s′′ =≫
– is a model move if s′′ ∈ E and s′ =≫
– is a synchronous move if (s′, s′′) ∈ (E × E) ∧ s′ = s′′

An alignment of two traces σ′, σ′′ ∈ E∗ is a sequence γ ∈ E∗
A.

In other approaches, the alignment definition may differ from the above. How-
ever, the described approach can be adapted for all cost-based alignments.
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2.3 MLMs and Arden Syntax

Medical Logic Modules are designed to represent medical knowledge in self-
contained units that are both human-readable and computer-interpretable.
Moreover, they should be transferable between several clinics [4,10]. The Arden
syntax for MLMs allows the development of MLMs. It is a rule-based, declar-
ative, HL7 standardized approach to open implementation of MLMs [14]. This
was developed specifically to formalize and exchange medical knowledge. In the
following, we interpret the term MLM as MLM in the Arden syntax. MLMs are
text files divided into discrete slots (see Fig. 1). These slots then contain data,
describe database queries or rules [10]. The basic orientation of MLMs are to for-
malize medical knowledge and to formulate rules, which are usually of the form
“If patient has fever ≥40, then make a request for examination Z”. This logic
is formulated in the so-called logic slot and allows complex queries [4]. Among
the operators are also operators with procedural reference like before, after,
within same day or n days before/after. However, these do not directly
compare events, only timestamps.

This approach was repurposed in the paper [8] to check the conformance of
treatment sequences. For this purpose, part of the guideline for the treatment of
malignant melanoma already used in [9] was transformed into MLMs using the
CGK4PM framework [7]. The framework is inspired by the guideline creation
process and enables the systematic transformation of guideline knowledge in
an iterative procedure involving domain experts. Instead of MLMs being used
to establish if-then rules, they were used in the approach to verify whether the
particular guideline statement was followed. In case of non-compliance, manually
modeled alignment steps were returned, which were then implemented by the
client. This approach is used below to evaluate the approach in this paper.

2.4 MLM-Based Conformance Checking

To describe our approach, we introduce a simplified formalization of MLMs and
the MLM-based conformance checking approach proposed by Grüger et al. [8].

Definition 6 (MLM and Slot). We define an MLM m as a quadruple con-
sisting of four categories with m = (maintenance, library, maintenance,

resources). Each category c consists of predefined slots. Let S be the set of all
slots, then Sc ⊂ S is the set of all slots defined for category c. Each slot consists
of one to many values. So m[s] returns the values of slot s for MLM m.

Each MLM defines in the evoke slot at which evocation event it is evaluated.
Here, the term evocation event extends the event concept to include the event
classifier and data-level writing events. At the data level, events can be defined
by the attribute name or the name in combination with the attribute value.

Definition 7 (evoke, evocation event). Let e ∈ E be an event and m be an
MLM. Ee defines the set of all evocation events evoked for event e:

Ee = {e} ∪ {en|n ∈ AN if en �=⊥} ∪ {(en,#en)|n ∈ AN if en �=⊥}
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Then there exists a function evokem: E ∪ AN ∪ (AN × V) → {0, 1} with:

evokem(Ee) =

{

1 if #(m[evoke] ∩ (x)) > 0

0 else

Let M ⊆ MLM be a declarative model consisting of many MLMs, and σ be a
trace. Then holds:

Mσ = {m ∈ M |∃e ∈ (E) : evokem(Ee) = 1}

is the shorthand for all evoked MLMs from M for σ.

The logic slot defines the actual conformance check based on the trace data from
the data slot. The actual logic of the conformance checking and the alignment
is adapted from [8] and described as a black box due to lack of space.

Definition 8 (Logic, Return). Let A be the universe of alignment steps, K

the universe of keys used in the slots and V the universe of values. Let m be an
MLM, then there exists a logical function l : MLM → {0, 1} × A∗ × (K, V )∗.
The boolean value specifies whether the MLM was validated to be conform (1) or
not (0). The alignment steps describe the steps for aligning a given trace.

Definition 9 (Fitness). Let MLM be the universe of all MLMs, M ⊆ MLM

be the declarative model, and σ be a trace. The function eval : M × Σ → {0, 1}
evaluates whether a trace conforms to an MLM or not or was not evoked. The
fitness is defined as:

fitness(σ, M) =

∑n
i=1 eval(σ, M ′

i)

|M ′
σ|

An outlined example of an alignment computed with an MLM is shown in
Fig. 1. Here, event C is supposed to occur after event B. Since event B occurs in
the trace, the MLM is evoked. The logic slot concludes to false since event C

does not occur after event B. Hence, the defined alignment operation in the else
block is executed and event C is inserted after event B. The timestamps of the
events are used to find the correct position for the insertion.

3 Methodology

In order to incorporate the degree of a deviation into fitness to consider the
importance of the violated part of the model, we introduce an approach to weight
the cost of a deviation based on the given metadata. Consequently, we introduce
a cost function K : EA → R

+
0 . Here, any cost function can be used that best

represents the costs of the particular process and the domain-specific context.
For computing, the fitness of a trace σ ∈ L ⊆ E∗ to a process model M based

on the cost function, a complete alignment with minimum cost γopt is sought.
Moreover, the reference alignment γref

σL
is searched. Thereby, the type of process
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Fig. 1. Example showing a trace violating the MLM, which states that event B must
be followed by C. The alignment step modeled manually in the MLM indicate that C

is to be inserted after B.

modeling and the algorithm for calculating the alignment can be individually
selected. Typically, the reference alignment with the highest cost is an alignment
in which only moves exist in model and log:

γref
σL

=
L aL

1 ... aL
n ≫ ≫ ≫

M ≫ ≫ ≫ aM
1 ... aM

n

While an alignment is a sequence γ of pairs (s′, s′′) ∈ (E≫ × E≫)\{(≫,≫)}, the
cost of γ is the sum of the costs of each pair of alignments:

K(γ) =
∑

(s′,s′′)∈γ

K((s′, s′′))

This is where the approach comes in. Each pair of an alignment (s′, s′′) with
s′ �= s′′ represents a deviation detected by the conformance checking algorithm
using the model M . Therefore, there is a condition c in the model that caused
this violation. We use condition as a term for modeling elements from imperative
and declarative approaches (e.g., guards or rules).

Definition 10 (Condition, Condition weight). Let M be a model and C

be the set of all conditions. Then CM ⊆ C is the set of all conditions of M .
Following functions are defined over C:

– w : C → R
+
0 , the weighting for condition c ∈ CM . As shorthand we use

wc = w(c).
– mM : (E≫ × E≫)\{(≫,≫)} → C, a mapping of an alignment pair on the

condition, causing the violation.
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Mapping the alignment pairs (s′, s′′) of an alignment γ to a condition c allows
using wc to assign a weight from R

+
0 to each deviation in γ based on c.

Definition 11 (violation-weighted cost function). Let EA = (E≫ ×
E≫)\{(≫,≫)}, then KW : EA → R

+
0 is the violation-weighted cost function.

If (s′, s′′) ∈ EA, then

KW((s′, s′′)) = wm((s′,s′′)) ∗ K(s′, s′′)

calculates the weighted cost for the alignment pair (s′, s′′).

Definition 12 (violation-weighted fitness function). Let σL ∈ E∗ be a log
trace and M a model. Let γopt

σL
∈ E∗

A be an optimal alignment of σL and model
M and γref

σL
the reference alignment. The fitness level is defined as follows:

FW(σL, M) = 1 −
KW(γopt

σL
)

KW(γref
σL )

Therefore, for each deviation in the optimal alignment γopt
σL

and in the reference
alignment γref

σL
, the deviation weighted cost is calculated. This enables algorithm

and process modeling language independent for all alignment-based conformance
checking approaches to reflect the importance of violated rules in the fitness level.

4 Evaluation

For the evaluation, we used the data and model base from Grüger et al. [8]. In
this paper, the authors present an MLM-based approach to conformance check-
ing for clinical guidelines. Clinical guidelines are intended to support evidence-
based treatment of patients. As a summary of systematically developed recom-
mendations based on extensive literature studies, they are intended to optimize
treatment of patients based on evidence [6]. In the original approach [8], part of
the guideline for the treatment of malignant melanoma [1] (diagnosis and therapy
in primary care and locoregional metastasis) was modeled as a declarative rule-
based MLM model. We use this and the dataset consisting of five real patients
from the University Hospital Münster to evaluate the approach described. This
ensures immediate comparability with the conformance checking results from
the original MLM-based conformance checking approach.

In addition, medical guidelines inherently contain information on the time-
liness, importance, and foundation of each guideline recommendation, which
could not be addressed in previous conformance checking approaches. There-
fore, we adapt the approach to compute the violation-weighted fitness such that
the weights are dynamically derived from the properties of the guideline state-
ments represented by the MLMs. For calculation, we use the attributes level of
evidence, date of last review, consensus strength, and recommendation strength.
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– level of evidence (loe): evidence grading is according to Oxford (2009 ver-
sion) and is divided into 10 grades (1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 4, 5), with 1a
(systematic review with homogeneity of randomized-controlled trials) highest
loe and 5 (expert opinion without critical analysis or based on physiologic or
experimental research or “basic principles”) lowest loe.

– consensus strength (cs): indicates the strength of consensus in the expert
panel on the respective statement in percent.

– recommendation strength (rs): for all recommendations, the strength of
the recommendation is expressed as A (strong recommendation), B (recom-
mendation), and C (recommendation open).

– date of last review (dolr): indicates the year of the last review of the
statement. Considering constant progress, the topicality of recommendations
is to be taken into account in the evaluation.

In order to incorporate the weighting attributes WA = {loe, cs, rs, dolr}
as weights into the fitness calculation, the individual classification values are
mapped as values between 0 and 1, using the mapping function m. Let C be
the set of MLMs. Let m : C × WA → [0, 1] be the mapping function for the
weighting attributes for a concrete condition c ∈ C. For each of the weighting
attributes, m is defined as follows.

For the 10-step gradation of the level of evidence (loe), the values are descend-
ing equally distributed over the range from 0 to 1. The strength of recommen-
dation (rs) can be expressed by three different categorical values. Accordingly,
the weighting is given in thirds of steps.

loe 1a 1b 1c 2a 2b 2c 3a 3b 4 5 rs A B C

m(c,loe) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 m(c,rs) 1 0.66 0.33

Since consensus strength (cs) is expressed in relative values from 0 to 100
percent, the mapping values are divided by 100. The date of the last review
is divided into time intervals. Recommendations that have been reviewed since
2019 receive the highest recommendation. Review years below that receive a
weight of 0.8. This expresses the strength of differentiating fine-grained between
the informative value of the individual attributes. For example, the last review
year was rated as less relevant by the domain experts.

m(c, cs) = ccs

100 m(c, dolr) =

{

1 if cdolr ≥ 2018

0.8 else

Furthermore, it is necessary to differentiate between standard and critical
MLMs. In a critical MLM, loe, cs, rs and dolr are all equal to 1. This means
that this MLM is up-to-date and is seen as critical by medical experts. Thus, it is
necessary to increase the weight of these MLMs. This is guaranteed by using the
function below. In the case the MLM is critical, the defined if-condition holds
and the value of 2 is assigned as weight. If the MLM is not critical, the else-
condition is applied and the weight for a given MLM c is calculated as the sum
of the mapped values v ∈ WA divided by the number of weighting attributes.
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w(c) =

⎧

⎨

⎩

2 if
∑

a∈WA m(c, a) = |WA|
∑

a∈W A

m(c,a)

|WA| else

Grüger et al.’s approach [8] returns a semantically optimal alignment. This
is manually pre-modeled for each of the MLMs and addresses violations of the
MLMs in such a way that they are correctly resolved from a medical perspective,
i.e., no overwriting of values in the data perspective, no changing of the guideline
model, no most favorable path (e.g., by deleting nodes). This optimal alignment
is then incorporated into the calculation of fitness in the denominator. Since the
approach is built based on a set of rules in the form of MLMs, but not all of
them are evoked for each trace, the reference alignment is computed based only
on the set of evoked MLMs Mσ for the trace σ (see Definition 7).

Therefore, we adapt the fitness function established in Definition 9 and mod-
ify it as follows. For trace σ and the MLM-based model M , γopt

σ is the optimal
alignment. Then γref

σ is the reference alignment violating every MLM in Mσ.

FW(σL, M) = 1 −
KW (γopt

σL
)

KW(γref
σL

)
KW((s′, s′′)) = (wc((s′,s′′)))

2 ∗ K(s′, s′′)

Since the guideline, according to its intention, mainly gives recommendations
that have a higher degree of recommendation, a higher level of evidence, and
a good consensus, the cost function was adjusted so that deviations from the
optimum were weighted more heavily, this was ensured by squaring the weight
term wc((s′,s′′)). The computed fitness values for the five patients with the original
approach [8] and the adapted weighted approach are shown in Table 1.

Table 1. Resulting fitness values compared with the non-weighting approach (log
fitness and treatment trace for patients P21333-P87523).

Violation weighted Non-weighted

Log fitness 0.8642 0.8306

Fitness P87523 0.8787 0.8636

Fitness P56156 0.9258 0.8281

Fitness P21333 0.7840 0.8125

Fitness P23144 0.7769 0.8947

Fitness P23342 0.4444 0.3337

The results show that the fitness values of the entire logs differ only slightly.
This is due to the fact that most of the guideline recommendations have a
high degree of recommendation. Moreover, not only the optimal alignments are
weighted, but also the reference alignments. Thus, the fitness is averaged here
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as well. This is clearly visible in patient P23342. Here, two guideline recommen-
dations were violated and three were evoked. Each of the recommendations has
the highest level of evidence, the highest consensus strength, recommendation
strength and the year 2018, as the year of the last review and thus is critical. This
results in a weight of 2 for each recommendation, resulting in a fitness of 0.4444
for the weighted and 0.3337 for the unweighted approach. For patient P87523
(see Fig. 2), three MLMs are evoked and one (guideline recommendation 4.22)
is critical. Since each weighting attribute has the highest weight, the deviation
from recommendation 4.22 has a weight of 2.

Fig. 2. Aligned trace of the patient case P87523. Containing three moves in the aligned
trace: two model moves and one log move. For each alignment step, the guideline
recommendation (gr) is shown, which is incorporated in the respective MLM. Below
that, the weighting attribute information for deriving the weights is shown.

The high fitness values close to the unweighted values show that the treat-
ment traces in particular violate important statements. There are nearly no
recommendation violations weighted as less important. In total, the traces vio-
lated 21 statements, of which 11 rules have a weight of 1 (as in a crisp approach)
and 4 are critical with a weight of 2. In six violations, all for patient P56156 (11
violations in total), the weights are less than 1, with an average weight of 0.6.

5 Discussion

As demonstrated in Sect. 4, the weighted fitness measure provides little difference
from the crisp approach when (1) there are few or no strongly weighted deviations
(2) there are few deviations in general, and they are not sufficient to make a
difference (3) in our approach, few MLMs are activated for treatment. Addressing
this issue would require further investigation of the effect of the weights. An
extended weighting scale could generate larger differences between individual
results and better differentiate deviations in terms of their importance.
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Furthermore, it must be considered that the creation and assignment of the
weights and their levels is done manually. This implies a certain amount of effort,
which usually requires the contribution of one or more domain experts for the
corresponding case. In our evaluation, we were able to derive the weights from
the medical classifications. However, if weights are to be implemented when there
is no default of importance, then they must be created based on the available
data as well as a consensus of the respective domain experts. In addition, the
assignment of numerical values to level of evidence and recommendation strength
must be regarded critically, because it cannot be said with certainty that, e.g.,
the distance between loe 1a and 1b is the same as between 4 and 5.

The presented approach extends alignment-based conformance checking with
weights to differentiate the severity of deviations. However, the data perspective
is not currently considered, as it brings its own challenges, such as the semanti-
cally correct severity of a deviation from a given stage value.

When considering the results and the data set used, it should be noted that in
an extended evaluation, the weighted fitness values may show greater differences
from the unweighted fitness values. Since only a guideline section was modeled,
only a delimited area of the entire treatment is tested for compliance. Accord-
ingly, if a full treatment were reviewed, it is also very likely that more guideline
violations of varying relevance would be identified, and the result would devi-
ate much more significantly from the unweighted fitness score. Moreover, this
work has shown that it is not straightforward to incorporate the importance of
activities in the fitness value. On the one hand, the generated results could not
show large differences in some cases and on the other hand, it is questionable to
what extent fitness is the appropriate place to integrate the importance aspect.
For medical process mining in particular, consideration should be given to intro-
ducing a new metric specifically designed for this purpose. In general, empirical
research is needed on the association of greater guideline deviation and worse
clinical outcomes addressed by clinical trials.

6 Conclusion

The presented approach for weighting violations of specific conditions allows the
inclusion of attributes such as importance or soundness of modeled behavior. In
the presented use case, this enables a more accurate knowledge representation
in the process models and a higher expressiveness of the fitness value.

A limitation of the current approach is that it only considers the importance.
However, the results show that the degree of deviation from the model is also
important for calculating meaningful fitness values. This also applies to most
cases of larger deviations in the time perspective since they should be weighted
more heavily than small deviations. Accordingly, the replacement of one activity
with another similar activity would also be less severe. An approach to include
the degree of deviation for the data perspective could be the adaptation of the
fuzzy set approach according to Zhang et al. [16]. Another factor could be the
degree to which the conditions are met. Thus, it is interesting to know how close
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the trace could be to a threshold so that the respective condition still takes effect.
Another challenge is the mapping of optional rules in the fitness value, which
turned out to be very domain dependent. In future work, we intend to extend
the approach to include the degree of deviation. In addition, the approach will
be implemented and evaluated for several process modeling languages.
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Abstract. Public event logs are valuable for process mining research
to evaluate process mining artifacts and identify new and promising
research directions. Initiatives like the BPI Challenges have provided a
series of real-world event logs, including healthcare processes, and have
significantly stimulated process mining research. However, the health-
care related logs provide only excerpts of patient visits in hospitals. The
Medical Information Mart for Intensive Care (MIMIC)-IV database is a
public available relational database that includes data on patient treat-
ment in a tertiary academic medical center in Boston, USA. It provides
complex care processes in a hospital from end-to-end. To facilitate the
use of MIMIC-IV in process mining and to increase the reproducibil-
ity of research with MIMIC, this paper provides a framework consisting
of a method, an event hierarchy, and a log extraction tool for extract-
ing useful event logs from the MIMIC-IV database. We demonstrate the
framework on a heart failure treatment process, show how logs on differ-
ent abstraction levels can be generated, and provide configuration files
to generate event logs of previous process mining works with MIMIC.

Keywords: Event log generation · Process mining · Healthcare ·

MIMIC

1 Introduction

Process mining methods and techniques are experiencing a tremendous uptake in
a broad range of organizations. These techniques help to make the real-world exe-
cution of business processes more transparent and support an evidenced-based
process analysis and redesign [23]. Therefore, process mining receives increased
attention in the healthcare domain, where traditionally manifold data is logged
due to quality control and billing purposes [8,22].

Public available event logs, in which the process data is stored as an ordered
list, are essential for developing new process mining techniques and methods and
evaluating their impact and limitations. In recent years, different initiatives,
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such as the BPI Challenges running since 2011, e.g., [7], or the conformance
checking challenge [20], and additional research including [17] have provided
publicly accessible event logs.

Public data sets are relevant to stimulate research in healthcare as well. For
example, MIMIC (Medical Information Mart for Intensive Care) is a large, de-
identified relational database including patients that received critical care in the
Beth Israel Deaconess Medical Center [13] in Boston, USA. Whereas MIMIC-III
contains data about activities in the intensive care unit (ICU) between 2001–
2012, MIMIC-IV provides data on the complete hospital stay between 2008–2019,
including procedures performed, medications given, laboratory values taken,
triage information, and more. It provides the opportunity to develop and evaluate
process mining techniques on patient care processes, such as in [2,15]. However,
the uptake of this rich and data-intensive database is limited in the process
mining community so far.

The relational database’s complexity, the data’s richness, and the need to
flatten the data in a meaningful way in an event log has hampered the uptake of
MIMIC-IV by the process mining community. Additionally, access to MIMIC-IV
requires a data use agreement, including a training provided by the Collaborative
Institutional Training Initiative (CITI) about collecting, using and disclosing
health information. However, the process to gain access is clearly defined and
usually does not take more than a few days.

This paper aims at simplifying the event log extraction from the MIMIC-IV
database and its reusability. In particular, it provides a framework including
an extraction method, an event hierarchy for MIMIC-IV, and a Python log
extraction tool to ease the log extraction from MIMIC-IV. The remainder of
this paper is organized as follows. In the next section, background on MIMIC
is given in Sect. 2, and related work is discussed in Sect. 3. The event extraction
framework for MIMIC-IV is presented in Sect. 4, followed by an evaluation in
Sect. 5. The paper concludes in Sect. 6.

2 MIMIC-IV Database

MIMIC-IV is a publicly available dataset provided by the Laboratory for Compu-
tational Physiology (LCP) at the Massachusetts Institute of Technology (MIT).
It comprises de-identified health data associated with thousands of hospital
admissions. The project was launched in the early 2000s with MIMIC-I. It is
still ongoing with the recent release of MIMIC-IV, including data from 2008–
2019.

The data is derived from a hospital-wide Electronic Health Record (EHR)
and an Intensive Care Unit (ICU) specific system, such as MetaVison [13]. So
far, MIMIC-IV contains data from a single hospital. The ultimate goal is to
incorporate data from multiple institutions capable of supporting research on
cohorts of critically ill patients worldwide. To ensure the data represents a real-
world healthcare dataset, data cleaning steps were not performed [13].

The MIMIC-IV relational database consists of 35 tables separated into four
modules consisting of emergency department (ed), hospital (hosp), intensive care



304 J. Cremerius et al.

Fig. 1. MIMIC-IV 1.0 simplified data model. The colours represent the respective
modules: Green: Core, Yellow: Hosp, Blue: ICU, Orange: ED (Color figure online)

unit (icu), and core. Figure 1 illustrates a simplified data model of the database
with its modules. In core, demographic information, such as age and mari-
tal status, transfers between departments, and admission information including
their admission location is stored. The hosp module provides all data acquired
from the hospital-wide electronic health record, including laboratory measure-
ments, microbiology, medication administration, billed diagnoses/procedures,
and orders made by providers. The ed module adds information about patients’
first contact with the hospital in the emergency department, including data
about triage, suspected diagnosis, and measurements made. Lastly, the icu mod-
ule contains precise information obtained from an ICU visit, including machine
recordings and procedures performed. This schema is conforming with MIMIC-
IV 1.0. In June 2022, MIMIC-IV 2.0 was released, which transferred the tables
from core to hosp, which is a minor change, as it modifies the high-level schema
and not the relations between the tables. However, the documentation is still
structured as shown in Fig. 1. The provided method including the log extraction
tool is conform with both versions.

To ensure patient confidentiality, all dates in MIMIC-IV have been shifted
randomly. Thus, process mining techniques, such as bottleneck analysis, are not
possible to apply. However, dates are internally consistent with respect to each
patient, so the actual time between events is preserved.

3 Related Work

In this section, we want to review research works on event log extraction, and
on applying process mining to data from MIMIC.

Event Log Extraction. An event log serves as the basis for process mining
techniques. However, the preparation of an event log is often not trivial as busi-
ness processes might be executed with the help of multiple IT systems and the
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Table 1. Research works on applying process mining to MIMIC-III

Ref. Year Goal Patient cohort Notion Events

[2] 2017 Reduce variation
in pathways

Congestive heart
failure patients

Hospital adm. Admission, lab,
prescription, ICU

[15] 2018 Assess the data
quality

Cancer patients Hospital adm. Admission

[14] 2018 Analyse cancer
pathways

Cancer patients Hospital adm. Admission and
icustays

[16] 2020 Detect disease
trajectories

≤ 16 years, btw.
2001-2012, ≤ 2 stays

Subject Admission and
diagnosis

[18] 2020 Compare ICU
treatment

Cancer patients Hospital adm. ICU procedures

data is often stored not in the structure of an event log, but often in relational
databases [6]. For the interested reader, Diba et al. [6] provide a structured litera-
ture review on techniques for event data extraction, correlation, and abstraction
to prepare an event log. Remy et al. [22] present challenges in the event log
abstraction from a data warehouse of a large U.S. health system. Jans and Sof-
fers describe in [11] relevant decisions that need to be made to create an event
log from a relational database: related (1) to the process as a whole, such as
“which process should be selected and its exact scope?”, (2) to the selection of
the process instance, such as “what is the notion of an instance” and to the
event level, such as “what type of events and attributes to include”. In a later
research work, the authors [12] provide a nine-step procedure to create an event
log from a relational database, starting with stating a goal over identifying key
tables and relationships until defining the case notion, and selecting event types
and their attributes. This procedure will serve as a basis to create a method for
extracting event logs from MIMIC-IV.

In the last years, event log extraction approaches and tools were developed
to support practitioners in extracting event logs from their databases, such as
onprom [4] using ontologies for the extraction, eddytools [9] for a case notion
recommondation, and RDB2Log [3] for a quality-informed log extraction. Still,
we observed that these tools could not be easily applied for MIMIC-IV. Rea-
sons include the need to merge tables for obtaining complete information about
events. Additionally, a patient cohort definition is necessary to deal with the
complexity of healthcare processes. Thus, they are not used in this work.

Process Mining with MIMIC. This part presents research papers that used
process mining to analyze the MIMIC database. The identified research works
used the MIMIC-III database because MIMIC-IV has been published recently.
We analyzed their goals, their used patient cohort, their used case notion, and
selected event types for the event log preparation, summarized in Table 1.

Alharbi et al. [2], and Kurniati et al. [15] target methodological goals for
the analysis of the healthcare data, such as reducing the variation in clinical
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pathway data and assessing the data quality. The other three research works
follow medical analysis goals, such as analyzing cancer pathways, comparing the
treatment of different cancer types at the ICU, and detecting disease trajecto-
ries. It can be observed that, on the one hand, patient cohorts with a specific
diagnosis were selected, such as cancer and congestive heart failure patients.
However, on the other hand, a broader patient cohort was also selected in a spe-
cific age range and a certain length of stay. As a notion of the process instance,
two applied solutions can be observed: The subject (i.e., the patient with their
subject id) or the hospital stay (i.e., hadm id) is selected. Whereas the subject
covers all events that happen to a specific patient, including possibly several
hospital admissions, the hospital admission comprises only events related to one
admission. If a patient had several admissions for a specific diagnosis, it is rep-
resented as different traces for this patient. Finally, the research works applying
process mining to the MIMIC data using different event data are presented. The
high-level admission events of the core including information on the time of
admission, discharge, etc. were used [2,14–16]. Kurniati et al. [14] select addi-
tionally high-level information on the ICU stay, such as ICU intime, whereas
Marazza et al. [18] chose detail procedure events of the ICU stay. As Kusuma
et al. [16] aim at detecting disease trajectories, they select additionally to the
admission events also the diagnosis as an event. The diagnosis has no own times-
tamp, and the authors decided to use the time of admission. Alharbi et al. [2]
select for their analysis a broad range of events, also lab, prescriptions, and ICU
events.

It can be observed, that current research works on MIMIC use case-dependent
SQL scripts that cannot be easily adapted for other use cases. This makes it diffi-
cult to reproduce the event log extraction and hinders researchers inexperienced
with MIMIC to use this data source. In this research work, we want to provide
an event log extraction tool to ease the access to MIMIC for the process mining
community.

4 Event Log Extraction Framework for MIMIC-IV

This section presents the event log extraction framework for MIMIC-IV. It
results from an analysis of related work and the MIMIC database and its doc-
umentation. Based on the event log preparation procedure by [12], we propose
a method to derive event logs from MIMIC-IV including an event hierarchy in
Sect. 4.1. In Sect. 4.2, the Python tool for event log extraction from MIMIC-IV
is introduced.

4.1 Method and Event Hierarchy

The method to extract event logs from MIMIC-IV consists of six steps from
goal definition and patient cohort definition, over selecting the case notion and
attributes until the selection of event types and their enrichment, as shown in
Fig. 2a. For each step, we describe the goal and activities, its mapping to the
event preparation procedure by [12], and possibilities for configurations.
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2. Define patient cohort(s) 

3. Define case notion

5. Select event types and 

their attributes

6. Enrich event attributes

4. Select case attributes

1. State goal

(a) Method
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level
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Fig. 2. Method for event log extraction from MIMIC-IV and its event hierarchy.

1) State goal. As described by [12] in step P1, for a useful event log prepara-
tion, the goal of the process mining project needs to be defined. The need for
the goal definition also applies to the event log extraction from the MIMIC-IV
database. Possible medical analysis goals are the process variant exploration of
clinical pathways, disease trajectory modeling, conformance analysis to clinical
guidelines, etc. [21]. It can also be a methodological goal, such as analyzing the
data quality.

2) Define patient cohort(s). As suggested by [12] in step P2, the boundaries of
a process have to be defined. In healthcare, the scope of a process is usually
defined by selecting a particular patient cohort, e.g., congestive heart failure
patients [2] or cancer patients [15]. Patient cohorts are often selected via the
diagnosis of the hosp stay with the help of the International Statistical Classifi-
cation of Diseases and Related Health Problems (ICD) codes1–a global system to
label medical diagnosis consistently. Another possibility are Diagnostic Related
Groups (DRGs), a code system that is used for determining the costs or the
reimbursement rate of a case. It is based on diagnoses, procedures, age, sex, dis-
charge status, and the presence of complications or co-morbidities. Additionally,
an age range or the length of stay could be used to focus on specific patient
cohorts.

3) Define case notion. As given by [12] in step P5, an attribute has to be
selected that determines the process instance (i.e., the case id of an event log).
By analyzing the MIMIC-IV database and the related work, we identified two
possible notions of cases, the subject identifier (the patient with its subject id) or
the hospital administration identifier (hadm id). With subject id the complete
patient history, including several admissions, can be analyzed. With hadm id,
each patient admission is represented as an individual trace in the event log.
Further, each hospital admission consists of stays in different departments, such
as the ICU or ED stay, on which the focus could also be during the analysis.
The instance granularity needs to be selected (step P6 [12]) and its parent and
child activities. This is well-supported in MIMIC-IV: The main identifier, the

1 https://www.icd10data.com/ICD10CM/Codes.

https://www.icd10data.com/ICD10CM/Codes
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subject id and hadm id, is available in all tables as a foreign key. Only hadm id

is not available in the ed module, but the stay id stored in ed tables can be
mapped to an hadm id.

4) Select case attributes. After the patient cohorts and the case notion have been
selected, in the next step, additional attributes of cases, the traces in an event
log, need to be selected as also suggested by [12] in step P8. Case attributes
can be used to filter and cluster in the process mining project. Here available
patient data, such as their gender or age, diagnosis data, such as the ICD code,
or admission data, such as discharge location or insurance could be selected
based on the selected case notion.

5) Select event types and their attributes. When the instances and their
attributes are selected, the event types as also suggested by [12] in step P7 and
event attributes in step P9 can be selected. Therefore, key tables (step P3 [12])
and their relationships (step P4) need to be identified. By analyzing MIMIC-IV
and related work, we developed a hierarchy including possibly relevant event
types for MIMIC-IV, as shown in Fig. 2b. The top shows the most high-level
events, whereas the bottom shows low-level events. In the following, we present
the different types of events in more detail, starting from the top:

Admission events, such as admittime, dischargetime etc., can be all
together found in the admissions table of the core module. They provide high-
level information about the patients’ stays (e.g., when was the admission to the
hospital or the discharge). Almost all related works have used this event type,
either alone or with other event types, such as ICU stay information. If the
admission events are requested, then all the “time”-events are provided includ-
ing admittime/dischargetime/deathtime etc.

On the next level, the transfer events of the transfers table, also in the
core, provide insights about which departments/care units a patient has visited
during the hospital stay. These events can be used to analyze the path of a
patient through the hospital. Each table entry represents one transfer event for
which the intime or outtime can be selected to be used as a timestamp. The
other attributes of this table are provided as event attributes.

The next level of detail is the provider order entry (POE) events that
provide insights into ordered treatments and procedures for a patient. The POE

table is part of the hosp module. These events do not represent the activi-
ties that have been finally executed, but they represent what has been planned
and ordered for a patient. Additionally, the attributes discontinue of poe id

and discontinued by poe provide insights whether the order was cancelled. Each
entry of the POE table represents one order for a patient of a specific hospi-
tal admission, and as timestamp, the ordertime can be used. The additional
attributes of the POE table are added as event attributes. Some POE events,
such as lab or medication events, can also be enriched with details about the
activity execution from other tables. For instance, details on laboratory or micro-
biology examinations can be found in the labevents or microbiologyevents
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tables. The pharmacy, the prescriptions and the EMAR table provide details on
the medications that a patient has received2.

Finally, also low-level details on specific aspects of the hospital stay of a
patient can be deduced from specific tables, such as events of the ED stay, ICU
stay or the labevents. We allow deriving event data from any combination of
low-level tables. For instance, medications prescribed (prescription) can be
analysed in combination with procedures performed (procedures icd).

6) Enrich event attributes. Optionally, events can be enriched by additional
event attributes from any other table in MIMIC-IV if events have multiple
timestamps. For example, the transfers table includes the times when patients
entered and left the respective hospital department, or the pharmacy table
includes the times when a medication was started and ended to be given. As
shown in [5], events from the transfers table can be enhanced by aggregated
laboratory values, such that for each department visit, the average laboratory
value is known and can be analyzed. We allow adding aggregated information
from any table in MIMIC-IV, so that not only laboratory values but also medi-
cation or procedure information can be added.

4.2 Event Log Extraction Tool

The event log extraction tool that forms an integral part of the framework pre-
sented in this paper has been implemented using Python 3.8 and is available as
an open-source tool on GitHub3. It implements the method for event log extrac-
tion from MIMIC-IV (cf. Fig. 2a, Sect. 4.1). For this, access to and credentials
for a MIMIC-IV instance running on PostgreSQL are required. The tool pro-
vides two ways of extracting logs: Either a user is guided interactively through
the method, being prompted for input along with the six steps, starting at the
second, as stating the goal is not supported by us.

Or, a user can provide a configuration file4, which contains definitions and
selections for one or more of the separate steps, as well as additional parameter
configurations, such as the required database credentials. Then, the user is only
asked to provide input for those steps that have not been configured using the
configuration file. Thus, while logs that have been extracted out of MIMIC-IV
cannot be shared due to the data use agreement, a configuration file defining the
application of the extraction method on the MIMIC-IV database can be shared
instead. We provide configuration files for the event logs presented in Sect. 5.

Besides that, it is possible to extract event logs either as a log file conforming
to the XES standard (cf. [1]), or as a .csv file, depending on the desired format

2 The reason for having three tables is that medications are prescribed first and then
given to a patient. The prescription is stored in pharmacy with detailed information
in prescription. Administration details can be found in EMAR, where nurses scan a
barcode at the patient’s bedside at the moment when the medication is given. The
tables are connected through a common identifier pharmacy id.

3 https://github.com/bptlab/mimic-log-extraction.
4 Example configuration files and an explanation of what they can configure can be

found in the tool’s GitHub repository.

https://github.com/bptlab/mimic-log-extraction
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and the tooling that is to be applied afterwards on the event log. For more in-
depth information on how to install, configure, and run the tool, we refer the
reader to the corresponding GitHub repository.

5 Evaluation

In the following, we evaluate the presented MIMIC log extraction framework
in a twofold manner. First, we show how far we could replicate the event logs
generated by other research works on process mining with MIMIC. Second, we
apply the method to an example use case and demonstrate findings and research
challenges.

Replicating Event Logs of Research Works in MIMIC. We were able
to provide configuration files for almost all the related work presented in
Sect. 3. One exception is [16], as they manually attached a timestamp to the
diagnoses icd table. It should be noted, that we could not generate the final
event logs for all works, as some applied post-processing, such as event abstrac-
tion. However, we could replicate the cohort, case notion, case attribute, event,
and event attribute selection of them, which is the goal of this tool so far. The
configuration files can be found in the GitHub repository.

Demonstration on Heart Failure Treatment. We demonstrate the event
log extraction method for MIMIC-IV and present one level of the event hierarchy
in detail for the heart failure treatment case5.

The goal (1) of this demonstration is to discover the hospital treatment
process of patients having heart failure and to identify, if common treatment
practices are applied. The cohort (2) consists of heart failure patients. Heart
failure is the leading cause of hospitalizations in the U.S. and represents one of
the biggest cohorts in MIMIC-IV besides newborns, with 7,232 admissions [10].
It was chosen based on ICD codes and DRG codes6 related to heart failure. We
have selected the hospital admission as the case notion (3), because we want
to focus on the steps taken specifically for patients with heart failure instead
of analyzing the complete patient history. The chosen case attributes (4) are
related to the hospital admission, such as admittime, admission location and
the list of diagnosis (from the diagnosis icd table).

Regarding the chosen event type (5), we will only present the POE level due
to space limitations. The POE level provides a good overview of main activities
of treating heart failure patients. The results for the other hierarchy levels can
be found in the following report7.

5 The detailed event log descriptions with their configuration files can be found in
a GitHub repository: https://github.com/bptlab/mimic-log-extraction/tree/main/
sample config files.

6 The selected ICD and DRG codes can be found in the configuration files.
7 https://github.com/bptlab/mimic-log-extraction/blob/main/EventLogGeneration

Report.pdf.

https://github.com/bptlab/mimic-log-extraction/tree/main/sample_config_files
https://github.com/bptlab/mimic-log-extraction/tree/main/sample_config_files
https://github.com/bptlab/mimic-log-extraction/blob/main/EventLogGenerationReport.pdf
https://github.com/bptlab/mimic-log-extraction/blob/main/EventLogGenerationReport.pdf
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The process model in Fig. 3 shows the sequence and frequency of heart failure
related treatments and procedures ordered for the patients. We filtered manually
for events that are typical activities performed for patients with heart failure [19].
We displayed frequency and case coverage in brackets for each activity. This pro-
cess represents typical characteristics of healthcare processes, including highly
repetitive tasks and flexible order of activities. It can be observed that monitor-
ing is highly relevant for heart failure patients, especially telemetry is common
for patients suffering from cardiac conditions, as well as X-rays or CT scans for
the diagnosis. Additionally, activities for managing heart failure can be observed,
such as oxygen therapy, renal replacement therapy in the form of hemodialysis,
or palliative care [19].

Repetitive events, such as Vitals/Monitoring make it almost impossible to
observe a process order, especially in directly follows graphs, as these events have
a high amount of ingoing and outgoing arcs. Identifying these automatically and
dealing with them can be an interesting way of making process models more
readable. Additionally, one could think about methods and visualizations to
analyse discontinued orders (discontinue of poe id and discontinued by poe).
As the POE level contains a high amount of different events, one could also
think about methods supporting process analysts and domain experts to find
events of interest.

Fig. 3. POE events, showing treatments and procedures ordered at the hospital. Activ-
ity filter: Manually selected events given in a guideline [19] (10% of all with 100% case
coverage), Paths filter: 45%

We see, that the POE level comes with interesting challenges for process mining
in healthcare. Also, the other identified event abstraction levels demonstrated
relevant research challenges, which are discussed in the above-mentioned report.
As there is a need for healthcare tailored frameworks in process mining, MIMIC
could provide a necessary data source to research innovative solutions working
on real-world data [21].



312 J. Cremerius et al.

6 Conclusion

This paper presented a method, an event hierarchy, and a tool to extract event
logs from MIMIC-IV, an anonymized database on hospitals stays, in a structured
manner. The rich database of interacting healthcare processes including a high
amount of additional event data offers process mining research for healthcare a
relevant source of event logs for developing and evaluating new process mining
artifacts. We demonstrated for a heart failure use case how event logs can be
created and presented challenges coming along with healthcare processes.

The presented MIMIC-IV log extraction tool focuses on event log extraction
only, and does not provide functionality for further processing, which could be
extended in the future. Additionally, the tool extracts currently one event of a
medical activity with a selected timestamp and stores the other timestamps as
event attributes. The XES standard allows having multiple events of an activity
representing its lifecycle changes. In future, our framework could be extended,
such that multiple events of a medical activity, such as the ordering, its start
and end can be captured as individual events. In the use case demonstration, we
have, on the lower abstraction level, manually filtered for relevant events after
the event log extraction. This could be improved in the future by supporting the
event selection based on user preferences.

Event logs from this database cannot be directly shared because of a data
use agreement. With our tool, configuration files for the event log extraction can
be easily shared supporting reproducibility and extensibility of research. As a
result of this work, the configuration files of process mining research works on
MIMIC-III/IV have been provided.
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1 Introduction

At the turn of the decade, the logistics of operations in hospitals and healthcare
centers have been severely disrupted worldwide by the COVID-19 pandemic.
Its impact has been profound and damaging in all aspects of life, but in no
context it has been more damaging than in healthcare: the safety and well-being
of physicians and medical personnel, the supply chain of drugs and equipment,
and the capacity of hospitals were all challenged by the pandemic.

One of the most critical points for healthcare systems involved in the treat-
ment process is the management of COVID-19 patients needing acute and res-
piratory care. Therefore, healthcare organizations are increasingly pushed to
improve the efficiency of care processes and the resource management for such
category of patients. One way to attain such improvement is to leverage histori-
cal data from information systems of hospitals. These data can be then cleaned
and analyzed, to individuate non-compliant behavior and inefficiencies in the
care process.

The aim of our work is to analyze the care process for the COVID-19 patients
treated at the Intensive Care Unit (ICU) ward of the Uniklinik Aachen hospital
in Germany, in order to identify divergences or anomalies within the process.
To do so, our work intends to develop an executable process model representing
the clinical guidelines for the treatment of COVID-19 patients and evaluate the
adherence of the observed behavior (recorded by the information system of the
hospital) to such guidelines.

The STAKOB guidelines1 (“Ständigen Arbeitskreis der Kompetenz- und
Behandlungszentren für Krankheiten durch hochpathogene Erreger”, “Perma-
nent working group of competence and treatment centers for diseases caused by
highly pathogenic agents”) are widely accepted and recognized protocols for the
treatment of COVID-19, compiled and verified by a large consensus of medical
scientists, physicians, and research institutions. They provide a comprehensive
overview of recommendations on the management of hospitalized COVID-19
patients. The process model was obtained starting from such guidelines, and
was validated by the physicians working in the intensive and intermediate care
unit of the Uniklinik. We openly share the resulting BPMN model, as well as
the related documentation. The conformance with the guidelines was assessed
by using process mining techniques. The results provide hospital managers with
information about the main deviations and/or anomalies in the process and
their possible causes. In addition, they suggest improvements to make the pro-
cess more compliant, cost-effective, and performant.

The remainder of the paper is structured as follows. Section 2 explores related
work and sets the context of our research. Section 3 lays out the methodology
we employed in our case study. Section 4 illustrates the results of our case study.
Finally, Sect. 5 concludes the paper.

1 https://www.rki.de/DE/Content/Kommissionen/Stakob/Stakob node.html.

https://www.rki.de/DE/Content/Kommissionen/Stakob/Stakob_node.html
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2 Related Work

The global effort to fight the pandemic has stimulated the adoption of new
technologies in healthcare practice [7]. An area where this effect has been radi-
cal is the digitization of healthcare processes, both medical and administrative.
Data recording and availability have improved during the years of the pandemic.
Stakeholders realized that data are a valuable information source to support
the management and improvement of healthcare processes [9]. In addition, the
reliance of medical personnel on digital support systems is now much more sig-
nificant. Fields of science that have recently shown to be particularly promising
when applied to healthcare operations are the process sciences, and specifically
Business Process Management (BPM) and process mining [9]. This is mainly
due to the characteristics of healthcare process, which are complex and flex-
ible and involve a multidisciplinary team [9,13]. Particularly, process mining
has emerged as a suitable approach to analyze, discover, improve, and manage
real-life and complex processes, by extracting knowledge from event logs [1].
Currently, process scientists have gathered event data on the process of treat-
ment for COVID-19 and leveraged process mining techniques to obtain insights
on various aspects of the healthcare process [3,12,15] or on how other business
processes have been impacted by the disruption caused by COVID-19 [17].

Among process mining techniques, conformance checking aims to measure the
adherence of a (discovered or known) process with a given set of data, or vice-
versa [6]. Conformance checking helps medics to understand major deviations
from clinical guidelines, as well as to identify areas for improvement in prac-
tices and protocols [9]. Some studies have applied these techniques in different
healthcare contexts, such as oncology [14]. However, no studies have addressed
the compliance analysis on the care process of COVID-19 patients in a real-life
scenario. To do so, it is essential to have a normative model, reflecting clinical
guidelines and protocols, that can be interpreted by machines. Currently, exe-
cutable process models representing the guidelines for the treatment of COVID-
19 patients are still absent and needed, given the uncertainty and variability of
the disease.

3 Methodology

The methodology conducted in this study consists of the following three main
steps, also shown in Fig. 1:

– Development of a normative model based on the STAKOB guidelines. A nor-
mative model is a process model that reflects and implements rules, guidelines,
and policies of the process, mandated by process owners or other supervisory
bodies. This phase involves (i) the analysis of the STAKOB documentation
and interview with ICU physicians, (ii) the development of the model from
the guidelines, and (iii) the validation of the model with ICU physicians.
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Fig. 1. Case study methodology. Our work measures the deviation between the
expected and real behavior of the COVID-19 treatment process, respectively repre-
sented by the STAKOB guidelines, and by the COVAS dataset.

– Data collection and preparation, which involves the extraction and prepro-
cessing of event data, gathered from the information system of the hospital.
The event log is refined by removing duplicate and irrelevant data, handling
missing data, and detecting outliers to ensure data reliability.

– Conformance checking, which involves the use of conformance checking tech-
niques to compare the normative model with the event logs for the three
COVID-19 waves and determine whether the behavior observed in practice
conforms to the documented process.

3.1 Development of a Normative Model Based on the STAKOB

Guidelines

The STAKOB guidelines provide information on the disease and its related
symptoms, and describe the diagnostic and treatment activities to be performed
on COVID-19 patients and the therapies to be administered. The treatment of
COVID-19 patients requires a multi-disciplinary approach: in addition to inten-
sive care physicians and nurses, specialists in infectious diseases and infection
control must also be part of the team [8]. The guidelines guide the operations
of the medical team involved in the inpatient care of COVID-19 patients, but
are also intended to provide information for individuals and/or organizations
directly involved in this topic.

To make the guidelines interpretable by machines—and thus suitable for
conformance checking—we developed a normative process model of the STAKOB
guidelines in the BPMN language using the Signavio tool2. The choice of the

2 https://www.signavio.com/.

https://www.signavio.com/
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BPMN standard is due to its ability to be executable but, at the same time,
easy to understand by physicians and practitioners. The BPMN model of the
STAKOB guidelines was validated by using a qualitative approach. Specifically,
the model was presented and discussed with three physicians working in the
intensive and intermediate care unit of the Uniklinik during three meetings.
During the meetings, several refinements were applied to the model, until it was
approved by all.

3.2 Data Collection and Preparation

We collected and pre-processed data of COVID-19 patients monitored in the
context of the COVID-19 Aachen Study (COVAS). The log contains event infor-
mation regarding COVID-19 patients treated by the Uniklinik between January
2020 and June 2021. Events (patient admittance, symptoms, treatments, drug
administration) are labeled with the date, creating timestamps with a coarseness
at the day level. While here we exclusively focus on process mining, the COVAS
dataset has also been analyzed in the context of explainable AI [16].

Data were gathered from the information system of the hospital. The initial
database consisted of 269 cases, 33 activity labels, 210 variants, and 3542 events.
Before the analysis, we refined the raw event log, to guarantee its quality. Data
cleaning and preparation were executed with Python and included: (i) outliers
and incomplete cases removal based on the number of hospitalization days, (ii)
less significant activities abstraction, and (iii) filtering of infrequent variants. As
an example, we removed the cases with a duration of more than 70 days: this
value was validated with the doctors, according to whom durations longer than
70 days may be due to registration delays. In the end, the refined event log
consisted of 187 patient cases, 32 activities, 135 variants, and 2397 events.

To evaluate the adherence of the COVAS dataset to the normative model
during the three COVID-19 waves, we split the dataset into three sub-event
logs. As illustrated in the next sections, this is done with the goal of examining
how treatment operations for COVID-19 change between infection waves with
respect to the adherence to the STAKOB guidelines. As shown by the dotted
chart of the event log in Fig. 2, the three waves can be clearly identified. Such a
choice of wave separation was also supported by the literature [5].

The event log of the first wave contains 106 cases and 1410 events. The
average duration of the process is 25.38 days. The log of the second wave contains
59 cases and 892 events, with an average duration of 22.42 days. The log of the
third wave contains 22 cases and 282 events, with an average duration of 16.38
days.

3.3 Conformance Checking

For each sub-event log, we applied conformance checking techniques to identify
deviations within the process. Specifically, we utilized the plug-in “Replay a
Log on Petri Net for Conformance Analysis” as implemented on ProM, with
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Fig. 2. Dotted chart of the COVAS event log. The cases are sorted by the first recorded
event, which is highlighted in orange. Every blue dot corresponds to a recorded event.
The vertical dashed lines separate the first, second, and third COVID-19 waves, based
on the knowledge of physicians. (Color figure online)

standard setting parameters. The choice is due to the fact that alignment-based
techniques can exactly pinpoint where deviations are observed [1,2].

The alignment-based technique allowed to estimate a global conformance
measure, which quantifies the overall conformance of the model and event log,
and local diagnostics, which identify points where the model and event log do
not agree. In the first case, we calculated fitness, which measures “the proportion
of behavior in the event log possible according to the model” [1]. In the second
case, we estimated for each activity within the model the following [4]:

– the number of “moves on log”: Occurrences of an activity in the trace cannot
be mapped to any enabled activity in the process model.

– the number of “moves on model”: Occurrences of an enabled activity in the
process model cannot be mapped to any event in the trace sequence.

– the number of “synchronous moves”: Occurrences of an activity belonging to
a trace can be mapped to occurrences of an enabled activity in the process
model.

4 Results

In this section, we presented the results from the development of the normative
model and the conformance checking analysis.
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Fig. 3. A section of the STAKOB COVID-19 model, depicting some activities related
to the ICU operations for COVID-19 patients.
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Fig. 4. A section of the STAKOB COVID-19 model, depicting some activities related
to the respiration support operations for COVID-19 patients.

4.1 Normative Model

The developed normative model consists of 3 sub-processes, 23 activities and
approximately 36 gateways (XOR, AND and OR). Figure 3 shows a section of
the model.

The model clearly underlines the fact that the treatment of hospitalized
patients with COVID-19 is complex and is characterized by several pursuable
pathways (see the presence of XOR and OR gateways). It also requires the
collaboration of different departments and specialists. More in detail, the care
treatment includes an antibiotic/drug therapy phase and, if necessary, an oxy-
genation phase. At this point, if the patient’s health condition deteriorates, the
transfer to the ICU is planned (partially shown in Fig. 3). In the ICU, the patient
may undergo mechanical ventilation, ECMO (ExtraCorporeal Membrane Oxy-
genation) or pronation in addition to the medical therapy. A section of the sub-
process showing the respiratory support for the patient can be seen in Fig. 4.
Recovery and subsequent discharge are confirmed by two negative COVID-19
tests.

The full model is openly available on GitHub3. It is rendered in the XML
export format of the BPMN standard4. The folder also contains a PDF depicting

3 https://github.com/marcopegoraro/pm-healthcare/tree/main/stakob.
4 https://www.bpmn.org/.

https://github.com/marcopegoraro/pm-healthcare/tree/main/stakob
https://www.bpmn.org/
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Table 1. Results of conformance checking alignments with the STAKOB model for
the patient sub-log corresponding to the first COVID-19 wave. For each activity in the
log, we show the count of moves on log, moves on model, and synchronous moves.

Activity Move on
log

Syncro
move

Move on
model

Activity Move on
log

Syncro
move

Move on
model

Symptobegin 0 106 0 Ventilation Start 33 9 2

Hospitalization 1 105 1 Ventilation End 35 8 6

UKA Admission 12 96 10 NMB Start 4 11 0

Abx Start 2 58 0 NMB End 4 11 0

Abx End 2 58 0 CVVH Start 16 11 0

Start Oxygen 22 85 0 CVVH End 16 11 0

Remdesivir Start 0 3 0 Prone Start 25 10 0

Remdesivir End 0 3 0 Prone End 25 10 0

Admission ICU 35 20 0 ECMO Start 10 0 0

HiFlo Start 0 1 19 ECMO End 10 0 0

Hiflo End 0 1 19 End of Fever 22 53 53

NIV Start 6 5 9 Discharge ICU 48 6 14

NIV End 10 5 9 Last Oxygen Day 39 53 53

iNO Start 13 10 1 Discharge dead 0 33 0

iNO End 13 10 1 Discharge alive 0 73 0

the entire model, a license declaration, and an addendum describing the model
schematic in more detail.

4.2 Conformance Checking Results

COVID-19 First Wave Results. For the first wave, the fitness between the
model and the data is 0.69; some trace variants are not reproduced by the model.
This may be due to the variability of the process (health conditions vary from
patient to patient). In addition, the coarseness of the timestamps in the dataset
has an impact: events are recorded at the date level, so the order in which
they are recorded may vary in some instances. Table 1 shows the results of the
conformance checking for the first wave. Specifically, for each activity, it shows
the misalignments between the normative model and the event log.

Several misalignments can be observed. In particular:

– The HiFlo Start and HiFlo End activities (corresponding to high flow oxy-
genation) present 19 moves on model and one synchronous move. This means
that, although it is required by the guidelines, this activity is only performed
in one case. This indicates that, given the patient’s condition, the physicians
may have seen fit to skip this treatment.

– There are several tasks that have both moves on model and moves on log.
This means that these tasks often deviate from the normative model (in some
cases they are present in the model but not in reality, in others vice-versa).
This may be due to the variability of patients’ conditions and the lack of
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Table 2. Results of conformance checking alignments with the STAKOB model for
the patient sub-log corresponding to the second COVID-19 wave. For each activity in
the log, we show the count of moves on log, moves on model, and synchronous moves.

Activity Move on
log

Syncro
move

Move on
model

Activity Move on
log

Syncro
move

Move on
model

Symptobegin 0 59 0 Dexamethasone End 24 14 1

Hospitalization 0 59 0 Ventilation Start 11 8 1

UKA Admission 8 50 9 Ventilation End 11 8 1

Abx Start 0 29 0 NMB Start 2 9 0

Abx End 0 29 0 NMB End 2 9 0

Start Oxygen 5 54 0 CVVH Start 7 8 1

Remdesivir Start 8 12 0 CVVH End 7 8 1

Remdesivir End 8 12 0 Prone Start 8 8 0

Admission ICU 8 15 1 Prone End 8 8 0

HiFlo Start 0 2 14 ECMO Start 7 0 0

Hiflo End 0 2 14 ECMO End 7 0 0

NIV Start 6 8 5 End of Fever 27 13 43

NIV End 8 5 8 Discharge ICU 20 2 14

iNO Start 2 9 0 Last Oxygen Day 19 36 23

iNO End 2 9 0 Discharge dead 0 17 0

Dexamethasone Start 23 15 0 Discharge alive 0 42 0

familiarity with COVID-19 and its standardized treatment, since this data
was recorded in the early days of the pandemic. For example, the guidelines
suggest that the Discharge ICU should occur after ventilation and pronation,
while in reality, in some cases, it occurs before. Thus, many activities occur
while the patient is hospitalized, but not still formally admitted to the ICU.

– Some activities present only moves on log and synchronous moves, i.e., they
are present in reality but at times not in the normative model. This means
that they are performed at different times than the guidelines suggest. For
example, Admission ICU may be anticipated because of a particularly critical
course not foreseen by the physicians or be delayed because no space in ICU
is available at that time; or Prone End (the interruption of the treatment
of pronation) may be brought forward because of the negative effects on
the patient, e.g., the appearance of pressure sores. Alternatively, pronation
may be delayed because the patient has not achieved optimal arterial blood
oxygenation.

COVID-19 Second Wave Results. For the log of the second wave, the fit-
ness with the STAKOB model is 0.66. Table 2 shows the results of conformance
checking for the second wave.

In the second wave, Hospitalization is only performed after the onset of symp-
toms, as suggested by the guidelines. However, deviations are also encountered.
As in the first wave, the most affected activities are End Of Fever, Admission

ICU and Discharge ICU, and Last Oxygen Day, which have both moves on
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Table 3. Results of conformance checking alignments with the STAKOB model for
the patient sub-log corresponding to the third COVID-19 wave. For each activity in
the log, we show the count of moves on log, moves on model, and synchronous moves.

Activity Move on
log

Syncro
move

Move on
model

Activity Move on
log

Syncro
move

Move on
model

Symptobegin 0 22 0 Dexamethasone End 8 4 0

Hospitalization 2 19 3 Ventilation Start 1 9 1

UKA Admission 0 22 0 Ventilation End 1 9 1

Abx Start 0 8 0 NMB Start 0 1 0

Abx End 0 8 0 NMB End 0 1 0

Start Oxygen 0 38 0 CVVH Start 2 1 0

Remdesivir Start 0 1 0 CVVH End 2 1 0

Remdesivir End 0 1 0 Prone Start 1 1 0

Admission ICU 1 2 1 Prone End 1 1 0

HiFlo Start 0 2 1 ECMO Start 0 0 0

Hiflo End 0 2 1 ECMO End 0 0 0

NIV Start 4 1 0 End of Fever 11 6 16

NIV End 5 0 1 Discharge ICU 3 2 1

iNO Start 1 1 0 Last Oxygen Day 3 17 5

iNO End 1 1 0 Discharge dead 0 3 0

Dexamethasone Start 9 3 1 Discharge alive 0 19 0

log and moves on model. This may be related to the mutability of the disease
becoming difficult to manage with common protocols and the variability of the
patients’ conditions. Compared to the first wave, the use of drugs has changed.
In particular, a new drug is being administered, i.e., Dexamethasone, and the use
of Remdesivir is increased. The administration of both drugs has moves on log
mismatches, indicating that the physicians needed to administer such treatments
more frequently than recommended. The former is also used in patients who do
not require intensive care, contrary to what the guidelines suggest. The second,
which is preferred for non-critical hospitalized patients, is also used in intensive
care. In addition, high flow oxygenation is rarely performed here, despite being
included in the guidelines.

COVID-19 Third Wave Results. The fitness between the log and the model
is 0.69 for the third COVID-19 wave. Table 3 shows the results of conformance
checking for the third wave.

The physicians’ experience and familiarity with the disease appear to have
increased. However, many of the misaligned activities have similar behavior to
those performed during past waves. Note that the ECMO treatment has zero
values in all columns. This is because it is not performed in the third wave (unlike
the first two). Since ECMO is the most invasive oxygenation treatment, this may
be due to the fact that the severity of the patients’ condition has decreased.

To summarize, alignments-based techniques make it possible to detect and
analyze process deviations, providing useful insights for physicians. Furthermore,
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in the three waves, most activities remained misaligned, while some moved closer
to the guidelines’ suggestion. This shows that the process is highly variable and
specific care pathways are required for each patient, which do not always coincide
with those stated in the guidelines.

5 Conclusion

Our work aimed to analyze the care process for COVID-19 patients, bringing
to light deviations from the clinical guidelines. Specifically, the work proposed
a normative model bases on the STAKOB guidelines, which can be interpreted
by software tools (e.g., process mining software). The BPMN model is openly
accessible to any analyst, and can also be loaded into any commercial software
supporting the BPMN standard, like Celonis and Signavio. This addresses the
need for computer-interpretable and usable guidelines in healthcare, particularly
for the treatment of COVID-19 patients [10]. In addition, the work provided
physicians with guidance on the management of COVID-19 patients, highlighting
deviations and critical points in the three infection waves.

The contributions of our work are:

– One of the first attempts to apply a process mining-based methodology for
the analysis of process deviations in a real, complex, and uncertain healthcare
context, like the recent and ongoing COVID-19 pandemic.

– The development of a normative model that can advise physicians in the treat-
ment of COVID-19 patients by providing specific guidelines and procedures
to follow. This is helpful in dealing with the uncertainty and complexity of
healthcare operations brought about by the pandemic. In addition, the model
can be used as input for the development of a decision support system, which
alerts in real-time in case of violations of the guidelines.

– The extraction of valuable insights for physicians regarding the main devi-
ations and the related causes in the COVID-19 patient care process. This
knowledge is crucial for improving the process and ensuring service qual-
ity and patient satisfaction, e.g., better management of drug administra-
tion (when to administer and how often), more targeted execution of certain
treatments—e.g., pronation—(who to treat and when to do it), and execution
of treatments suggested by guidelines but never performed in reality that can
enhance the care pathway and reduce hospitalization time (such as high flow
oxygenation).

The work presents some open questions and directions for future research.
The limited size, especially for the third wave, and the coarseness of the times-
tamps in the dataset may impact the results. To address this issue, a possible
option is to weigh the results of analyses using the probability of specific order-
ings of events in traces [11]. Furthermore, the physician’s consensus on both the
validity of the STAKOB model and the interpretation of the conformance check-
ing results can definitely be enlarged, by soliciting the expert opinion of a larger
group of medics. As future developments, we plan to: (i) extend the research and
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collect new data from other German hospitals, in order to generalize the results
and identify best practices in the treatment of COVID-19 patients; (ii) improve
the validation of results; (iii) actively involve physicians in the analysis of devia-
tions, using qualitative approaches such as interviews and field observations; (iv)
conduct a more extensive comparative analysis based on process mining, includ-
ing a structural model comparison, concept drift, and performance analysis.
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Abstract. Data and process mining techniques can be applied in many
areas to gain valuable insights. For many reasons, accessibility to real-
world business and medical data is severely limited. However, research,
but especially the development of new methods, depends on a sufficient
basis of realistic data. Due to the lack of data, this progress is hin-
dered. This applies in particular to domains that use personal data, such
as healthcare. With adequate quality, synthetic data can be a solution
to this problem. In the procedural field, some approaches have already
been presented that generate synthetic data based on a process model.
However, only a few have included the data perspective so far. Data
semantics, which is crucial for the quality of the generated data, has
not yet been considered. Therefore, in this paper we present the multi-
perspective event log generation approach SAMPLE that considers the
data perspective and, in particular, its semantics. The evaluation of the
approach is based on a process model for the treatment of malignant
melanoma. As a result, we were able to integrate the semantic of data
into the log generation process and identify new challenges.

Keywords: Process mining · Event log generation · Synthetic data ·
Data petri nets

1 Introduction

In many data-rich domains, the application of data analysis methods of data and
process mining opens up great potentials. For example, with the right analytical
approaches, operational processes can be designed more effective and efficient,
new insights can be gained, and predictions can be made. However, there is a
lack of data, especially in the context of research, as access is often difficult. This
is particularly the case in areas where the data contains personal information
(e.g., in medicine) or business secrets (e.g., in industry and business). This fact
hinders progress in the development of new approaches and solutions.

One way to address this problem is to work on high-quality synthetic data.
For instance, procedural data can be generated based on process models using
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techniques such as token-based simulation, finite state automata simulation,
abduction, constraint satisfactory problem, or Boolean satisfiability problem.
However, all approaches either focus only on the control-flow perspective or, if
they are able to generate variable values for the data perspective, they do so
based solely on the defined conditions of the process model. In this case, the val-
ues are generated without considering the semantics and the focus of the data
generation is only on the fulfillment of the conditions. This leads to unrealistic
values for the variables and consequently to synthetic data with low quality.

Therefore, we present the SAMPLE approach, a multi-perspective event log
generator that considers the data perspective and its semantics in particular. In
the approach, variables are described by a meta-model and a triple of seman-
tic information (values, dependencies, distributions). Using this, combined with
a play-out algorithm to generate the control-flow perspective, leads to the cre-
ation of synthetic, correct data with semantically meaningful variable values.
By generating synthetic data, this approach presents a method for preserving
patient privacy and security that addresses challenge C7 of the characteristics
and challenges for process mining by Munoz-Gama et al. [13].

The remainder of the paper is organized as follows. Section 2 provides infor-
mation on related work and Sect. 3 on the components of our approach. Section 4
describes the methodological approach for the multi-perspective synthetic event
log generator. In Sect. 5 the implementation is presented, Sect. 6 presents the
evaluation process, and Sect. 7 concludes the paper.

2 Related Work

In token-based simulation, tokens are propagated through a process model and
executed transitions are recorded to generate event logs. When using Petri nets,
the propagation is achieved by firing enabled transitions until all transitions are
disabled or a final state is reached. Different strategies can be used to determine
which transition to fire, such as random selection. The order of the transitions
fired is recorded to generate the traces. The transitions are then referenced with
activities to obtain a valid trace, which can be added to the event log. The
process is repeated until the desired number of traces is reached.

Token-based event log generation has evolved from work in modeling simula-
tion, such as reference nets [8] or Colored Petri nets (CPNs) [6]. In [8], Kummer
et al. developed the application RENEW which is a Java-based high-level Petri
net simulator. It provides a flexible modeling approach based on reference nets
as well as the feature to dynamically create an arbitrary number of net instances
during a simulation. Alves de Medeiros and Günther [11] state the need for cor-
rect logs (i.e., without noise and incompleteness) for the development and tuning
of process mining algorithms, since imperfections in the log hinder these activi-
ties. Their approach is an extension of Colored Petri nets to generate XML event
logs with the simulation feature of the CPN Tools [16]. Nakatumba et al. [14]
present an approach that incorporates workload-dependent processing speeds in
a simulation model and how it can be learned from event logs. Moreover, they
show how event logs with workload-dependent behavior can be generated by
simulation using CPN Tools [14].



330 J. Grüger et al.

Many approaches address the lack of data for appropriate (process)mining
algorithm testing and evaluation [1,11,12,15,17]. The approach of Shugurov and
Mitsyuk [17] allows the generation of event logs and sets of event logs to support
large scale automated testing. Furthermore, noise can be added to event logs to
simulate more realistic data. Vanden Broucke et al. [1] present a ProM [3] plugin
enabling the rapid generation of event logs based on a user-supplied Petri net.
The approach offers features such as the configuration of simulation options,
activities, activity and trace timings. Mitsyuk et al. [12] present an approach
to generate event logs from BPMN models to provide a synthetic data base for
testing BPMN process mining approaches. They propose a formal token-based
executable BPMN semantic that considers BPMN 2.0 with its expressive con-
structs [12]. The approach simulates hierarchical process models, models with
data flows and pools, and models interacting through message flows [12]. Pert-
sukhov and Mitsyuk [15] present an approach that generates event logs for Petri
nets with inhibitor and reset arcs. These arc types improve the expressiveness of
nets and are useful when ordinary place/transition-nets are not sufficient [15].

One rather unique use of token-based simulation is proposed by Kataeva and
Kalenkova [7]. Their approach generates graph-based process models by apply-
ing graph grammar production rules for model generation. A production rule
replaces one part of a graph by another [7]. The approach uses a simulation con-
sisting of applying production rules that propagate tokens through the graph to
generate event logs. Another approach is presented by Esgin and Karagoz [4],
addressing the problem of unlabeled event logs, i.e., the lack of mapping of case
identifiers to process instances in real event logs. Instead of fixing the log, the
approach simulates a synthetic log from scratch using the process profile defin-
ing the activity vocabulary and the Petri net in tabular form as input [4]. In
[2], the generation of random processes is extended by the complete support for
multi-perspective models and logs, i.e., the integration of time and data. Fur-
thermore, online settings, i.e., the generation of multi-perspective event streams
and concept drifts, are supported [2].

Although important problems are addressed, a drawback of most related
work in this field is the limitation to the pure control-flow. Besides exceptions
such as [2], the data perspective is not considered. Overall, the semantics of data
and its impact on the reality of event logs is not explicitly in addressed.

3 Fundamentals

In the following, we introduce the notions required for our approach.

3.1 Basic Notations

Definition 1 (universes, general function). We define the following uni-
verses and functions to be used:

– C is the universe of all possible case identifiers
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– E is the universe of all possible event identifiers
– A is the universe of all possible activity identifiers
– AN is the universe of all possible attribute identifiers
– dom(f) denotes the domain of some function f .

Definition 2 (attributes, classifier [18]). Attributes can be used to charac-
terize events and cases, e.g. an event can be assigned to a resource or have a
timestamp. For any event e ∈ E, any case c ∈ C and name n ∈ AN , #n(e) is the
value of attribute n for event e and #n(c) is the value of attribute n for case c.
#n(e) =⊥ if event e has no attribute n and #n(c) =⊥ if case c has no attribute
n. We assume the classifier e = #activity(e) as the default classifier.

Definition 3 (trace, case [18]). Each case c ∈ C has a mandatory attribute
trace, with ĉ = #trace(c) ∈ E∗ \ {〈〉}. A trace is a finite sequence of events
σ ∈ E∗ where each event occurs only once, i.e. 1 ≤ i < j ≤ |σ| : σ(i) �= σ(j). By
σ ⊕ e = σ we denote the addition of an e event to a trace σ.

Definition 4 (event log [18]). An event log is a set of cases L ⊆ C, in the form
that each event is contained only once in the event log. If an event log contains
timestamps, these should be ordered in each trace.

Definition 5 (multiset [18]). Let X be its set. A multiset is a tuple M =
(X, m) with m : X → N. We use x ∈ M to express that x is contained in the
multiset M , therefore x ∈ X and m(x) ≥ 1. We denote by B(X) the set of all
multisets over X.

3.2 Petri Nets, Marked Petri Net

Petri nets are process models that describe the control-flow perspective of a
process while ignoring all other perspectives [10].

Definition 6 (Petri net [18]). A Petri net is a triple N = (P, T, F ) where P is
a finite set of places, T is a finite set of transitions, and F ⊆ (P×T ) ∪ (T×P ) is a
set of flow relations that describe a bipartite graph between places and transitions.
•t denotes the input places of a transition t.

3.3 Data Petri Nets

A data Petri net is a Petri net extended by the data perspective.

Definition 7 (data Petri net [9]). A data Petri net (DPN) N = (P, T, F, V,

U, R, W, G) consists of:

– a Petri net (P, T, F );
– a set V of variables;
– a function U that defines the values admissible for each variable v ∈ V , i.e.

if U(v) = Dv, Dv is the domain of variable v;
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– a read function R ∈ T → 2V labeling each transition with the set of variables
that it must read;

– a write function W ∈ T → 2V labeling each transition with the set of variables
that it must write;

– a guard function G ∈ T → GV associating a guard with each transition.

For the naming of transitions, we introduce labeled data Petri nets. Invisible
transition are enabled and fired, but do not refer to a process activity.

Definition 8 (labeled data Petri net [10]). Let N = (P, T, F, V, U, R, W, G)
be a Data Petri net. Then the triple LN = (N, λ, ν) is a labeled Petri net, with:

– λ : T → (E ∪ {τ}) is an activity labeling function, mapping transitions on an
activity label and invisible transitions on τ .

– ν : V → AN a labeling function, mapping variables to attribute names.

Similar to Petri nets, data Petri nets always have a certain state described
by the current markings and variable values. This is defined as follows.

Definition 9 (state of a DPN [9]). Let N = (P, T, F, V, U, R, W, G) be a Data
Petri net with D = ∪v∈V U(v), then tuple (M, A) is the state of N with

– M ∈ B(P ) is the marking of the Petri net (P, T, F )
– A : V → D ∪ {⊥}. For v ∈ V it holds, if no value is given for v, A(v) =⊥

With (M0, A0) the initial state and M0(p0) = 1, ∀p ∈ P \ {p0} : M0(p) = 0 and
∀v ∈ V : A0(v) =⊥ and (MF , AF ) the final marking.

Petri nets change their state by firing transitions. A valid firing of a transition
is defined as follows.

Definition 10 (valid firing [10]). Let N = (P, T, F, V, U, R, W, G) be a Data
Petri net. A firing of a transition is a double (t, w) with t ∈ T and variables that
are written with the respective values. Let (M, A) be a state of N , then (t, w) is
a valid transition firing, if

– ∀p ∈ •t : M(p) ≥ 1, i.e. each place in t’s preset contains at least one token.
– dom(w) = W (t), the transition writes the prescribed variables
– ∀v ∈ dom(w) : w(v) ∈ U(v), i.e. the assigned values for variables are valid
– Guard G(t) evaluates true with A

4 Synthetic Multi-perspective Log Generation

To generate a realistic event log L for a given data Petri net N , SAMPLE divides
the procedure into the control-flow perspective (Sect. 4.1) and data perspective
(Sect. 4.2). While the generation of the control-flow perspective of the log is
based on the token-based simulation approach, the generation of the data is
built on a rule-based approach. Figure 1 depicts the log generation process. In
the following, we first describe the generation of the control-flow perspective and
extend the approach to the data perspective in the next step.
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Fig. 1. The figure outlines the event log generation process of the approach. The model
information and the semantic data serve as input for the simulation runs, in which
traces (i.e., sequences of events with data) are generated and added to the log.

4.1 Generation of the Control-Flow Perspective

The control-flow perspective is realized through random trace generation, i.e.,
an approach that randomly traverses the Petri net to generate sequences of
activities. Each single trace is generated by a simulation run. A simulation run
starts with the initial marking of the model and starts firing random transitions
until a deadlock or a final marking is reached.

Transitions can be weighted to generate particularly realistic logs. These
weightings affect the probability of the transitions firing and could be learned,
e.g., based on the distribution in real logs or manually defined by domain experts.
For this purpose, we introduce a mapping of transitions to weights:

Definition 11 (transition weights). Let N = (P, T, F, V, U, R, W, G) be a
data Petri net. Then ω : T → R is the mapping of transitions to weights. For all
t ∈ T , tω is the short form for ω(t).

Definition 12 (transition selection). Let N = (P, T, F, V, U, R, W, G) be a
data Petri net and (M, A) the current state of the DPN. Then transition t is
selected randomly by rt(N, (M, A)) by considering the weights ω(t). Rω denotes

{t ∈ T |∀p ∈ •t : M(p) ≥ 1}
Rω←−− t

a weighted random selection. If no transition is enabled, ⊥ is returned.

4.2 Generation of Data Perspective

The data perspective is addressed in data Petri nets by variables V and their
values U . These are read and written by transitions and evaluated in guards.
For the generation of realistic variable values for transitions, extensive knowl-
edge about the variables is necessary. This can be partially learned from the
process model or the event log, or must be specified by domain experts. Par-
tially, this knowledge could be modeled in DPNs, but would grow the process
models and reduce their maintainability. In the following, the knowledge and the
procedure for the generation of realistic variable values are specified. To describe
the variables, we introduce a variable meta-model.
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Algorithm 1. Log Generation

Input labeled DPN LN = ((P, T, F, V, U, R, W, G), λ, ν), traces to generate n ∈ N

Output Log L

1: procedure Generate Log(N,n)
2: L ← {} ⊲ empty log v

3: while |L| < n do

4: σ = GenerateTrace(N, (M0, A9), {})
5: if σ �= ∅ then

6: L = L ∪ {σ}

7: procedure Generate Trace(LN, (M, A), σ)
8: t ← rt(N, (M, A)) ⊲ random transition selection
9: if t =⊥ then ⊲ Deadlock

10: Return ∅
11: else

12: (t, w) = GenerateV ariable(t, N, (M, A)) ⊲ Generate Variables
13: e ← new event
14: e ← λ(t) ⊲ Set event name
15: for all v ∈ dom(w) do

16: if is_tv(v) then

17: #ν(v)(σ) ← w(v) ⊲ add trace attributes (generated before)
18: else

19: #ν(v)(e) ← w(v) ⊲ add event attributes (generated before)

20: σ ← σ ⊕ e ⊲ Add event to trace
21: (M, A) → fireTransition(t, w) ⊲ fire fransition and change Model State
22: if (M, A) = (MF , AF ) then

23: Return σ

24: else

25: Return Generate Trace(LN, (M, A), σ)

Definition 13 (variable meta-model). Let N = (P, T, F, V, U, R, W, G) be a
data Petri net, then the meta-model for a variable v ∈ V is described by:

– U(v) describing the domain of valid variable values.
– is_tv : V → {0, 1} defining v is a trace variable (1) or an event variable (0)
– optional semantic information

The semantic information allows the specification of values that the variable
can take. The values can comprise the complete domain of the variable or only a
section. In addition, frequency distributions can be specified via value weights.

Definition 14 (semantic information: values). Let N = (P, T, F, V, U, R,

W, G) be a data Petri net with v ∈ V and Dv ⊆ U(v), the defined possible values
for v. Then V Wv is a multiset with V Wv = (Dv, m) with m : Dv → [0, 1], the
weight function.

Furthermore, the variables may be interdependent. This must be included to
generate realistic values. Each dependency is described by a logical expression
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and a resulting constraint. If the logical expression is true, the constraint has
implications on the possible values for a given variable.

Definition 15 (semantic information: dependencies). Let N = (P, T, F, V,

U, R, W, G) be a data Petri net with v ∈ V , EXPR the Universe of all
possible logical expressions (including disjunction and conjunction). Let C =
(EXPR × (OC × U))∗ be the set of all possible dependencies, with OC = {'==
', '! =', '<', '<=', '>', '>='}) the set of constraint operators. Then for all v ∈ V ,
the function dep : V → C defines the set of all dependencies holding for v. The
following shorthands are defined for the dependency sets:

– depint : V → (EXPR × ((OC \ {'==', '! ='}) × U))∗, interval related depen-
dencies

– depeq : V → (EXPR × ({'=='} × U))∗, dependencies setting fixed values
– depne : V → (EXPR × ({'! ='} × U))∗, dependencies excluding values
– Let (M, A) be a DPN state and c ∈ C a constraint, then eval(c, (M, A))

evaluates the logical expression building on the current DPN state. Let C ′ ⊆ C

be a set of dependency constraints, then eval(C ′, (M, A)) returns a set of all
c′ ∈ C ′ with eval(c′, (M, A)) = 1.

This can be used, e.g., to specify dependencies excluding “prostate cancer” as a
value for a variable for persons of female gender. It can also be used to define
ranges of values or intervals by setting the logical expression to true.

'gender == female' => (!=,'prostate cancer')

'true' => (<,5)

The third type of semantic information, distribution, refers to the weighting
of the values. Instead of concrete weights, however, distribution functions can be
specified here. While values are more suitable for discrete, categorical values, the
possibility to define distribution functions is directed towards numerical values.

Definition 16 (semantic information: distribution). Let N = (P, T, F, V,

U, R, W, G) be a data Petri net, then for v ∈ V a distribution function distrv :
R

∗ → R ∪ {⊥} provides values, considering the defined deviation (uniform, nor-
mal, ...). If distrv =⊥, no distribution is defined for v.

5 Implementation

For evaluation, SAMPLE was implemented using Python1. The tool allows the
generation of multi-perspective event logs using semantic information about the
variables. In addition to the random trace generation approach, the implemen-
tation allows to fully explore Petri nets for event log generation.

1 https://github.com/DavidJilg/DALG, GNU GLP 3 license.

https://github.com/DavidJilg/DALG
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Algorithm 2. Generation of realistic variable values

Input Transition t, DPN N = (P, T, F, V, U, R, W, G), DPN State (M,A)
Output Firing (t,w)

1: procedure Generate Variables(t,N,(M,A))
2: for all v ∈ W (t) do

3: PV ← U(v) ⊲ Set of possible values for v

4: if |depint(v)| > 0 then ⊲ intervall dependencies
5: PV ← {value ∀value ∈ PV |value in depint(v)}

6: if |depeq(v)| > 0 then ⊲ Dependencies setting fixed values
7: PV ← {value|∀(expr,(op,value))∈ eval(depeq(v), (M, A))}

⊲ Dependencies excluding values
8: PV ← PV \ {value|∀(expr,(op,value))∈ eval(depne(v), (M, A))}

⊲ value restriction defined
9: if V Wv �= ∅ then

10: set w[v] = randByWeight({(val, wei)|(val, wei) ∈ V Wv : val ∈ PV })
11: else if distrv �=⊥ then ⊲ distribution function defined
12: set w[v] = distrv()|with distrv() ∈ PV

13: else

14: set w[v] = randomV alue(PV )

15: Return (t,w)

The implementation facilitates the configuration of semantic information
about the variables (distribution, dependencies, etc.). Due to the large amount
of semantic information that needs to be provided to generate realistic event
logs, the tool offers a function that analyzes the model and tries to suggest
semantic information based on the model. For example, guards are analyzed to
identify data types, upper and lower bounds, or possible values. Furthermore,
the described approach is extended by the time perspective and allows the gen-
eration of timestamps. For ease of use, the implementation provides a graphical
user interface based on the QT framework, which allows the configuration of the
simulation and semantic data and thus the event log generation (see Fig. 2).

6 Evaluation

The implementation described in Sect. 5 was used to evaluate the SAMPLE app-
roach. First, the correctness of the approach was checked by the conformance of
generated traces. For this purpose, process models were used including all com-
binations of semantic information types. All generated traces were conforming to
the models and considered the given semantic information entirely. Subsequently,
the realism of generated event logs was investigated, which is the main focus of
the research. For preliminary investigations, the activities of daily living of sev-
eral individuals2 dataset was chosen to enable initial evaluations with respect
to realism without expert knowledge. Afterwards, the approach was evaluated

2 https://doi.org/10.4121/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176.

https://doi.org/10.4121/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176
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Fig. 2. Graphical user interface of the DALG-tool (Data Aware Event Log Generator)

by domain experts for skin cancer treatment. Therefore, a model was used that
represents the diagnosis and treatment of malignant melanoma [5]. It consists of
51 places, 26 variables, 76 transitions, and 52 guards. Using the model, event logs
were generated and a representative set of traces was used for evaluation. There-
fore, a visual representation of the data was presented to the domain experts.
The task of the evaluation was to investigate whether a physician with the same
information would have chosen the same treatment options as in the synthetic
traces. Additionally, it should be evaluated whether the generated variables are
realistic for the given patient.

Compared to other existing approaches, the results show that the inclusion
of semantic information enables the generation of data that is more meaningful
and correct from a semantic point of view. This means that the sequence of
activities shown in the trace makes sense in terms of the data available at a
point in time. Consequently, the correct activities are performed based on the
variable values. For example, an additional excision will only be performed on a
patient if the variable indicating that there is still tumor residue in the skin is set
to true. Additionally, the value ranges of the variables prevent the generation of
unrealistic values. Moreover, specifying dependencies between variables leads to
traces, where the variables’ values in the trace also make sense when considered
as a whole. For example, the variable representing the patient’s cancer stage in
the used model is dependent on several other variables, such as the presence of
metastases or tumor thickness. The transition weights improved the realism of
the event log data by influencing which transitions are triggered more frequently
during random trace generation and thus which activities occur more frequently.
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However, it was found that the semantic information provided for implemen-
tation was insufficient to some extent. While many dependencies were correctly
integrated, the domain experts noted that some dependencies between the vari-
ables were not or not correctly integrated. This is due to the large number of
variables in the model and the resulting large amount of time and expert knowl-
edge required to model the complex dependencies. Besides, the current imple-
mentation of the approach has some limitations in terms of semantic information
that can be modeled. Currently, for example, only the lead time of activities and
the delay between them can be specified, resulting in some events with unre-
alistic timestamps. For instance, medical procedures are usually performed by
day, except emergencies. Currently, it is not yet possible to define time periods
during which an activity may take place. Besides functional extension, the con-
figuration for log generation and the state of the model are also crucial for the
quality of the log. Configuration requires a high level of domain knowledge and a
lot of time to properly address all dependencies. The more thoroughly this step
is performed, the better the resulting log will be. The process model is essen-
tial as a basis for generating synthetic data. Therefore, it must be examined in
detail together with domain experts and checked whether all circumstances are
represented correctly and all dependencies are taken into account.

In summary, generating synthetic event logs using the SAMPLE approach
produces semantically more realistic data. Nevertheless, there are challenges in
the definition of the dependencies, the integration of all necessary semantic data
into the implementation, as well as in the effort of modeling the dependencies.

7 Conclusion

The presented SAMPLE approach of multi-perspective log generation sets itself
apart from previous approaches by considering data semantics. The evaluation
showed that the approach leads to medical event logs with higher quality, since
the data perspective is implemented more realistically. Nevertheless, challenges
were identified in the analysis of the results that need to be addressed.

In the future, we want to simplify the generation of logs and reduce the effort
required. Therefore, we investigate possibilities to further automate the process
and to optimize the configuration process. Furthermore, the semantic informa-
tion identified as missing will be integrated into the approach. We also want to
extend the approach to declarative process models. Future enhancements of the
approach should enable the generation of more realistic logs. The evaluation of
the domain experts is essential and guides the improvement of the approach.
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Abstract. Analysing the treatment pathways in real-world health data can provide

valuable insight for clinicians and decision-makers. However, the procedures for

acquiring real-world data for research can be restrictive, time-consuming and risks

disclosing identifiable information. Synthetic data might enable representative

analysis without direct access to sensitive data. In the first part of our paper, we

propose an approach for grading synthetic data for process analysis based on its

fidelity to relationships found in real-world data. In the second part, we apply our

grading approach by assessing cancer patient pathways in a synthetic healthcare

dataset (The Simulacrum provided by the English National Cancer Registration

and Analysis Service) using process mining. Visualisations of the patient pathways

within the synthetic data appear plausible, showing relationships between events

confirmed in the underlying non-synthetic data. Data quality issues are also present

within the synthetic data which reflect real-world problems and artefacts from the

synthetic dataset’s creation. Process mining of synthetic data in healthcare is an

emerging field with novel challenges. We conclude that researchers should be

aware of the risks when extrapolating results produced from research on synthetic

data to real-world scenarios and assess findings with analysts who are able to view

the underlying data.

Keywords: Process mining · Synthetic data · Simulacrum · Data grading ·

Taxonomy

1 Introduction

A care pathway is “a complex intervention for the mutual decision-making and organisa-

tion of care processes for a well-defined group of patients during a well-defined period”

[1]. Care pathways describe ideal patient journeys and the extent to which individual

patients follow this ideal can be explored through analysis of data extracted from health-

care information systems. Such data can include patient-level events like admissions,

investigations, diagnoses, and treatments. Process-mining of healthcare data can help

clinicians, hospitals and policy makers understand where care pathways are helping and

hindering patient care [2]. However, healthcare data is sensitive and identifiable data,
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which necessitates strong information governance to protect patients’ privacy. This nec-

essary governance can make it difficult to access healthcare data for beneficial analysis

and research (especially for process discovery where a clear purpose is harder to pin

down and hence link to a legal basis). One solution is to make highly-aggregated open

datasets available. For example, NHS Digital publishes open data across 130+ publi-

cations spanning key care domains. However, such datasets are often not sufficiently

detailed for patient-level process mining of care pathways. Consequently, there has

been a growth in synthetic or simulated data that attempt to mirror aspects of the real,

patient-level data without disclosing patient-identifiable information [3].

Generating synthetic data from real world data sets can be achieved via a number

of methods. An example of synthetic healthcare dataset from the USA is Synthetic-

Mass which is an unrestricted artificial publicly available healthcare dataset containing

1 million records generated using Synthea [4]. This dataset was generated using pub-

lic healthcare statistics, clinical guidelines on care maps format and realistic properties

inheritance methods. Another example from the UK is a project developed by NHSx AI

Lab Skunkworks called Synthetic Data Generation [5]. In this project, a model previ-

ously developed by NHS called SynthVAE has been adopted to be used with publicly

accessible healthcare dataset MIMIC-III in order to read the data (inputs), train the model

then generate the synthetic data and check the data through a chained pipeline. A third

example is synthetic datasets generated using Bayesian networks [6] have demonstrated

good-to-high fidelity [7] and can be coupled with disclosure control measures [8] to

provide complex, representative data without compromising patient privacy.

Regardless of generation method, rigorous evaluation of synthetic data is needed to

assure and ensure representativeness, usefulness and minimal disclosivity. Approaches

to evaluation include using generative adversarial networks that incorporate privacy

checks within the data-generation process [9]; discrepancy, distance and distinguisha-

bility metrics applied to specific analysis goals [10]; meaningful identity disclosure risk

[11]; multivariate inferential statistical tests of whether real and synthetic datasets are

similar [12]; conditional attribute disclosure and membership disclosure [12]; and others

[13]. What has not been suggested to date are approaches to evaluation that are specific

to process mining. We hypothesise that process mining of health care pathways has a set

of specific data requirements that may not be easily satisfied by current approaches to

synthetic healthcare data creation. To explore this, we present a taxonomy for synthetic

data in healthcare to help evaluate and grade synthetic datasets to identify those that

would be useful for process mining. We apply our taxonomy to a case study of the Sim-

ulacrum cancer dataset, which is an openly available dataset of cancer treatment data

based on the English National Cancer Registration and Analysis Service [14].

2 Method

Our methods are presented in four parts. In part 1, we propose a taxonomy of synthetic

data for process mining in healthcare. In part 2, we define a set of tests to classify

synthetic data against the taxonomy. In part 3, we describe the Simulacrum dataset that

we use in our case study. Finally, in part 4, we evaluate the Simulacrum dataset using

the tests from part 2, and classify the dataset according to our taxonomy from part 1.
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2.1 Part 1: A Taxonomy for Synthetic Data in Healthcare

We present a 3-grade taxonomy to help classify the fidelity of a synthetic dataset. By

fidelity, we refer to the extent to which synthetic data represents the real data it is

attempting to replace. Random data presented in the format of the real data has low

fidelity but might have functional value for testing analysis pipelines because it has the

“right shape”. If synthetic data also mirrors statistical relationships within variables, then

it has greater fidelity and has some inferential value following analysis. Greater fidelity

would be demonstrated by a synthetic dataset that mirrors the real data’s statistical

relationships between variables.

More formally, we define a minimum grade 1 synthetic dataset as one in which

the format of the synthetic data matches that of the original dataset from which it was

derived. The types of features represented in the original dataset must be faithfully rep-

resented. Examples for healthcare data include time-stamped events, patient identifiers,

and treatment codes. Grade 1 synthetic datasets are not expected to retain any statistical

or clinically-meaningful relationships within or between columns. From the perspective

of process mining, we expect to be able to produce a process model but the sequences

of events depicted in the model are not expected to be realistic, nor are the event and

transition metadata (e.g. event counts or inter-event duration).

We define a grade 2 synthetic dataset as one in which the independent distributional

properties of each synthetic variable are similar (statistically or clinically) from the same

properties of each variable in the original dataset. Grade 2 datasets are not expected to

retain any statistical or clinically-meaningful relationships between features. From the

perspective of process mining, we expect to be able to produce a process model and for

the event and transition metadata to be realistic, but we do not expect the sequences of

events depicted in the model to be realistic.

We define a grade 3 synthetic dataset as one in which the multivariate distributional

properties of all synthetic variables are similar (statistically or clinically) from the same

properties of all variables in the original dataset. From the perspective of process mining,

we expect to be able to produce a process model, for the event and transition metadata

to be realistic, and for the sequences of events depicted in the model to be realistic. This

paper focuses on assessing grade 3 for analytical process mining (Fig. 1 and Table 1).

Table 1. Summary of proposed taxonomy for synthetic healthcare data

Feature Grade 1 Grade 2 Grade 3

Fidelity Low Medium High

Data Format Same Same Same

Independent

Variable data

Random Similar static/clinical

meaningful

distributions

Similar static/clinical

meaningful

distributions

(continued)
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Table 1. (continued)

Feature Grade 1 Grade 2 Grade 3

Relationships

between variables

No No Similar static/clinical

meaningful

distributions

Produce process

models

Yes Yes Yes

Event/transition

metadata

Not realistic Realistic Realistic

Sequence of events Not realistic Not realistic Realistic

Usage Test analysis pipelines Basic statistical

analysis

Gain Insights through

process discovery

Fig. 1. A proposed model for grading synthetic data in healthcare

2.2 Part 2: Criteria for Grading Synthetic Data in Healthcare

In part 1, we presented a 3-grade taxonomy to help classify the fidelity of a synthetic

dataset in healthcare. Below, we present a set of criteria that would identify the grade of a

given synthetic healthcare dataset. Taken together, the taxonomy and the criteria provide

a framework for evaluating the suitability of a synthetic dataset for process mining. We

suggest some tests against these criteria but we encourage analysts to design, implement

and share their own tests in keeping with the principles of the criteria, below.
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Criterion 1: The variables within the real dataset are present within the synthetic dataset

and are of the correct data type.

A sufficient test of this criterion is a basic one-to-one mapping of variable names

and data types. If a process model can be derived from the synthetic dataset, then this

criterion is also met.

Criterion 2: Each synthetic variable’s typical value, range, and distribution are

statistically- or clinically-meaningful similar to the relative variable in the real dataset.

If a statistical approach is preferred, then candidate tests of this criterion are null-

hypothesis significance tests for similarity of, for example, each variable’s mean or

median. Importantly, each of these null-hypothesis tests would not be sufficient to meet

this criterion if they are conducted in isolation. This is because these tests do not test

all distributional parameters. Even tests of distributions like the Komolgorov-Smirnov

test only test the minimum largest difference between two distributions rather than the

entire distribution.

If a clinical approach is preferred, then clinical and administrative domain experts

can audit distribution summary statistics. This is in keeping with the ethos of PM2

methodology where domain experts are involved in the process mining [15].

Criterion 3: The sequential, temporal, and correlational relationships between all vari-

ables are statistically- or clinically-meaningfully similar to those present in the real

dataset.

Correlational relationships can be tested using a multivariate null-hypothesis statis-

tical test for similarity but are subject to the same limitations as similar tests applied to

Criterion 2. This criterion might also be satisfied if it is possible to progress with iter-

ative, process-mining methodology involving the production, evaluation and review of

event logs and process models. One could also meet this criterion by testing if a process

model derived from the synthetic dataset passes tests of conformance with a process

model derived from the real dataset.

2.3 Part 3: Case Study of the Simulacrum Cancer Dataset

The Simulacrum is a synthetic dataset derived from the data held securely by the National

Cancer Registration and Analysis Service (NCRAS) within Public Health England [14].

NCRAS holds data on all cancer diagnoses in England and links them to other datasets

collected by the English National Health Service. The Simulacrum uses a Bayesian

network to provide synthetic data on patient demographics, diagnoses and treatments

based on real patient data between 2013 and 2017. Table 2 shows a sample of the variables

available in the Simulacrum that are relevant to process mining.
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Table 2. Summary of activity data available in the simulacrum dataset for 2,200,626 patients.

Activity Count of events across all

cancers

Summary of information

available for event

Diagnosis date 2,741,065 Site of neoplasm, Morphology,

Stage, grade of tumour, age at

diagnosis, Sex, cancer registry

catchment area oestrogen

receptor, EHRs status of the

tumour, Clinical nurse specialist,

Gleason Patterns, Date of first

surgical event, Laterality Index

of multiple deprivation

Decision to treat (Regimen) 749,721 Decision to treat date (Drug

regimen)

First surgery 1,736,082 Date of first surgical event

linked to this tumour recorded in

the Cancer Registration

treatment table

Start date on regimen 828,980 Patient’s height (metres (m)),

Patient’s weight (kilograms

(kg)), Drug treatment intent,

Decision to treat date (Drug

regimen), Start date (Drug

regimen), Maximally granular

mapped regimen, Clinical trial

indicator, Chemo-radiation

indicator, Regimen grouping

(benchmark reports)

SACT cycle start 2,561,679 Pseudonymised cycle ID,

Pseudonymised regimen ID,

Cycle identifier, Start date

(Cycle), Primary procedure

(OPCS), Performance Status

Deaths 652,418 Date of Death

The Simulacrum dataset contains synthetic treatment events and associated vari-

ables for multiple cancers. We selected data from for malignant neoplasms of the brain

(identified by the 3-character ICD10 code C71).
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2.4 Part 4: Evaluation

We did not have access to the real world data on which the Simulacrum was based.

We reviewed the Simulacrum for the presence of variables relevant to the brain cancer

care pathway, and checked that the data types were appropriate, e.g. timestamp was a

datetime data type. We assumed that the variables in the Simulacrum were also present

in the real world. Regarding grade 2 fidelity, the producer of the Simulacrum synthetic

dataset provided evidence that the distributions of each variable in the datasets were

similar to those of the real dataset [16].

To test grade 3 fidelity, we sought to derive a process model of brain cancer from the

Simulacrum synthetic data by applying process discovery to relevant variables. Patient

ID was used as the case identifier, clinical events were used as the activity, and each

event had an associated timestamp to produce an event log. PM4PY [17] packages were

used to produce the process models and the PRoM was used to discover the processes

[18]. Trace variants were extracted from the event log and reviewed by clinical experts

for reasonableness.

To aid conformance checking, a normative model representing the expected pathway

to be followed for brain cancer using available activities in Simulacrum was informed

by brain tumour patient guides from the Brain Trust [19]. Conformance was quantified

as the fitness of the synthetic event log when replayed on a petri net of the expected

pathway [20]. This replay fitness provides a 0–1 measure of how many traces in the

synthetic data’s event log can be reproduced in a process model defined by the expected

pathway, with penalties for skips and insertions.

The distributions of durations between diagnosis and first surgery was also reviewed

in the synthetic and the real dataset with the assistance of the producers of the Simu-

lacrum synthetic dataset. This permitted a simple evaluation of the reasonableness of

the temporal relationship between variables.

3 Results

The fields required to inform the care pathway for brain cancers were all present and

variables’ data types were all correct. The discovered process model for brain cancer

shows a substantial variety of sequences that differ from the care pathway derived from

the Brain Trust (Fig. 2). Replay fitness of the synthetic event log on the expected pathway

was 46%.
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Fig. 2. A. The expected care pathway for brain cancer. B. Process discovery on Brain Cancer

Pathways (ICD10 code C71). C. Histograms of durations between a sample of event pairs.

Of the 20,562 traces in the Simulacrum’s brain cancer dataset, there were 4,080

trace variants (Fig. 3). Most variants were unique traces (n1 = 3,889) and there were

relatively few variants matching only two traces (n2 = 89). The four-most-common

variants represented 75.9% of traces (15,608/20,562). In 122 spurious traces, the “Death”

event occurred before the “First_Surgery” event. Figure 4 presents the transition matrix

between events with the care pathway being represented by the diagonal starting at the

second cell from the top left, i.e. Start-Diagnosis date = 18,123.
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Fig. 3. The seven most common trace variants for brain cancer, accounting for over 77% of all

trace variants.

Fig. 4. Brain cancer event summary Fig. 5. Distribution of days between

diagnosis and first surgery for all cancers

for Females

Figure 5 shows the distribution of computed duration between date of diagnosis and

first surgery, in the female sub cohort. There is a typical value of approximately 35 days

but a long skew duration in the low hundreds of days. There also appears to be a regular

signal with a period of approximately 7–10 days.

4 Discussion

Care pathways are increasingly key in analysing health data. The aim of this paper was to

present a taxonomy for synthetic data in healthcare to help evaluate and grade synthetic

datasets to identify those that would be useful for process mining. We conducted an

example evaluation on the Simulacrum dataset.

According to our tests, we conclude that the Simulacrum meets the grade 3 criterion

of our taxonomy. Grade 1 was met by our finding that the fields required to inform the

care pathway for brain cancer were all present and variables’ data types were all correct.
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Grade 2 was evidenced by the Simulacrum’s producer’s assuring that the distributions

of each variable in the datasets were similar to those of the real dataset [16]. Grade

3 was evidenced by our ability to progress with an iterative, process-mining approach

that involved the production of a process model and event log summary statistics that

were reviewed with clinical experts and the producer of the synthetic dataset. In the

remaining sections, we provide further details of the discussions with the producers of

the Simulacrum synthetic dataset.

4.1 Meeting the Grade 3 Criterion

Our criterion for meeting grade 3 fidelity is if the sequential, temporal, and correlational

relationships between all variables are statistically- or clinically-meaningfully similar to

those present in the real dataset. We tested this criterion by progressing with an iterative,

process-mining methodology and by testing if a process model derived from the synthetic

dataset passes tests of conformance with a process model derived from the real dataset.

The Simulacrum synthetic dataset was able to produce a process model and trace

variants that were similar to portions of the ideal care pathway.

The reasonableness of the synthetic dataset was also evidenced by our analysis of

the distribution of days between diagnosis and first surgery, in female patients (Fig. 5).

Figure 5 also shows what appears to be a regular signal with a period of approximately

7–10 days. Discussions with the producers of the Simulacrum synthetic dataset con-

firmed that this regular signal reflects the underlying non-synthetic data. Collaborative

discussions suggested the signal reflects weekly patterns for booking surgery - for exam-

ple non-urgent surgery tends to be booked on weekdays - but we have yet to test this

hypothesis. Such analysis and representativeness would not be possible with synthetic

datasets lower than grade 3.

Regarding a formal check of conformance, a replay fitness of 46% is considered low,

suggesting that the expected care pathway does not represent the behaviour observed in

the synthetic data’s event log well [20]. It is not clear whether the poor replay fitness

represents poor adherence to guideline care pathways or poor fidelity of the Simulacrum

data set. Guideline care pathways represent ideal patient journeys but real-life cancer

treatment is known to be complex [21]. For example, process models discovered for

endometrial cancer show good replay fitness but require more-complex processes [22].

The replay fitness of our discovered process model for brain cancer was 66%, which,

assuming the Simulacrum data is representative, suggests that the care pathways for

brain cancer are more complex than what is presented in the idealised care pathways.
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4.2 Data Quality

According to the ideal care pathway, we would expect all patients to experience all events

that were selected from the Simulacrum synthetic dataset, and in the order specified by the

ideal care pathway. On the contrary, Fig. 4 shows substantial deviation from the ideal care

pathway. This is indicated partly by non-zero diagonal counts that indicate direct repeats

of events (though repeated SACT cycles are not unexpected). Deviation from the ideal

care pathway is also partly indicated by non-zero counts anywhere beyond the diagonal

starting at the second cell from the top left. For example, there were 1,037 synthetic

patient records that showed a patient receiving a decision to treat before a diagnosis

date. These deviations could be accounted for if patients were diagnosed with multiple

genetically-distinct cancers. For example, it is plausible that the 34 synthetic patients that

underwent cancer-related surgery before diagnosis were undergoing diagnostic surgery,

or were patients undergoing curative or debulking surgery and in whom an additional,

genetically-unique cancer was discovered following analysis of the biopsy.

However, the observation that 1,192 synthetic patient records show a patient has

died before their SACT cycle started cannot be explained by the real-life complexity of

healthcare delivery. Alternative explanations for these cases include administrative errors

or spurious simulation during the data generating process. Our collaborative discussions

with the producers of the synthetic dataset revealed that this anomaly was a known

feature of the generation of the synthetic data rather than being a feature of the real data.

4.3 Collaboration with Producers of the Synthetic Dataset

During the course of this work we have collaborated with the producers of the synthetic

dataset under study. We felt that this was a crucial activity to aid in the efficient and

effective use of the dataset. For example, without communication with producers of the

synthetic datasets, it might not be possible to tell if a data quality issue is a result of the

synthetic data generation or representative of the underlying data.

We have already presented two examples of the benefits of collaborating with the

producers of synthetic datasets. The first was our analysis of the durations between date of

diagnosis and first surgery (Fig. 5). It was only through discussion with the producers of

the synthetic data that we were able to check that the distribution of computed durations

was representative of real world data, and that we were able to collaboratively hypothesise

an explanation for the regular 7–10 day signal. The second example was our ability to

conclude that the anomalous transitions between death and SACT cycle were an artefact

of the Simulacrum’s data-generating process.

4.4 Recommendations

We make the following recommendations to producers of synthetic healthcare datasets

that may be used by analysts (consumers) using process mining on the synthetic data:

1. Producers of synthetic health data should grade it and produce evidence using test

cases that will help users determine whether the data is relevant to their study.
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2. Consumers of synthetic data should expect to liaise with the producer. In particular,

they should:

a. Ask how the data were generated.

b. Ask what tests of representativeness, usefulness and disclosivity were conducted.

c. Apply our taxonomy to grade the dataset.

d. Have a line of communication open to discuss data quality issues.

5 Conclusions

In conclusion, process mining of care pathways is an important approach for improving

healthcare but accessing patient event based records is often burdensome. Synthetic data

can potentially reduce this burden by making data more openly available to researchers,

however the quality of the synthetic data for process mining needs to be assessed. We

propose an evaluation framework and demonstrated this framework using the openly

available Simulacrum Cancer data set and identified this data set can be thought of as

grade 3 which makes it useful for process mining. Although researchers may be able to

explore synthetic data and generate hypotheses, we argue that they will need to work with

producers with access to the real data to confirm findings. This paper makes a number

of recommendations for producers and consumers of synthetic data sets and highlights

potential further work on the taxonomy to subdivide different types of grade 3 data.
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Abstract. The inductive miner (IM) can guarantee to return structured
process models, but the process behaviours that process trees can rep-
resent are limited. Loops in process trees can only be exited after the
execution of the “body” part. However, in some cases, it is possible to
break a loop structure in the “redo” part. This paper proposes an exten-
sion to the process tree notation and the IM to discover and represent
break behaviours. We present a case study using a healthcare event log to
explore Acute Coronary Syndrome (ACS) patients’ treatment pathways,
especially discharge behaviours from ICU, to demonstrate the usabil-
ity of the proposed approach in real-life. We find that treatment path-
ways in ICU are routine behaviour, while discharges from ICU are break
behaviours. The results show that we can successfully discover break
behaviours and obtain the structured and understandable process model
with satisfactory fitness, precision and simplicity.

Keywords: Process mining · Inductive miner · Process trees ·
Healthcare process discovery

1 Introduction

Process discovery algorithms are techniques that construct process models
automatically from recorded data. Unlike many machine learning techniques,
it has been discussed that process mining methods should return human-
understandable results [3]. However, many existing process discovery algorithms
return “spaghetti-like” process models which are hard to understand [3]. The
inductive miner (IM) [17] is one of the most popular process discovery results
that guarantees to return structured process models with high fitness. Although
structured models are guaranteed to be discovered, as the direct output is a
process tree [17], the possible represented behaviours are limited [20].
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In process trees, a loop is composed of a “body” part and multiple “redo”
parts. A loop should always start and end with the “body” part. For example, in
� (T1, T2), the loop should always start with T1, then choose if it executes T2 or
exits the loop. However, in certain cases, it is possible to exit the loop from the
“redo” part (e.g., exiting the loop during the execution of T2). Such behaviours
are called break behaviours which cannot be represented by the process trees or
discovered by the IM.

Healthcare process discovery aims to get insights into how healthcare pro-
cesses are executed and identify opportunities for improving services [23].
Tremendous efforts have been put into discovering various healthcare processes
[9,21–23,26]. The Intensive Care Unit (ICU) is expensive, and its cost increases
yearly. Carefully deciding on the discharging of patients from ICU is thus a crit-
ical issue to guarantee efficient treatments have occurred. Hence, the discovery
of treatment processes in ICU can help domain experts better understand how
patients are treated and improve the quality of medical services.

We present a motivation example (shown in Fig. 1) to demonstrate break
behaviours in ICU treatment. The ICU treatment pathway is a routine loop
behaviour that involves continued monitoring of vital measurements and repet-
itive orders several times a day (e.g., laboratory tests and medications) until
discharge to normal wards. Patients are admitted to ICU and nurses start to
monitor the vital measurements. Blood tests, followed by medications may be
ordered for patients as requested by doctors. After staying in ICU for some time
(i.e., executing the routine loop several times), patients can be discharged from
ICU through three different ways. Typically, patients should be discharged if
their vital measurements are normal, which is discharge pathway one in Fig. 1.
Nevertheless, patients can be discharged after further ordering blood tests (dis-
charge pathway two in Fig. 1) and medications (discharge pathway three in Fig.
1). Such discharge pathways are break behaviours (e.g., a break from the “redo”
part of the routine treatment loop).

Fig. 1. A motivation example of a ICU treatment process

This paper proposes an extension to the process tree notation and the IM
to discover and represent break behaviours. A case study is presented using a
real-life healthcare event log to demonstrate the usability of the proposed app-
roach. We aim to discover the treatment pathways in ICU of patients with Acute



356 Q. Chen et al.

Coronary Syndrome (ACS). Specifically, we plan to investigate the discharge
behaviours from ICU, which can be regarded as break behaviours. The results
show that we can obtain the structured and straightforward process model with
satisfactory fitness, precision and simplicity.

The paper is structured as follows: Sect. 2 discusses the background. Section 3
explains the main approach. A real-life case study is presented in Sect. 4.
Section 5 concludes the paper.

2 Background

2.1 Process Discovery Algorithms

The IMs [13–17] are a family of process discovery algorithms that apply the
divide-and-conquer method to discover process trees. As process trees are dis-
covered, the discovered process will always be structured and understandable.
However, due to the limitation of process trees, certain behaviours are inher-
ently harder to be represented and discovered. “Flower model” is often the result
when the input log is complex and unable to be adequately represented by the
process tree. Some extensions are proposed to discover more behaviours using
the IM (e.g., recursive behaviours [12], switch behaviours [20], and cancellation
behaviours [11]).

For those process discovery algorithms which can discover break behaviours
in loops, like the alpha miner [1], the heuristics miner [25] and the split miner
(SM) [4], structured process models cannot be guaranteed, instead “spaghetti
like” process models are often returned [3].

2.2 Process Discovery in Healthcare

With the rapid development of process mining, healthcare process discovery
has recently drawn even more attention [23]. [9,22] aim to analyse the trajec-
tories of patients in hospitals, while [21,26] model the workflows in outpatient
departments. Patient pathways in emergency departments are discovered in [2,8].
However, less attention is paid to the treatment process for patients in ICU,
even though ICU is critical for patients with severe health conditions. Carefully
deciding on the transfer out of patients in ICU is thus essential to ensure that
patients receive efficient treatments. Apart from normal vital measurements,
patients may need to undertake other examinations or treatments before dis-
charging from ICU. Hence, we aim to discover treatment pathways (especially
discharge behaviours for patients with ACS) in ICU. Additionally, due to the dis-
tinguishing characteristics of healthcare processes, the existing process discovery
algorithms constantly fail to discover structured process models [23]. Therefore,
unnecessary difficulties have been added to understanding the discovered pro-
cess models for domain experts. Interactive process discovery is then proposed
to address the issue [5,21]. Unfortunately, such domain knowledge is not always
available under given conditions. Hence, we propose an approach to automat-
ically discover structured and understandable process models, especially when
complex behaviours (i.e., break behaviours) exist in healthcare event logs.
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3 Methodology

3.1 The Break Process Tree

To represent break behaviours in process trees, we define the break process tree in
this section to represent break behaviours. The break process tree is an extension
based on the process tree model described in [16].

Definition 1 (Break Behaviour). Assume there is a loop process tree T “�

(P1, P2, ..., Pn), where L is its corresponding event log. There is a break behaviour
in T if there exists an activity aend P End(L), aend P Pi, 1 ă i ď n.

Definition 2 (Break Process Tree). Assume a finite alphabet A. A break
process tree is a normal process tree with break leaf operators ab, where a P A.
Combined with a loop operator �, the break leaf node denotes the place where we
execute activity a, and have an option to exit the loop. Assume there is a loop
process tree T “� (P1, P2, ..., Pn) A break leaf node must be placed in the redo
part of a loop process tree (i.e., ab P Pi, 1 ă i ď n).

a b e

Trace Break Behaviors

ab NO

abcdeab NO

abcd YES

abcdeabcd YES

abc YES

abcdeabc YESdc

Fig. 2. An example break process tree and its corresponding traces

An example break process tree and its log are presented in Fig. 2. The process
tree contains two break leaf operators cb, db that allow exiting the loop on the
redo part of the loop process tree. If the process tree does not contain the break
leaf operator, it will always start and end with “ab”. The break loop operators
allow the process tree to exit the loop after the execution of c and d.

3.2 Discovering Break Process Trees

Our method relies on the IM framework to discover process trees with break
behaviours. The original loop cut is replaced with the following three steps:

Step 1: Finding Break Cut. In the first step, we aim to find a break loop
cut. The break loop cut is similar to the original loop cut but allows the exit of
loops from the “redo” part. The definition of the break loop cut is presented in
Definition 3.
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Definition 3 (Break Loop Cut). Suppose G is a directly-follows graph of
event log Lbreak. A break loop cut is a partially ordered cut

∑
1,

∑
2, ...,

∑
n

of G
such that:

1. All start activities are in
∑

1: Start(G) Ă
∑

1

2. There must be at least one end activity in
∑

1: Da P
∑

1 : a P End(G)
3. There are only edges between

∑
1 and

∑
n
: @m ‰ n ‰ 1 ∧ a P

∑
m

∧b P
∑

n
:

(a, b) /P G
4. If there are edges from

∑
1 to

∑
n
, the sources of all such edges are end

activities: D(a, b) P G ∧ a P
∑

1 ∧b P
∑

n
: a P End(G)

5. If there are edges from
∑

n
to

∑
1, the destinations of all such edges are start

activities: D(b, a) P G ∧ b P
∑

n
∧a P

∑
1 : a P Start(G)

6. If there is an edge from
∑

1 to
∑

n
, there should be an edge from all end

activities in
∑

1 to the same destination in
∑

n
: @a P End(G) ∧ a P

∑
1 ∧b P

∑
n

: (Da
′

P
∑

1 : (a
′

, b) P G) ⇐⇒ (a, b) P G
7. If there is an edge from

∑
n

to
∑

1, there should be an edge from the same

source to all start activities: @a P Start(G) ∧ b P
∑

n
: (Da

′

P
∑

1 : (b, a
′

) P

G) ⇐⇒ (b, a) P G

Step 2: Identifying Break Leaf Nodes. Once a break loop cut is identified,
there can be two possibilities: 1) a loop process tree with break behaviours is dis-
covered (i.e., Da P End(G)∧a P

∑
i
∧i ‰ 1); 2) a loop process tree without break

behaviours is discovered (i.e., @a P End(G) ∧ a P
∑

1). We perform Algorithm
1 to locate the break behaviours. If an empty set is returned, a loop process
tree without break behaviours is discovered. Otherwise, we mark the activities
in BreakLeadNodes as break leaf nodes.

Algorithm 1: Identifying Break Leaf Nodes

Input: A break loop cut
∑

1
,
∑

2
, ...,

∑
n

of directly-follows graph G

1 BreakLeafNodes = {}
2 for i in 2 ... n do

3 for a in
∑

i
do

4 if a P End(G) then

5 BreakLeafNodes.add(a)
6 end

7 end

8 end

Output: BreakLeafNodes
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Step 3: Splitting Event Logs. The same loop cut split function for the
original IM framework is applied to split the event log after a break loop cut.
However, splitting the event logs directly after the break loop cut can bring extra
behaviours into the discovered process model. For instance, in our example in
Fig. 2, the activities are partitioned into two groups after the break loop cut:
{a, b} and {c, d, e}. The trace ă a, b, c, d ą is then divided into ă a, b ą and
ă c, d ą, resulting in a process tree shown in Fig. 3, which allows traces such as
ă a, b, c, d, a, b, c, d, a, b ą. To solve the problem, we remove all the traces with
break behaviours before splitting the event logs (Algorithm 2).

a b
d

c X

e

X

Fig. 3. Break process tree discovered from the log in Fig. 2 if traces with break
behaviours are not removed before splitting the log

Algorithm 2: Removing Traces with Break Behaviours

Input: A break loop cut
∑

1
,
∑

2
, ...,

∑
n

of directly-follows graph G, the event
log Lbreak of G

1 for Trace t in Lbreak do

2 if End(t) P
∑

i
∧i �“ 1 then

3 Lbreak.remove(t)
4 end

5 end

A Running Example. Finally, a running example shown in Fig. 4 demon-
strates the above three steps. The input is the log described in Fig. 2.

4 Case Study

We aim to discover the high-level treatment process in ICU for ACS patients.
Specifically, domain experts are interested in how patients are discharged from
the ICU. The goals of the case study are:

1. to discover the ACS patients’ treatment pathways, especially discharge
behaviours from ICU,

2. to quantitative and qualitative evaluate the proposed approach against exist-
ing process discovery methods with real-life break behaviours,

3. to gain insights into ICU discharge behaviours for ACS patient.
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Step 

1

2

3 <ab>              <abcdeabc>

<abcdeab>   <abc>

<abcd>

<abcdeabcd>

b a

c d e
Break 

Loop 

Cut

a, b c, d, e

c, d, e End 

Activity
d d

<ab>

<abcdeab>

c c

Fig. 4. A running example of our proposed approach based on the example in Fig. 2

4.1 Dataset and Event Log Generation

We utilise retrospective data from the EHR extracted between 2013 and 2018
from a single Cerner Millennium Electronic Medical Record domain in Sydney,
Australia [7]. The Speed-Extract dataset comprises patients that presented with
suspected ACS to facilities in Northern Sydney local health district (LHD) and
Central Coast LHD [24]. Ethics and governance approval, including a waiver of
informed patient consent, are provided by the Northern Sydney LHD Human
Research Ethics Committee for the Speed-Extract dataset [7].

The Speed-Extract dataset consists of 18 tables; the following patient data
is provided: Demographic and diagnosis information on patients, triage informa-
tion after patients have arrived at hospitals, and transfer information between
different ward levels. The orders placed during their stays, such as radiology,
laboratory tests and procedures, are also provided.

We focus on a particular type of ACS, ST-elevation myocardial infarction
(STEMI). STEMI patients are identified using the ICD-10 code (I21.3). We
target at patients admitted to emergency wards and directly transferred to ICU.
Patients who spent less than 24 h in hospitals are excluded. Furthermore, patients
older than 85 or younger than 40 are excluded, as they have shown to be less
informative in the treatment process development [7].

We treat each encounter as a case in the event log, as every encounter repre-
sents a unique hospital interaction. In total, 1,582 cases that have 666 variants
are included. As behaviours in ICU can be relatively complex without proper
abstractions, we categorise the behaviours into five activities: Invasive Moni-
toring, Patient Care, Laboratory Test, Radiology and Procedure. We follow [10]
to extract frequent laboratory tests performed in ICU. Radiology represents the
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imaging operations in ICU [19], while Procedure involves the procedures per-
formed on ICU patients (e.g., breathing assistance with ventilators). Overall,
the event log contains events for 15 activities:

– two activities regarding the registration and triage in the emergency ward,
– three activities regarding patient conditions assessments in the triage,
– three activities regarding transfer to normal ward or ICU,
– five activities regarding treatments and measurements in ICU,
– two activities regarding discharge or death.

4.2 Results

Goal 1: ICU Treatment Process Discovery. The model discovered by our
method is presented in Fig. 5 where the break process tree is translated into a
BPMN model. The process starts with patient registration (ER Registration)
and ends with different outcomes (Discharge or Death). One trajectory is that
patients are directly admitted to ICU after registration. The remaining patients
have been assessed before triage. We find that the treatment pathways in ICU
are routine (i.e., a loop structure). The treatment pathway starts with invasive
monitoring (i.e., “body” part in Fig. 5) for vital measurements [6]. The patients
can be discharged from ICU at this point, given that they have received sufficient
treatment and their monitoring results are normal. If not, nursing care (Patient
Care) is conducted afterwards, involving care such as turning the patient in
the bed. Patients can be asked to perform several treatments or measurements
(i.e., “redo” part in Fig. 5) decided by the ICU team, depending on the moni-
toring results. Patients can also be discharged during the routine ICU treatment
process, given that they have met the discharge criteria [18]. Such discharge
behaviours (marked red in Fig. 5) can be considered break behaviours (i.e., a
break from the “redo” part of the routine ICU treatment process). In fact, the
orders placed in ICU are usually in bulk and made at the beginning of each day.
We commonly observe that some orders are cancelled (e.g., discontinued or with-
drawn) because patients have met the discharge criteria and been transferred out
from ICU. After discharging from ICU, patients can be either discharged from
the hospital or admitted to normal wards.

Goal 2: Validating with Existing Process Discovery Methods. To com-
pare our method with existing process discovery algorithms, we apply our
method, the inductive miner infrequent (IMF) [17], and the SM [4] on the
extracted event log. We first apply conformance checking to the three process
models. The results are presented in Table 1. Our method and the SM can achieve
higher fitness and precision than the IMF. In addition, we adopt size and CFC
(the number of branching caused by split gateways) to report the complexity of
the process models. Although our model’s size is slightly larger than the SM’s,
our method achieves a lower CFC.
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Fig. 5. The process model discovered by the proposed approach.

Table 1. Conformance checking results for the discovered process models.

Algorithms Fitness Precision Size CFC

Inductive Miner Infrequent (IMF) 0.98 0.60 49 46

Split Miner (SM) 0.98 0.80 38 41

Ours 0.99 0.81 41 36

Figure 6 shows the process model discovered by the SM. Although the process
model can still describe the ICU treatment process according to the conformance
checking results, it is hard to recognise the loop structure between ICU Admis-
sion and ICU Out. For instance, domain experts cannot tell which is the “redo”
part. The discovered process model is unstructured and hard to understand
compared to our model, because it barely produces valuable insights for domain
experts. The process model discovered by the IMF is presented in Fig. 7. Accord-
ing to Table 1, the model has lower precision and higher complexity. Unlike our
method, the discovered loop structure misses Invasive Monitoring, which is dis-
covered as a parallel activity with the loop structure. Hence, the model cannot
accurately represent the process since Invasive Monitoring cannot happen at an
arbitrary time during the routine ICU treatment process. Besides, none of the
break behaviours are discovered. To summarise, existing process discovery meth-
ods have difficulty discovering such break behaviours. The discovered models are
unstructured, hard to understand and possess relatively low precision and high
complexity.

Goal 3: Further Analysis of ICU Discharge Behaviours. More than
66.7% patients are discharged within 48 h, and no deaths are found among them.
Most patients (64.4%) are normally discharged from ICU after invasive monitor-
ing if their vital measurements are within the normal range. Some are further
discharged from the hospital (i.e., transferred to other care facilities), and the
remaining are admitted to normal wards in the hospital (i.e., Admission NC ).
Furthermore, three break discharge behaviours are discovered. 33.7% of patients
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Fig. 6. The ICU pathways discovered by SM.

Fig. 7. The process model discovered by the IMF.

are discharged from ICU after performing further examinations ordered by doc-
tors (i.e., laboratory tests and radiology), which is in line with the guideline [18].
Conversely, only 1.9% of patients are discharged after specific procedures are con-
ducted. Further investigation indicates that the most are discharged because of
death. Regarding discharge time, we find that 74.2% of patients are discharged in
the morning, which indicates that although ICU usually have discharge rounds
twice a day, the primary discharge decisions are made in the morning.

5 Discussion and Conclusion

This paper proposes a method to extend the IM framework to represent and
discover break behaviours. The method is then applied to a healthcare event
log to discover ICU discharge behaviours. Our method can discover more struc-
tured, understandable and accurate process models than existing process discov-
ery algorithms.

It has to be noted that although our method can discover break behaviours
in process trees, it may not always be possible to convert the break process
trees into equivalent BPMNs/Petri nets. For example, in Fig. 5, there will be
remaining tokens in the loop after break behaviours. Future work is needed
to represent the break behaviours in other process modeling notations (e.g.,
using cancellation regions to represent break behaviours). Finally, our method
can be potentially applied to other domains. Further evaluation is needed to
demonstrate the performance of our method.
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Abstract. Patients, when in a hospital, will go through a personalized
treatment scheduled for many different reasons and with various out-
comes. Furthermore, some patients and/or treatments require aftercare.
Identifying the need for aftercare is crucial for improving the process of
the patient and hospital. A late identification results in a patient staying
longer than needed, occupying a bed that otherwise could serve another
patient. In this paper, we will investigate to what extent events from
the first hours of stay can help in predicting the need for aftercare. For
that, we explored a dataset from a Dutch hospital. We compared dif-
ferent methods, considering different prediction moments (depending of
the amount of initial hours of stay), and we evaluate the gain in earlier
predicting the need for aftercare.

Keywords: Early outcome prediction · Healthcare · Patient events ·

Aftercare demand

1 Introduction

Many people are admitted into a hospital every day, all of them different, taking
their own personalized track, this makes for a lot of variability [10]. However,
there is one thing all of these patients have in common during the hospitalization
process, someone has to decide if the patient requires aftercare.

Currently, during the patient stay, a nurse might identify the need for after-
care and file an order. This means that some patients can be identified as soon
as they enter the hospital, whereas others will only be identified near the end of
their stay. As it takes time for the aftercare organizations to make room for a
new patient, identifying patients that need this care very late means that they
have to remain in hospital (even after their medical discharge date) in order to
wait for the next available space. Patients that have to wait in the hospital no
longer require any specialized treatment that can only be performed there. Fur-
thermore, as they cannot be moved on, they will remain in their bed occupying a
space that could be used by other patients that do require specialized treatment.
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(a) without outliers
(b) with outliers

Fig. 1. Time for a patient to be identified as in need of aftercare

In order to establish the importance of this we must derive how long it cur-
rently takes the hospital to identify aftercare patients. Figure 1 depicts two box
plots, showing how long (in hours) it took after admission for the patient to
be marked for aftercare. Currently, on average after 140 h (or median of 74 h) a
patient first gets noted. This leaves quite a lot of room for possible earlier detec-
tion, and consequently earlier arrangements with the aftercare organizations to
make sure a place is available as soon as the patient gets discharged.

By noting these patients early on in their stay gives the hospital employees
more time to inform the aftercare locations causing the patient’s possible in-
hospital wait time to be reduced. In this paper we aim to explore the possibility
to identify those patients who need aftercare and to evaluate how early on during
the process this can be done. For that we plan to make use of various decision
tree related models which we will give different inputs (patient data with events
from admission until a certain moment in time) to determine simultaneously if
it is possible to predict aftercare and how soon in the process we can do this.

Within this paper we will first mention other similar studies in Sect. 2. After
which in Sect. 3, the preliminaries will be explained as well as the importance of
this study. Section 4 explains what the data looks like and how it was formatted
accordingly. In Sect. 5 you can read about how we used the formatted data with
the various models. Section 6 gives the results from the methods described in
Sect. 5. Lastly Sect. 7 states the final conclusion.

2 Related Work

As can be read in the introduction, the main goal of this study is to determine if
it is possible to detect early on which patients need aftercare and which do not.
Not many other works can be found that deal with this specific topic of patient
predictions. However, there are many that are related to developing a so called
early warning system for hospital patients.
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In [8], authors try to predict circulatory failure in the intensive care unit
as early on as possible. Using three different machine learning techniques they
tried to predict in a binary manner every 5 min after admission if a patient
needed extra care or not. Similar to this, in [5] authors try to identify patients
early on if they are at risk for Sepsis. Here they used gradient boosting at
various timestamps within the first 24 h after admission to identify possible at
risk patients. In [13], an architecture combining process mining and deep learning
was proposed to improve the severity score measure for diabetes patients.

As the aforementioned works, our aim is also to make a reliable prediction as
soon as possible. Contrary to [8], our research cannot focus on predictions every
5 min, as patients should be analyzed and confirmed by a hospital employee. In
this context, we need to decide for a certain moment in time where the prediction
can be done. Besides, while [5] compares different early moments to find the best
time for an early prediction, they do not consider the events that happen during
such period. Moreover, [13] combines both event and patient data, they also
consider data only from the first hours, but their focus is to provide a severity
score rather than a prediction with a high imbalanced positive class.

3 Background

3.1 Predictive Process Mining

Within process mining, predictions are usually made on incomplete traces
regarding future events and/or outcome and related attributes [6]. A trace is a
timely-ordered sequence of events related to the same context (in this research,
such context is a patient admission). Commonly, the prediction is done (the pre-

diction moment) based on all previous events known (denoted as prefix ) and the
prediction target is some event or outcome in the future. So, the prefix trace is
used as input for the prediction model. Making predictions within process min-
ing might be valuable for many organizations, as having an idea of the future
might lead to early actions that can improve the remaining of the process.

3.2 Preliminaries

As the problem statement can be seen as a binary one (do/do not), it allows us
to use decision trees, random forest, and XGBoost solutions within this study. A
decision tree represents a series of sequential steps that can be taken in order to
answer a question and provide probabilities, costs, or other consequences with
it [9]. There is no way of knowing what the best tree depth is for a decision tree,
which means that tests should be performed in order to reach a conclusion. One
option is to use cross validation [11], which is a procedure that resamples the
data it is been given to evaluate a machine learning model in many ways on a
limited data set [7]. Random forest is a collection of decision trees producing a
single aggregated result [9]. For random forests there is also the question of how
many decision trees is best to use. Similarly to a single decision tree, this question
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cannot be answered very easily and requires for example cross validation as well
over various combinations to find the best option [9]. Lastly, XGBoost, which
is alike random forest but uses a different algorithm to build the needed trees.
Random forest builds each tree independently whereas XGBoost builds them one
at a time [9]. Also for XGBoost the problem of deciding on the amount of trees
to use exists, and also here a possible solution is the usage of cross validation [9].

While a decision tree is a white box solution [3] and therefore preferred by
the hospital due to it being explainable [10], random forest and XGBoost are
also experimented with to allow for comparisons in the end. In order to be able
to compare the results from the various models we keep track of the recall and
precision scores [1]. With the hospital it was discussed that the recall scores
weights more heavily than those of precision as it was deemed more important
to be able to identify all of the aftercare patients (even though this might give
many more false positives) than to miss them. Another way of comparing the
models is by using a Receiver Operating Characteristic (ROC) curve or the
Precision-Recall (PR) curve [4], which are also created. The preference in this
paper goes to the usage of the PR curve, this due to the large class imbalance
that we are dealing with. By computing the Area Under the Curve (AUC) for
both ROC and PR allows for easy comparison between different models.

We will also make use of feature importance such that we can determine
which datapoints we should keep and which can be removed. Feature importance
is calculated as the decrease in node impurity weighted by the probability of
reaching that node in a decision tree [12].

4 Data

4.1 Data Introduction and Processing

As a data set we received the patient records from 2018. We filtered this set to
traces that are at least 24 h long but at most 2 months. Each patient used in
this data set had given their permission to their data being used for analysis
purposes. This resulted in a set containing 35380 unique hospital stays of which
only 4627 required a type of aftercare, which is only 13% and could thus be
classified as an infrequent behaviour [10].

For each hospital stay we collected the following patient information: after-
care required, aftercare type, age, gender, activities, timestamps, and additional
information. Activities can be one of the following: hospital admission, hospital
discharge, admit medication, poli appointment, start operation, end operation,
start lab, and end lab. The additional information is related to the activity admit
medication and specifies how it was admitted. Each stay was also assigned a ran-
dom unique case id this to make sure patient information is anonymous [10].

We are currently not taking patient departments or any data regarding why
they were admitted to the hospital into account. This is due to the fact that
within this research we only considered the data of 2018. However, keeping in
mind that a lot newer data exists and that this follow up data covers the Covid-19
years we had to create a dataset using features that stayed consistent throughout
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these years. After discussing with the hospital about what changed the most for
patients during these years, and what would thus be an unreliable feature, we
excluded the patient departments. The admission reason was excluded as this
field is filled in manually within their systems, this creates a lot of possible
different descriptions for the same issue.

In order to guarantee a certain quality event log, traces in which events
happened before admission or after discharge were removed. Traces where end
operation was before or at the same time as start operation or if either one of
the two was missing (similar for start and end lab activities) were also removed.

4.2 Extending the Feature Set

We supplemented each trace with some manually created features of which the
possible importance was questioned by the hospital. For each trace it was cal-
culated how many times the same patient had been admitted previously, how
many of those stays required aftercare, the average hospital duration of previous
stays, the standard deviation of previous stays, the average duration in between
admissions, and the standard deviation between admissions.

4.3 Formatting and Predicted Values

As decision trees do not take event logs as input data, we had to encode the
datapoints in such a manner that all relevant points can be inputted at once.
An initial dataset consisting of the manually created features combined with the
patients age and gender was created. For a second dataset we had to make a
distinction between amount and occurrence. With amount we count how often
a certain activity took place (how often did a patient receive medication? etc.),
whereas with occurrence we take note in a yes/no (1/0) manner if a certain
activity took place at least once (did the patient receive any medication? etc.).
This created two similar looking datasets, both containing the data from the
first dataset one augmented with the amount and the other with the occurrence

encoding. Later on, as will be described in Sect. 6, we also perform a count on
specific medication and operation groups.

As prediction value, the dataset also contains a column indicating if that
patient does need aftercare (denoted by 1) or not (denoted by 0).

5 Methods

The hospital records many different data points. It is of course not possible to just
use everything and hope for the best. Therefore, we will approach the problem in
the following manner. We start by using only data available at admission. This
would give first insights for each patient at arrival moment if aftercare might
be needed. Earlier than arrival time we cannot predict. This also provides us
with a benchmark to which we can compare the models. Secondly, we will use a
selection of features, after discussing with the hospital on possible relevancy, if
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based on the full trace data the same or an increase in prediction accuracy can
be seen compared to the benchmark. Using feature importance we can eliminate
features that are not as beneficial as expected and rerun the models.

While in this paper we do combine prediction making and process mining
on incomplete traces, we do so in a different manner. We chose two different
prediction moments to be evaluated: 24 and 48 h. As part of the research ques-
tion is to determine how early we can predict for each patient, we will evaluate
whether postponing the prediction moment contributes to an increase in predic-
tion accuracy. For that, we will create two different models: one that considers
only events happened within 24 h as a prefix trace, and 48 h for the other. They
will be compared to the two benchmark models described.

The data used is split in two different ways. First in a 5-fold manner to
perform cross validation for all three of the methods allowing us to find the best
possible tree depth or number of trees used. Secondly, there is a 8:2 split for the
final train/test set based on the results from the cross validation.

For the decision tree we will take cross validation over various tree depths (1
to 25), and for random forest and XGBoost we compare different amount of tree
usages (1 to 50). For each step we calculate the accuracy and recall score, as can
be seen in Fig. 2. The best possible tree depth/amount of trees is derived from
where the recall score is highest along the plot. The recall score is taken here as
we mentioned that this is the score the hospital is the most interested in.

6 Results

Admission Data Only. Starting with just the datapoints known upon arrival
we get the recall plots over various depths/amount of trees using cross validation
as can be seen in Fig. 2. From each plot we note the highest possible value with
parameter and use those to create a final model. The final model results can be
viewed in Table 1. Based on these results we can draw an intermediate conclusion
that it is indeed possible to predict if a patient needs aftercare to a certain degree
the moment they enter the hospital without knowing all too much about them.
All three models appear very similar in overall results (F1).

Full Dataset. Next up was using the full dataset to determine feature impor-
tance. The full dataset was constructed in two manners (amount and occurrence).
Similar to the previous section, here we also first tested using cross validation
what the best depth/amount of trees is (Fig. 4). With this, we get the results in
Table 1. Here we can clearly see an increase in scores for both the random forest
and XGBoost compared to just the admission data. The decision tree results are
similar with regards to just the recall score, however, the F1 scores did improve.

We did not find much difference in scoring between using either the amount
or the occurrence datasets (hence we only show one of them). Given that the
difference is minimal between the two means we can decide on one of them to
use from this point forward. We decided on using the amount encoding.

Before we can do additional testing based on a shorter timeframe it is impor-
tant to derive which of the features actually contributed to the results. Calcu-
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(a) Recall scores over various tree depths
for a single decision tree

(b) Recall scores over various amount of
trees for random forest

(c) Recall scores over various amount of
trees for XGBoost

Fig. 2. Recall scores for various tree models using the admission data only dataset

(a) Decision tree (b) Random forest (c) XGBoost

Fig. 3. Feature importance. 0 - age, 6 - medication, 12 - total time stay

lating the feature importance for each model we obtain the plots in Fig. 3. The
three highest bars correspond to: the admission data, total time stay ; the age;
and the medications. From the first two features we cannot create a dataset
based on time as they are constant values. Medication however is a value that
might change throughout a patient stay. Therefore, we created a new dataset
based on medications a patient received within 24 h. Within the hospital, more
than 1000 different medications are used and creating a dataset that differen-
tiates between them would result in very sparse dataset that takes a long time
to train. Luckily, each medication comes with an ATC code [2]. An ATC code
consists of 7 characters where the first four represent a medication group. There
are only 268 medication groups. Grouping the medications quickly downsizes
the dataset. Now, instead of counting each individual medication, we count how
often a patient got admitted a medication from which medication group.
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(a) Recall scores over various tree depths
for a single decision tree

(b) Recall scores over various amount of
trees for random forest

(c) Recall scores over various amount of
trees for XGBoost

Fig. 4. Recall scores for various tree models using the full dataset with amount

Admission and First 24 h Medication Data. The combination of admission
data and the first 24 h of medication group counts gives the third dataset. We
again use cross validation to find the best parameters (Fig. 5) after which we
obtain the final test scores (Table 1). Comparing these results to admission data

only we can immediately tell that the recall score increased. Although the recall
increased for all, the AUC PR for the decision tree was lower.

According to hospital domain experts, the way in which medication was
admitted and the operation type might indicate a need for aftercare. Therefore
a fourth and last test set was constructed based on the feature importance results
and the domain knowledge of the hospital.

Admission, Medication, Admittance Way, and Operation Data (24 h
& 48 h). The last dataset also took all the same steps as the previous datasets
(Fig. 6, 7). For this dataset we did create an extra test for the first 48 h of
events in order to see to what extent waiting for more information would provide
better results, which can be found in Table 1. We can compare these results to
the ones from the previous section. Here, one model had a slightly decrease in
the recall score whereas others increased. Similarly for the AUC PR scores. Also,
comparing the scores in Table 1, we do not see a major increase in using a dataset
that considers 48 h.

There is one major downside with how the results are now portrayed. Our
testset consists out of 1/5 from the total dataset, which was the entire year of
2018. However, this is not the amount of patients that the hospital will work
with on a day to day basis. Therefore it is important to look at the effect that
the final and best model would have each day for a certain timeframe (Fig. 8).
Based on this figure we can see that on average the hospital will have to verify
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(a) Recall scores over various tree depths
for a single decision tree

(b) Recall scores over various amount of
trees for random forest

(c) Recall scores over various amount of
trees for XGBoost

Fig. 5. Recall scores for various tree models using the admission with medication first
24 h dataset

(a) Recall scores over various tree depths
for a single decision tree

(b) Recall scores over various amount of
trees for random forest

(c) Recall scores over various amount of
trees for XGBoost

Fig. 6. Recall scores for various tree models using the admission with medication,
admittance way and operation first 24 h dataset

between 40 and 60 patients per day of which 10 to 20 will indeed require aftercare.
Generating these results daily only takes a matter of seconds and is thus very
doable. After discussion with the hospital it was concluded that these numbers
were reasonable which means we can draw a final conclusion.
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(a) Recall scores over various tree depths
for a single decision tree

(b) Recall scores over various amount of
trees for random forest

(c) Recall scores over various amount of
trees for XGBoost

Fig. 7. Recall scores for various tree models using the admission with medication,
admittance way and operation first 48 h dataset

(a) Decision tree

Fig. 8. Model prediction per day based on the 24 h model of admission, medication,
medication admittance way, and operations dataset

Table 1. All model scores for the various datasets

Dataset Model Accuracy Recall Precision F1 AUC ROC AUC PR FP TP

Admission data
only

Decision Tree 0.60 0.82 0.23 0.35 0.70 0.52 2635 767

Random Forest 0.68 0.66 0.24 0.35 0.67 0.45 1941 619

XGBoost 0.64 0.74 0.23 0.35 0.68 0.49 2289 692

Full Decision Tree 0.78 0.80 0.36 0.49 0.79 0.58 1351 750

Random Forest 0.79 0.81 0.37 0.51 0.80 0.59 1319 760

XGBoost 0.78 0.81 0.35 0.49 0.79 0.58 1379 754

Admission with
Medication
(24 h)

Decision Tree 0.57 0.83 0.21 0.34 0.68 0.52 2892 776

Random Forest 0.71 0.80 0.29 0.42 0.75 0.54 1879 747

XGBoost 0.71 0.78 0.28 0.42 0.74 0.53 1859 731

(continued)
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Table 1. (continued)

Dataset Model Accuracy Recall Precision F1 AUC ROC AUC PR FP TP

Admission with
Medication,
Admittance way,
Operation (24 h)

Decision Tree 0.66 0.80 0.24 0.37 0.72 0.52 2175 696

Random Forest 0.70 0.81 0.27 0.40 0.75 0.54 1892 698

XGBoost 0.72 0.75 0.27 0.40 0.73 0.51 1738 648

Admission with
Medication,
Admittance way,
Operation (48 h)

Decision Tree 0.70 0.78 0.24 0.37 0.72 0.51 2100 677

Random Forest 0.71 0.84 0.28 0.43 0.77 0.56 1847 732

XGBoost 0.73 0.79 0.29 0.42 0.75 0.54 1719 686

7 Conclusions and Recommendations

Looking back at the research question stated in the introduction, we can defi-
nitely conclude that it is possible to predict which patients need aftercare and
which do not to a certain degree.

We also wanted to analyze if patient could be identified earlier on in their
trajectories compared to what is happening now. We had already derived that
currently it takes about 74 h before a patient is marked for aftercare. Within this
paper we provided models at three different timestamps that are of relevancy
(0, 24, 48 h). How ever large the time benefit will be depends on what model the
user chooses based on the first part of the research question.

Given that the hospital cares about the model being explainable only leaves
one viable usable option for them, the decision tree. Comparing the third, fourth
and fifth datasets from Table 1, we can say that there is no need to wait 48 h
before making a prediction. The decision on which model to then use is more up
to them. Both the 24 h results are very similar, one results in a slightly higher
recall and the other in a slightly higher precision. Our recommendation would go
to the model that uses admission, medication, medication admittance way, and
operations given that the this one appears to be more of an increase compared
to the first dataset.

If we were to give a final conclusion without being limited by the explainability
rule, then we would recommend the random forest model at both the 24 h and the
48 h mark. This model has the highest AUC PR and overall higher F1 score.

In both conclusions we make use of the 24 h model, which compared to the
current time median from Fig. 1, is a major speed up. Using these models to aid
the nurses currently working on this to help identify patients as early as 24 h
after admission, would give the employees who talk to the aftercare organization
a lot more time to organise.

During the discissions with the hospital many more mentions were made
about other datasets that they have in their possession. These can be used to
possibly enhance the current models.
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Abstract. In recent years, hospitals and other care providers in the
Netherlands are coping with a widespread nursing shortage and a directly
related increase in nursing workload. This nursing shortage combined
with the high nursing workload is associated with higher levels of burnout
and reduced job satisfaction among nurses. However, not only the nurses,
but also the patients are affected as an increasing nursing workload
adversely affects patient safety and satisfaction. Therefore, the aim of
this research is to predict the care acuity corresponding to an individ-
ual patient for the next admission day, by using the available structured
hospital data of the previous admission days. For this purpose, we make
use of an LSTM model that is able to predict the care acuity of the next
day, based on the hospital data of all previous days of an admission. In
this paper, we elaborate on the architecture of the LSTM model and we
show that the prediction accuracy of the LSTM model increases with the
increase of the available amount of historical event data. We also show
that the model is able to identify care acuity differences in terms of the
amount of support needed by the patient. Moreover, we discuss how the
predictions can be used to identify which patient care related character-
istics and different types of nursing activities potentially contribute to
the care acuity of a patient.

Keywords: Nurse workload · LSTM model · Event data · Healthcare

1 Introduction

One hundred years ago, in 1922, the first paper on determination of appropriate
nurse staffing levels and bedside nursing time was published [7]. As of today,
both still are important topics that have only partially been solved over the
last 100 years. In the Netherlands, a number of big steps were made towards
the management of nurse staffing levels, including the international acceptance
of nurse-to-patient ratios, the introduction of policies and regulations regarding

c© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 378–390, 2023.
https://doi.org/10.1007/978-3-031-27815-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27815-0_28&domain=pdf
http://orcid.org/0000-0001-7728-1953
http://orcid.org/0000-0002-1071-7932
http://orcid.org/0000-0001-6129-9278
https://doi.org/10.1007/978-3-031-27815-0_28


Predicting Patient Care Acuity: An LSTM Approach 379

shift duration and in general the labour conditions as prescribed in the collective
labour agreement. Since this first publication, the effect and impact of bedside
nursing time on the quality and the actual level of nursing care provided to the
patient continued to become increasingly important for all healthcare actors.

In recent years, hospitals and other care providers are coping with a
widespread nursing shortage and a directly related increase in nursing workload
in the Netherlands. The nursing shortage results in a higher nursing workload,
which is associated with higher levels of burnout and reduced job satisfaction
among the nurses. Both could be predecessors for voluntarily stopping clinical
nursing work by reschooling to a specialised nurse, nurse practitioner or even by
leaving the nursing profession. However, not only the nurses, but also the patients
are affected by the nursing shortage and the high workloads: an increasing nurs-
ing workload adversely affects patient safety and satisfaction. This emerges by
the influence of the nurses on the care process including continuity of care, effec-
tive communication at discharge for the continuity of care at home or another
care facility, patient centeredness and surveillance.

In order to solve such a complex problem, insights about care acuity - patient
characteristics and the nursing care activities that can be expected for a patient -
should be gathered. As a first step, we aim at predicting the care acuity expected
for an individual patient. Such a prediction already provides a good overview of
what nurses should expect for the next admission day and allows for improved
decision making in terms of number of nursing staff per shift, which eventually
leads to a more equal distribution of the care acuity among the nurses.

In this paper we make use of a Long Short-Term Memory (LSTM) neural
network that is able to predict the care acuity per patient for the next admission
day. The predictions are based on hospital data collected during the previous
days of the corresponding admission, including the amount of care acuity on all
previous admission days. Because the conditions of a patient might change due
to deterioration or recovery, the LSTM model also considers the conditions of
the patient at that particular day.

The remainder of the paper is organized as follows. Section 2 provides the
concepts that are relevant for this research. Related research is discussed in
Sect. 3. Section 4 describes the data used in this research, while the approach
to data preprocessing and the prediction model are explained in Sect. 5. Then,
Sect. 6 discusses the obtained results. Section 7 presents the final conclusions.

2 Background

2.1 Process Mining

Predictive process monitoring [1] is a segment of process mining interested in
predicting the future of an ongoing process execution. For that, it relies on the
event log, which is a structured dataset containing information about different
executions of a process and can also be seen as a collection of traces. A trace is a
non-empty sequence of events related to the same process execution, ordered by
time. An event is then an atomic part of the process execution and is character-
ized by various properties, e.g., an event has a timestamp and it corresponds to
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an activity. Many approaches in predictive process monitoring leverage machine
learning techniques, such as neural networks (cf. Sect. 3). For such approaches,
the event log information should be encoded in terms of features. Usually, the
event and its data payload are part of this feature set.

The predictive process is split into two phases: training and prediction. The
training phase counts on the information of previously completed process exe-
cutions to learn relations in the data. The prediction phase considers an ongoing
process execution. This means that such a process execution is not completed
yet. The known part of the trace is defined as the prefix and is used as the input
for the prediction model. The future sequence of events that is supposed to take
place after the prefix, is defined as the suffix and represents the prediction made
by the model. Predictive process monitoring is also applied to predict the out-
come of a process execution, or its completion time. For some organizations, it
can be highly valuable to be able to predict in advance what is going to happen
to a process execution. In this context, the organization can focus on preventing
issues from happening, rather than reacting to them after their occurrence [10].

2.2 Long Short-Term Memory Neural Networks

The Long Short-Term Memory (LSTM) model is an advanced form of a Recur-
rent Neural Network (RNN) that allows information to persist [4]. LSTM models
are explicitly designed to solve the problem of long-term dependencies by chang-
ing the structure of hidden neurons in a traditional RNN. A LSTM model can
be used for predicting on the basis of time series data due to the characteristic
of retaining the information for a long period of time. Hence, it is considered
effective and general at capturing long term temporal dependencies [2].

In practice, the LSTM architecture consists of a set of recurrently connected
sub-networks called memory blocks. An individual memory block contains a
functional module that is known as the memory cell and a number of different
gates. The memory cell is responsible for remembering the temporal state of the
neural network over arbitrary time intervals, while the gates formed by multi-
plicative units regulate the flow of information associated with the memory cell.
Together, the memory blocks form the key part of the LSTM that enhances its
capability to model long term dependencies. A memory block contains both a
hidden state and a cell state known as short term memory and long term memory
respectively. The cell state encodes an aggregation of the data from all previous
time steps that have been processed by the LSTM, while the hidden state is used
to encode a characterisation of the input data of solely the previous time step.

A memory block contains three gates that together regulate the information
flow: the forget gate, which decides what information should be removed from
the previous cell state, the input gate, which quantifies the importance of the
new information carried by the input and the output gate, which extracts the
useful information from the current LSTM block by computing the new hidden
state. LSTM models are appropriate to handle sequential data of different sizes
and hence, process executions of different lengths. They are also able to consider
additional information about the events, resources and any other data payload.
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3 Related Work

Over the years, several attempts have been made to quantify and predict care
acuity [3]. Some of the earliest methods that have been developed to quantify
care acuity are the Therapeutic Intervention Scoring System (TISS), the TISS-28
method, the Nine Equivalents of Nursing Manpower (NEMS) and the Nursing
Activities Score (NAS). All methods are based on an identical principle that
distinguishes a number of activities that are scored on a 1–4 basis according to
the intensity of involvement. Subsequently, the assigned scores are used to group
patients into separate classes. The Project Research of Nursing (PRN) assigns a
score to each nursing activity based on, among other factors, the corresponding
duration, frequency and the number of nurses required to execute the activity,
while the Time Oriented Scoring System (TOSS) is a time based system for
quantifying care acuity that exactly times a number of preselected nursing tasks.
Alternatively, the Rafaela method relates each activity to a domain with varying
nursing intensities. The points assigned to the different domains are added up
per patient and department to compute the actual workload per nurse.

As is mentioned in Sect. 2.2, a LSTM can be used for predicting on the
basis of time series data. Today, applications and research of LSTM for time
series prediction include usage in the healthcare sector to predict the day of
discharge [9], hospital performance metrics [5] or to make clinical predictions [8].

Also in the context of process mining, the usage of LSTM is not new. LSTM
models are notably suitable to deal with problems that involve sequences, such as
event traces. Mostly, LSTMs are used in attempting to predict the next activity
in a trace. Tax et al. [12] and Tello-Leal et al. [13] employ LSTM to predict the
next event of a running case. Tax goes beyond, predicting its timestamp and
showing how the method can be used to predict the full continuation of a case
and its remaining time. Pham et al. [11] also uses LSTM models to predict the
next activity in a trace and who would perform such an activity.

Building on the aforementioned works, we believe that simply representing
the trace events with its data attributes is not enough for the problem of pre-
dicting care acuity. Firstly, we think it necessary to use all the historic hospital
data of an admission, as it can show how fast the patient recovery process is.
Therefore, we cannot use predefined prefix lengths. Secondly, there might be
data to learn about this recovery process that are crucial for the model, but are
not associated to any event directly. Such data mostly come from monitoring
the patient’s vital parameters.

To help in the decision making of the distribution of patients among nurses,
we do not need to know the explicit sequence of events that will happen for
a patient. However, it is necessary to know how much support is expected to
be required from a nurse and if any critical task will take place. So, this work
is different from previous research mainly on how we group and represent the
workload of tasks. Besides this, we are interested in predicting a numeric value
representing the care acuity on the next admission day. This objective is a regres-
sion task, rather than a classification task such as predicting the next event label.
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4 Data Description

The data for this research have been obtained from the clinical departments of a
hospital located in the Netherlands throughout 2018. The clinical departments
consist of 8 different departments that are responsible for providing different
levels of adult patient care services: cardiology, gastrointestinal surgery, general
surgery, gynaecology, internal medicine, neurology, oncology, orthopaedics and
pulmonary. The data from the intensive care unit (ICU) and the short stay unit
(SSU) were not considered in this research. The resulting dataset distinguishes
62 features per record, including:

– five patient features: age, BMI, pre-hospitalisation physical mobility, sex,
social economic status and the unique patient identifier;

– eight admission features, such as the admission department, inter-department
transfers, reason and type of the admission and the specialism of the doctor;

– seven time features, such as the current date, day of the week, month, season,
time and the current length of stay;

– eleven medication features, such as the daily number of inhaled, injected,
intravenous, oncology, oral and pain medications and the daily number of
either newly started or discontinued medications;

– four examination features: the daily number of bloodcount, imaging, labora-
tory and microbiology tests;

– eleven vital parameter features, including vital functions such as the daily
maximum and minimum body temperature, early warning score, oxygen sat-
uration level, pain score, respiratory rate and systolic blood pressure;

– six nursing activity features, such as the description, explanation and the type
of the nursing activity and the maximum number of daily occurrences;

– three nursing notes features, such as the length (in terms of lines and words)
and the daily amount of nursing notes;

– three DBC features, such as the amount of diagnosis treatment combinations
in the three previous years per specialism;

– two operation room (OR) features: whether the patient underwent a proce-
dure, or more than two procedures in the OR.

– two discharge features: whether the patient is going to be discharged in the
next 24 or 48 h.

5 Methodology

Data was extracted using a software package on a copy of the electronic patient
file system. This software (CTcue) allows for immediate pseudonymisation of
the data using NLP and pseudo-IDs to de-identify all doctor and patient names
in unstructured text. Data from the nurse activity plan was extracted by a
dedicated SQL query. A common data model was created by representing each
nursing care activity as a single record with the activity, the data source and the
timestamp. Each of the records was assigned to a department, room and bed
and an unique admission number. If multiple clinical departments were visited
by the patient during a day, we assigned the final department to this day.
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5.1 Workload Assignment

Based on the current daily nursing practice, 11 core activity categories were iden-
tified: Activities of Daily Living (ADL), Bed rest, Communication, Drains, Excre-
tion, Feeding tube, Infusions & Lines, Measurements & Observations, Reporting,
Respiration and Woundcare. Initially, a tree was built containing these categories
and the individual nursing care activities, classified into each category. Points
were assigned to each individual activity based on existing work by Jonker [6].
The research conducted by Jonker implemented a dedicated scoring system based
on the Rafaela method [3] and assigns 0–3 points to each individual activity. This
research implemented a similar scoring system with a similar scoring scale, but
with a number of exceptions that received either 4 or 5 points, based on sugges-
tions by the board of nurses. For each patient, all the activities in each category
were summed to compute their daily care acuity. Care acuity is a latent variable
that has no golden or reference standard, but of which the validity could be
constructed via nurse opinion. Figure 1 provides an overview of the care acuity
distribution in the training, validation and test datasets.

An exception was formed by the ADL and Communication categories that
do not contain standalone activities. For the ADL category, we assigned a fixed
baseline workload based on whether a patient was independent, partially inde-
pendent or fully dependent on the nurse during ADL activities. These scenarios
are used in daily nursing practice and were regarded as relevant by the nurses.
Additional points were assigned for auxiliaries used for patient movement and
transfer, equipment and medications, medical devices and the patient’s mobility
status, as they complicate the execution of the nursing care activities contained
in the ADL category. The communication baseline workload consists of one sce-
nario with four components that contribute to the care acuity: bedside rounds,
communication with family members, medical handovers across shifts and time
spent by nurses on registering medical notes and additional reporting. Special
attention was paid to patients with a delirium. Delirium is a sudden change in
the mental state of a patient. If patients are delusional or get a tendency to walk

Fig. 1. The distribution of the care acuity.
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away, nurses need to attend the patient more often. We used the results of the
Delirium Observation Questionnaire for these patients to assign a workload to
the delirium on a daily basis.

5.2 Prediction Preparation and Target

Finally, the time series data are compressed using a compression interval of
exactly 1 admission day. As a results, each admission day is represented by a
single record and the input for the LSTM model consists of a large input vector.
Because of the different magnitude and unit of the different features, each feature
is individually scaled and translated such that its values are in a range between
0 and 1. The scaler is fit on the training set and used to transform the data
contained in both the validation and the test set. After the LSTM model has
produced the predictions for the care acuity, it is necessary to reverse the scaling
to retrieve the actual predictions of the care acuity.

The output of the LSTM model consists of the total care acuity of an individ-
ual patient for the next admission day. For the final day of an admission, there
are no registered nursing activities on the next day. As a consequence, the value
of target variable for each final day of an admission will be equal to 0. In order to
predict the care acuity of the patient, the input variables are formed by the fea-
tures that were contained in the original dataset and specified in Sect. 4, together
with the additional features that were generated in the feature engineering steps
during the data preprocessing. The LSTM model uses these features to predict
the care acuity corresponding to an individual patient for the next admission
day, based on the available date and time stamped hospital data of the current
day. If the current length of stay is longer than 1 day, the prediction is made
based on the available date and time stamped hospital data of the current day
and the previous admission days.

5.3 LSTM Prediction Model

A LSTM neural network consists of different types of layers, including at least one
LSTM layer. Figure 2 depicts the architecture of the LSTM neural network that
was used in this research. The initial layer of the sequential model that represents
the LSTM model is made up by a LSTM input layer. In order to pass the input
data to the LSTM layer of the sequential model, the input shape parameter of
the LSTM layer must be specified. The input to the LSTM layer must be three-
dimensional and consists of samples, time steps and features. A sample is one
sequence and represented by a unique admission in the dataset. A time step is
one point of observation in the sample and represented by a single admission
day, while each feature is one observation at a time step. Furthermore, the units
parameter of the LSTM layer indicates the dimension of the hidden state and the
number of parameters in the LSTM layer. Lastly, the return sequences parameter
of the LSTM layer ensures that the full output sequence is returned. By enabling
the return sequences parameter, one is allowed to access the output of the hidden
state for each time step, leading to a prediction of the care acuity on the next
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Fig. 2. The architecture of LSTM neural network

day for each admission day. This way, the LSTM layer eventually facilitates
the prediction and subsequently the evaluation of the care acuity for each day
contained in an admission, based on the previous admission days.

The LSTM layer is followed by a Dropout layer, which is a regularisation
technique that randomly selects nodes to be dropped during each weight update
cycle. To drop the inputs, the layer randomly sets input units to 0 with a fre-
quency that is equal to the dropout rate parameter. To ensure that no values are
dropped during inference, the Dropout layer only applies during training and
not when the performance of the model is evaluated. It ensures that neurons do
not end up relying too much on other neurons or on specific inputs, but that
the model learns the meaningful interactions and patterns in the data. It pro-
duces a robust LSTM model, has the effect of reducing overfitting and eventually
improving model performance, by ensuring that the weights are optimised for
the general problem instead of for noise in the data.

Lastly, a dense output layer is added to the model. The dense layer is a regular
densely-connected neural network layer that is used to consolidate output from
the LSTM layer to the predicted values. Because the return sequences parameter
of the LSTM layer is enabled, the dense layer receives the hidden state output of
the LSTM layer for each input time step. In order to ensure that the output of
the LSTM model has the dimensionality of the desired target, so that the output
of the dense layer consists of a prediction of the care acuity for each admission
day contained in the test dataset, the value of the unit parameter for the dense
layer is set to 1.

In order to determine the optimal values of the different hyperparameters,
a random search followed by a grid search are executed. The random search
randomly samples from a wide range of hyperparameter values to narrow down
the search range for each hyperparameter, by performing k-fold cross validation.
Subsequently, the grid search further refines the optimal values for the hyperpa-
rameters by evaluating the best hyperparameter values returned by the random
search. The results of the grid search together with the specific characteristics
of the hospital dataset indicate that the optimal model performance is achieved
by training the model for 10 epochs, with a batch size of 4, using the nadam
optimizer and the mean absolute error as the loss function.
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6 Results

6.1 Data and Descriptive Statistics

In total, 16755 unique admissions of 12224 unique clinical patients of all ages in
2018 were available for analysis. We kept 15477 adult admissions corresponding
to patients above 18 years of age, as there are specific medical procedures in place
for patients under the age of 18 that come with specialized nursing care activi-
ties outside the scope of this research. Of those, we excluded 2782 admissions of
women that were in labor, because the associated patient care at the Gynecol-
ogy department differs significantly from the remaining clinical departments. In
order to avoid incomplete admissions, we only included those that solely have
admission days in 2018. This resulted in 12492 unique admissions corresponding
to 9931 unique patients. The average length of stay was equal to 7 days (SD 10
days) with a median of 4 days (IQR 2–9 days). We subsequently split the dataset
randomly in a 60% training set that included 7495 admissions, a 20% validation
set (n = 2498) and a 20% test set (n = 2499). This resulted in an equal distri-
bution of care acuity as is shown in Fig. 1, with a median equal to 16 (IQR 9-26)
for the training dataset. The fact that the care acuity increases with the length
of stay can be explained by the fact that sicker patients that require additional
nursing care remain admitted to the hospital, while the relatively fitter patients
that require less nursing care are discharged from the hospital.

6.2 Evaluation Metrics

To evaluate the performance of the model, a selection of different performance
metrics are used. The three most well-known metrics that are used for evaluating
and reporting the performance of a regression model are the Mean Absolute
Error (MAE) – calculated as the average of the absolute error values –, the
Mean Squared Error (MSE) – calculated as the mean of the squared differences
between the predicted care acuity and the actual care acuity values – and the
Root Mean Squared Error (RMSE) – calculated as the square root of the Mean
Squared Error. Besides this, the R-squared score (R2) indicates how well the
model is able to predict the value of the target variable and is the percentage of
the target variable variation that can be explained by the model. It is calculated
by dividing the variance explained by the model by the total variance. Lastly,
the symmetric Mean Absolute Percentage Error (sMAPE) returns the error of
the model as a percentage, making it easy to compare and understand the model
accuracy across different configurations, datasets and use cases.

6.3 Performance Measures

First of all, Fig. 3 shows the predicted care acuity for an exemplary patient
contained in the test set. The lower part of the figure represents the actual daily
workload for each activity category. The actual care acuity, which is the sum of
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Fig. 3. Predicted Workload vs Actual Workload for an exemplary patient.

the different categories, and the predicted care acuity for each admission day are
represented by the green and the red line in the top part of the figure respectively.

On top of this, Fig. 4 shows the average prediction error per consecutive
admission day. Each bar represents the average prediction error for the admission
day indicated by the value on the x-axis of the plot.

Fig. 4. Average prediction error per admission day.

It can be observed that the error decreases during the first five days of the
admissions contained in the test set. After the fifth admission day, the prediction
error stabilizes around a value of 2 and after the thirty-second admission day, the
figure shows multiple outliers for which the value of the prediction error is 0.5
larger or smaller than the previously stable value of 2.0. This can be explained
by the fact that it is harder for the model to learn about longer admissions,
as they become more scarce. Longer admissions often consider patients that
are exceptional, causing different and unexpected things to happen, such as
infections or relapse. The highest errors are caused by an unexpected change of
either the ADL or the Communication baseline scenario.

Furthermore, Table 1 displays the evaluation metrics for the predictions on
the test set that indicate the performance of the LSTM model. The MAE indi-
cates that the model performs well in general, as most of the errors are low.
However, the high MSE value indicates that when the error is on the high side,
it is far above the average. Finally, the R2 score shows a high level of correlation.
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Table 1. The evaluation metrics of the LSTM model on the test dataset.

Evaluation Metric Value

MSE 19.376712799072266

RMSE 4.4018988609313965

MAE 2.230191946029663

R2 0.8627777362127644

sMAPE 47.75%

7 Conclusions and Discussion

Nurses have a strong influence on the quality-of-care that patients receive in the
hospital. To maintain high quality of care under the stress of the nurse staffing
shortage, it has become critical to distribute workload evenly and to see what
type of work maybe automated or done by others. This requires easy access
to insights in the observed and expected care acuity of each patient in daily
clinical nursing care. In this paper, we addressed this by digitally identifying
and quantifying the care acuity corresponding to individual nursing activities
and subsequently, predicting care acuity with a one-day time horizon to allow
for an equal assignment of workload using an LSTM model. The architecture of
the LSTM model proved itself suitable to facilitate this time series prediction for
the hospital dataset. It displays the ability to adapt and make reliable predictions
for the consecutive admission days.

The LSTM model was able to learn from the data and on group level resem-
bles the observed data very well. If patients’ care acuity fluctuates only slightly,
the model is very well equipped to pick up small changes and predict the care
acuity on the next day correctly. However, if there is a sudden deterioration of
the patients’ conditions, the model picks up the changes, but seemingly with
one day delay. This suggests that the model drives to much on the previously
observed care acuity and less on the change of the patient’s condition. Future
work needs to be done to weight the patients’ characteristics and condition dif-
ferently to stress the model to learn more from these features. Also, the initial
care acuity that the model assigns to the first admission day seems rather arbi-
trary. This was to be expected as there is no data available to learn from. As a
consequence, the model has no other means than to assign the average workload
and optimize from there. One solution here could be to train another model to
learn the care acuity for first day based on patient characteristics (e.g., reason
for admission, vital functions) first and use these input values for the LSTM
model to use. A similar approach was applied to predict the day of discharge by
using the input of a GPboost model to determine the day of discharge.

More work is needed on the validity of the assignment of care acuity points
to individual nursing care activities. The initial approach we took worked rather
well. Consecutive rounds of discussion with nurses were performed to agree upon
and optimize the current assignment of points. However, constructing validity
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against the nurses’ opinions should be further researched to reflect daily nursing
care well. Moreover, we need to put more weight on features related to patient
characteristics, so that the ability of the model to make predictions for individual
patients improves. In the end, this research contributed in digitally identifying
and quantifying the care acuity corresponding to individual nursing activities
and show that patients’ care acuity can be predicted one-day ahead.
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Abstract. Care pathways in hospitals around the world reported signif-
icant disruption during the recent COVID-19 pandemic but measuring
the actual impact is more problematic. Process mining can be useful
for hospital management to measure the conformance of real-life care
to what might be considered normal operations. In this study, we aim
to demonstrate that process mining can be used to investigate process
changes associated with complex disruptive events. We studied pertur-
bations to accident and emergency (A&E) and maternity pathways in
a UK public hospital during the COVID-19 pandemic. Co-incidentally
the hospital had implemented a Command Centre approach for patient-
flow management affording an opportunity to study both the planned
improvement and the disruption due to the pandemic. Our study pro-
poses and demonstrates a method for measuring and investigating the
impact of such planned and unplanned disruptions affecting hospital care
pathways. We found that during the pandemic, both A&E and maternity
pathways had measurable reductions in the mean length of stay and a
measurable drop in the percentage of pathways conforming to normative
models. There were no distinctive patterns of monthly mean values of
length of stay nor conformance throughout the phases of the installation
of the hospital’s new Command Centre approach. Due to a deficit in
the available A&E data, the findings for A&E pathways could not be
interpreted.

Keywords: Process mining · Process changes · Conformance
checking · Normative model · Perturbations · Care pathways ·

Patient-flow · COVID-19 · Maternity · A&E

1 Introduction

Process mining techniques can be used to measure the level of compliance by
comparing event data to a de jure or normative model [19]. In the healthcare
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domain, normative models can be extracted from clinical guidelines and proto-
cols. Deviations from clinical guidelines occur frequently as healthcare processes
are intrinsically highly variable - a challenge described in the process mining
for healthcare (PM4H) manifesto [16]. In healthcare it is sometimes very impor-
tant to deviate from guidelines for the safety of the patient. Other distinctive
characteristics of healthcare processes include the need to consider contextual
information during analysis and be aware of process changes brought about by
advances in medicine and technology.

Changes in healthcare processes can also be caused by external factors that
are unplanned, for example the COVID-19 pandemic, or planned, for exam-
ple the implementation of a new hospital IT system. We propose a method to
examine the impact of these planned and unplanned factors on patient care by
analysing pathway changes using process mining techniques. We are building
on an approach for checking conformance of event logs to discovered models
to detect sudden process changes that was originally developed and validated
against synthetic data [5]. The method proposed in this paper investigates pro-
cess changes due to known perturbations to real-life care pathways using process
mining techniques including checking conformance to normative models.

Distinctive characteristics of healthcare such as high variability and frequent
process changes lead to certain key challenges in mining healthcare processes
identified in the PM4H manifesto [16]. Challenge C2 in the manifesto describes
the need for novel techniques for checking conformance of healthcare processes to
available clinical guidelines. This is relevant to our study as we compare real-life
care pathways in event logs with normative models by checking conformance.
As highlighted in challenge C3 of the PM4H manifesto, changes in healthcare
processes over time due to factors such as seasonal changes or the introduction
of a new work system should also be considered. This challenge directly affects
our study on the impacts of two major perturbations on care pathways.

We studied patient pathways at Bradford Royal Infirmary (BRI) which is a
public hospital in Bradford, UK. During the period of our study there were two
potential sources of perturbations. These were the COVID-19 pandemic and
the near co-incident implementation of a new Command Centre approach to
patient-flow management. A study protocol had been designed [11] to evaluate
impacts of the newly implemented Command Centre system on patient safety
and healthcare delivery. However, shortly after the Command Centre was intro-
duced, COVID-19 disrupted the hospital activities along with the rest of world.
Thus, we have a unique opportunity to study effects of two co-incident sources
of perturbations on hospital processes, one of which was planned and the other
was unplanned.

The Command Centre approach was based on a new IT system and a corre-
sponding redesign of patient-flow management processes and implemented in a
series of planned interventions. The Command Centre aims to improve health-
care delivery by providing relevant information to assist staff in making real-time
complex decisions [6]. Designated staff monitor continuously updated hospital
information summarised on a wall of high-resolution screens through applica-
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tions called ‘tiles’. The ‘tiles’ present process status data from established hos-
pital information systems used across the different units of the hospital. The
Command Centre software uses rule-based algorithms to warn about impending
bottlenecks and other patient safety risks to support optimised patient care and
effective management of resources. The intention of the Command Centre app-
roach is to provide centralised surveillance of hospital patient flow to a team of
people empowered to manage that flow in the best interests of patients and the
hospital, following approaches that are well established in other industries such
as air traffic control centres at airports.

The COVID-19 pandemic has impacted healthcare around the world, notably
with a great reduction in the use of healthcare services [15] as available resources
were allocated to the high demand of care for COVID-19 patients. The re-
prioritisation of resources to meet the challenges of the pandemic affected normal
care processes. For instance, in England, major disruptions to the pathway for
colorectal cancer diagnosis led to a considerable reduction in detection of the
disease in April 2020 [14]. In the city of Bradford, UK, surveys for studying
the pandemic’s impacts on families showed increases in mental health issues in
adults as well as children [3]. Our hypothesis is that the impact of external dis-
turbances on care processes can be detected and measured in event log data
extracted from BRI’s Electronic Health Records (EHR) data. In this paper, we
propose a method for identifying and measuring impacts of disruptive events by
building on previously established approaches of detecting process changes and
apply this method on a real-life case study.

1.1 Related Work

This process mining work is part of a larger project based on the study proto-
col [11] to evaluate impacts of the Command Centre at BRI. Our focus is on a
subsection of the study protocol aiming to analyse effects of the Command Cen-
tre on patient journeys using process-mining techniques. Investigation of patient
flow is expected to contribute towards assessing the installation of the Command
Centre under the hypothesis that productivity, associated processes and patient
outcomes are influenced by patient flow. The study protocol also hypothesised
that the recording of hospital data is influenced by the Command Centre’s instal-
lation. Studies on quality of data, patient flow and patient outcomes throughout
the phases of the Command Centre’s installation are proposed in the protocol.

In related work, Mebrahtu et al. [13] investigated quality of data and patient
flow to test the hypothesis that the Command Centre positively impacts recorded
data and flow of patients through the hospital. They considered five time periods
based on different interventions involved in the Command Centre’s installation
as shown in Fig. 1. They also explored A&E patient records for missing times-
tamps of certain events and the relative occurrence of the valid A&E pathway
to assess the Command Centre’s impact on data quality. To study the impact
on patient flow, time intervals between selected timestamped events recorded for
A&E patients were analysed. They observed no notable improvements to A&E
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patient flow and quality of data suggesting the Command Centre had no measur-
able impact. A drawback of the investigation was that the COVID-19 pandemic
that disrupted normal hospital function occurred nearly co-incidentally with the
launch of the Command Centre. This suggests the need for further research to
understand how command centres may influence data quality and patient jour-
neys in hospital settings.

1.2 Study Design

In this paper, we aim to extend the previous work by including an investigation of
the impacts on patient pathways using process mining. Process mining methods
have been previously used in describing hospital journey of patients in different
healthcare domains. For instance, process mining has been used to discover that
few patients undergoing chemotherapy followed an ideal care pathway [1]. A
study of A&E pathways using process mining attributed the reason for longer
stays in the department to a loop in the pathway [17]. This paper proposes
a method aiming to measure and investigate process changes associated with
disruptive events which is demonstrated using a case study of in-hospital care
pathways.

Fig. 1. Timeline of the study period indicating the interventions involved in installing
the Command Centre.

Our study focuses on the perturbations to A&E and maternity pathways
through BRI arising from COVID-19 and the co-incident implementation of a
new patient-flow management system. We aim to add to the previous inves-
tigation of A&E pathways through the hospital described in the related work.
The choice of maternity pathways is justified by the ease of identifying maternity
patients in the data and of obtaining a predetermined normative model as mater-
nity processes can be expected to be reasonably consistent in nature. Moreover,
maternity patients were possibly the least affected by COVID-19 measures that
prevented other patients from accessing timely medical treatment. Exploring
impacts of two simultaneous perturbation sources on hospital pathways presents
a unique opportunity to reflect on the challenges of PM4H. Through this case
study, we demonstrate a method to measure the impact of perturbations on the
quality of hospital service in the context of in-hospital care pathways.



Measuring the Impact of COVID-19 on Hospital Care Pathways 395

2 Methods

2.1 PM2 for Exploring Impacts on Care Pathways

We followed the PM2 process mining methodology [4] as adapted by Kurniati
et al. [10] to analyse process changes using a multi-level approach. The first two
stages of PM2 are focused on formulating basic research questions followed by
two stages of analysis which delve deeper into the objectives while the last two
stages focus on process improvements and real-world implementation. In our
investigation we applied stages 1 to 4 of PM2 but not stages 5 and 6 as process
improvement and clinical intervention were out of the scope of this work. For the
multi-level approach, we focused on model and trace-level process comparisons
to explore impacts of potential perturbations on care pathways.

For Stage 1 (Planning), our research questions were drawn based on the
process mining subsection of the study protocol [11] to evaluate impacts of the
new Command Centre at BRI. Previous related studies of impacts on patient
flow [13] and patient safety [12] were also included in framing the process min-
ing objectives. Research questions were further adapted to studying A&E and
maternity pathways during the time period covering the two perturbations. In
Stage 2 (Extraction), selection of data attributes relevant to the patient path-
ways was guided by previous related work [13], advice from clinicians and our
understanding of attribute labels with the help of public information resources.
A clinician familiar with the study data was part of the project team, while other
clinicians were engaged as interviewees as described in Stage 2 of the ClearPath
method [9].

In the next stage, Stage 3 (Data Processing), we used patient admission as
the case identifier to create event logs for in-hospital care pathways. The models
that were discovered in Stage 4 (Mining and Analysis) identified the key activ-
ities for building normative models based on clinical advice. Our main analysis
involved process comparisons over the period of interest by studying durations
at the trace-level and conformance and precision between event logs and norma-
tive models at the model-level. The conformance is measured by checking the
proportion of traces in the event log that fit the model. Precision is a measure
obtained by comparing the set of traces that are allowed by the model with the
set of traces in the event log fitting the model. Thus, precision is not a meaning-
ful measure for unfit traces [2]. In this paper, the precision was calculated only
for traces that were fitting the respective process model.

For obtaining normative models for A&E and maternity pathways, we fol-
lowed a framework proposed by Grüger et al. [7] for the non-trivial transforma-
tion of clinical guidelines into computer-interpretable process models. The frame-
work known as the Clinical Guideline Knowledge for Process Mining (CGK4PM)
comprises five steps that include identification of required key inputs, conceptu-
alisation through workshops with stakeholders, formalisation to obtain a semi-
formal process representation of guidelines, implementation by translating into
a selected process modelling language and finally the testing step for verifying
and validating the implemented model.
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For the first step of identification, clinical guidelines were selected based on
discovered process models and discussions with clinicians. We skipped the con-
ceptualisation step due to resource constraints and instead we consulted clini-
cians for the transformation of clinical guidelines into semi-formal process mod-
els. This was achieved by identifying relevant activities through process discovery
and consulting clinicians on the expected order of events for patients who were
progressing well. The process representation of clinical guidelines was then trans-
lated into Business Process Model and Notation (BPMN). The BPMN model
was verified by conformance checking and reviewed by clinicians for validation.

2.2 Data

The data source for our case study was the EHR data from BRI. A data extract
was provided for our study by the Connected Bradford [18] data linkage project.
The Connected Bradford project brings together data covering a wide range
of factors influencing population health for the Bradford region through data
linkage. In particular we used the summary of activity produced as a part of
integrating hospital data to Secondary User Services (SUS) which is created
as a data feed to the national data warehouse for healthcare data in England,
augmented by timings from a data feed used to drive the Command Centre
tiles. The data extract included information on A&E patients, outpatients and
inpatients along with diagnoses, procedures, surgeries, prescriptions and some
patient demographics.

Our study uses the A&E and inpatient data during the period from January
2018 to August 2021. The A&E timing data that was used in this study came
from the Command Centre system which recorded 100% of the data starting
only from September 2020. However, it did also include a small amount of data
(approximately 20% of attendances, which may not be a representative sample)
from prior to this point. Thus, the findings from the A&E data in this study
cannot be interpreted.

Fig. 2. A&E models.

For analysing A&E pathways, we identified 193,772 A&E attendances that
occurred during the period of study. For analysing maternity pathways, we
selected admissions of patients who registered in one of the ‘maternity wards’
which included a birth centre for uncomplicated labour cases, a labour ward for



Measuring the Impact of COVID-19 on Hospital Care Pathways 397

patients needing specialist care during labour, two maternity operating theatres
and two wards for patients needing care before or after birth, referred to in this
paper as ‘natal wards’. A total of 18,076 maternity admissions were identified
for analysis of which 16,905 resulted in the delivery of a newborn baby with a
recorded timestamp. Data on admissions, ward stays and delivery timestamps
were distributed across three tables which were linked through admission and
patient identifiers.

2.3 Tools

The summary of activity data from BRI was made accessible on the cloud by
the Connected Bradford service via Google Cloud Platform (GCP). Accessing
data was possible through the relational database management system BigQuery
provided by GCP. Timestamped data was extracted to RStudio Server Pro stor-
age using SQL-based queries for the analysis. Event logs and process maps in
the form of directly-follows graphs were generated using the open-source pro-
cess mining platform called bupaR [8] in the RStudio Server Pro environment.
An open-source Python package known as PM4Py [2] was used for conformance
checking against normative models.

Fig. 3. Metrics depicting process changes associated with A&E pathways.

Directly-follows graphs discovered from the event logs identified activities rel-
evant for building normative models following the CGK4PM framework. BPMN
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diagrams of normative models reviewed by clinicians were drawn using an online
tool (https://demo.BPMN.io) and uploaded to Jupyter notebook for conversion
into Petri nets using the PM4Py package. The resulting Petri nets were used for
checking conformance of event logs by token-based replay to obtain percentage
of traces in the event log that fit the normative model.

3 Results

These are the research questions that were identified during Stage 1 (Planning)
of the PM2 methodology: Q1. What are the discovered pathways for A&E atten-

dance and maternity admissions in BRI? Q2. What are the normative mod-

els for A&E and maternity pathways in BRI? Q3. Can process changes due to

potential perturbations be identified and measured in discovered pathways using

normative models? In Stage 2 (Extraction), we selected timestamps of arrival,
assessment, treatment and check-out for A&E attendance. For maternity admis-
sions, we selected the timestamps of admission, ward stays in any specialty, and
discharge.

During Stage 3 (Data Processing), the event logs were filtered for the time
period of interest. We filtered out A&E attendances that did not have arrival
and check-out as the start and end points respectively. Two maternity patients
with inconsistent timestamps and one admission with two simultaneous ward
stays were excluded from the analysis. The maternity event log was enriched
with information on the time of childbirth by including the delivery timestamp.

In Stage 4 (Mining and Analysis), directly-follows graphs for A&E and mater-
nity pathways were obtained over the entire period of study, using the pro-
cessmapR package in bupaR, to answer Q1. To analyse process changes at the
trace-level, we examined the mean and median length of A&E attendances and
maternity admissions. The CGK4PM framework was followed to obtain nor-
mative models for A&E (see Fig. 2a) and maternity pathways to answer Q2.
Although the notation in the normative models suggests typical clinical ratio-
nale for transitions, it is to be noted that these do not depict the ideal pathway
for every scenario.

For process change analysis at the model-level, event logs were checked for
conformance and precision against process models. For A&E pathways, the con-
formance and precision between monthly event logs and two process models,
namely the normative model (see Fig. 2a) and a model based on the discov-
ered process map (see Fig. 2b), are shown in Figs. 3a and 3b. The conformance
and precision between monthly event logs and the normative maternity model
are shown in Fig. 4. For obtaining monthly values of conformance and precision,
event logs for each month were selected by including cases that started within the
month. It was found that for both A&E and maternity, the conformance between
event logs and corresponding normative models reduced during the period after
COVID-19 measures were introduced (April 2020 to August 2021) compared to
pre-pandemic times (April 2018 to February 2020). No significant difference in
the precision was observed in these two periods for both A&E and maternity

https://demo.BPMN.io
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pathways. To answer Q3, the trace-level analysis of durations showed that the
lowest median length of stay over the period of study occurred in April 2020 for
both A&E and maternity pathways. It was also observed that the mean length
of stay reduced after national pandemic measures were introduced for both A&E
and maternity compared to pre-pandemic times.

4 Discussion

In this case study we have added conformance checking against the normative
model as an extension to the multi-level approach of Kurniati et al. [10] to
address challenge C2 of PM4H [16]. Changes in healthcare processes over time
could be analysed by this method but identifying the cause of process changes
requires further research. For obtaining a clearer picture of the impacts of the
two perturbations, other inherent influences such as seasonal factors need to be
controlled for as described in challenge C3. Since one of the perturbations was
planned, while the other was unplanned, there is scope for further research to
try to differentiate the impacts of the two perturbations.

In this study, the most noticeable process change was the drop in conformance
of A&E pathways to the normative model in April 2020 (see blue curve in Fig. 3a)
following the introduction of nationwide pandemic measures in March 2020. For
the normative A&E model, the precision is high throughout (see red curve in
Fig. 3a). For the model based on the discovered process map, the conformance
remains high throughout (see blue curve in Fig. 3b), while the precision is lower
and changes significantly during the ‘Third intervention’ period (see red curve
in Fig. 3b).

From conformance values with respect to the normative A&E model, we
can see some disturbances in the pathways in April 2020. The precision values
between monthly A&E event logs and the model based on the discovered process
showed fluctuating behaviour during ‘Third intervention’ period. The extra path
in the A&E model based on the discovered process map (see Fig. 2b), indicating
an alternative way of working, captured deviations that were not detected by
the normative model. Thus, the model based on the discovered process map
contains a useful level of complexity which is the occurrence of the activity
‘Assessed’ after ‘Treated’. This only shows what has been recorded by the IT
system but not necessarily what happens in the A&E department and is thus not
part of the normative model. On discussion with clinicians, assessment might be
recorded after treatment due to a technical need to progress with the treatment.
This suggests that it might be a regular feature of work in practice to record
assessment after the event.

The drop in conformance in April 2020 and the changes in precision during
the ‘Third intervention’ period could be detected using the identified metrics.
Further research using the full A&E dataset and discussion with clinical experts
is required to accurately identify causes of the process changes. If the detected
perturbations can be attributed to external disturbances, the ability to capture
them could be implemented in information systems to warn about disruptions
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to the normal workflow. The integration of process mining into process aware
information systems would enable perturbations to be detected in real time
allowing clinicians and hospital managers to identify and react to adverse events
taking place in the hospital.

As described before, the reasonably consistent nature of maternity path-
ways can be seen in the more stable values of conformance and precision (see
Fig. 4) over the period of study. The significant differences in the impact on
A&E and maternity pathways under the influence of the same external pertur-
bation sources might be attributed to the contrasting nature of the two pathways.
A&E pathways are very dynamic whereas maternity pathways are often prede-
termined. Through this study we have demonstrated that process changes due
to complex perturbations can be detected using process mining techniques. In
future work, the frequency of traces following a selected sequence of activities
over the time period of interest can be studied at the trace-level [10]. The care
pathways can also be studied at the activity-level for further investigation of the
process changes.

Fig. 4. Conformance and precision between monthly event logs and the normative
maternity model.

Since only a subset of the data for A&E attendances was available until
August 2020, we are not in a position to draw conclusions about the length of stay
and the overall conformance and precision measures of the A&E pathway. We
have demonstrated the proposed method but cannot state that all our results are
representative since we do not know the bias. Further work would be necessary
to rerun the analysis on the complete set of data. However, the full dataset was
not available at the time of writing.

5 Conclusion

We used the proposed method to identify process changes at the trace and
model levels. Causes of identified changes cannot be determined with confidence
as the perturbations were nearly co-incident. In further research, the results
may be compared with another hospital that did not implement a change in the
management system during the same period.
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Fig. 5. Directly-follows graph for
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Abstract. The modernization of legacy software systems is one of the
key challenges in software industry, which requires comprehensive sys-
tem analysis. In this context, process mining has proven to be useful for
understanding the (business) processes implemented by the legacy soft-
ware system. However, process mining algorithms are highly dependent
on both the quality and existence of suitable event logs. In many scenar-
ios, existing software systems (e.g., legacy applications) do not leverage
process engines capable of producing such high-quality event logs, which
hampers the application of process mining algorithms. Deriving suitable
event log data from legacy software systems, therefore, constitutes a rele-
vant task that fosters data-driven analysis approaches, including process
mining, data-based process documentation, and process-centric software
migration. This paper presents an approach for deriving event logs from
legacy software systems by combining knowledge from source code and
corresponding database operations. The goal is to identify relevant busi-
ness objects as well as to document user and software interactions with
them in an event log suitable for process mining.

Keywords: Event log generation · Legacy software system · Software
Modernization · Process mining

1 Introduction

Economically, one of the most important sectors in software industry concerns
the modernization of legacy software systems. These systems need to be replaced
by modern software systems showing better usability, higher performance, and
improved code quality. A successful modernization of a legacy software system
requires the analysis of the (business) processes implemented by the legacy soft-
ware, the interactions users have with the system, and the access points to system
information (e.g., source code or databases).

Process mining offers a plethora of analysis approaches to gain a broad under-
standing of the processes implemented in software systems. Process discovery, for
example, enables the derivation of process models from event logs [1]. In turn,

c© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 409–421, 2023.
https://doi.org/10.1007/978-3-031-27815-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27815-0_30&domain=pdf
http://orcid.org/0000-0003-1572-4573
http://orcid.org/0000-0002-2358-2571
http://orcid.org/0000-0003-2536-4153
https://doi.org/10.1007/978-3-031-27815-0_30


410 M. Breitmayer et al.

conformance checking correlates modeled and recorded behavior of a business
process, enabling the analysis of the observed process behavior in relation to a
given process model [2]. Finally, process enhancement allows improving business
processes based on the information recorded in event logs. In summary, most
process mining approaches highly depend on the existence of process event logs
as well as the quality of these logs.

In software modernization projects, legacy software systems need to be ana-
lyzed. In this context, the use of process mining approaches is very promising for
analyzing the processes implemented in these systems. However, most existing
legacy software systems neither have been designed based on pre-specified exe-
cutable process models nor do they provide extensive process logging capabilities.
As a consequence, the application of process mining to legacy software systems
is hampered and alternatives for obtaining models of the implemented processes
and, thus, for supporting the migration of the legacy software system to modern
technology are needed. Alternatives include, for example, extensive interviews
with key system users and process owners [3]. Both alternatives, however, are
time-consuming and prone to incompleteness.

This paper presents an approach to generate event logs from running legacy
software systems by combining knowledge from source code analysis, including
database statements, to discover the relevant business objects of a process as
well as to document user and software interactions in an event log suitable for
process mining. We consider the following research questions:

RQ1: How can we generate event logs from running legacy software systems?
RQ2: How can we ensure that the performance of legacy software systems is not

affected during event log generation?

The remainder of this paper is structured as follows: Sect. 2 introduces the con-
cepts necessary for understanding this work. Section 3 discusses the requirements
for generating event logs from running legacy software systems. Section 4 presents
the legacy software system analysis required for generating event logs. Section 5
describes our approach and shows how one can extend a legacy software system
to generate event logs. Section 6 evaluates our work using a requirements evalu-
ation, a performance comparison, and a user survey. Section 7 discusses related
work. Section 8 provides a short summary as well as an outlook.

2 Fundamentals

2.1 Legacy Software Systems

Legacy software systems are widespread in enterprises, but very costly to main-
tain due to bad documentation, outdated operating or development environ-
ments, or high complexity of the historically grown system code basis [4]. As
a result, the replacement of such legacy software systems is often significantly
delayed beyond the initial system lifespan. Legacy software systems consist of a
plethora of artifacts and resources such as servers, (non-normalized) databases,
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Fig. 1. Screenshot of a legacy software system

source code, or user forms, which all may be used during legacy software sys-
tem analysis. Figure 1 depicts a screenshot of an Oracle legacy software system
implemented in the 1990s. We will refer to this example in the following.

2.2 Event Logs

Event logs build the foundation for process mining algorithms and capture infor-
mation on cases, events, and corresponding activities [5]. In general, event logs
record events related to the execution of process instances. Mandatory attributes
of a log entry include the case identifier, the timestamp, as well as the executed
activity [5].

In the context of legacy software systems, which may support multiple pro-
cess types (e.g., order-to-cash, purchase-to-pay, or checking an invoice), it might
be unclear to which process type an activity belongs. Therefore, an additional
attribute indicating the process type is required when deriving event logs from
legacy software systems.

3 Requirements

In most cases, there exist no suitable event logs for process mining in legacy
software systems. This section elicits fundamental requirements to be met when
generating event logs from user and software interactions with legacy software
systems. On one hand, we gathered the requirements from literature [5]. On the
other, we conducted interviews with domain experts (e.g., software engineers,
and process owners) to complement these requirements. Amongst others, we
identified the following requirements:

Requirement 1: (Relevance) The event log should only contain process-relevant
data that refers to those interactions with the legacy software system that corre-
spond to a process (e.g., filling or completing a form). If an interaction triggers
an automated procedure (e.g., invocation of an operation in the legacy software
system), the resulting changes (e.g., to the database) should be recorded in the
event log as well.
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Requirement 2: (Scope) Legacy software systems often use a plethora of
database tables and source code fragments that contain business-relevant data.
Identifying and scoping process-relevant database tables and code fragments
usually requires extensive domain knowledge that might not be available. An
approach for generating event logs from legacy software systems should there-
fore minimize the domain knowledge required.

Requirement 3: (Consistency) To facilitate the preprocessing of the event log
data, the event log should be consistent with respect to timestamps, data types,
and additional resources, even if different software components of the legacy
software system (e.g., database and user forms) are involved.

Requirement 4: (Performance) The event log generation from a running legacy
system should not influence its performance, i.e., the user and software interac-
tions should not be influenced (e.g., due to increased loading times).

4 Legacy Software System Analysis

Analyze Legacy 

So�ware System

Iden�fy process-

relevant Code 

Fragments and 

Database Tables

Extend Legacy 

So�ware System 

with Event Log 

Genera�on

(Code Tracker)

Generate Event Log 

from User and 

So�ware 

Interac�ons 

Synchronize Event 

Log with Database 

Informa�on

Fig. 2. Preparation steps of our approach

We derived the approach for generating event logs from running legacy software
systems (cf. Fig. 2) by applying design science research [6].

In the first step, we analyze the legacy software system, including source
code, database tables, and additional resources (e.g., configuration files, user
forms displayed by the running legacy software system).

In the second step, we transform the source code of the legacy application
to an abstract syntax tree in order to identify those code elements that trigger
database operations (e.g., the selection, insertion, deletion or update of tuples
in database tables). Using the database tables in combination with the informa-
tion provided from the source code (e.g., the exact SQL statement), we address
an important problem of legacy software systems, i.e., we are able to identify
relations between tables that have not been explicitly specified using foreign-key
constraints. In other words, we identify additional relations between database
tables specified in the legacy application source code.

We can further build clusters of database tables that most likely belong to
the same process based on these identified relations. In Fig. 3, for example, tables
belonging to the cluster marked in green correspond to orders, whereas tables
of the purple cluster correspond to articles. We identify the center of a cluster
using a page rank algorithm [7]. Note that checking the identified clusters with
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Fig. 3. Clusters derived from database and source code

a domain expert (if possible) might further improve the event log generation (cf.
Requirements 1 and 2 in Sect. 3).

After having identified the clusters in the database tables, we can determine
which source code fragments are relevant for the generation of the event log, i.e.,
which code fragments affect process-relevant database tables. This information
can then be used to configure and install the code tracker into the legacy software
system.

The code tracker is able to automatically inject code fragments into the
source code, which, in turn, are then executed together with the legacy software
system code enabling the generation of event logs at runtime. To ensure that
the performance of the legacy software system is not negatively affected, the
necessary data is passed using common log mechanisms (e.g., java.util.logging or
Oracle message-builtIns) already available in the legacy software system. This
yields the advantage that the existing infrastructure, in which the legacy software
system operates, takes care of managing files, rotating data and, thus, providing
methods for writing data to an event log in a performant manner. Consequently,
the transfer of event log data becomes possible with minimal footprint. In a last
step, we synchronize the event log with the information from the database (e.g.,
redo logs) enabling the generation of high-quality event logs.

5 Event Log Generation

In the context of a legacy software system, a business process can be derived
from the sequences of interactions the users have with the legacy application.
Each interaction of such a sequence is then subject-bound (i.e., the interactions
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of a sequence belong to the same transaction). In a legacy software system, such
processes may be initiated and terminated using pre-defined actions, for exam-
ple, menu items or key combinations. The addition of corresponding actions to
an event log, together with the associated application object (e.g., a product
identified by a unique product number, or an order identified by its order num-
ber) constitutes the basis for generating an event log. Subsequently, this event
log may then serve as input for process mining algorithms.

5.1 Legacy Software System Extension

After showing how process-relevant source code fragments can be identified in
the legacy software system (cf. Sect. 4), we discuss how to augment the legacy
software system with event log generation capabilities by installing the code
tracker. This installation utilizes our ability to parse the relevant source code
fragments and to map them as an abstract syntax tree [8].

Leveraging this source code information, we can add the code tracker nodes at
the relevant positions of the software code, i.e., “start”, “end”, “return”, “exit”,
and “exception”, surrounding a create-, read-, update- or delete-statement
(CRUD-statement). Each code tracker statement then captures the context (i.e.,
the position of the relevant source code in the entire legacy software system),
the timestamp, the identifier of the corresponding user session, and, optionally,
additional parameters of the identified source code fragments.

Adding the code tracker to the legacy software system is implemented as
a pre-deployment task. Thus, no developer interaction becomes necessary. In a
deployment chain, relevant code is checked out, parsed, added to the tracker,
saved, compiled, and then deployed to the running legacy software system. This
integration ensures that any kind of source code change or release of new software
versions can be captured, hence, preventing mismatches between the running
code and the information captured in the generated event log. As an example,
consider the code fragment depicted in Fig. 4a, which is responsible for han-
dling a user interaction event. When applying the code tracking pre-deployment
task to this code fragment, we obtain the code fragment depicted in Fig. 4b.
In the latter, the event log generation is added to lines 2, 5, 7, and 9. Note
that ScreenName and EventName constitute placeholders that are replaced
by the actual values at runtime. An example of such actual values could be
ORDERS.MAIN CANVAS.BUTTON SAVE.WHEN BUTTON PRESSED.

Fig. 4. Example source code fragments
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During event log analysis, such values provide important contextual infor-
mation and enable a failure-free identification of documented user and software
interactions. There exists a plethora of user interactions, e.g., pressing a button,
entering a value into a form field, clicking on a check box, or navigating between
elements. As long as the legacy software system implements these events as
process-relevant in the source code, the code tracker is added.

Merging User Interactions with Database Events. In addition to the user
interaction events gathered by the code tracker, we analyze all database updates
(i.e., insert, update and delete) expressed in terms of Data Manipulation Lan-
guage (DML) statements. For this analysis, we utilize the redo log capabilities
provided by the legacy software system database. Redo logs are created by trans-
actional databases, to enable recovery in case of failures (e.g., after crashes). The
information contained in a redo log consists, for each recorded operation, of the
name of the database table, the performed operation (i.e., insert, update, or
delete), the timestamp, the session-id, and the original DML statement applied
to the database [9].

From the source code extension (cf. Fig. 4b), for each event, we can also
extract the timestamp, session-id, and the affected database table. Combining
these three attributes enables the allocation between user or software interac-
tions and the corresponding changes to the persistence layer of the legacy soft-
ware system. Leveraging the information from redo logs, again ensures that no
performance penalties emerge due to the event log generation.

Using the code tracker functions, the information captured in the event log
is significantly increased compared to an event log solely generated from the
database schema [10], as we can unambiguously link processes with both program
code and related data. Therefore, time-consuming reverse engineering and root
cause analysis are not needed as the connection between source code, data, and
processes already exists.

Finally, one valuable effect for software modernization can be achieved: miss-
ing entries in the event log indicate that process parts implemented in the legacy
software system have never been used. This information is vital for modernizing
legacy software systems as the code fragments may correspond to technical debt
and must therefore not be migrated [11].

5.2 Recording User Interactions

Once the code tracker is installed, we are able to document the interactions of
users with the legacy application, including resulting software interactions. For
recording user interactions, we support two variants [12]:

Silent Recording. Shall record the use of the legacy application, starting with
the login a of user until closing the legacy application. We allow specifying
which information shall be recorded and in which form. For example, personal
data may only be logged in an anonymized way. By only recording selected user
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sessions (e.g., sessions of users from a certain department), we can further restrict
the recording of user interactions to relevant user groups (e.g., users handling
invoices) in a fine-grained fashion.

Dedicated Recording. Aims to record existing (i.e., already identified) pro-
cesses implemented in the legacy software system. Users may define the start
and end of the recording (e.g., through predefined key combinations), and pro-
vide additional information about the recorded process. This, in turn, allows for
a precise delimitation of the interactions corresponding to a process.

6 Evaluation

The evaluation of our approach is threefold: First, we assess whether the iden-
tified requirements are met. Second, we analyze the performance of an Oracle
legacy software system to which we applied our approach. Third, we applied
process discovery algorithms to the derived event logs and evaluate the resulting
process models with domain experts. In total, the legacy software system used to
evaluate the approach comprises 589 database tables with 9977 columns. Addi-
tionally, 60712 database statements (including more than 8000 different state-
ments) were implemented in a total of over 5 million lines of code. Furthermore,
the legacy software system comprises 1285 forms and 6243 different screens. The
event log was created using dedicated recording (cf. Sect. 5). In other words,
the users in this event log were able to provide additional information of the
recorded business process (e.g., name and description of the process). Addition-
ally, we applied the approach using silent recording to the legacy software system
of an insurance company1.

6.1 Requirements Evaluation

To evaluate Requirement 1 (Relevance), according to which the event log shall
solely contain process-relevant information, we conduct an in-depth and auto-
matic analysis of the legacy software system by identifying and clustering impor-
tant tables and source code fragments (cf. Sect. 4). This enables us to distinguish
between relevant and non-relevant information. As a result, we are able to con-
figure the code tracker to ensure that only relevant data is collected.

Requirement 2 (Scope) deals with the scope of the legacy software system
and aims to minimize the amount of domain knowledge needed for the analysis.
By analyzing the source code, we are able to identify which code fragments
refer to which database tables. Clustering the database tables (cf. Sect. 4) allows
grouping the tables that belong to the same context. This enables a best guess
approach that may be checked by domain experts to further improve the event
log generation. Compared to alternative approaches (e.g., extensive interviews),
our approach requires significantly less domain knowledge.

1 Event logs provided: https://cloudstore.uni-ulm.de/s/7jYeRnXtcsk2Wfd.

https://cloudstore.uni-ulm.de/s/7jYeRnXtcsk2Wfd
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Requirement 3 (Consistency) refers to consistency with respect to data types,
timestamps, and resources. While we account for consistency regarding data
types (e.g., timestamp formats and variables), due to the automated nature of
our approach, the fulfillment of this requirement also depends on the consistency
of the analyzed legacy software system as well as the underlying database.

According to Requirement 4 (Performance) the event log generation must not
affect the performance of the legacy software system or user interactions with
the legacy application. Typically, the generation of redo log files, archive log
files based on the redo log files, as well as the log rotation capabilities are tuned
to not influence the performance of the analyzed legacy software system. For
further analysis, the generated event log is extracted asynchronously to ensure
that the extraction neither impacts users nor the performance of the running
legacy software system. Additionally, the logging of user interactions focuses
on the relevant actions identified during legacy software analysis. Furthermore,
the logging is running in a separate, isolated transaction to the user session.
Finally, the collected event data is also persisted in a separate storage to not
affect performance.

6.2 Performance Analysis

To further evaluate the performance effects of our approach on the considered
legacy software system, we executed the same 3 processes multiple times (N = 10)
with and without event log generation and measured the duration of the following
performance metrics: navigation, loading time, and function call. Note that due
to limitations of the legacy software system, timestamps could only be collected
every 10 ms. In other words, differences of up to 20 ms might exist. Figures 6 - 7
depict the collected performance metrics. When navigating through the legacy
software system the average duration decreased by 25 ms. The average loading
times decreased by 30 ms after adding the event log generation. These differ-
ences are in range of the timestamp limitations of the legacy software system.
Therefore, we can conclude that the event log generation does not significantly
impact navigation and loading times. On average, the duration of function calls
increased by 0.65 s (+18.2%) per function call. However, after closer inspection,
this increase is mainly due to recursive function calls that generate event log
entries with each iteration. We are able to only record one event log entry for
recursive function calls, consequently reducing the increase to the level of non-
recursive function calls. Concerning the latter, we observed an average increase
of 14 ms (1.73%). Across all observed performance metrics, the differences do
not impact typical user and software interactions (Figs. 5, 6 and 7).
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Fig. 5. Navigation Fig. 6. Loading time Fig. 7. Function calls

6.3 Initial Process Discovery

We applied several process discovery algorithms to the event logs generated
with our approach using default algorithm configurations. Next, we showed the
resulting process models to domain experts (N = 13) and asked them to eval-
uate to which degree they are able to recognize the legacy software system in
each process model on a 5-Point Lickert scale from not at all to completely.
Overall, the domain experts rated the process model generated by the Heuristic
Miner (threshold = 0.9) best (Mean = 4.45, SD = 0.63). This indicates that pro-
cess models discovered from the generated event log adequately represent the
behavior of processes implemented by the legacy software system (Table 1).

Table 1. Domain expert recognition of discovered process models (N =13)

Inductive

(Tree)

Inductive

(BPMN)

DFG Heuristic

(thold=0.75)

Heuristic

(thold=0.9)

Heuristic

(thold=0.95)

Mean (SD) 3.08

(1.07)

3.08

(0.73)

2.31 (1.2) 4.15 (0.77) 4.46 (0.63) 3.38 (1.27)

While the results could be improved using additional process discovery algo-
rithms or fine-tuning parameters, they emphasize the high quality of generated
event logs as no additional event log preparation was required.

7 Related Work

This paper is related to event log generation, robotic process automation, and
legacy software system analysis.

Process mining algorithms require event logs and, therefore, the generation
of event logs from various sources has gained great attention [13]. Databases
are often used as the main resource for extracting event data from information
systems [10,14]. A quality-aware and semi-automated approach to extract event
logs from relational data is presented in [15]: users may select event log attributes
from available data columns, assisted by data quality metrics. In the context
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of legacy software systems, however, relying solely on the information present
in databases is not sufficient, as important process-relevant knowledge is often
captured in the source code as well as the displayed user forms, but cannot be
discovered from the database solely. For example, legacy databases are often not
normalized and miss important information, e.g., foreign key constraints.

In the field of Robotic Process Automation (RPA) [16], user interface inter-
actions and software robots are used to replicate human tasks. An approach
for recording the interactions with user interfaces and the generation of user
interface event logs is presented in [17]. A pipeline of processing steps enabling
robotic process mining tools to generate RPA scripts from UI logs is presented
in [18]. [19] presents an UI logger that generates an event log from multiple user
interfaces. As opposed to [17–19], our approach accounts for the effects on the
legacy software system (e.g., exact database statements), i.e., it does not only
consider the user interface interactions in isolation.

In [20], a framework to recover workflows from an e-commerce scenario is
presented, leveraging static analysis to identify business knowledge from source
code. Similarly, [21] presents an approach for recovering business knowledge from
legacy application databases by inspecting the data stored within the database.
As our approach also aims to identify business knowledge from legacy software
systems, it differs from [20,21]. Instead of extracting business knowledge from
static analysis, we generate event logs that represent business knowledge using
interactions with the legacy software systems.

[22] deals with the generation of event logs from legacy software systems
by first extending the source code and then recording the event logs. In con-
trast, our approach requires less domain knowledge for generating the event logs
as we derive relevant source code fragments from the clusters identified in the
database (including foreign-key constraints specified in the source code) rather
than domain experts or system analysts. Additionally, we support two event
log generation variants (silent and dedicated) that enable further insights into
specific processes implemented in the legacy software system.

8 Summary and Outlook

This paper presented an approach for generating event logs from running legacy
software systems with minimal domain knowledge. We combine information from
source code analysis and the database structure to identify tables and source code
fragments relevant in the context of supported business processes.

Further, we identify which database tables and source code fragments may
correspond to a specific process (e.g., handling an invoice) using a cluster anal-
ysis. We then automatically inject event log generation functions to the legacy
software system to track user and software interactions with the legacy soft-
ware system, while at the same time recording the resulting database transac-
tions. Next, we document user interactions with the application and the resulting
database changes from the running legacy application in a user-decided fashion.
We then combine both logs to correlate user interactions with corresponding
database changes to obtain event logs suitable for process mining.
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We evaluated the approach based on the requirements identified with domain
experts, a performance analysis of the legacy software system, and the applica-
tion and evaluation of initial process discovery algorithms. The requirements are
met, enabling the generation of comprehensive event logs from legacy software
systems with the approach. A performance evaluation using an Oracle legacy
software system has shown that our event log generation does not impact the
performance of the legacy software system, and initial process models discovered
were able to adequately represent the legacy software system for domain experts
using the event logs generated with the approach.

In future work, we will apply the presented approach to additional legacy
software systems. Additionally, we will increase the quality of the discovered
process models for non-experts using more intuitive event log labels based on
the legacy software system.

Acknowledgments. This work is part of the SoftProc project, funded by the KMU-
innovativ Program of the Federal Ministry of Education and Research, Germany (F.No.
01IS20027A)
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Abstract. IoT devices supporting business processes (BPs) in sectors
like manufacturing, logistics or healthcare collect data on the execution
of the processes. In the last years, there has been a growing awareness of
the opportunity to use the data these devices generate for process mining
(PM) by deriving an event log from a sensor log via event abstraction
techniques. However, IoT data are often affected by data quality issues
(e.g., noise, outliers) which, if not addressed at the preprocessing stage,
will be amplified by event abstraction and result in quality issues in the
event log (e.g., incorrect events), greatly hampering PM results. In this
paper, we review the literature on PM with IoT data to find the most
frequent data quality issues mentioned in the literature. Based on this,
we then derive six patterns of poor sensor data quality that cause event
log quality issues and propose solutions to avoid or solve them.

Keywords: Data quality · Process mining · IoT data

1 Introduction

As IoT devices, i.e., sensors and actuators, are becoming increasingly more
important for supporting the execution of business processes (BPs), there is a
growing awareness of the opportunity to use the data collected by these devices
for process mining (PM). Such IoT data can serve as a source for the derivation
of an event log of the process around which IoT devices are placed, which can
then be used to apply PM techniques (e.g., discovery, conformance checking).

However, IoT data (in particular sensor data) are well-known to be of poor
general quality, i.e., suffering from noise, containing missing data, etc. There is a
risk that underlying sensor data quality issues lead to data quality issues in the
event log extracted from them, e.g., erroneous activity names, missing events,
imprecise event-case relationships, etc.

Previous research has identified various event log quality issues [3] and pat-
terns leading to some of those issues [27]. This being said, no work to date has
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studied how the intrinsic characteristics of sensor data lead to event log quality
issues and which specific patterns characterise event log quality issues stemming
from quality issues in the source sensor data. This is of interest for research as
identifying and understanding these patterns makes it easier for other researchers
and practitioners to improve their IoT data quality to prevent event log quality
problems and ultimately improve PM results.

In this paper, we address this gap and investigate data quality issues in PM
that make use of IoT data. To do so, we review papers from the literature on
IoT PM that mention data quality issues, both in sensor data and in the event
logs derived from the sensor data. Based on this, we identify patterns of event
log quality issues caused by quality issues in the source IoT data.

The remainder of the paper is structured as follows. In Sect. 2, we first go
over the literature on data quality in general, before mentioning data quality in
PM and IoT and outlining PM using IoT data. Then, in Sect. 3, we introduce
our research questions and detail the methodology we followed to review the
literature on data quality in IoT PM and derive patterns from it. After this, in
Sect. 4, we present the results of our literature review and the patterns found in
the literature. The results and the patterns are discussed in Sect. 5. We conclude
our paper with suggestions to improve the quality of sensor data in IoT PM and
ideas for future work.

2 Background

2.1 Data Quality

Data quality is a vast research topic and many definitions of data quality exist.
In general, data quality is seen as the extent to which data meet the require-
ments of their users [25,30]. Various dimensions have been defined to describe
and quantify data quality, among which: accuracy, timeliness, precision, com-
pleteness, reliability, and error recovery [16]. Note that the importance of each
of these dimensions depends on the use case and the type of data.

2.2 Data Quality in Process Mining

Process mining assumes as input an event log consisting of all the events that
took place in the process that is being analysed within a certain time frame. In
order to apply process mining, an event log should include at least the following
data elements: a case ID, indicating to which instance of the process an event
belongs; a timestamp; and the label of the activity performed [24].

Data quality issues in PM revolve around errors, inconsistencies and missing
data in event logs. The authors of [3] propose to classify these issues along two
axes: the type of issue (incorrect, irrelevant, imprecise or missing data) and
the event log entity affected (case, event, event-case relationship, case attribute,
position, activity name, timestamp, resource, and event attribute). Some issues
affecting events, timestamps and activity names are argued to be more important
and are therefore analysed in further detail.
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In [27], the authors build upon this framework and identify 11 event log
quality issues in the form of imperfection patterns. For each of these patterns,
a usual cause is identified, an example is given, a link is made with a event log
quality issue from [3], and advice to detect and solve the issue is provided.

However, both seminal works focus on data quality issues arising in tradi-
tional event logs, while process mining on IoT data is faced with event log quality
issues stemming from intrinsic characteristics and limitations of IoT devices.

2.3 IoT Data Quality

IoT data quality is a broad topic ranging from detecting IoT data quality issues
to improving data quality through cleaning methods [16,28]. IoT applications
often rely on low-cost sensors with limited battery and processing power, fre-
quently deployed in hostile environments [28]. This leads to sensor issues such
as low sensing accuracy, calibration loss, sensor failures, improper device place-
ment, range limit and data package loss. Such sensor faults, in turn, cause various
types of errors in the generated data complicating further analysis.

The authors of [28] reviewed the sensor data quality literature and listed the
following error types (in decreasing order of frequency): outliers; missing data;
bias; drift; noise; constant value; uncertainty; stuck-at-zero. When left untreated
these errors result in incorrect data, and subsequent analysis will yield unreliable
results, ultimately leading to wrong decisions.

To prevent misguided decision making, it is important to assess the underly-
ing data quality. To this end, the authors of [21] introduced measures for sensor
data quality: completeness, timeliness, plausibility, artificiality and concordance.

2.4 Process Mining with IoT Data

IoT devices usually sense the environment and produce at runtime a sequence
of measurements called a sensor log, usually in the form shown in Table 1.

Table 1. Example of a sensor log generated by in smart spaces.

Timestamp Sensor Value

... ... ...

2022-05-31 12:34:52 M3 ON

2022-05-31 12:34:58 M5 OFF

2022-05-31 12:35:04 M3 OFF

2022-05-31 12:35:22 T2 22

2022-05-31 12:38:17 M29 OFF

... ... ...

The vast majority of the process mining literature involving IoT data focuses
on deriving an event log from a sensor log. Traditional process mining techniques
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can then be applied to this event log to, e.g., discover control-flow models of
the processes. Typical steps include preprocessing the raw data (i.e., cleaning,
formatting), event correlation to retrieve the cases each event belongs to and
event abstraction to derive meaningful process events from sensor data (see,
e.g., [5,15,18,26,29]).

These papers often report errors in the event logs derived from sensor data,
which cause issues in the PM results (e.g., spaghetti models due to irrelevant
events). In this paper, we argue that a large portion of the errors in the event log
are due to data quality problems in the source sensor log, which are amplified
by the event abstraction step and result in errors in the event log used for PM.

3 Methodology

In this section, we detail the methodology followed to review the literature on
PM with IoT data and to derive patterns from the literature. It consists of three
main steps: research question definition, literature selection and data extraction.

3.1 Research Questions

Three research questions (RQs) are addressed in this research:

– RQ-1: Which IoT data quality issues do IoT process mining papers face?
– RQ-2: Which event log quality issues do IoT process mining papers face?
– RQ-3: Which patterns can be found between IoT data and event log quality

issues in IoT process mining?

3.2 Literature Selection

To answer these RQs, we scanned the literature on IoT PM that mentioned IoT
data and event log quality issues. To do so, we devised a query consisting of three
parts: process mining keywords, IoT data keywords and data quality keywords.
After some refinements, the following query was finally selected:

(“process mining” OR “process discovery” OR “process enhancement” OR
“conformance checking”) AND (“sensor data” OR “iot data” OR “internet of
things data” OR “low-level log” OR “low-level data”) AND (“data quality” OR
“data challenges” OR “data issues” OR “data preparation” OR “data challenge”
OR “data issue”)

The query was executed on the Scopus and Limo online search engines, which
access articles published by Springer, IEEE, Elsevier, Sage, ACM, MDPI, CEUR-
WS and IOS Press. Because the literature tackling data quality in PM with IoT
data is still very scarce, all fields were searched, yielding 177 results in total.

After removing duplicates and non-English results, papers were scanned
based on title and abstract, before a full paper scan was performed. Papers
were included based on their ability to answer the RQs, i.e., they had to apply
PM with sensor data and mention data quality issues in sensor data or event
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logs derived from sensor data or both. Review papers that could answer RQs
were usually very generic and for this reason were excluded and replaced with
the original studies, which answered the RQs in more detail. At the end of the
review process, 17 studies remained for analysis (see Fig. 1 for more detail).

Fig. 1. Literature selection: included and excluded papers.

3.3 Data Extraction

The following information was extracted from the studies: The environment;
The types of IoT data used and whether process data (i.e., a traditional event
log) were also available; the IoT data and event log quality issues, following the
classifications of [3,28], respectively; and the analytical goal of the study (i.e.,
the type of PM to apply ).

Based on this, patterns linking IoT data quality issues with event log quality
issues were derived. For each pattern, its origin (cause of IoT data quality issue),
effects (resulting event log quality issues) and potential remedies are discussed.

4 Results

4.1 Mapping of Data Quality Issues in IoT PM

The results of the data extraction can be found in Table 2. As can be seen, most
of the papers report on process mining conducted in an industrial or healthcare
environment. The vast majority of the literature uses only sensor data, from
which an event log is derived (occasionally, mined models are shown in the
papers), as discussed in Sect. 2.4. In line with the two most frequent environments
considered by the papers, two main types of sensor data emerge: individual
location sensor (ILS) data in healthcare and time series (TS) and discrete sensor
data in industrial scenarios. These different data types are often affected by
different data quality issues, which are discussed in the next paragraph. Finally,
a slight upward trend can be seen in the number of publications over time, with
a peak in 2018.

Concerning data quality issues, the most frequent IoT data quality issues
encountered (RQ1) are noise (7), outliers (4) and missing data (4). Next to this,
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many papers also mention volume (5) as a sensor data issue, which does not
make the data erroneous, but can make the data considerably more difficult to
analyse. Regarding event log quality issues (RQ2), the most frequent is incorrect
event (7), followed by missing event (3), incorrect activity name (2) and incorrect

Table 2. Summary of the information extracted from the literature.

ID Environment Data type(s) Data quality issue(s) Goal Year Ref

IoT data Event log

S1 Healthcare Process data,
TS sensor
data

Outliers, noise Incorrect events,
irrelevant events

Process
discovery

2012 [17]

S2 Healthcare Individual
location sensor
(ILS) data

Outliers, noise / Process
discovery

2013 [11]

S3 Logistics, healthcare Process data,
TS sensor
data
(simulated)

/ Missing event-case
relationship, missing
event attributes

Decision
mining

2014 [9]

S4 Industry TS sensor
data

Volume, variety,
velocity

/ Event log
creation

2016 [20]

S5 Healthcare ILS data Inaccurate,
granularity

Incorrect activity
names, incorrect
event-case
relationship, missing
events

Process
redesign

2016 [31]

S6 Commerce ILS data / Imprecise event-case
relationship

Process
discovery

2017 [14]

S7 Industry GPS data Missing data,
volume

/ Predictive
process
monitoring

2018 [1]

S8 Industry TS sensor
data, discrete
sensor data

Outliers, noise,
duplicates

Incorrect event-case
relationship

Event log
creation

2018 [5]

S9 Industry TS sensor
data, discrete
sensor data

Volume,
granularity

/ Event log
creation

2018 [6]

S10 Healthcare ILS data Volume Incorrect events,
incorrect timestamps

Queue
mining

2018 [12]

S11 Healthcare Hospital
information
system (HIS)
and ILS data

Missing data,
inaccurate data,
granularity

Incorrect events Event log
repair

2018 [23]

S12 Home ILS data Noise Incorrect events Habit
mining

2019 [8]

S13 Industry TS sensor
data, discrete
sensor data

Outliers, noise / Event log
creation

2020 [4]

S14 Industry TS sensor
data

Noise Incorrect events,
duplicate events

Anomaly
detection

2020 [22]

S15 Various Process data,
sensor data

Noise, missing
data, volume,
granularity

/ Event log
creation

2021 [2]

S16 Healthcare ILS data Noise , missing
data

Missing events,
incorrect events,
duplicate events

Process
discovery

2021 [10]

S17 Home Video camera
data

Noise Incorrect events,
missing events,
incorrect activity
names

Event log
creation

2022 [19]
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event-case relationship (2). Note that slashes in Table 2 indicate that the paper
did not report data quality issues, which does not necessarily mean that no issue
was encountered in the study.

4.2 Patterns Description

In this section, we present the patterns we have derived from the literature
(RQ3). Note that papers that mention only either IoT data or event log quality
issues cannot be used to derive patterns and, in addition to this, S11 cannot be
used because the IoT data and event log quality issues described are unrelated
(the event log is not derived from the IoT data). For each pattern, we discuss
its origin, effects and potential remedies. Table 3 provides an overview.

Pattern 1: Incorrect Event-Case Relationship Due to Noisy Sensor Data. In
many cases, when trying to derive an event log from sensor data, one of the
main issues is that no case ID is present in the sensor log (e.g., in S8, S14, S17).
To solve this problem, an event correlation step has to be performed, which will
annotate events derived from the sensor log with the ID of the case they relate to.
This correlation can be done either based on domain knowledge or using data-
driven techniques. However, as noted in S8, this step is highly sensitive to the
quality of the sensor data. In particular, noise and outliers can lead data-driven
techniques to split cases mistakenly, resulting in labelling events with incorrect
case IDs.

To avoid this issue, the use of sensor data cleaning methods is very impor-
tant. The authors of S8 recommend in their follow-up paper S14 to use robust
quadratic regression to clean and smoothen noisy sensor data.

Pattern 2: Erroneous Events Due to Inaccurate Location Sensor. ILS data is
often used for PM, the assumption that different activities take place in different
locations enabling a straightforward conversion of the sensor log into an event
log (see, e.g., [13]). However, when different activities are executed in adjacent
locations, there is a risk that several sensors will register the passage of a user
(e.g., a patient, a resource) simultaneously. This generates erroneous events in
the sensor log, which hinder the event abstraction step and result in incorrect
events and activity names in the event log. This can have important consequences
on PM: S16 reports that less than 0.5% errors in the event log already have a
considerable impact on the quality of the process models mined.

This issue can best be treated by improving the sensor infrastructure. Using
more accurate sensors or placing them further from each other can help avoid the
issue completely. Otherwise, ex-post treatment can be applied by, e.g., deleting
passages that last less than a given threshold (e.g., one minute in [7], cited by
S12; 24 s in S5).

Pattern 3: Missing Events Due to Sampling Rate. Inadequate sampling rates
can cause missing events in the event logs. It arises when the sampling rate of
the sensors is too low, hence events that should be detected by these sensors are
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not. In S5, for instance, the sampling rate of the system is 12 s, which means that
passages of less than 12 s through a given location might not be recorded (which
is realistic when the location is, e.g., a corridor), resulting in missing events.

The authors of S16 also propose a post-hoc solution to impute missing events
based on the characteristics of the physical process environment. For example:
given rooms A, B and C, if C is only accessible via B, then a user must have
been through B even if the sensor log only contains passages in A and C. Other
possibilities involve improving sensor logging a priori by fine-tuning the sampling
rate for each location (so there are neither missing events nor incorrect events),
e.g., lowering the sampling rate of the sensor in the corridor while increasing
the sampling rate of the sensor in the doctor’s practice. A second possibility is
to filter out passages that are too short (e.g., in S5, passages of less than 24 s
are considered as noise and removed). This technique can be refined by using a
low sampling rate in all locations and filtering out events that are obviously too
short or too long, depending on the location.

Pattern 4: Missing Events Due to Sensor Range Limit. A similar pattern arises
in the dimension of space rather than time. In this case, the range of sensors (e.g.,
location sensors) is too narrow and does not encompass the whole area where
an activity could take place. This issue leads to missing events that happened
beyond the sensor’s reach. For instance, in S5, the range of location sensors
is two meters, which means that any movement beyond this range will remain
unnoticed, hence if an activity of the process is executed more than two meters
from the sensor, it will not be detected.

The post-hoc solution suggested by S16 (see Pattern 3) can be applied to
impute missing events that are caused by a lack in sensor range. In addition to
this, improving the coverage of the physical process space by installing additional
sensors can help prevent this issue from happening.

Pattern 5: Erroneous Events Due to Noisy Sensor Data. In this pattern, noise is
present in the sensor data due to issues during logging or due to the presence of
noise affecting the phenomenon measured by the sensors (e.g., in S17, video data
contain sequences that are irrelevant for the process). This noise in the sensor
data is picked up in the event abstraction phase and translates into noise in the
event log in the form of incorrect events and events that carry incorrect activity
name.

To solve this issue, S17 uses the inductive miner - infrequent (IMf) discovery
algorithm, which has a parameter that can be adjusted to determine the level
of infrequent behaviour to include in the model mined. The same approach is
followed by S14, also using the noise threshold of the IMf algorithm to determine
which events to leave out of the model.

Pattern 6: Incorrect Timestamps Due to Sensor Range Limit. This issue is
related with P4, and arises when the arrival of a user in a room/at a location
does not coincide with the beginning of the activity executed here. This causes
the beginning of the activity to be recorded earlier than the actual beginning of
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the activity. E.g., in S10, it is assumed that the beginning of a consultation with
a doctor is the moment when the patient is detected by the location sensor in
the office of the doctor. However, as noted by the authors, it may be that the
doctor is still busy in another room, or finishing taking notes for the previous
patient. The same issue can also affect the end of the activity, when a user leaves
the room with a certain delay after the end of the activity.

This issue can sometimes be solved by modifying the placement of the sensors,
to make them detect users more precisely when events happen, or by adapting the
range of the sensors to make them only detect users when the activity actually
started or ended (and not after it started or before it ended either).

Table 3. Overview of identified patterns linking sensor faults and data quality issues
to the associated errors in process mining.

Sensor fault/characteristic References

=⇒ Sensor data issue

=⇒ Process mining errors

P1

Unstable environment S8,
S14,
S17

=⇒ Noisy sensor data & outliers

=⇒ Incorrect case ID

P2

Inaccurate sensor location

S16=⇒ Duplicate or inconsistent sensor readings

=⇒ Incorrect events, incorrect
activity names

P3

Inadequate sensor sampling rate

S5=⇒ Events not captured in sensor log

=⇒ Missing events

P4

Sensor range limit
S5,
S16

=⇒ Activities outside sensor range are missing

=⇒ Missing events

P5

Unstable environment S1,
S12
S14,
S17

=⇒ Noisy sensor data

=⇒ Incorrect events, incorrect
activity names

P6

Sensor range limit

S10=⇒ Activity start/end time is logged incorrectly

=⇒ Incorrect timestamps

5 Discussion

It is interesting to note that the most frequently IoT data quality issues are
among the most cited error types in the IoT literature. However, the high number
of papers mentioning noise as an issue and the absence of other, more refined,
IoT data quality issues from [28] makes us suspect that some of the papers
reviewed used noise and outliers as bucket terms for more specific sensor data
quality issues (e.g., drift, bias). This may have also had an effect on the precision
of the patterns we found.
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Next to this, it is remarkable that the patterns identified usually result in
issues with the most critical event log elements (i.e., event, case ID, activity
name, timestamp). This is mainly due to the fact that PM using IoT data often
focuses on extracting these required elements from the sensor log. Moreover,
these elements being the most essential also makes it more likely that errors
concerning them are searched for (and detected). This effect can also be observed
in [27], where most patterns detected cause event log quality issues affecting
events, activity names or timestamps.

The literature mentions two main strategies to improve sensor data qual-
ity: post-hoc data cleaning (e.g., removing outliers, smoothing; for a complete
discussion of sensor data cleaning techniques, see [28]) and fostering good data
logging practices (e.g., careful sensor data placement, constant environmental
conditions). While the latter has the advantage of preventing the issue rather
than solving it, it must be noted that completely preventing sensor data quality
issues is impossible. E.g., sensor failure is typically hard to detect, let alone pre-
dict [16]. Moreover, some of the patterns are interrelated, and avoiding one of
them sometimes comes at the cost of aggravating another one. For instance: ILS
can only avoid blind spots (Pattern 4) at the cost of having zones where multiple
location sensors overlap (Pattern 2). This means that some data cleaning will
always have to be performed, e.g., to impute missing events due to blind spots
in between location sensors.

Finally, it is worth noting that some papers use sensor data to repair tradi-
tional event logs collected by information systems. S11, for instance, uses ILS
data to detect sequences of events that are not realistic given the path followed
by patients in a hospital and correct them. S11 also argues that neither sensor
data nor event logs collected by traditional sources are fully reliable, and that
the main advantage of using two (or more) data sources is to be able to compare
them to find anomalous data and hopefully correct them.

6 Conclusion

In this paper, we investigated data quality issues in PM using IoT data. After
reviewing background literature and related works on sensor data quality and
event log quality, we scanned the literature to find the most common sensor
data quality issues (RQ1) and event log quality issues (RQ2) in IoT PM papers,
following well-established data quality taxonomies [3,28]. Based on this, we iden-
tified six patterns of sensor data quality issues that cause event log quality issues
and hinder IoT PM (RQ3), and mentioned possible remedies to the underlying
IoT issues.

Following this, our advice for improving sensor data quality for PM is to
first improve the logging practices, with 1) thoughtful sensor placement to avoid
missing and duplicate events; 2) use devices to identify the users tracked by
IoT devices to have case IDs at logging time; 3) careful choice of sensors to
obtain data at the best granularity level (i.e., accuracy, frequency) to avoid huge
volumes of data. Second, we encourage researchers to investigate more generic
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and more automated techniques (i.e., requiring little expert input) to detect and
correct sensor data quality issues, as data cleaning approaches mentioned in the
literature are often ad-hoc and highly tailored for data from specific sensors.
Finally, we align ourselves with [23] in advising researchers and practitioners to
try to combine different data sources whenever possible.

One key limitation of this study is the fact that we restricted ourselves to pat-
terns that could be derived from the existing IoT PM literature. Accordingly,
given the still fairly low maturity of this subdomain of PM, we cannot make
founded claims on completeness of these patterns. In particular, with IoT PM
focusing heavily on the derivation of events and subsequent control-flows from
sensor data, there is a lack of research into using IoT data for non-control-flow
related data, including event and case attributes, e.g., in function of decision
mining, trace clustering, etc. Such uses of IoT data are very likely to produce
additional data quality patterns. Another important area for future research con-
cerns the streaming nature of typical IoT data, given the additional complexity
this creates for data quality detection and rectification strategies. Finally, while
well-known as a data quality issue in the field of IoT, the level of measurement
precision of sensors is currently not yet taken into account within the IoT PM lit-
erature. Given the importance of delicately tuned thresholding approaches, e.g.
for event abstraction, we consider research on the impact of sensor data precision
on process mining results to be another promising area for future work.
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analyzing time series data in process mining: application and extension of decision
point analysis. In: Nurcan, S., Pimenidis, E. (eds.) CAiSE 2014. LNBIP, vol. 204,
pp. 68–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19270-3 5

10. Fernandez-Llatas, C., Benedi, J.M., Gama, J.M., Sepulveda, M., Rojas, E., Vera,
S., Traver, V.: Interactive process mining in surgery with real time location sys-
tems: interactive trace correction. In: Fernandez-Llatas, C. (ed.) Interactive Process
Mining in Healthcare. HI, pp. 181–202. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-53993-1 11

11. Fernández-Llatas, C., Benedi, J.M., Garćıa-Gómez, J.M., Traver, V.: Process min-
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Abstract. Event logs capture information about executed activities.
However, they do not capture information about activities that could
have been performed, i.e., activities that were enabled during a pro-
cess. Event logs containing information on enabled activities are called
translucent event logs. Although it is possible to extract translucent event
logs from a running information system, such logs are rarely stored.
To increase the availability of translucent event logs, we propose two
techniques. The first technique records the system’s states as snapshots.
These snapshots are stored and linked to events. A user labels patterns
that describe parts of the system’s state. By matching patterns with
snapshots, we can add information about enabled activities. We apply
our technique in a small setting to demonstrate its applicability. The
second technique uses a process model to add information concerning
enabled activities to an existing traditional event log. Data containing
enabled activities are valuable for process discovery. Using the informa-
tion on enabled activities, we can discover more correct models.

Keywords: Translucent event logs · Robotic process mining · Task
mining · Desktop activity mining

1 Introduction

In today’s digital environment, a high amount of data is generated and stored. In
organizations, a lot of these data are related to processes, for example, a produc-
tion process or hiring new people. These data can be stored in event logs. By using
process mining techniques, event logs can be turned into real value. Process min-
ing techniques are categorized into three areas: process discovery, conformance
checking, and process enhancement [1]. Process discovery techniques aim to con-
struct a process model given an event log. Such a model aims to represent the
underlying process comprehensively. Conformance checking describes and quan-
tifies how well a model corresponds to an event log. Process enhancement aims
to combine a process model and an event log to extend or improve the provided
model. Traditionally, event logs only capture what happened — not what could
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have happened. Nevertheless, the information on enabled activities besides the
executed action is valuable. Process discovery gets more straightforward if this
information is accessible. There are information systems from which these data
can be extracted. Examples of such systems are workflow-management systems
and user interfaces. We call event logs which possess the information of enabled
activities translucent event logs [2]. To illustrate the benefits of translucent event
logs in process mining, consider the excerpt of an event log shown in Table 1 and
the Petri nets shown in Fig. 1.

Table 1. Excerpt of an example translucent event log.

Case ID Activity Timestamp Enabled activities

404 a 2022-10-23 a

404 b 2022-10-24 b, c

404 c 2022-10-25 c

404 e 2022-10-26 d, e

911 a 2022-10-27 a

911 c 2022-10-28 b, c

911 b 2022-10-29 b

911 d 2022-10-30 d, e

911 b 2022-10-31 b, c

911 c 2022-11-01 c

911 e 2022-11-02 d, e

e

b

c

a

d

(a) Accepting labeled Petri net based
on considering executed activities of
the event log displayed in Table 1 and
applying the inductive miner [9].

e

b

d

c

a

(b) Accepting labeled Petri net based
on considering enabled and executed
activities of the event log displayed in
Table 1. We apply the baseline discov-
ery algorithm presented in [2].

Fig. 1. Two different process models based on the event log displayed in Table 1.

Using only the information of executed activities, the process model depicted in
Fig. 1a is discovered by using the inductive miner [9]. However, suppose we use the
information of enabled activities and apply the baseline discovery algorithm pre-
sented in [2]. In that case, we receive the Petri net shown in Fig. 1b. As we observe,
the latter Petri net suits the event log better than the former Petri net. As a result,
this small example demonstrates the value of translucent event logs since process
discovery can already benefit from the additional information. Dedicated process
discovery techniques that use this information are described in [2].
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However, translucent event logs are not widely available or used. To increase
the availability of translucent event logs, we propose two techniques. The first
technique uses snapshots describing a system’s state linked to each event in an
event log, labeled patterns, and pattern matching. The second technique gen-
erates translucent event logs given a process model and a traditional event log.
Both approaches produce more informative event logs that allow for translucent-
based discovery techniques.

The remainder is structured as follows. In Sect. 2, we present the preliminar-
ies of our work. Related work is presented in Sect. 3. Subsequently, we present
the formerly mentioned techniques in Sect. 4. Afterward, we demonstrate the
applicability of our techniques in Sect. 5. Finally, we provide a conclusion of our
work and provide an outlook in Sect. 6.

2 Preliminaries

Translucent event logs allow us to consider enabled activities. Multiple activities
may be enabled for each event in a translucent event log, whereby the executed
activity of each event is part of the enabled activities of an event. Therefore, we
define translucent event logs as follows.

Definition 1 (Event Logs and Translucent Event Log). Let C be the uni-
verse of case identifiers, A be the universe of activity names, and T be the
universe of timestamps. An event log is a non-empty set of events E such that
for any e ∈ E: πcase(e) ∈ C, πact(e) ∈ A, πtime(e) ∈ T . In addition, for any
e ∈ E, πen(e) ⊆ A, πact(e) ∈ πen(e), denotes the set of enabled activities when e

occurred.

We assume that the reader is familiar with alignments. If not, the work in [1]
provides an overview. We denote an alignment given an arbitrary Petri net N

and case σ as γN (σ). In the remainder, we are only interested in the moves
on the model. γN (σ)(i) denotes the model move at position i. In addition, we
assume that the reader is familiar with the construction and the meaning of a
reachability graph; otherwise, [1] provides an introduction. We assume that at
most one directed edge connects the states of a reachability graph if they are
connected, i.e., no multiple arcs in one direction. Applying the function l on
an edge returns the set of transition labels, i.e., activities, such that a firing
of a transition leads from one marking to another. We denote the activity of
τ -transitions with ⊥.

3 Related Work

To our knowledge, no work has been conducted on creating translucent event
logs. Moreover, there are seldom translucent event logs available [5]. However,
there is work that connects translucent event logs with lucent process models. A
process model is lucent if the states are characterized by their enabled transitions
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[3]. In [2], it is shown that a translucent event log can be used to rediscover a
lucent process model. In [4], lucency is further elaborated. In [13], lucent process
models may be best suited for a prefix-based conformance checking technique.

Lucency can be a desired property for information systems with user inter-
faces. If lucency is a property, it implies that the system behaves consistently
from a user’s viewpoint. As a result, Robotic Process Mining (RPM) seems to
be a field of interest for lucent process models and translucent event logs. RPM
deals with the analysis of user interaction logs [8]. RPM and Robotic Process
Automation (RPA) are closely related. The goal of RPA is to automate tasks
that demand a high effort if automated traditionally, for example, tasks executed
by users in a complex user interface environment [12]. RPM should provide help
to create automation for RPA. Since a user interface has to be recorded for this
analysis, capturing enabled activities besides the executed activities is conve-
nient. An example of capturing this information is by taking screenshots. The
screenshots taken during a task’s execution are valuable for several reasons. First,
we can use screenshots to document the execution of a task. Second, we can use
screenshots to identify flaws in the interface design. Third, we can use screen-
shots to add information about enabled activities to the recorded log. There are
already recording tools for user interaction logs available, for instance, the work
presented in [11].

4 Creating Translucent Event Logs

Translucent event logs allow us to observe enabled activities besides the executed
activities. However, the problem of creating translucent event logs has not been
tackled. We provide two techniques to create translucent event logs, as depicted
in Fig. 2. As one can observe, the two approaches do not share any similari-
ties. The first technique relies on pattern matching and snapshots. An event log
and a snapshot database linked to the event log are needed. We can check if a
labeled pattern appears in a snapshot. If so, we add the associated label as an
enabled activity to the event linked to the snapshot. The second technique adds
the enabled activities to an existing event log using a process model. Given an
event log and a process model, alignments are computed. Given these alignments
and a reachability graph based on the process model, we compute the enabled
activities.

In the remainder of this section, we explain our techniques in more detail.
First, we present the approach of adding enabled activities using pattern match-
ing and snapshots. Second, we describe our alignment-based technique.

4.1 Snapshots and Pattern Matching

Figure 3 illustrates an abstract illustration of our approach. As depicted, our
approach uses an event log with information about snapshots, a snapshot event
log. Moreover, our approach relies on patterns associated with a label. Combining
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Traditional Event Log
Snapshots and 

Pattern Matching

Alignments and 

Reachability Graph
Translucent 

Event Log

Labeled Patterns

Process Model

Image pattern

<…> Text pattern

Snapshot Event Log

Fig. 2. Overview of our two approaches to generate translucent event logs. The first
technique relies on a snapshot event log, a combination of an event log and snapshots,
describing a system’s state and linked to events, and labeled patterns. Each pattern is
labeled with an activity. If a pattern appears in a snapshot, its label is added as an
enabled activity. The second technique relies on process models and traditional event
logs. Using this information to generate alignments and a reachability graph, we can
create a translucent event log.

a snapshot event log with labeled patterns results in a translucent event log. In
the following, we describe our approach in more detail.

During the execution of a process, snapshots of a system can be taken. These
snapshots reveal the different states a system has.

Definition 2 (Snapshot). Let S be the universe of snapshots. A snapshot s ∈
S is a description of a system’s state. Such a description can be a text or an
image (e.g., a screenshot).

For this approach, events must have information related to snapshots, which
we define in the following. Using this relationship, we can later add enabled
activities.

Definition 3 (Snapshot Event Log). A snapshot event log is a non-empty
set of events E such that for any e ∈ E: πcase(e) ∈ C, πact(e) ∈ A, πtime(e) ∈ T .
In addition, for any e ∈ E, πs(e) ∈ S, denotes the snapshot related to event e.

Our goal is to convert snapshot event logs into translucent event logs. To do so,
we need patterns.

Definition 4 (Pattern). Let P be the universe of patterns. If a pattern p ∈ P
appears in a snapshot s ∈ S, this is denoted as p ⊑ s.

Since patterns can be of any form, it is necessary to convert their information
into an event-log-friendly format. Therefore, the user has to label each pattern.

Definition 5 (Labeling). A labeling function maps each pattern to an enabled
activity: πlabel : P → A.

Next, we define how we convert a snapshot event log into a translucent event
log. For the conversion, we detect if patterns appear in snapshots, and if so, we
add the corresponding labels as enabled activities.
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Snapshot Event Log

Case ID Activity Timestamp Snapshot

1 Fill in name 2022-09-26 1, 2

1 Fill in phone number 2022-09-27 2, 4

Pattern Label

1 Fill in name 

2 Fill in phone number

3 Fill in mail address

Case ID Activity Timestamp Enabled Activities

1 Fill in name 2022-09-26 Fill in name, Fill in phone number

1 Fill in phone number 2022-09-27 Fill in phone numberTranslucent Event Log

Labeled Patterns

Fig. 3. Illustration about our approach of creating translucent event logs. A traditional
event log is enriched with snapshots, i.e., each event has information about the system’s
state. In addition, there are labeled patterns. By matching all events’ snapshots with
patterns and the corresponding labels, we receive a translucent event log.

Definition 6 (Transform Snapshot Event Log to Translucent Event
Log). Let E be a snapshot event log and ⊑ and πlabel defined as before. For
any e ∈ E, we set πen = {πlabel(p)|∃p ∈ P : p ⊑ πS(e)}

As defined above, multiple activities can be enabled in an event. If we apply this
function to each event, we receive a translucent event log as defined earlier. An
application of this methodology in the field of RPM is shown in Sect. 5.1.

4.2 Alignment-Based Creation of Translucent Event Logs

In contrast to the formerly introduced creation of translucent event logs, the
alignment-based creation takes a different angle. Instead of relying on patterns,
pattern matching, and a snapshot event log, this technique needs a traditional
event log and a process model. In this work, we focus on Petri nets as process
model notation. An event log and a Petri net are used to compute alignments
which we use in combination with a reachability graph to detect which activities
are enabled besides the executed one. Important to note is that we add an
artificial end-activity to each case, and as a result, to the process model.

As shown in Fig. 4, we compute an alignment by considering a Petri net
and a process variant. Based on a Petri net with its initial marking, we can
construct a reachability graph and, based on the graph, all paths which lead to
the final marking. Given an alignment and the list of possible paths, the path
which fits the order of executed non-τ -transitions and in which τ -transitions are
executed latest is chosen. We can add the enabled activities by combining the
chosen path and the reachability graph. To illustrate our approach, we refer to
the Petri net shown in Fig. 5, the reachability graph depicted in Fig. 6, and the
variant σ = 〈c, b, e, end〉.

There are two optimal alignments with the following moves on the model
γN
1 (σ): 〈t1, t2, t4, t5, t7, t8〉 and γN

2 (σ) = 〈t1, t4, t2, t5, t7, t8〉. As we observe in the
Petri net shown in Fig. 5, l(t2) = l(t5) = l(t6) = ⊥. We can denote that the order
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a

b

Petri Net

c

d

a d end

a d end

Alignment

e

a, b

c

d

e

Reachability Graph

a, c, e, end 

a, d, end

b, c, e, end

b, d, end

Paths to Final Marking

Suitable Path with the

latest -executions

a, d, end

Variant with 

Enabled Activities

<ab, cd, end>

Variant

<a, d, end>

end
end

Fig. 4. Overview of creating translucent event logs using alignments. Starting from a
Petri net and an event log, alignments are created for each variant. Moreover, using a
Petri net and the corresponding initial marking, we create a reachability graph. Given
this graph, we can generate all paths from the initial marking to the Petri net’s final
marking. Given a perfectly-fitting alignment and the list of paths, we can find the
path where possible τ -transitions are executed as last. Given the selected path and the
reachability graph, we can add enabled activities.

end

d

b e

c

t1

t2

t3

t4

t5

t6

t7

t8

Fig. 5. Accepting labeled Petri net to illustrate creating translucent event logs.

of τ -executions differs. There are multiple approaches to deal with this situation,
each leading to different results. We are interested in the alignment with the
latest τ -executions. By doing so, we enforce the execution of non-τ -transitions
that can lead to other enabled activities, and, therefore, to collect as much
information about the process as possible. To decide which alignment has the
latest execution of τ -transitions, we sum up the indices of τ -executions in each
alignment. Then, the alignment with the greatest value is chosen. As a result, the
sum of indices of τ -executions for γN

1 (σ) is 2+4=6 and for γN
2 (σ) it is 3+4=7.

Therefore, we know that γN
2 (σ) is the alignment with the latest τ -executions. If

non-τ -transitions can be swapped, it is up to the user which alignment to use for
our technique. Next, we combine alignments and a reachability graph to get the
information about enabled activities for each alignment step. To do so, we have
to obtain the enabled activities per state. We use an alignment as a path through
the reachability graph. At each state, we add from each outgoing arc the set of
activities related to that arc. If ⊥, a τ -execution, is an element of a set of an
arc, we also consider the outgoing arcs of the target node. We proceed with this
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{c}

{b}

{d, } {b}

{d, }
{ } {e, } {end}

Fig. 6. Reachability graph based on Petri net shown in Fig. 5. Each node is a marking,
and each arc is annotated with the set of activities leading from one marking to another.

procedure until no τ -executions are obtained anymore. Afterward, we remove
the steps in the alignment that use τ -transitions. Given our example variant σ,
the Petri net depicted in Fig. 5, and the reachability graph displayed in Fig. 6,
we receive the following translucent variant: 〈c, bd, eend, end〉. In practice, not
all optimal alignments are available. To overcome this, we need to compute
all paths, bounded in their length by the longest alignment, to get all optimal
alignments. Given an alignment, we collect all paths with the same order of
non-τ -executions. Then, we search for the path with the latest τ -executions and
continue as described before.

5 Proof of Concept

In this section, we provide a proof of concept. For our first technique related
to pattern matching, we conduct a small case study using software created and
maintained by a company. For our second technique, we discuss the approach
and the general potential.

5.1 Task Mining with Screenshots

In the following, we give an overview of our implementation. Subsequently, we
conduct an experiment to show the validity of our technique.

Overview. To annotate an event log used in RPM, we first have to create one.
For creating user-interaction event logs, we use the software for task mining
provided by Celonis1. The software enables us to record user interactions across
different programs on a detailed level. Moreover, the software creates snapshots
by taking user interface screenshots and linking them with the corresponding
event. As a result, the application of Celonis generates snapshot event logs.
To receive a translucent event log, we have to provide labeled patterns for the
matching. In our case, patterns are snippets of the user interface. Figure 7 shows
an overview of how to add information on enabled activities. As one can observe
in Fig. 7, first, one has to record a task. After recording a task with the screen-
shot functionality, which results in a snapshot event log, all possible enabled
activities have to be defined using snippets of the user interface. To do so, one
has to take pictures of possible activities and label them. These snippets are our

1 https://www.celonis.com/.

https://www.celonis.com/
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Record User 

Interaction

Case Activity Timestamp Screenshot 

ID

001 Click Yellow 2022-08-01 13:37 S_ID_00001

002 Click Blue 2022-08-01 13:38 S_ID_00002

User Interface Snapshot Event Log

S_ID_00001 S_ID_00002

Stored Interaction Screenshots

Label 

Snippets of 

Interface

Labeled Snippets

Screenshot ID Enabled

S_ID_00001 Click Blue, Click Yellow

S_ID_00002 Click Blue
Template 

Matching

Case Activity Timestamp Enabled 

Actions

001 Click 

Yellow

2022-08-01 

13:37

Click Blue, 

Click Yellow

002 Click 

Blue

2022-08-01 

13:38

Click Blue

Click Blue

Click Yellow

Discovered Enabled Actions

Merge 

Information

Translucent Event Log

User

Fig. 7. Overview of adding enabled activities to user interaction logs. Starting from a
user interface, snippets of the interface have to be labeled by a user. Using the tool
offered by Celonis, user interactions are recorded, and screenshots are taken. We use
these screenshots as snapshots, resulting in a snapshot event log. The labeled patterns
are then compared with each taken snapshot. If a pattern appears in a snapshot, its
label is added as enabled activity.

previously mentioned patterns. In our example, the corresponding activities are
“Click Blue” and “Click Yellow”. Given the previously taken snapshots during
the recording and the labeled patterns, we detect if a pattern is contained in a
snapshot. If we detect a pattern in a snapshot, we add the corresponding label to
the enabled activities of the linked event. Given our example, we recognize that
we can click blue and yellow in “S ID 00001”. In “S ID 00002”, we recognize
that we can click blue but not yellow.

Case Study. We use the following example to show that our approach is appli-
cable. Information is filled and pasted into a web form. This information contains
a name, an email address, a subject, and a message. To record this process, we
use the cross-program recording capability of the tool offered by Celonis. An
overview of the different ingredients necessary for adding enabled activities is
depicted in Fig. 8. After recording user interactions using the screenshot func-
tionality, we receive an event log as shown in the first table in Figure 9. We can
observe that user interface screenshots are linked to events, resulting in a snap-
shot event log. Based on our former explanations, we can transform the snapshot
event log into a translucent event log. We use the stored screenshots as snap-
shots, the patterns shown in Fig. 8 and apply pattern matching by using template
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Fig. 8. Overview of the required ingredients for our evaluation. We use small screen-
shots of the user interface to recognize enabled activities. Besides, we show two exam-
ples of the web form and the excel table that is a source of information.

matching provided in OpenCV2. The result of applying these techniques is the
snapshot event log with enabled activities. However, to be a translucent event
log, as defined earlier, we have to preprocess the data. Since the executed activity
(EventDescription) has to be part of the enabled activities, we have to merge,
respectively abstract, events. An overview of event abstraction is provided in
[14]. The result of our applied event abstraction is the shown translucent event
log.

An advantage of this technique is that we can observe how users interact
with the form. We can discover lucent process models by using the discovery
algorithm in [2].

5.2 Annotating Event Log

In this section, we discuss our second technique. As presented, we built our
technique on existing work. Nevertheless, there are other techniques to receive
information about enabled activities, for instance, a prefix-automaton. Moreover,
annotating an event log from which a, perhaps, perfect process model has been
generated might seem odd. However, there are several reasons why annotating
a traditional event log can be beneficial.

First, translucent event logs become more available. As described, translu-
cent event logs are rarely available. The lack of availability leads to a bur-
den for developing new techniques. One reason is that benchmarks for different

2 https://github.com/opencv/opencv-python.

https://github.com/opencv/opencv-python
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Fig. 9. Excepts of the recorded event log using the tool developed by Celonis. Applying
template matching using the patterns shown in Fig. 8 leads to an intermediate log.
Abstracting events results in the translucent event log.

algorithms cannot be created. Another reason is that the research area of translu-
cent event logs might seem uninteresting due to the lack of available event logs.

Second, using the state-based discovery algorithm in [2], we can relate the
different states of a system better to a model. Since enabled activities are used
as states in an automaton, a Petri net can be discovered using region theory
[6,7]. Depending on the circumstances, this Petri net can illustrate the system’s
behavior better than the original model. Nevertheless, the process model which
is used for this approach influences the result.

As a result, creating translucent event logs based on an existing process model
and an event log can still be beneficial for process mining.

6 Conclusion

In this work, we showed how translucent event logs could be created. Process min-
ing can benefit from using this type of event log, and more concrete models can
be discovered. We showed two techniques to create translucent event logs. The
first technique, relying on labeled patterns, pattern matching, and snapshots, can
be adopted in the area of RPM. However, preprocessing the data is still neces-
sary, but this is outside this work’s scope. Moreover, labeling each pattern can
be an exhausting task. Nevertheless, this problem has the potential to be par-
tially automated. For example, it might be possible to extract patterns from snap-
shots such that the user only has to label them. The second technique, using a
traditional event log and a process model, can be used, for instance, to generate
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a ground truth. Since we can create translucent event logs, new techniques to
improve process mining can be developed. However, multiple techniques can gen-
erate information on enabled activities given a traditional event log and a pro-
cess model. Evaluating these techniques is a topic for future work. Nonetheless,
the given process model influences the results of our shown technique and surely
future techniques. Therefore, it seems helpful, given an event log, to generate mul-
tiple process models, generate enabled activities for each model, and later select
the most suitable combination. We are sure that this process has the potential
to be partly automated. We are confident that translucent event logs can help to
tackle the challenges in RPM that are presented in [10].
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Abstract. In this paper, we introduce the SAP Signavio Academic Mod-

els (SAP-SAM) dataset, a collection of hundreds of thousands of business
models, mainly process models in BPMN notation. The model collection
is a subset of the models that were created over the course of roughly a
decade on academic.signavio.com, a free-of-charge software-as-a-service
platform that researchers, teachers, and students can use to create busi-
ness (process) models. We provide a preliminary analysis of the model
collection, as well as recommendations on how to work with it. In addi-
tion, we discuss potential use cases and limitations of the model collection
from academic and industry perspectives.

Keywords: Process models · Data set · Model collection

1 Introduction

Process models depict how organizations conduct their operations. They rep-
resent the basis for understanding, analyzing, redesigning, and automating pro-
cesses along the business process management (BPM) lifecycle [9]. As such, many
organizations posses large repositories of process models [11]. Having access to
such repositories would be tremendously beneficial for developing and testing
algorithms in the area of BPM, e.g., for process model querying [19] or refer-
ence model mining [20]. Also, the growing interest in applying machine learning
in the BPM field, e.g., for process model matching [1], process model abstrac-
tion [27] or process modeling assistance [24], underlines the relevance for large
model collections that can, for example, serve as training datasets.

However, researchers rarely have access to large collections of models from
practice. Such models can contain sensitive information about the organization’s
internal operations. Legal aspects and the fear of losing competitive advantage
thus discourage companies from publishing their business (process) models [25].
This inherent dilemma has so far largely prevented the publication of large-scale
model collections for research, as they are common in related research fields [25].

c© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 453–465, 2023.
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In this paper, we introduce SAP Signavio Academic Models (SAP-SAM), a
model collection that consists of hundreds of thousands of process and business
models in different notations. We provide a basic overview of datasets related
to SAP-SAM, as well as the origin and structure of it. Subsequently, we present
selected properties and use cases of SAP-SAM. Finally, we discuss limitations of
the dataset along with recommendations on how to work with it.

2 Related Datasets

Compared to SAP-SAM, existing process model collections are rather small.
The hdBPMN [21] dataset, for example, contains 704 BPMN 2.0 models. This
collection has the special feature that the models are handwritten and can be
parsed as BPMN 2.0 XML. Another example is RePROSitory [5] (Repository of
open PROcess models and logS) which is an open collection of business process
models and logs, meaning users can contribute to the repository by uploading
their own data. At the time of writing, RePROSitory also contains around 700
models. Some models included in SAP-SAM have already been published [28].
However, the previously published dataset contains only 29,810 models that were
collected over a shorter period of time.

In the process mining community, the BPI challenge datasets, e.g., the BPI
challenge 2020 [8], have become important benchmarks. Unlike SAP-SAM, these
datasets consist of event logs from practice. Therefore, the applications of the
BPI challenge datasets only partially overlap with those of SAP-SAM.

3 Origins and Structure of SAP-SAM

SAP-SAM contains 1,021,471 process and business models that were created
using the software-as-a-service platform of the SAP Signavio Academic Initia-
tive1 (SAP-SAI), roughly from 2011 to 20212. Most models are in Business Process
Model and Notation (BPMN 2.03). SAP-SAI allows academic researchers, teach-
ers, and students to create, execute, and analyze process models, as well as related
business models, e.g., of business decisions. The usage of SAP-SAI is restricted to
non-commercial research and education. Upon registration, users consent that the
models they create can be made available for research purposes, either anonymized
or non-anonymized. SAP-SAM contains those models for which users have

1 See: signavio.com/bpm-academic-initiative/ (accessed at 2022-07-25).
2 The total number includes vendor-provided example models, which are automatically

added to newly created workspaces (process repositories that users register). About
470,000 models in the dataset bear the name of an example model, but this can only
be a rough estimate of the number of example models in the dataset.

3 Technically, the latest version of BPMN is, at the time of writing, BPMN 2.0.2. How-
ever, little has changed between 2.0 and 2.0.2. We assume that the informal cross-
vendor alignment efforts of the OMG BPMN Model Interchange Working Group are
more substantial than formal progress between minor versions. In the following, we
therefore use BPMN 2.0 to refer to any version among 2.0 and 2.0.2.

https://signavio.com/bpm-academic-initiative/
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consented to non-anonymized sharing. Still, anonymization scripts were run to
post-process the models, in particular to remove email addresses, student regis-
tration numbers, and—to the extent possible—names.

The models in SAP-SAM were created between July 2011 and (incl.) Septem-
ber 2021 by a total of 72,996 users, based on a count of distinct user IDs
that are associated with the creation or revision of a model. The models were
extracted from the MySQL database of SAP-SAI and are in SAP Signavio’s pro-
prietary JSON-based data format. The BPMN models are conceptually BPMN-
2.0-standard-compliant, i.e., individual models can be converted to BPMN 2.0
XML using the built-in functionality of SAP-SAI. Decision Model and Notation
(DMN) models can be exported analogously. The dataset contains models in the
following notations:

– Business Process Model and Notation (BPMN): BPMN is a standardized nota-
tion for modeling business processes [15]. SAP-SAM distinguishes between
BPMN process models, collaboration models, and choreography models, and
among BPMN process models between BPMN 1.1 and BPMN 2.0 models.

– Decision Model and Notation (DMN): DMN is a standardized notation for
modeling business decisions, complementing BPMN [17].

– Case Management Model and Notation (CMMN): CMMN is an attempt to
supplement BPMN and DMN with a notation that focuses on agility and
autonomy [16].

– Event-driven Process Chain (EPC): EPC [22] is a process modeling notation
that enjoyed substantial popularity before the advent of BPMN.

– Unified Modeling Language (UML): UML is a modeling language used to
describe software (and other) systems. It is subdivided into class and use
case diagrams.

– Value Chain: A value chain is an informal notation for sketching high-level
end-to-end processes and process frameworks.

– ArchiMate: ArchiMate is a notation for the integrated modeling of informa-
tion technology and business perspectives on large organizations [13].

– Organization Chart: Organization charts are tree-like models of organiza-
tional hierarchies.

– Fundamental Modeling Concepts (FMC) Block Diagram: FMC block dia-
grams support the modeling of software and IT system architectures.

– (Colored) Petri Net: Petri nets [18] are a popular mathematical modeling
language for distributed systems and a crucial preliminary for many formal
foundations of BPM. In SAP-SAM, colored Petri nets [12] are considered a
separate notation.

– Journey Map: Journey maps model the customer’s perspective on an organi-
zation’s business processes.

– Yet Another Workflow Language (YAWL): YAWL is a language for modeling
the control flow logic of workflows [26].

– jBPM: jBPM models allowed for the visualization of business process models
that could be executed by the jBPM business process execution engine before
the BPMN 2.0 XML serialization format existed. However, recent versions of
jBPM rely on BPMN 2.0-based models.
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– Process Documentation Template: Process documentation templates support
the generation of comprehensive PDF-based process documentation reports.
These templates are technically a model notation, although they may practi-
cally be considered a reporting tool instead.

– XForms: XForms is a (dated) standard for modeling form-based graphical
user interfaces [2].

– Chen Notation: Chen notation diagrams [3] allow for the creation of entity-
relationship models.

SAP-SAM is available at https://zenodo.org/record/7012043. Its license sup-
ports non-commercial use for research purposes, e.g., usage for the evaluation of
academic research artifacts, such as algorithms and related software artifacts.

4 Properties of SAP-SAM

SAP-SAM comprises models in different modeling notations and languages, as
well as of varying complexity. In this section, we provide an overview of selected
properties of SAP-SAM. The source code that we used to examine the properties
is available at https://github.com/signavio/sap-sam.

Modeling Notations. Figure 1 depicts the number of models in different nota-
tions in the dataset, as well as the according percentages (in brackets). We aggre-
gate notations which are used for less than 100 models respectively into Other :
Process Documentation Template (86 models), jBPM 4 (76 models), XForms (20
models), and Chen Notation (3 models). The primarily used modeling notation
is BPMN 2.0, which confirms that it is the de-facto standard for modeling busi-
ness processes [4]. Therefore, we will focus on BPMN 2.0 models as we examine
further properties.

Languages. Since SAP-SAI can be used by academic researchers, teachers and
students all over the world, the models in SAP-SAM are created using different
languages. For example, SAP-SAM includes BPMN 2.0 models in 41 different
languages. Figure 2 shows the ten most frequently used languages for BPMN 2.0
models. Note that the vendor-provided example models, which are added to
newly created workspaces, exist in English, German, and French. When a SAP-
SAI workspace is created, the example models added to it are in German or
French if the language configured upon creation is German or French, respec-
tively; otherwise, the example models are in English. This contributes to the fact
that more than half of the BPMN 2.0 models (57.43 %) are in English.

Elements. Figure 3 illustrates the occurrence frequency of different element
types in the BPMN 2.0 models of SAP-SAM. It can be recognized that the
element types are not equally distributed, which confirms the findings of prior
research [14]. The number of models that contain at least one instance of a par-
ticular element type is much higher for some types, e.g., sequence flow (98.88 %)
or task (98.11 %), than for others, e.g., collapsed subprocess (25.23 %) or start
message events (25.42 %). Note that Fig. 3 only includes element types that are

https://zenodo.org/record/7012043
https://github.com/signavio/sap-sam
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Fig. 1. Usage of different modeling notations.

Fig. 2. Usage of different languages for BPMN 2.0 models.

used in at least 10 % of the BPMN 2.0 models. More than 30 element types
are used by less than 1 % of the models. On average, a BPMN 2.0 model in
SAP-SAM contains 11.3 different element types (median: 11) and 46.7 different
elements, i.e., instances of element types (median: 40).

Table 1 shows the number of elements per model by type. For a compact rep-
resentation, we aggregate similar element types by arranging them into groups.
On average, connecting objects, which include associations and flows, make up
the largest proportion of the elements in a model (mean: 23.1, median: 20).

Labels. All elements of a BPMN 2.0 model can be labeled by the modeler,
which results in a total of 2,820,531 distinct labels for the 28,293,762 elements
of all BPMN 2.0 models in SAP-SAM. Figure 4 depicts the distribution of label
usage frequencies. We sorted the labels based on their absolute usage frequency
in descending order and aggregated them in bins of size 10,000 to visualize the
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Fig. 3. Occurrence frequency of different BPMN 2.0 element types.

unevenness of the distribution. The first bin (leftmost bar in the chart) therefore
contains the 10,000 most frequently used labels for the elements in the BPMN 2.0
models. Overall, 53.9 % of all elements in the BPMN 2.0 models are labeled with
these first 10,000 labels. On the other hand, the long-tail distribution indicates
that many of the labels are used for only one element of all BPMN 2.0 models.
More precisely, 1,829,891 (64.9 %) of the labels are used only one time. The
unevenness of the label usage distribution can again partly be explained by the
vendor-provided examples in the dataset: The labels of the example processes
appear very frequently in the dataset.

5 SAP Signavio Academic Models Applications

As pointed out above, large process model collections like SAP-SAM are a valu-
able and critical resource for BPM research. Process models from practice codify
organizational knowledge about business processes and methodical knowledge
about modeling practices. Both types of knowledge can be used by research, for
example, for deriving recommendations for the design of future models. In addi-
tion, large process model collections are required for evaluating newly developed
BPM algorithms and techniques regarding their applicability in practice.

To illustrate the potential value of SAP-SAM for the BPM community, the
following list describes some application scenarios that we consider to be partic-
ularly relevant. It is neither prescriptive nor comprehensive; researchers can use
SAP-SAM for many other purposes.
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Table 1. Statistics of the number of elements per BPMN 2.0 model by type (grouped).

Element type groups Mean Std Min 25% 50% 75% Max

Activities 8.6 8.4 0 4 7 10 1543

Events 5.2 5.1 0 2 5 6 157

Gateways 3.7 4.4 0 2 3 4 303

Connecting objects 23.1 21.8 0 14 20 25 2066

Swimlanes 3.8 2.6 0 3 4 5 227

Data elements 1.3 3.4 0 0 0 2 266

Artifacts 0.9 4.0 0 0 0 1 529

Fig. 4. Distribution of the label usage frequency in BPMN 2.0 models. Each bar rep-
resents a bin of 10,000 distinct labels.

Knowledge Generation. Process models depict business processes, codifying
knowledge about the operations within organizations. This knowledge can be
extracted and generalized to a broader context. Hence, SAP-SAM can be con-
sidered as a knowledge base to generate new insights into the contents and the
practice of organizational modeling. Example applications include:

– Reference model mining [20]: Reference models provide a generic template
for the design of new processes in a certain industry. They can be mined
by merging commonalities between existing processes from different contexts
into a new model that abstracts from their specific features. By applying this
technique to subsets of similar models from SAP-SAM, we can mine new
reference models for process landscapes or individual processes, including,
e.g., the organizational perspective. Similarly, we could identify, analyze, and
compare different variants of the same process.

– Identifying modeling patterns [10]: Process model patterns provide proven
solutions to recurring problems in process modeling. They can help in
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streamlining the modeling process and standardizing the use of modeling con-
cepts. A dataset like SAP-SAM which contains process models from many
different modelers, provides an empirical foundation both for finding new
modeling patterns and for validating existing ones. This also extends to pro-
cess model antipatterns, i.e., patterns that should be avoided, as well as mod-
eling guidelines and conventions.

Modeling Assistance. The modeling knowledge that is codified in SAP-SAM
can also be used for automated assistance functions in modeling tools. Such
assistance functions support modelers in creating or updating process models,
accelerating and facilitating the modeling process. However, many assistance
functions are based on machine learning techniques and therefore require a large
set of training data to generate useful results. With its large amounts of contained
modeling structures and labels, SAP-SAM offers a substantial training set, for
example, for the following applications:

– Process model auto-completion [23]. By providing recommendations on possi-
ble next modeling steps, process model auto-completion can speed up model-
ing and facilitate consistency of the terms and modeling patterns that are used
by an organization. Besides structural next element type recommendations,
text label suggestions or even recommendations of entire process segments are
possible. SAP-SAM can be used to train machine learning models for these
purposes.

– Automated abstraction techniques [27]: One important function of BPM is
process model abstraction, i.e., the aggregation of model elements into less
complex, higher-level structures to enable a better understanding of the over-
all process. Such an aggregation entails the identification and assignment of
higher-level categories to groups of process elements. SAP-SAM can provide
the necessary training data for an NLP-based automated abstraction.

Evaluation. Managing large repositories of process models is a key application
of BPM [7]. Researchers have developed many different approaches to assist orga-
nizations with this task. To make these approaches as productive as possible,
they need to be tested on datasets that are comparable to those within orga-
nizations. Since SAP-SAM goes well beyond the size of related datasets, it can
be used for large-scale evaluations of existing process management approaches
on data from practice. Examples for these approaches include process model
querying [19], process model matching [1], and process model similarity [6].

6 Limitations and Recommendations for Usage

As explained in the previous section, SAP-SAM can be used by the academic
community to test and evaluate a plethora of tools and algorithms that address a
wide range of process querying and business process analytics use cases. However,
in the context of any evaluation, the limitations of the dataset need to be taken
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into account. Considering the nature of SAP-SAM as a model collection that has
been generated by academic researchers, teachers, and students, the following
limitations must be considered:

– Many models in SAP-SAM exist multiple times, either as direct duplicates
(copies) or as very similar versions. This includes vendor-provided example
models or standard academic examples that are frequently used in academic
teaching and research. The existence of these models can be used to evaluate
variant identification and fuzzy matching approaches in process querying, but
it negatively affects the diversity, i.e., the breadth of the dataset.

– Many models may be of low technical quality, in particular the models that
are created by “process modeling beginners”, i.e., early-stage students, for
learning purposes. Although it can be interesting to analyze the mistakes or
antipatterns in such models, flawed models can, for example, be problematic
when using the dataset for generating modeling recommendations based on
machine learning. Also, the mistakes that students make are most likely not
representative of mistakes made by process modeling practitioners.

– Because many of the models have most likely been created for either teach-
ing, learning, or demonstrating purposes, they presumably present a simplistic
perspective on business processes. Even when assuming that all researchers,
teachers, and students are skilled process modelers4 and have a precise under-
standing of the underlying processes when modeling, the purpose of their
models is typically fundamentally different from the purpose of industry pro-
cess models. Whereas academic models often emphasize technical precision
and correctness, industry models usually focus on a particular business goal,
such as the facilitation of stakeholder alignment.

Let us note that this list may not be exhaustive; in particular, limitations
that depend on a particular use case or evaluation scenario need to be identified
by researchers who will use this dataset. Still, it is also worth highlighting that
the rather “messy” nature of the model collection reflects the reality of industrial
data science challenges, in which a sufficiently large amount of high-quality data
(or models) is typically not straightforwardly available [11]; instead, substantial
efforts need to be made to separate the wheat from the chaff, or to isolate use-
cases in which the flaws in the data do not have an adverse effect on business
value, or any other undesirable organizational or societal implications. However,
most process models go beyond A-B-C toy examples from exercises and the
overall SAP-SAM dataset is of sufficient relevance and quality for facilitating
research, for example, in the directions that we have outlined in the previous
section.

When using SAP-SAM for academic research purposes, it typically makes
sense to filter it, i.e., to reduce it to a subset of models that satisfy desirable
properties. Here, we provide some recommendations to help with this step.

4 Considering the previous point, that means even when focusing on the subset of
the model collection that only entails models carefully created by skilled advanced
students, teachers, and researchers.
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Fig. 5. Correlation of the number of nodes and edges in BPMN 2.0 models.

– It typically makes sense to filter out the vendor-provided example models
that are created by the SAP-SAI system upon workspace creation.

– For many use cases, researchers may want to sort out process models that
contain a very small or a very large number of elements. As can be expected
for BPMN 2.0 models and is shown in Fig. 5, the number of nodes and the
number of edges in a model are highly correlated. Hence, it is sufficient to
filter according to the number of nodes. There is no need to additionally filter
according to the number of edges.

– Similarly, researchers may want to sort out process models where the element
labels have an average length of less than, for example, three characters to
ensure that only models with useful labels are included.

Let us again highlight that example code that demonstrates how the dataset
can be queried, as well as the code for the analysis in this paper is available at
https://github.com/signavio/sap-sam.

7 Conclusion

In this paper, we have presented the SAP-SAM dataset of process and other busi-
ness models. We are confident in our assumption that SAP-SAM is, by far, the
largest publicly available collection of business process models. Hence, it can—
despite the limitation that it entails “academic” models created by researchers,
teachers, and students and not by process management professionals—serve as
an excellent basis for developing and evaluating tools and algorithms for process
model querying and analysis.

In the future, SAP-SAM can potentially be augmented by including the fol-
lowing additional data objects:

https://github.com/signavio/sap-sam
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– Business objects/dictionary entries: In addition to models, SAP-SAI supports
the creation of business objects, so-called dictionary entries. These objects
represent, for example, organizational roles, documents, or IT systems and can
be linked to models to then be re-used across a process landscape that entails
many models. Dictionary entries facilitate process landscape maintenance, as
well as reporting.

– Standard-conform XML serializations: The models in the SAP-SAM dataset
are serialized using a non-standardized JSON format that i) supports a gener-
alization of modeling notations and ii) is more convenient to use than XML-
based serializations within the JavaScript-based front-ends of modern web
applications. However, proprietary components exist that can—in the case
of BPMN, DMN, and CMMN models—generate XML serializations which
are compliant with the corresponding Object Management Group standards.
Adding these XML serializations to the dataset can facilitate academic use,
as many open-source and prototypical software tools support the open stan-
dards.

– PNG or SVG image representations: Similarly, to allow for a more straightfor-
ward visualization of models, PNG and SVG representations of the SAP-SAM
models can be generated and included.
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Abstract. Process mining is a family of techniques that support the
analysis of operational processes based on event logs. Among the exist-
ing event log formats, the IEEE standard eXtensible Event Stream (XES)
is the most widely adopted. In XES, each event must be related to a sin-
gle case object, which may lead to convergence and divergence problems.
To solve such issues, object-centric approaches become promising, where
objects are the central notion and one event may refer to multiple objects.
In particular, the Object-Centric Event Logs (OCEL) standard has been
proposed recently. However, the crucial problem of extracting OCEL logs
from external sources is still largely unexplored. In this paper, we try
to fill this gap by leveraging the Virtual Knowledge Graph (VKG) app-
roach to access data in relational databases. We have implemented this
approach in the OnProm system, extending it to support both XES and
OCEL standards. We have carried out an experiment with OnProm over
the Dolibarr system. The evaluation results confirm that OnProm can
effectively extract OCEL logs and the performance is scalable.

Keywords: Process mining · Object-Centric Event Logs · Virtual
Knowledge Graphs · Ontology-based data access

1 Introduction

Process mining [1] is a family of techniques relating the fields of data science and
process management to support the analysis of operational processes based on
event logs. To perform process mining, normally the algorithms and tools expect
that the event logs follow certain standards. However, in reality, most IT systems
in companies and organizations do not directly produce such logs, and the rele-
vant information is spread in legacy systems, e.g., relational databases. Event log
extraction from legacy systems is a key enabler for process mining [6–8].

There have been several proposals for the representation of event logs,
e.g., eXtensible Event Stream (XES) [16], JSON Support for XES (JXES) [15],
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Open SQL Log Exchange (OpenSLEX) [14], and eXtensible Object-Centric
(XOC) [12], where XES is the most adopted one, being the IEEE standard for
interoperability in event logs [11]. In XES (and other similar proposals), each
event is related to a single case object, which leads to problems with convergence
and divergence [2], as later explained in Sect. 2.2. To solve these issues, object-
centric approaches become promising, where objects are the central notion, and
one event may refer to multiple objects. In particular, along this direction, the
Object-Centric Event Logs (OCEL) standard [10] has been proposed recently.

To the best of our knowledge, the crucial problem of extracting OCEL logs
from external sources is still largely unexplored. The only exception is [3], where
OCEL logs are extracted by identifying the so-called master and relevant tables
in the underlying database and building a Graph of Relations (GoR). Though
promising, this approach might be difficult to adopt when the underlying tables
are complex and the GoR is hard to model because it does not separate the
storage level (i.e., the database) from the concept level (i.e., domain knowledge
about events).

In this work, we try to fill this gap by leveraging the OnProm framework [5,7]
for extracting event logs from legacy information systems. OnProm v1 was already
relying on the technology of Virtual Knowledge Graphs (VKG) [17] to expose
databases as Knowledge Graphs that conform to a conceptual model, and to
query this conceptual model and eventually generate logs by using ontology and
mapping-based query processing. Using VKG, a SPARQL query q expressed over
the virtual view is translated into a query Q that can be directly executed on
a relational database D, and the answer is simply the RDF graph following the
standard SPARQL semantics. The workflow of OnProm v1 for extraction of event
logs in XES format from relational databases consists of three steps: conceptual
modeling, event data annotations, and automatic event log extraction [7]. OnProm

came with a toolchain to process the conceptual model and to automatically
extract XES event logs by relying on the VKG system Ontop [18].

We present here OnProm v2, which we have modularized so that it becomes
easier to extend, and in which we have implemented OCEL-specific features to
extract OCEL logs. We have carried out an experiment with OnProm over the
Dolibarr Enterprise Resource Planning (ERP) & Customer Relationship Man-
agement (CRM) system. The evaluation results confirm that OnProm can effec-
tively extract OCEL logs. The code of OnProm and the data for reproducing the
experiment can be found on GitHub https://github.com/onprom/onprom.

2 Event Log Standards: XES and OCEL

A variety of event log standards have emerged in the literature. In this paper,
we are mostly interested in the XES and OCEL standards.

2.1 XES Standard

The eXtensible Event Stream (XES) is an XML-based standard for event logs. It
aims to provide an open format for event log data exchange between tools and
applications. Since it first appeared in 2009, it has quickly become the de-facto

https://github.com/onprom/onprom
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standard in Process Mining and eventually became an official IEEE standard in
2016 [4]. The main elements of the XES standard are Log, Trace, Event, Attribute,
Extension, and Classifier. We emphasize the following points:

– Log is the root component in XES.
– The Trace element is directly contained in the Log root element. Each trace

belongs to a log, and each log may contain many traces.
– Each event belongs to a trace, and each trace usually contains many events.
– All information in an event log is stored in attributes. Both traces and events

may contain an arbitrary number of attributes.

Example 1. Consider the order management process in an ERP system, and sup-
pose there is an instance of order cancellation. Taking the order as a case, there
is a trace containing events such as create order, review order, cancel order, and
close order, as shown below.

2.2 OCEL Standard

The purpose of the Object-Centric Event Logs (OCEL) standard is to provide a
general standard to interchange event data with multiple case notions. Its goal
is to exchange data between information systems and process mining analysis
tools. It has been proposed recently as the mainstream format for storing object-
centric event logs [10].

The main elements of the OCEL standard are Log, Object, Event, and Element.
The main difference between XES and OCEL lies in the usage of Case in XES and
Object in OCEL. Recall that XES requires a single case to describe events. In
contrast, in OCEL the relationship between objects and events is many-to-many.
This gives OCEL several advantages [10] compared with existing standards:

– It can handle application scenarios involving multiple cases, thus making up
for the deficiencies of XES.

– Each event log contains a list of objects, and the properties of the objects are
written only once in the log (and not replicated for each event).

– In comparison to tabular formats, the information is strongly typed.
– It supports lists and maps of elements, while most existing formats (such as

XOC, tabular formats, and OpenSLEX) do not properly support them.

One main motivation for OCEL is to support multiple case notions. Using
a traditional event log standard like XES may lead to problems of convergence
(when an event is related to different cases and occurs repetitively) and diver-
gence (when it is hard to separate events with a single case) [10]. We show these
in the following example.

Example 2. Considering again an ERP system as in Example 1, when a valid
order has been confirmed and payment has been completed, the goods are about
to be delivered. Usually the items in the same order may come from different
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warehouses or suppliers, and may be packaged into different packages for deliv-
ery, as shown below.

Suppose that we want to use XES to model this event log. If item is regarded
as a case and create order is regarded as an activity, then create order will be
repeated because there are multiple items (e.g., item1, item2, . . . ), even if there
is only one order order1. This is the convergence problem.

If order is regarded as a case and pack item and check item are regarded as
activities, then in the same order case, there are multiple pack item events that
should be executed after the check item events. However, we cannot distinguish
different items in an order, and the order between the two activities may be
disrupted. This is the divergence problem.

The OCEL standard is a good solution to these problems, since they can be
easily solved by treating order, item, and package as objects, and then each event
can be related to different objects. In this way, the properties of the objects are
written only once in the event log and not replicated for each event.

3 The OnProm V2 Framework

We describe now the OnProm approach for event log extraction. OnProm v1, which
supports only the XES standard, has been discussed extensively in [5,7]. We
describe here the revised version v2, which has a better modularized architecture
and supports also OCEL. The architecture of OnProm v2 is shown in Fig. 1. We
first briefly introduce the basic components of the framework.

To extract from a legacy information system I, event logs that conform to
an event log standard X, OnProm works as follows:

(A) Creating a VKG specification. The user designs a domain ontology T using
the UML Editor of OnProm. Then they create a VKG mapping M (using,
e.g., the Ontop plugin for Protégé [18]) to declare how the instances of classes
and properties in T are populated from I. This step is only concerned with
modeling the domain of interest and is agnostic to the event log standard.

(B) Annotating the domain ontology with the event ontology. OnProm assumes
that for the event log standard X, a specific event ontology EX is available.
The Annotation Editor of OnProm imports EX , and allows the user to create
annotations LX over the classes in T that are based on the classes of EX .

(C) Extracting the event log. OnProm assumes that for the standard X also
a set of SPARQL queries for extracting the log information is defined.
The Log Extractor of OnProm relies on a conceptual schema transforma-
tion approach [6] and query reformulation of Ontop, using LX , T , M, and
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Fig. 1. OnProm event log extraction framework.

R. It internally translates these SPARQL queries to SQL queries over I,
and evaluates the generated SQL queries to construct corresponding Java
objects and serialize them into log files compliant with X.

In this work, we have first modularized the system, by separating the above
steps into different software components, so as to make it more extensible.
Then we have introduced OCEL-specific features in Steps (B) and (C ). Hence,
OnProm v2 is now able to extract OCEL logs from relational databases.

Below we detail these steps and provide a case study with the Dolibarr sys-
tem. This example also serves as the base of the experiments in the next section.
Dolibarr [9] is a popular open source ERP & CRM system. It uses a relational
database as backend, and we consider a subset of the tables that are related to
the Sale Orders. We model it as an information system I = 〈R,D〉, where the
schema R consists of 9 tables, related to product, customer, order, item, invoice,
payment, shipment, etc., and the data D includes instances of the tables, a sam-
ple of which is shown in Table 1. Note that the table name is not immediately
understandable (llx_commande is a table about orders).

Table 1. Table llx_commande.

rowid fk_soc ref date_creation date_valid total_ttc

38 3 C07001-0010 2017-02-16 00:05:01 2021-02-16 00:05:01 200.00

40 10 C07001-0011 2017-02-16 00:05:10 2021-02-16 00:05:10 1210.00
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3.1 Creating a VKG Specification

In this step, we define a domain ontology T and a mapping M for creating
a VKG from I = 〈R,D〉. This is to provide a more understandable knowledge
graph view of the underlying data in terms of the domain.

The domain ontology T is a high-level abstraction of the business logic con-
cerned with the domain of interest. The UML editor in OnProm uses UML class
diagrams as a concrete language for ontology building and provides their logic-
based formal encoding according to the OWL 2 QL ontology language [13]. In
this case study, the domain ontology about Sale Orders is constructed using the
UML editor as shown in Fig. 2.

Fig. 2. Domain ontology in the UML editor.

In a VKG system, the domain ontology T is connected to the information sys-
tem I through a declarative specification M, called mapping. More specifically,
M establishes a link between I and T . The mapping M is a collection of map-
ping assertions, each of which consists of a SQL statement (called Source) over
I and a triple template at the data concept schema level (called Target) over T .
For example, the following mapping assertion constructs instances of the Order

class in T , with their creation date, from a SQL query over the llx_commande

table:

SELECT rowid , date_creation FROM llx_commande (Source)
� :Order/{ rowid} a :Order; :createDate {date_creation }^^xsd:dateTime. (Target)

By instantiating rowid and date_creation with the values from the first
row of llx_commande in Table 1, this mapping assertion would produce two
triples: :Order/38 a :Order. :Order/38 :createDate "2017-02-16T00:05:01"8sd:

dateTime.

The mapping can be edited using the Ontop plugin for Protégé. Figure 3 shows
the mapping for the running example.
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Fig. 3. Mapping in the Ontop plugin for Protégé.

3.2 Annotating the Domain Ontology with the Event Ontology

In this step, we establish the connection between the VKG and the event ontol-
ogy. This is achieved by annotating the classes in the domain ontology using the
elements from the event ontology.

An event ontology E is a conceptual event schema, which describes the key
concepts and relationships in an event log standard. For the OCEL standard, we
have created an ontology EOCEL, whose main elements are shown in Fig. 4.

Fig. 4. OCEL event ontology.

In this ontology, the classes Event and Object are connected by the many-
to-many relation e-contains-o. One event may contain multiple objects, and an
object may be contained in multiple events. Events and objects can be related to
attributes through the relations e-has-a and o-has-a, respectively. An attribute
has a name (attKey), a type (attType), and a value (attValue).

Now, using the Annotation Editor in the OnProm tool chain, we can annotate
the classes in T using the elements from E to produce an annotation L. For OCEL,
there are three kinds of annotations:

– The event annotation specifies which concepts in T are OCEL events. Each
event represents an execution record of an underlying business process and



A VKG Based Approach for Object-Centric Event Logs Extraction 473

contains mandatory (e.g., id, activity, timestamp, and relevant objects) and
optional elements (e.g., event attributes). A screenshot of such example anno-
tation is shown in Fig. 5(a), where we annotate the Order class with an Event
and specify its properties label, activity, eventId, and timestamp.

– The object annotation specifies which concepts in T are OCEL objects. An
OCEL object contains mandatory elements (e.g., id and type) and optional
elements (e.g., price and weight). A screenshot of an example object annota-
tion is shown in Fig. 5(b).

– The attribute annotation specifies the attributes attached to the events/ob-
jects. Both an event and an object may contain multiple attributes, and each
attribute annotation consists of an attKey, an attType, and an attValue. A
screenshot of an (event) attribute annotation using the Annotation Editor
tool is shown in Fig. 5(c).

(a) Event annotation over Order.

(b) Object annotation over Customer. (c) Attribute annotation over Product.

Fig. 5. Annotation samples.

3.3 Extracting the Event Log

Once the annotation is concluded, OnProm will compute a new VKG specification
P ′ with a new mapping M′ and the event ontology E , so that it exposes the
information system I as an VKG using the vocabulary from the event standard.
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For example, among others, OnProm produces a new mapping assertion in M′

from the Dolibarr database to the Event classes in EOCEL.

SELECT v1.‘rowid ‘, v1.‘date_creation ‘ (Source)
FROM ‘llx_commande ‘ v1 WHERE v1.‘date_creation ‘ IS NOT NULL

� :PlaceOrder /{ rowid} a ocel:Event ; (Target)
:timestamp {date_creation }^^ xsd:dateTime .

Now all the information in an OCEL log can be obtained by issuing several
predefined SPARQL queries over P ′. For example, the following query extracts
all OCEL events and their attributes:

PREFIX ocel: <http :// onprom.inf.unibz.it/ocel/>

SELECT DISTINCT * WHERE { ?event a ocel:Event .

OPTIONAL { ?event ocel:e-has -a ?att. ?att a ocel:Attribute ;

ocel:attType ?attType; ocel:attKey ?attKey; ocel:attValue ?attValue. }}

The following query extracts the relations between OCEL events and objects
through the property e-contains-o:

SELECT DISTINCT * WHERE { ?event a ocel:Event ; ocel:e-contains -o ?object }

To evaluate these SPARQL queries, OnProm uses Ontop, which translates
them to SQL queries over the database. In this way, extracting OCEL event logs
boils down to evaluating some automatically generated (normally complex) SQL
queries over the database directly. Finally, OnProm just needs to serialize the query
results as logs in the XML or JSON format according to OCEL. Figure 6(a) shows
a fragment in XML-OCEL and Fig. 6(b) shows its visualization.

(a) OCEL XML serialization. (b) OCEL graph.

Fig. 6. A fragment of the extracted OCEL log from the Dolibarr ERP system.

4 Experiments

We have conducted an evaluation of OnProm based on the scenario of Dolibarr.
The experiments have been carried out using a machine with an Intel Core i7
2.0 GHz processor, 16 GB of RAM, Dolibarr v14, and MySQL v8. In order to
test the scalability, we have generated 8 database instances of difference sizes
from 2K to 1M. The size of a database is the number of rows.
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Table 2. Extraction details of OCEL log elements.

Size Attributes Objects Events Relations XML size (KB)

2 K 751 751 1000 1227 419

10 K 3750 3750 5000 6225 2094

50 K 18749 18749 24999 31222 10531

100 K 37448 37448 50000 62470 21093

250 K 93753 93789 125000 156218 52986

500 K 187502 187538 250000 312468 106112

750 K 281250 281286 374999 468712 159234

1 M 374999 374999 499997 624943 212682

Performance Evaluation. The running times are reported in Fig. 7. First, we
notice that our approach scales well. The overall running time scales linearly
with respect to the size of the database. In the biggest dataset of 1M rows, it
takes less than 12 min to extract the event log. We also computed the division
of the running time over the subtasks of log extraction. The upper left corner
of Fig. 7 shows the proportion of the running time for each OCEL element. We
observe that most of the time (98%) has been spent on the event, object, and
attribute extraction, whose main tasks are to evaluate SPARQL queries and
create corresponding Java objects in memory. The time for log serialization is
almost negligible (2%). We note that since extracting these logs corresponds to
evaluating the same SQL queries over databases of different sizes, it is actu-
ally not surprising to observe this linear behavior when the database tables are
properly indexed.

Fig. 7. Running times of the experiment.

We also report in Table 2 the number of OCEL elements extracted for each
database size. At the size of 1M, OnProm extracts an OCEL event log with 374999
objects, 499997 events, 374999 attributes and 624943 relations, and it takes
207 MB to serialize the whole log in XML-OCEL.
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Conformance Test. The OCEL standard comes also with a Python library and
one of the main functionalities is the validation of JSON-OCEL and XML-OCEL.
The library reports that the log obtained by our method is compliant with the
OCEL standard.

5 Conclusions

In this work, we have presented how to extract OCEL logs using the revised
version of the OnProm framework. OnProm uses an annotation-based interface
for users to specify the relationship between a domain ontology and an event
ontology. Then OnProm leverages the VKG system Ontop to expose the underly-
ing sources as a Knowledge Graph using the vocabulary from the OCEL event
ontology. Thus, extracting OCEL logs is reduced to evaluating a fixed set of
SPARQL queries. Our experiments confirmed that the extraction is efficient
and that the extracted logs are compliant with the standard. OnProm provides
a flexible framework for users to choose XES or OCEL according to their needs.
In the non-many-to-many business, the results are similar, but OCEL has higher
extraction efficiency because it does not need to manage events in one case. In
modeling many-to-many relations, OCEL has greater advantages because it is
actually a graph structure.

There are several directions for future work. First of all, we would like to
carry out a user-study to let more users try out our toolkit, and confirm that it
is indeed easy-to-use. We are also interested in extracting logs from other sources
beyond relational databases, e.g., from graph databases. Finally, the modularity
of the approach makes it relatively straightforward to support other standards,
and we will study this possibility.
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Abstract. Constraint monitoring aims to monitor the violation of constraints in

business processes, e.g., an invoice should be cleared within 48 h after the cor-

responding goods receipt, by analyzing event data. Existing techniques for con-

straint monitoring assume that a single case notion exists in a business process,

e.g., a patient in a healthcare process, and each event is associated with the case

notion. However, in reality, business processes are object-centric, i.e., multiple

case notions (objects) exist, and an event may be associated with multiple objects.

For instance, an Order-To-Cash (O2C) process involves order, item, delivery, etc.,

and they interact when executing an event, e.g., packing multiple items together

for a delivery. The existing techniques produce misleading insights when applied

to such object-centric business processes. In this work, we propose an approach

to monitoring constraints in object-centric business processes. To this end, we

introduce Object-Centric Constraint Graphs (OCCGs) to represent constraints

that consider the interaction of objects. Next, we evaluate the constraints repre-

sented by OCCGs by analyzing Object-Centric Event Logs (OCELs) that store

the interaction of different objects in events. We have implemented a web appli-

cation to support the proposed approach and conducted two case studies using a

real-life SAP ERP system.

Keywords: Constraint monitoring · Object-centric process mining ·
Compliance checking · Process monitoring

1 Introduction

It is indispensable for organizations to continuously monitor their operational problems

and take proactive actions to mitigate risks and improve performance [2]. Constraint

monitoring aims at detecting violations of constraints (i.e., operational problems) in

business processes of an organization by analyzing event data recorded by information

systems [8]. Once violations are detected, the organization can activate management

actions to cover the respective violation [10].

A plethora of techniques has been suggested to implement constraint monitoring.

For instance, a technique is proposed to detect events violating constraints, e.g., detect-

ing an X-ray event with a long waiting time, using behavioral profiles and Complex

Event Processing (CEP) [13]. Maggi et al. [9] propose a technique to detect process

instances violating constraints, e.g., detecting a patient with multiple executions of X-

rays, using Linear Temporal Logic (LTL).
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M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 479–492, 2023.

https://doi.org/10.1007/978-3-031-27815-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27815-0_35&domain=pdf
http://orcid.org/0000-0001-9394-6513
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-27815-0_35


480 G. Park and W. M. P. van der Aalst

The existing techniques assume that an event in event data is associated with a sin-

gle object of a unique type (so-called case), e.g., a patient in a healthcare process. Thus,

constraints are defined over the single case notion, e.g., each patient (i.e., case) should

be registered before triage. However, in real-life business processes, an event may be

associated with multiple objects of different types, i.e., real-life business processes

are object-centric [1]. For instance, the omnipresent Purchase-To-Pay (P2P) process

involves different object types, e.g., purchase order, material, invoice, goods receipt,

etc., and an event may be associated with multiple objects of different types, e.g., clear-

ing invoice is associated with a purchase order, an invoice, and a goods receipt to enable

so-called three-way matching.

Fig. 1. Comparing (a) traditional and (b) object-centric constraint monitoring

Applying the existing techniques to such object-centric settings results in mislead-

ing insights. Figure 1(a) shows events of a “case” in an Order-To-Cash (O2C) process

using order as the case notion. First, an order is placed, and the availability of two items

of the order is checked, respectively. Next, one of the items is picked, and the invoice of

the order is sent to the customer. Afterward, the other item is picked, and the payment of

the invoice is collected. Finally, the items are packed and delivered to the customer. The

three constraints shown in Fig. 1(a) are violated by the case. For instance, Constraint 1

is violated since pick item is followed by send invoice in the case and Constraint 3 is

violated since pick item is preceded by send invoice.

However, in reality, the order and each item have different lifecycles as shown in

Fig. 1(b). First, we place an order with two items. While the invoice is sent and the
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payment is collected for the order, we check the availability of each item and pick each

of them. We finally deliver the order with two items after packing two items together. In

this object-centric setting, constraints should be defined in relation to objects to provide

accurate insights. For instance, Constraint 1* extends Constraint 1 with the correspond-

ing object type (i.e., item). Contrary to Constraint 1, Constraint 1* is not violated since

pick item is directly followed by pack item for any items. Moreover, we can analyze

more object-centric constraints by considering the interaction of different objects. First,

we can analyze if an execution of an activity involves (un)necessary objects (cf. Con-

straint 4 and Constraint 5). Also, we can analyze the cardinality of objects for executing

an activity (cf. Constraint 6 and Constraint 7).

In this work, we propose a technique for constraint monitoring in object-centric set-

tings. To this end, we first introduce object-centric behavioral metrics that can be com-

puted from Object-Centric Event Logs (OCELs), e.g., a metric to measure the degree to

which pick item precedes pack items in the lifecycle of items. Next, we develop Object-

Centric Constraint Graphs (OCCGs) to formally represent constraints using such met-

rics. Finally, monitoring engine evaluates the violation of the constraints represented by

OCCGs by analyzing OCELs.

We have implemented a web application to support the approach. A demo video

and a manual are available at https://github.com/gyunamister/ProPPa.git. Moreover, we

have conducted case studies with a production process and a Purchase-To-Pay (P2P)

process supported by an SAP ERP system.

The remainder is organized as follows. We discuss the related work in Sect. 2 and

present the preliminaries, including OCELs in Sect. 3. In Sect. 4, we introduce object-

centric behavioral metrics. Afterward, we present OCCGs to formally represent con-

straints and the monitoring engine to evaluate the violation of the constraints in Sect. 5.

Next, Sect. 6 introduces the implementation of the proposed approach and case studies

using real-life event data. Finally, Sect. 7 concludes the paper.

2 Related Work

Many approaches have been proposed to monitor the violation of constraints by ana-

lyzing event data. Weidlich et al. [13] propose a technique to abstract process models

to behavioral profiles and produce event queries from the profile. Violated executions

of events are monitored using Complex Event Processing (CEP) engines with the event

queries. Awad et al. [5] define a set of generic patterns regarding the occurrence of tasks,

their ordering, and resource assignments and generate anti-patterns from the generic

patterns to monitor event executions. Maggi et al. [9] represent control-flow properties

of a running process instance using Linear Temporal Logic (LTL) and evaluate their

violations at runtime. Also, Petri-net-based constraints are aligned with event logs to

evaluate whether the execution of business processes conforms to the constraints [12].

Indiono et al. [7] propose an approach to monitoring Instance-Spanning Constraints

(ISCs) that span multiple instances of one or several processes based on Rete algorithm.

However, the existing techniques may produce misleading insights in object-centric set-

tings since it does not consider the interaction among objects of different types. More-

over, object-centric constraints, e.g., the cardinality of an object type for the execution

of an activity, are not supported in the existing techniques.

https://github.com/gyunamister/ProPPa.git
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Table 1. A fragment of an event log.

Event id Activity Timestamp Order Item

e93 place order (po) 25-10-2022:09.35 {o1} {i1, i2, i3}

e94 evaluate credit (ec) 25-10-2022:13.35 {o1} /0

e95 confirm order (co) 25-10-2022:15.35 {o1} {i1, i2, i3}

This paper is in line with the recent developments in object-centric process min-

ing [1]. Object-centric process mining breaks the assumption of traditional process min-

ing techniques that each event is associated with a single case notion (i.e., object), allow-

ing one event to be associated with multiple objects. Moreover, a process discovery

technique is proposed to discover Object-Centric Petri Nets (OCPNs) from OCELs [3].

Furthermore, Adams et al. [4] propose a conformance checking technique to determine

the precision and fitness of the net, and Park et al. propose an approach to object-centric

performance analysis [11]. Esser and Fahland [6] propose a graph database as a storage

format for object-centric event data, enabling a user to use queries to calculate different

statistics. This work extends the current development in the field of object-centric pro-

cess mining by proposing a constraint monitoring technique in object-centric settings.

3 Preliminaries

Given a set X , the powerset P(X) denotes the set of all possible subsets. We denote

a sequence with σ = 〈x1, . . . ,xn〉 and the set of all sequences over X with X∗. Given a

sequence σ ∈ X∗, x ∈ σ if and only if ∃1≤i≤|σ | σ(i) = x.

Definition 1 (Universes). Uei is the universe of event identifiers, Uoi is the universe of

object identifiers, Uact is the universe of activity names, Utime is the universe of times-

tamps, Uot is the universe of object types, Uattr is the universe of attributes, Uval is the

universe of values, and Umap = Uattr � Uval is the universe of attribute-value mappings.

For any f ∈ Umap and x /∈ dom( f ), f (x) =⊥.

Using the universes, we define an object-centric event log as follows.

Definition 2 (Object-Centric Event Log). An object-centric event log is a tuple L =
(E,O,µ ,R), where E ⊆ Uevent is a set of events, O ⊆ Uoi is a set of objects, µ ∈ (E →
Umap)∪ (O → (Utime → Umap)) is a mapping, and R ⊆ E ×O is a relation, such that for

any e ∈ E, µ(e)(act) ∈ Uact and µ(e)(time) ∈ Utime, and for any o ∈ O and t, t ′ ∈ Utime,

µ(o)(t)(type) = µ(o)(t ′)(type) ∈ Uot. UL is the set of all possible object-centric event

logs.

For the sake of brevity, we denote µ(e)(x) as µx(e) and µ(o)(t)(x) as µ t
x(o).

Since the type of an object does not change over time, we denote µ t
type(o) as

µtype(o). Table 1 describes a fraction of a simple event log L1 = (E1,O1,µ1,R1) with

E1 = {e93,e94,e95}, O1 = {o1, i1, i2, i3}, R1 = {(e93,o1),(e93, i1), . . .}, µact(e93) = po,

µtime(e93) = 25-10-2022:09.35, µtype(o1) = Order, and µtype(i1) = Item.

We define functions to query event logs as follows:
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Definition 3 (Notations). For an object-centric event log L = (E,O,µ ,R), we intro-

duce the following notations:

– acts(L) = {µact(e) | e ∈ E} is the set of activities,

– events(L,a) = {e ∈ E | µact(e) = a} is the set of the events associated to a ∈ acts(L),
– types(L) = {µtype(o) | o ∈ O} is the set of object types,

– objects(L,ot) = {o ∈ O | µtype(o) = ot} is the set of the objects associated to ot ∈
types(L),

– events(L,o) = {e ∈ E | (e,o) ∈ R} is the set of the events containing o ∈ O,

– objects(L,e) = {o ∈ O | (e,o) ∈ R} is the set of the objects involved in e ∈ E,

– seq(o) = 〈e1,e2, . . . ,en〉 such that events(L,o) = {e1,e2, . . . ,en} and µtime(ei) ≤
µtime(e j) for any 1 ≤ i < j ≤ n is the sequence of all events where object o ∈ O

is involved in, and

– trace(o) = 〈a1,a2, . . . ,an〉 such that seq(o) = 〈e1,e2, . . . ,en〉 and ai = µact(ei) for

any 1 ≤ i ≤ n is the trace of object o ∈ O.

For instance, acts(L1) = {po,ec,co}, events(L1,po) = {e93}, types(L1) =
{Order, Item}, objects(L1,Order) = {o1}, events(L1,o1) = {e93,e94,e95},

objects(L1,e93) = {o1, i1, i2, i3}, seq(o1) = 〈e93,e94,e95〉, and trace(o1) = 〈po,ec,co〉.
Using the notations, we characterize an event log as follows:

Definition 4 (Log Characteristics). Let L = (E,O,µ ,R) be an object-centric event

log. For ot ∈ types(L) and a,b ∈ acts(L), we define the following characteristics of L:

– #L(ot,X) = |{o ∈ objects(L,ot) | ∀x∈X x ∈ trace(o)}| counts the objects of type ot

whose trace contains X ⊆ acts(L),
– #L(ot,a,b) = |{o ∈ objects(L,ot) | ∃1≤i< j≤|trace(o)| trace(o)(i) = a ∧ trace(o)( j) =

b}| counts the objects of type ot whose trace contains a followed by b,

– #0
L(ot,a) = |{e ∈ events(L,a) | |{o ∈ objects(L,e) | µtype(o) = ot}| = 0}| counts the

events relating no objects of type ot for the execution of a,

– #1
L(ot,a) = |{e ∈ events(L,a) | |{o ∈ objects(L,e) | µtype(o) = ot}| = 1}| counts the

events relating one object of type ot for the execution of a, and

– #∗
L(ot,a) = |{e ∈ events(L,a) | |{o ∈ objects(L,e) | µtype(o) = ot}| > 1}| counts the

events relating more than one object of type ot for the execution of a.

For instance, #L1
(Order,{po}) = 1, #L1

(Item,{po}) = 3, #L1
(Item,{po,ec}) = 0,

#L1
(Order,po,ec) = 1, #0

L1
(Order,ec) = 0, #0

L1
(Item,ec) = 1, #1

L1
(Order,po) = 1, #1

L1

(Item,po) = 0, #∗
L1

(Order,po) = 0, and #∗
L1

(Item,po) = 1.

4 Object-Centric Behavioral Metrics

To introduce OCCGs, we first explain three types of object-centric behavioral metrics

derived from an event log: ordering relation, object involvement, and performance met-

rics. Such metrics are used to define the semantics of OCCGs in Sec. 5.

An ordering relation metric refers to the strength of a causal/concurrent/choice rela-

tion between two activities in an OCEL w.r.t. an object type.
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Definition 5 (Ordering Relation Metrics). Let L be an object-centric event log. For

ot ∈ types(L) and a,b ∈ acts(L), we define the following ordering relation metrics of L:

– causalL(ot,a,b) =

{

#L(ot,a,b)
#L(ot,{a,b}) , if #L(ot,{a,b}) > 0

0,otherwise

– concurL(ot,a,b) =

⎧

⎪

⎨

⎪

⎩

1− max(#L(ot,a,b),#L(ot,b,a))−min(#L(ot,a,b),#L(ot,b,a))
#L(ot,a,b)+#L(ot,b,a) ,

if #L(ot,a,b)+#L(ot,b,a) > 0

0,otherwise

– choiceL(ot,a,b) =

{

1− #L(ot,{a,b})+#L(ot,{a,b})
#L(ot,{a})+#L(ot,{b}) , if #L(ot,{a})+#L(ot,{b})>0

0,otherwise

causalL(ot,a,b), concurL(ot,a,b), and choiceL(ot,a,b) all produce values

between 0 (weak) and 1 (strong). For L1 in Table 1, causalL1
(Order,po,co) = 1,

concurL1
(Order,po,co) = 0, choiceL1

(Order,po,co) = 0, showing that po and co has a

strong (not only directly, but also eventually) causal ordering relation.

Next, an object involvement metric quantitatively represents how the execution of

an activity involves objects.

Definition 6 (Object Involvement Metrics). Let L be an object-centric event log. For

ot ∈ types(L) and a ∈ acts(L), we define three object involvement metrics of L in the

following.

– absentL(ot,a) =
#0

L(ot,a)
|events(L,a)| is the strength of ot’s absence in a’s execution.

– singularL(ot,a) =
#1

L(ot,a)
|events(L,a)| is the strength of ot’s singularity in a’s execution.

– multipleL(ot,a) =
#∗

L(ot,a)
|events(L,a)| is the strength of ot’s multiplicity in a’s execution.

All object involvement metrics produce values between 0 (weak) and 1 (strong).

For L1 in Table 1, absentL1
(Item,ec) = 1, showing that items are not involved in the

execution of ec. singularL1
(Order,po) = 1 and multipleL1

(Item,po) = 1, indicating that

the execution of po involves only one order and multiple items.

Finally, a performance metric refers to a performance/frequency value related to the

execution of an activity.

Definition 7 (Performance Metrics). Let L be an object-centric event log. Let

Umeasure be the universe of performance/frequency measure names, e.g., the aver-

age waiting time. A performance metric of L, perf L ∈ (acts(L) × Umeasure) � R,

maps an activity and a performance/frequency measure to the value of the perfor-

mance/frequency measure w.r.t. the activity.

Note that we deliberately “underspecify” performance metrics, abstracting from

the definition of individual performance metrics. Performance metrics may include the

average number of objects per object type for the execution of an activity (e.g., the

average number of items for placing an order), the average sojourn time for the execu-

tion of an activity (e.g., the average sojourn time for confirming an order), etc. For L1

in Table 1, perf L1
(po,avg-num-items) = 3, which denotes that the average number of

items for po in L1 is 3. Also, perf L1
(co,avg-sojourn-time) = 2 h, which denotes that the

average sojourn time for co in L1 is 2 h.
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5 Object-Centric Constraint Monitoring

In this section, we explain our proposed approach to object-centric constraint moni-

toring. To this end, we first introduce Object-Centric Constraint Graphs (OCCGs) to

represent constraints. Next, we introduce a monitoring engine to evaluate the violation

of constraints represented by OCCGs by analyzing OCELs.

5.1 Object-Centric Constraint Graphs (OCCGs)

An OCCG is a directed graph that consists of nodes and edges, as depicted in Fig. 2.

Nodes consist of activities, object types, and formulas. A formula is a logical expression

defined over performance measures of an activity using relational operators (≤,≥,=)

as well as logical operators such as conjunction (∧), disjunction (∨), and negation (¬).

Edges describe control-flow, object involvement, and performance edges.

Fig. 2. Graphical notations of OCCGs. act ∈ Uact, ot ∈ Uot, and τ ∈ [0,1].

Definition 8 (Object-Centric Constraint Graph). Let F(X) be the set of all possible

logical expressions with set X. Let A ⊆ Uact, OT ⊆ Uot, and F ⊆ F(Umeasure). Let

C = {causal,concur,choice,skip} be the set of control-flow labels and I = {0..0,1..1
,1..∗,2..∗} the set of object involvement labels. An object-centric constraint graph is a

graph cg = (V,Eflow,Eobj,Eperf , lc, li, lτ) where

– V ⊆ A∪OT ∪F is a set of nodes,

– Eflow ⊆ A×OT ×A is a set of control-flow edges,

– Eobj ⊆ OT ×A is a set of object involvement edges,

– Eperf ⊆ F ×A is a set of performance edges,

– lc ∈ Eflow → C maps control-flow edges to control-flow labels such that, for any

(a,ot,b) ∈ Eflow, if lc((a,ot,b)) = skip, a = b,

– li ∈ Eobj → I maps object involvement edges to object involvement labels, and

– lτ ∈ Eflow ∪ Eobj → [0,1] maps control-flow and object involvement edges to thresh-

olds.

Ucg denotes the set of all possible object-centric constraint graphs.
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Figure 3(a)-(k) introduces some example of OCCGs defined in an O2C process.

For instance, Fig. 3(a) is formally represented as follows: cg′ = (V ′,E ′
flow, /0, /0, l′c, /0, l′τ)

where V ′ = {collect payment,send reminder}, E ′
flow = {e1 = (collect payment,Order,

send reminder)}, l′c(e1) = causal, and l′τ(e1) = 0.

Fig. 3. Examples of object-centric constraint graphs.

We define the semantics of an OCCG with the notion of violation. An OCCG is

violated in an OCEL if all constraints represented in its edges are satisfied.

Definition 9 (Semantics of object-centric constraint graphs). Let L be an object-

centric event log. An object-centric constraint graph cg = (V,Eflow,Eobj,Eperf , lc, li, lτ)
is violated in L if

1. for any e = (a,ot,b) ∈ Eflow s.t. ot∈types(L)∧a,b∈acts(L),
– causalL(ot,a,b) > lτ(e) if lc(e) = causal,

– concurL(ot,a,b) > lτ(e) if lc(e) = concur,

– choiceL(ot,a,b) > lτ(e) if lc(e) = choice, and

– 1− #L(ot,{a})
|objects(L,ot)| > lτ(e) if lc(e) = skip,

2. for any e = (ot,a) ∈ Eobj s.t. ot∈types(L)∧a∈acts(L),
– absentL(ot,a) > lτ(e) if li(e) = 0..0,

– singularL(ot,a) > lτ(e) if li(e) = 1..1,

– 1−absentL(ot,a) > lτ(e) if li(e) = 1..∗, and

– multipleL(ot,a) > lτ(e) if li(e) = 2..∗,

3. for any ( f ,a) ∈ Eperf s.t. a∈acts(L), f evaluates to true w.r.t. perf L.

For instance, Fig. 3(a) is violated if collect payment is preceded by send reminder at

all w.r.t. Order, Fig. 3(b) is violated if pick item and pack item are concurrently executed

with the strength higher than 0.7 w.r.t. Item, Fig. 3(e) is violated if confirm order is

executed without involving Item at all, Fig. 3(k) is violated if the average waiting time

of the last two days for deliver order is longer than 15 h, and its execution involves

multiple orders with the strength higher than 0.1, etc.
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5.2 Monitoring Engine

A monitoring engine analyzes the violation of OCCGs by analyzing an OCEL.

Definition 10 (Monitoring Engine). A monitoring engine monitor ∈ UL × Ucg →
{true, false} is a function that maps an object-centric event log and an object-centric

constraint graph to a Boolean value. For any L ∈ UL and cg ∈ Ucg, monitor(L,cg) =
true if cg is violated in L, and false, otherwise.

We implement the monitoring engine by 1) computing the object-centric behavioral

metrics of an event log and 2) evaluating the violation of OCCGs based on them. First,

the derivation of ordering relation metrics and object involvement metrics is determin-

istic according to Definition 5 and Definition 6, respectively. However, the computa-

tion of performance metrics is non-trivial. In this work, we use the approach proposed

in [11] to compute performance measures, such as sojourn time, waiting time, service

time, flow time, synchronization time, pooling time, and lagging time, and frequency

measures, such as object count, object type count, etc. Finally, using the object-centric

behavioral metrics, we evaluate the violation of OCCGs according to Definition 9.

6 Implementation and Case Studies

This section presents the implementation of the approach presented in this paper and

evaluates the feasibility of the approach by applying it to a production process and a

P2P process of a real-life SAP ERP system.

6.1 Implementation

The approach presented in this work has been fully implemented as a web application1

with a dedicated user interface. The following functions are supported:

– Importing OCELs in different formats, including OCEL JSON, OCEL XML, and

CSV.

– Designing object-centric constraint graphs using graphical tools.

– Computing object-centric behavioral metrics of OCELs and evaluating the violation

of object-centric constraint graphs based on the metrics.

– Visualizing monitoring results with detailed analysis results.

6.2 Case Study: Production Process

Using the implementation, we conduct a case study on a production process of a fic-

titious company supported by an SAP ERP system. The process involves four object

types: production order, reservation, purchase requisition, and purchase order. Figure 4

shows a process model of the production process using Object-Centric Petri Nets

(OCPNs) as a formalism. We refer readers to [3] for the details of OCPNs.

We represent the following constraints using OCCGs:

1 A demo video and sources: https://github.com/gyunamister/ProPPa.git.

https://github.com/gyunamister/ProPPa.git
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Fig. 4. Production process: First, a production order is created with a variable number of reserva-

tions (i.e., required materials). Next, a purchase requisition is released and approved. Afterward,

a purchase order is created based on the purchase requisition. Once the order is released, the

reservations are received and issued for production. Finally, the production order is confirmed.

– Skipping Purchase Requisition Approval (PRA); A purchase requisition should not

skip the approval step at all. Figure 5(a) represents the constraint.

– No reservation for Purchase Requisition Approval (PRA); The execution of approve

purchase requisition is supposed to include the corresponding reservation most of

the time. Figure 5(b) represents the constraint.

– Excessive reservations per Production Order (PO); The execution of create pro-

duction order should not involve more than one reservation on average. Figure 5(c)

represents the constraint.

– Delayed Purchase Order Release (POR); The average sojourn time of release pur-

chase order should be less than 15 days. Figure 5(d) represents the constraint.

Fig. 5. OCCGs representing the constraints of the production process.

We monitor the process using three OCELs extracted from the SAP ERP system.

Each event log contains events of different time windows; LJan22
prod , LFeb22

prod , and LMar22
prod

contain events of Jan., Feb., and Mar. 20222. Table 2 shows the monitoring result. For

instance, no reservation for PRA and excessive reservations per PO are violated for the

three months. Skipping PRA only is violated in the last two months, while delayed RPO

is violated only for Feb. 2022.

2 Event logs are publicly available at https://github.com/gyunamister/ProPPa.git.

https://github.com/gyunamister/ProPPa.git
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Table 2. Monitoring results of the production process. � denotes the violation.

Constraints Event log

LJan22
prod LFeb22

prod LMar22
prod

Skipping PRA � �

No reservation for PRA � � �

Excessive reservations per PO � � �

Delayed POR �

6.3 Case Study: Procure-to-Pay (P2P) Process

Next, we explain a case study on the P2P process. The process involves five object types:

purchase requisition, material, purchase order, goods receipt, and invoice. Figure 6

shows a process model of the process.

Fig. 6. P2P process: First, a purchase requisition is created with multiple materials. Next, a pur-

chase order is created based on the purchase requisition and materials. Afterward, the materials

are received and a goods receipt is issued. Then, the materials are verified and issued, and con-

currently the invoice for the purchase order is received and cleared.

We represent the following constraints using OCCGs:

– Concurrency between Verify Material (VM) and Plan Goods Issue (PGI); VM and

PGI are usually not supposed to be concurrently executed. Figure 7(a) represents the

constraint.

– Clearance of multiple invoices; The execution of clear invoice should not involve

multiple invoices at all. Figure 7(b) represents the constraint.

– Excessive materials per Purchase Order (PO); The execution of create purchase

order should involve less than five materials on average. Figure 7(c) represents the

constraint.

– Delayed Purchase Order Creation (POC); The average sojourn time of create pur-

chase order should be less than three days. Figure 7(d) represents the constraint.
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Fig. 7. OCCGs representing the constraints of the P2P process.

We monitor the process using three OCELs extracted from the SAP ERP system.

Each event log contains events of different time windows; L1
p2p starting from 01-Aug-2021

and ending at 14-Oct-2021, L2
p2p starting from 15-Oct-2021 and ending at 18-Jan-2022, and L3

p2p

starting from 01-Feb-2022 and ending at 16-May-2022. Table 3 shows the monitoring result.

Concurrency between VM and PGI and clearance of multiple invoices are only violated

in the first two time windows, whereas Excessive materials per PO and delayed POC

are only violated in the last time window.

Table 3. Monitoring results of the P2P process. � denotes the violation.

Constraints Event log

L1
p2p L2

p2p L3
p2p

Concurrency between VM and PGI � �

Clearance of multiple invoices � �

Excessive materials per PO �

Delayed POC �

7 Conclusion

In this paper, we proposed an approach to process-level object-centric constraint mon-

itoring. To this end, we first introduced object-centric behavioral metrics and defined

OCCGs using the metrics. The proposed monitoring engine evaluates the constraints

represented by OCCGs by analyzing OCELs. We have implemented the approach as a

Web application and discussed two case studies.

This paper has several limitations. The suggested object-centric constraint graphs

only represent the constraints selectively introduced in this work. More advanced con-

straints are not considered, e.g., ordering relations with the temporality (e.g., eventual

or direct causality). Also, constraint graphs do not support timed constraints, e.g., no

involvement of an object type during a specific period of time. In future work, we plan

to extend the proposed approach to support more complete set of constraints, including

more advanced constraints. Another interesting direction of future work is to apply the

proposed approach to real-life business processes.
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Abstract. Aggregation of event data is a key operation in process mining for

revealing behavioral features of processes for analysis. It has primarily been

studied over sequences of events in event logs. The data model of event knowl-

edge graphs enables new analysis questions requiring new forms of aggregation.

We focus on analyzing task executions in event knowledge graphs. We show

that existing aggregation operations are inadequate and propose new aggregation

operations, formulated as query operators over labeled property graphs. We show

on the BPIC’17 dataset that the new aggregation operations allow gaining new

insights into differences in task executions, actor behavior, and work division.

Keywords: Knowledge graph · Aggregation · Tasks

1 Introduction

Processes are executed by human actors and automated resources performing work on

the cases of the process. For example, multiple employees of a bank jointly check a

credit application, create (one or more) loan offers, contact the client for additional

information, to finally decline or prepare a contract. Each case evolves by executing

actions according to the process’ control-flow [1]. Human actors (or resources) per-

forming the actions often structure their work further by performing multiple actions

on the same case before handing the case to the next actor, e.g., creating and sending

two loan offers to the same client; such a larger unit of work is called task [13,19]. Rou-

tines research investigates thereby which patterns arise when actors jointly structure and

divide work in a process into (recurring) tasks [10].

Task execution patterns can be identified from process event data when using graph-

based data models. We can jointly model the synchronization of classical traces of all

process cases and the traces of all actors working across all cases in an event knowledge

graph [8]. Any sub-graph of this graph where an actor follows multiple events in a case

corresponds to an execution of some task [13], as we recall in Sect. 2. Sub-graphs on

real-life event logs can be identified through querying [14], e.g., 98% of the BPIC’17 [6]

events are part of a larger task execution. But the structure of how task execution sub-

graphs are related has not been described.

A key operation for describing structures in event data is aggregation. As the

model of event knowledge graphs is novel, only limited aggregation operations have

been proposed, but they either only aggregate events to actions [7], or task execution

c© The Author(s) 2023
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sub-graphs to higher-level events [13]. We show in Sect. 3 that understanding tasks in

a process requires (R1) to aggregate sets of similar higher-level events to suitable con-

structs while preserving their behavioral context, (R2) to aggregate events underlying

higher-level events to study variations among actions, and (R3) that either aggregation

requires parameters for filtering and for controlling the aggregation level.

We then propose in Sect. 4 two new parameterized aggregation operations, formal-

ized as queries over event knowledge graphs, that address (R1–R3) and demonstrate in

Sect. 5 their effectiveness for summarizing task executions of real-life event data in new

kinds of global and local process models [4]. We compare our results to related work in

Sect. 6 and conclude in Sect. 7.

2 Preliminaries

A process-aware system can record an action execution as an event in an event log. We

require that each event records at least the action that occurred, the time of occurrence

and at least two different entity identifiers of entities involved in the event: a data object

or case in which the event occurred, and the resource (or actor) executing the action.

An event can also record additional attributes describing the event further.

Event Knowledge Graphs. A classical event log orders all events by sequential traces

according to a single entity identifier (also called case id). In contrast, an event knowl-

edge graph (EKG) orders events wrt. multiple different entity identifiers [8]. EKGs are

based on labeled property graphs (LPG), a graph-based data model supported by graph

DB systems [3] that describes concepts as nodes and various relationships between

them as edges. In an LPG G = (X,Y,Λ,#), each node x ∈ X and each relationship

y ∈ Y with edge −→y = (x, x′) from x to x′ has a label ℓ ∈ Λ, denoted x ∈ ℓ or y ∈ ℓ

that describes the concept represented by x or y. #(a)(x) = v and #(a)(y) = v denotes

that property a of x or y has value v; we use and x.a = v and y.a = v as short-hand.

In an EKG, each event and each entity (i.e., each data object or resource) is rep-

resented by a node with label Event and Entity, respectively. Each node e ∈ Event

defines e.action and e.time; each node n ∈ Entity defines n.type and n.id. While

EKGs allow to model arbitrarily many entity types, we subsequently restrict ourselves

to EKGs with two entity types: case (any data object or a classical case identifier) and

resource (the actors working in the process). Figure 1 shows an example graph: each

square node is an Event node; each circle is an Entity node of the corresponding type

(blue for case, red for resource). An EKG has relationship labels:

– corr (correlation): y ∈ corr,−→y = (e, n) iff event e ∈ Event is correlated to entity

n ∈ Entity; we write (e, n) ∈ corr as short-hand.

– df (directly-follows): y ∈ df,−→y = (e, e′) iff events e, e′ are correlated to the

same entity n (e, n), (e′, n) ∈ corr, e.time < e′.time and there is no other event

(e′′, n) ∈ corr with e.time < e′′.time < e′.time; we write (e, e′)n.type ∈ df as

short-hand, i.e., (e, e′)c for entity type case and (e, e′)r for resource.

In Fig. 1, corr relationships are shown as dashed edges, e.g., e1, e2, e3, e4, e5 are cor-

related to case c3 and e3, e4, e9, e10 are correlated to resource a5. df -relationships are
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Fig. 1. Event knowledge graph.

shown as solid edges. The df -relationships between the events correlated to the same

entity form a df-path for that entity; the graph in Fig. 1 has 2 df-paths for case entities,

e.g., σc3 = 〈(e1, e2)c, (e2, e3)c, (e3, e4)c, (e4, e5)c〉 and 3 df-paths for resource enti-

ties, e.g., σa5 = 〈(e3, e4)r, (e4, e9)r, (e9, e10)r〉. See [7] for details of how to create

an EKG G from classical event data sources through graph DB queries.

Task Instance Sub-graphs. Where individual events record the execution of an atomic

action, a resource often performs multiple subsequent actions in the same case. This is

called a task [19]. A task execution materializes in an EKG as sub-graph, where a case

and a resource df-path synchronize for several subsequent events [13]. While a variety

of such task subgraphs can be characterized [13], we here recall the most simple one:

a sub-graph of events {e1, ..., ek} and adjacent df-edges that contains (1) exactly one

(part of a) case df-path 〈. . . (e1, e2)
c, . . . , (ek−1, ek)c . . .〉 for a case c and (2) exactly

one (part of an) actor df-path 〈. . . (e1, e2)
r, . . . , (ek−1, ek)r . . .〉 for an actor r, i.e., both

paths synchronize over the same subsequent events. In Fig. 1, subgraphs of events that

meet these criteria are {e1, e2}, {e3, e4}, {e5}, {e6, e7, e8} and {e9, e10}. Each such

subgraph ti describes one task instance. These sub-graphs {G1, . . . , Gk} = TI(G) can

be queried from G by (1) aggregating any two parallel df-edges (e, e′)c and (e, e′)r

into a “joint” edge (e, e′) with label df-joint and (2) then querying for maximal df-joint

paths; see [13] for details.

3 Existing Aggregation Queries and Requirements

We first review existing aggregation operations on EKGs and present them systemati-

cally as three different types of aggregation queries. We then analyze their properties

and shortcomings for summarizing task instances in (large) EKGs.

Node Aggregation. The first basic aggregation query Aggnodes(a,X ′, ℓ, ℓ′) on an EKG

G = (X,Y,Λ,#) proposed in [7] aggregates nodes X ′ ⊆ X by property a into concept

ℓ as follows: (1) query all values V = {x.a | x ∈ X ′}, (2) for each value v ∈ V add

a new node xv ∈ ℓ to G with label ℓ and set xv.id = v, xv.type = a, (3) for each

x ∈ X ′, add new relationship y ∈ ℓ′ with label ℓ′ from x to xv , −→y = (x, xv).
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Fig. 2. Aggregation of the EKG of Fig. 1 by action into Class nodes (top), and by task instance

sub-graphs into TaskInstance nodes (bottom).

For example, applying Aggnodes(action, Event, Class, observed) on the graph in

Fig. 1 creates one new event Class node for each value of the Event nodes’ action prop-

erty, i.e., nodes cl1, . . . , cl6 shown in Fig. 2, and links each event to the event class that

was observed when the event occurred.

Event Sub-graph Aggregation. The query Aggsub(G, ℓ, ℓ′) proposed in [13] aggregates

given sub-graphs G = {G1, . . . , Gk} over Event nodes of G into high-level events

with label ℓ as follows: (1) the sub-graphs G have been obtained by a previous query,

e.g., G = TI(G), see Sect. 2, (2) for each G′ ∈ G, create a new high-level event

node hG′ ∈ ℓ with label ℓ and set hG′ .timestart = min{e.time | e ∈ G′} and

hG′ .timeend = max{e.time | e ∈ G′}, and (3) for each e ∈ G′ add new relationship

y ∈ ℓ′ with label ℓ′ from hG′ to e, −→y = (hG′ , e). Although ℓ �= Event, we interpret each

new node hG′ as a high-level event with duration as it has a start and an end timestamp.

For example, applying Aggsub(TI(G), TaskInstance, contains) on the graph in Fig. 1

materializes five task instance sub-graphs as TaskInstance high-level event nodes

h1, . . . , h5 shown in Fig. 2, and links each event to the TaskInstance in which it is

contained.

Directly-Follows Aggregation. The query Aggdf (t, ℓ, ℓ′) proposed in [7] aggregates

(or lifts) df-relationships between Event nodes for a particular entity type t to ℓ nodes

along the ℓ′ relationships as follows: (1) for any two nodes x, x′ ∈ ℓ query the set

df t
x,x′ of all df-edges (e, e′)t ∈ df where events e, e′ ∈ Event are related to x, x′ via

y, y′ ∈ ℓ′,−→y = (x, e),
−→
y′ = (x′, e′), (2) if df t

x,x′ �= ∅ create a new df-relationship y∗ ∈

df,
−→
y∗ = (x, x′), y∗.type = t and set y∗.count = |df t

x,x′ |. The variant Agg
�=
df (t, ℓ, ℓ′) of

the above query that requires x �= x′ was proposed in [13].

For example, first aggregating events to Class nodes (as explained above), and

then applying Aggdf (t, Class, observed) for t ∈ {Case, Resource} on the graph in

Fig. 1 results in the df-edges between cl1, . . . , cl6 shown in Fig. 2. For instance,

(cl2, cl1)r originates from (e2, e6)r while (cl1, cl2)c originates from (e1, e2)c
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and (e6, e7)c. Likewise, aggregating to TaskInstance nodes and then applying

Agg
�=
df (t, TaskInstance, contains) for t ∈ {Case, Resource} results in the df-edges

between h1, . . . , h5 shown in Fig. 2. For instance, (h1, h4)r originates from (e2, e6)r .

Extensions. These basic aggregation queries can be extended for specific use cases. For

instance, every task instance sub-graph is essentially a path e1, . . . , ek over event nodes.

Aggregation into a TaskInstance node hti then allows to set property hti.name =
e1.action, . . . , ek.action [13] describing the sequence of actions executed in the task,

as shown in Fig 2. All these queries are implemented as Cypher queries over the graph

DB system Neo4j [14].

Properties, Shortcomings, and Requirements. Aggnodes together with Aggdf con-

structs directly-follows graphs where edges distinguish between multiple types of enti-

ties [8], i.e., nodes and edges are on the level of actions. Aggsub together with Agg
�=
df

constructs a “higher level” event graph, i.e., nodes and edges are on the level of sets of

events but not on the level of actions.

Applying the aggregations in this way does not suffice to adequately summarize the

process “as a whole” for analyzing task instances and tasks within a (larger) process.

On one hand, task instances themselves are similar to events as they describe the spe-

cific execution of a task, i.e., multiple actions in a single case by a single resource. On

the other hand, task instances are also not a hierarchical abstraction of the events wrt.

actions: multiple different task instances overlap in their actions. The queries discussed

so far do not take this nature of task instances into account.

In principle, the aim is to summarize the task instances (on the level of sets of

Events) as actual tasks (on the level of sets of actions or event Classes), and to lift the

df-relationships accordingly.

A naive approach would be to aggregate TaskInstance nodes to Task nodes by

their hti.name property, i.e., Aggnodes(name, TaskInstance, Task, observed). However,

as task instances are sequences of multiple actions, two different hti.name values

may be different variants of the same task. For example, h1 and h4 in Fig. 2 with

h1.name = A,B and h4.name = A,B,D might be variants of the same task.

Depending on the analysis, it may be desirable to (R1) aggregate TaskInstance nodes

with similar (but not identical) name properties into the same Task node, which is not

possible with the available queries.

If multiple task instances are considered as variants of the same task, it will be

useful to summarize all the task instances on the level of actions to study the “contents”

and “variability” of executions of a task. We seek to (R2) aggregate events and directly-

follows relations that belong to similar TaskInstance nodes.

The presence of multiple types of DF-relationships (per entity type) increases the

(visual) complexity of the aggregated graphs (see Fig. 2 (top)). Depending on the analy-

sis, it may be desirable to (R3) control the aggregation through filtering and refinement

to obtain more specific summaries in the form of smaller, simpler, or more precise

aggregated graphs.
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4 Queries for Summarizing Task Instances

To address requirements (R1-R3), we propose new queries for aggregating task

instances in different ways, and discuss how to configure and combine aggregation

queries with other queries to obtain specific graphs. In the following, let G be event

knowledge graph G = (X,Y,Λ,#) after applying Aggsub and Agg
�=
df as defined in

Sect. 3, i.e., the graph as Event nodes and TaskInstance nodes connected by df-edges.

4.1 Aggregating Similar Task Instances

Addressing (R1) requires to (a) identify which task instances are similar, and (b) aggre-

gating task instance nodes considered as similar.

The specific criteria when two TaskInstance nodes are similar depend on the con-

crete process, data, and analysis use case. For the scope of this work, we therefore

assume an “oracle query” O(h) = i that determines O(hti) = O(h′
ti) iff two task

instances hti and h′
ti belong to the same task. O(h) could, for instance, be implemented

by agglomerative clustering wrt. the hti.name values (with suitable parameters) [15].

Given such an oracle O, the query Aggsim(O,X ′) aggregates TaskInstance nodes

X ′ ⊆ TaskInstance wrt. oracle O to Class nodes as follows: (1) for each hti ∈ X ′ set

hti.Task = O(hti), (2) aggregate the TaskInstance nodes by property hti.Task using

Aggnodes(Task, TaskInstance, Class, observed) of Sect. 3.

For example, applying Aggsim(O, TaskInstance) on the graph in Fig. 2 creates the

Class nodes cl7, cl8, cl9 of type Task shown in Fig. 3 (top). Further properties of a Task

node t can be set based on the use case, e.g., setting t.name as the set of (most frequent)

e.action of events contained in the hti nodes that observed t.

To also lift df-relationships from TaskInstance nodes to the Class nodes of type Task

we have to generalize Aggdf to also consider high-level events such as TaskInstance

and not just “regular” Events. The query Aggdf (Z ′, t, ℓ, ℓ′) aggregates df-relationships

between nodes Z ′ for a particular entity type t to ℓ nodes along the ℓ′ relationships as

follows: (1) for any two nodes x, x′ ∈ ℓ query the set df t
x,x′ of all df-edges (z, z′)t ∈ df

where nodes z, z′ ∈ Z ′ are related to x, x′ via y, y′ ∈ ℓ′,−→y = (z, x),
−→
y′ = (z′, x′), (2)

if df t
x,x′ �= ∅ create a new df-relationship y∗ ∈ df,−→y = (x, x′), y∗.type = t and set

y∗.count = |df t
x,x′ |.

Applying Aggdf (TaskInstance, t, Class, observed) for t ∈ Case, Resource in our

running example yields the df-edges between cl7, cl8, cl9 shown in Fig. 3 (top).

The sub-graph over the Class nodes of type Task and created in this way is a directly-

follows graph on the level of tasks (instead of the DFG on the level of actions obtained in

Sect. 3). We call this DFG an inter-task DFG to distinguish it from the DFG describing

behavior within a task as we discuss next.

4.2 Aggregating Events Within Similar Task Instances

To address (R2) we need to aggregate only those events that are contained within task

instances of the same task. Two previous aggregation operations already materialized

this information. Each event e is connected to one task t ∈ Class, t.type = Task via



Aggregating Event Knowledge Graphs for Task Analysis 499

endendend

“C”“C”
cl9

“C”
cl9

2 1

1 1

“E,F”“E,F”
cl8

“E,F”
cl8

“A,B”“A,B”
cl7

“A,B”
cl7

Type = Task
ID = 1

Task = 1

Task = 1

Task = 3Task = 2

Task = 2

Type = Task
ID = 2

Type = Task
ID = 3

Be2Be2

Be7Be7Ae6Ae6 De8De8

Ae1Ae1

2

Type = Action,Task
ID = “D,1”

1 1

Intra Task DFG

Inter
Task
DFG

2 1

1 1

1
AAcl1 Acl1

BBcl2 Bcl2

DDcl3 Dcl3

2
2

startstartstart

A,BA,B
h1

A,B
h1

A,B,DA,B,D
h4
A,B,D

h4

E,FE,F
h2

E,F
h2

CC
h3

C
h3

E,FE,F
h5

E,F
h5

Fig. 3. Task instances aggregated into task classes for deriving inter-task dfGs (top). Subset of
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(h, e) ∈ contains and (h, t) ∈ observed (created by Aggsub of Sect. 3 and Aggsim of

Sect. 4.1, e.g., (h1, e1) and (h1, cl7) in Fig. 2).

Using these edges to task t as context, we adapt the node aggregation of Sect. 3

to be local to a task t. But as the same action may occur in different instances of dif-

ferent tasks, we have to distinguish to which task an action belongs. This requires to

define an event classifier query class(e) which returns for each event a value based

on the properties of e or neighboring nodes. Aggnode of Sect. 3 used class(e) =
e.X for some property name X . To distinguish the task, we define event classifier

classtask(e) = (e.action, task(e)) with task(e) = i iff (e, hti) ∈ contains, (hti, t) ∈
observed, t.ID = i. Note that by basing classtask(e) on the Class node, we become

independent of the specific oracle O used to identify tasks.

The generalized aggregation query Aggnodes(class,X ′, ℓ, ℓ′) on an EKG G =
(X,Y,Λ,#) differs from Aggnodes(a,X ′, ℓ, ℓ′) in the first step: (1) query all values

V = {class(x) | x ∈ X ′}, (2) for each value v ∈ V add a new node xv ∈ ℓ to

G with label ℓ and set xv.id = v, xv.type = class, (3) for each x ∈ X ′, add new

relationship y ∈ ℓ′ with label ℓ′ from x to xv , −→y = (x, xv).
We then can aggregate the events per task t ∈ Class, t.type = Task as follows.

Query the events Et = {e ∈ Event | ∃h(e, h) ∈ contains, (h, t) ∈ observed }
and aggregate by Aggnodes(classtask, Et, Class, observes). Applying this query in our

example for cl7 (Task with ID=1), we obtained the class nodes cl1, cl2, cl3 shown in

Fig. 2 (bottom). The df-edges can be aggregated using Aggdf of Sect. 4.1.

In this way, Fig. 3 (bottom) shows how events e1, e2, e6, e7, e8 are aggregated to

an “intra-task directly-follows graph” describing the local behavior within a task in one

model. Analysts can use such an intra-task DFG to understand task contents and how

homogeneous the task instances assigned to the same task are, e.g., to evaluate whether

the chosen oracle O is of sufficient quality.
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4.3 Parameterized, Specific Aggregation

The aggregations of Sect. 4.1 and 4.2 can result in a complex graph over two behavioral

dimensions that is difficult to visualize and possibly not specific to answer an analysis

question. To obtain more specific DFGs, we introduce the following parameters: (1)

node aggregation by using more specific classifiers for TaskInstance nodes, (2) filter-

ing by using different criteria to decide which TaskInstance nodes to keep and (3) edge

aggregation by selecting which df-edges to aggregate. Each parameter is defined by

the properties of the entire event knowledge graph, including the underlying events.

(1) We can refine the aggregation of TaskInstance nodes to Class nodes using a

classifier over multiple properties. For example, the following classifier distinguishes

tasks per actor: classT×R(h) = (h.cluster, resource(h)) with resource(h) = a iff

(e, h) ∈ contains, e.resource = a. The df-relationships are then aggregated per actor,

allowing to compare different actors wrt. their behavior over tasks.

(2) To obtain a DFG for specific parts of the data, the Agg queries allow to limit

the set of nodes to be aggregated to a subset TI′ ⊆ TaskInstance. We can construct

TI′ by another query. For instance: (1) only hti ∈ TaskInstance nodes correlated to

an entity based on a specific property, e.g., in Fig. 2, related to resource entities where

n.ID = a5, i.e., h2 and h5, or case entities where n.item category = Electronics,

i.e., h1, h2 and h3; or (2) based on temporal properties, e.g., only hti nodes in cases

that end before 15:00, i.e., (hti, e) ∈ contains, (e, n) ∈ corr, n.type = case and all

events (e′, n) ∈ corr have e′.time < 15 : 00.

(3) We can limit the df-relationships to aggregate to a subset df′ ⊆ df determined

by structural or temporal properties in the same way as in (2). Note that if df′ is chosen

independent of TI′ there may be no aggregated df-edges between Class nodes.

Analysis typically requires to understand where behavior starts or ends. We sum-

marize how often a Class node cl is a start node of the DFG (for entity type n) by

querying the number of hti ∈ TI′ nodes with (hti, cl) ∈ observed and no incoming df-

edge (h′
ti, hti)

n ∈ df′. For example, in Fig. 3, cl7 is start node once for r and twice for

c. Correspondingly for end nodes. We visualize this as edges from/to artificial inserted

start/end nodes.

5 Demonstration

We implemented the queries we proposed in Sect. 4 as naive, non-optimized Cypher

queries invoked via parameterized Python scripts1 on the graph database Neo4j. We

applied the queries on the event knowledge graph [7] of the BPIC’17 data [6] to evaluate

and demonstrate the feasibility of the queries for obtaining new insight into the process

on the level of tasks and task instances.

First, we materialized the task instance sub-graphs as TaskInstance nodes (see

Sect. 2) which resulted in 171,200 task instances with 1,208 task variants (unique

hti.name values). Naively aggregating the TaskInstance nodes by hti.name would

lead to a graph too large to understand. We removed TaskInstance nodes describing

variants occurring < 10 times (1%) and of length = 1 (6%). We then implemented a

1 Available at: https://zenodo.org/record/6727896#.YrYcjXZBwuU.

https://zenodo.org/record/6727896#.YrYcjXZBwuU
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Fig. 4. Inter-task DFG over Task nodes obtained by aggregating case-df-edges wrt similar task

instance sub-graphs.

simple oracle O for identifying tasks of similar task instances by agglomerative clus-

tering as this method fits the bottom-up aggregation of instances into tasks. We used

Eucledian distance between hti.name as distance metric and chose the number of clus-

ters by maximizing the silhouette index, see [15]. Applying Aggsim(O, TaskInstance)
(Sect. 4.1) resulted in 20 Class nodes of type Task. Aggregating all case-df-edges

results in the DFG shown in Fig. 4. For space limitations, we can explain only

the contents of a few selected tasks. For example, C1,C2,C5 show the 3 most fre-

quent ways actors group actions differently into tasks at the start of the process,

with C1 containing actions A Create, A Concept, W Compl appl+Start; C2 contain-

ing A Create, A Submit, W Handle Lds+Start and while C5 contains more actions

A Create, A Concept, W Compl appl+Start, A Accept, O Create, W Call offers+Start,

A Complete. Cases starting with C1 and C2 later go through C0 containing A Accept,

O Create, O Sent, W Compl appl+E, W Call offers+S, A Complete, i.e., task C5 is

done by a single actor combining tasks C1 and C0 done by two different actors.

We then evaluated whether aggregating events of task instances of the same task

is effective to understand the contents of a task. We applied Aggnodes(classtask,

Et, Class, observes) of Sect. 4.2 for all tasks and obtained a corresponding intra-task

DFG. Figure 5 shows the intra-task DFG of C14 (the most frequent task after C5 and
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Fig. 5. Intra-task DFG of C14 with variants V5 and V6.

C0) highlighting two different variants of the task that differ in the actions executed. The

intra-task DFGs of other tasks revealed also variability in the order of actions executed.

We then explored the more advanced capabilities of parameterizing aggregation

with further queries explained in Sect. 4.3. We chose to compare how 2 different actors

work and collaborate on a day-to-day basis in terms of tasks. For this, we constructed

a composition of multiple actor DFGs interconnected by cases as follows: (1) classifier

classT×R(h) defined in Sect. 4.3, i.e., create class nodes task and actor, (2) TI′ contains

only TaskInstance nodes related to one of two specific resources, (3) include a resource

df-edge (h, h′)r ∈ df ′ only if h.timeend and h′.timestart occur on the same day, and

include any case df-edge in df′.

Fig. 6. Inter-task DFGs showing behavior of users 29

and 113 and handovers.

Figure 6 shows an example of

a specialized DFG; it summarizes

for each actor the behavior executed

over a day (no df-edges to a task

on the next day) and the aggregated

case DF-edges show how often an

actor handed a case from one task

to another actor with another task.

U29 was working on 100 d while

U113 worked on 43 d; U20 per-

forms 4 tasks while U113 performs

3 tasks; both work on C4 and C8

but otherwise do disjoint work and

hand work over between C11 and

C14 and from C14 to C4.

Our naive queries took 1.5 h to build the graph with similar tasks materialized as

Class nodes and about 1 m for computing each of the DFGs, including filtering on an

Intel i7 CPU @ 2.2 GHz machine with 32 GB RAM.

6 Related Work

We discuss how our findings relate to other works on aggregation and analyzing tasks

and actor behavior in terms of sub-sequences or patterns in cases and/or actor behavior.

Kumar and Lui [16] analyze tasks by detecting frequent collaboration patterns in

sequences of actor behavior; but the contents of work between hand-offs is disregarded



Aggregating Event Knowledge Graphs for Task Analysis 503

and not the whole process can be summarized. Yang et al. [20] discover organizational

models including grouping of resources and their relation to execution contexts; but

an execution context consists of single activities disregarding work that may be aggre-

gated into larger tasks. Hulzen et al. [11] cluster activity instance to activity instance

archetypes related to actors; this technique corresponds to the oracle for identifying

similar task executions used as input for aggregation in Sect. 4. Delcoucq et al. [5]

aggregate frequent, gapped behavior of an actor over the entire trace into a local process

model of a task; but the resulting models are not related to the case making it impos-

sible to study the behavioral context in the case or to other actors as we allow. Jooken

et al. [12] mine resource interactions as collaboration sessions of actors working on

the same data objects within a specific time-window from multi-entity event table; the

collaborations are then aggregated into a social network. This approach is an alternative

to task instance querying [13] used in this paper, but their approach does not model task

executions in the context of process executions allowing fewer types of aggregations

compared to our approach. Leoni and Dündar [18] use waiting time between events

as heuristic to group consecutive low-level events into “batch sessions” and cluster

them using the most frequently executed activity in a cluster as label; our aggrega-

tion queries preserve the structure of task variants in the graph. Several task mining

approaches [2,17] aim to discover task executions by segmenting an event log of desk-

top interactions such that repetitive patterns or pre-identified routines are found similar

to our previous work [15]. However, such tasks are limited to a single actor ignor-

ing collaboration and do not investigate the process context. Finally, Genga et al. [9]

used frequent sub-graph mining with SUBDUE to summarize graph-based event data;

the approach enforces a hierarchical structure and cannot be configured to a desired

abstraction level, e.g., task instances or specific subsets. In contrast, the query-based

aggregation operations proposed in this paper offer the required flexibility.

7 Conclusion

We showed how to adapt and generalize existing aggregation queries on event knowl-

edge graphs to preserve the intermediate abstraction level of task instances being mul-

tiple events executed by the one actor in the same case. These queries, implemented as

Cypher queries on standard graph DB systems, allow us to generate three completely

new types of event data summaries: global inter-task DFGs that summarize processes

on the level of larger tasks (instead of atomic actions); local intra-task DFGs that sum-

marize behavior within a task (similar to a local process model [4]); and inter-task DFGs

modeling behavior and interactions of multiple actors.

Our demonstration on the BPIC’17 event data suggests that these data summaries

are helpful in answering questions of how work is structured and divided among actors

in different parts of the process. We believe that such analysis of event data can give

new insights into actor behavior in the context of routines [10,19] and organizational

models [20]. Future work is to evaluate whether the aggregation operations are effective

for analysts trying to understand tasks.

Our work has two limitations. We modeled behavior along the control-flow using a

single entity identifier while many processes operate on multiple objects; task identifi-

cation and queries have to be generalized in this regard. The aggregation queries share
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many elements, but are formalized independently as pattern matching and creation oper-

ations over LPGs. A necessary next step is to systematically inventorize query operators

over event knowledge graphs and develop a formal query algebra that is natural to pro-

cess concepts.
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Process Mining has proven to be a powerful interdisciplinary tool for addressing open

challenges in several fields such as healthcare or finances, and Education is no excep-

tion. The recent Process Mining approaches proposed for learning analytics, curricular

analytics, or MOOC analytics are just some examples. But the Education discipline is

also contributing to Process Mining, providing best practices, lessons learned, and new

artifacts for better teaching and assessing Process Mining.

The International Workshop Education meets Process Mining (EduPM) aims to

provide a high-quality forum for research at the intersection of Education and Process

Mining. This intersection goes in two directions: Firstly, Process Mining for Education

(PM4Edu). How could process mining be used to address some of the challenges in

the field of education? For example, Process Mining for learning analytics, curricular

analytics, motivation trajectories, MOOCs and blended courses, self-regulated learning

patterns, etc. Secondly, Education for Process Mining (Edu4PM). How could we improve

the teaching of the Process Mining discipline? For example, novel learning strategies

tailored for Process Mining, new instruments to automatically assess specific topics of

Process Mining, systematic studies of how Process Mining is being taught on different

educational programs or levels, or novel curricula around Process Mining, among others.

Two types of contributions were invited: regular papers and Show&Tell papers.

Regular papers were required to have a research contribution, and were evaluated on

the basis of their significance, originality, technical quality, and potential to generate

relevant discussion. Show&Tell submissions were non-research contributions, where

authors presented an interesting element or initiative for the EduPM community.

The first edition of EduPM received a total of 14 submissions, 12 of which were

regular papers. Of the regular papers, all except one addressed the PM4Edu direction,

while there was one Show&Tell submission in each of both directions. After thorough

reviewing by the program committee members, six regular submissions were accepted

for a full-paper presentation. Additionally, after careful consideration by the workshop

chairs, one of the Show&Tell submissions was invited for a short presentation. A brief

description of the accepted papers included in this proceeding is given below.

In the paper by Van Daele et al., the authors set out to investigate which specific steps

are taken during exploratory data analysis and how they are structured. The motivation for

which is that such understanding will possibly contribute to the development of structured

procedures that will support training novice analysts and contribute to reducing the

cognitive load of such analysis.

The paper by Hobeck et al. presents a case study-based process mining analysis of

student traces in a data set of information system students at TU Berlin. The authors

apply the PM2 framework to identify the traces of students on their way to obtaining

their Bachelor’s degree.
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The paper by Hildago et al. presents a methodology for domain-driven event abstrac-

tion from MOOCs data in order to be useful for process mining analysis. It shows how

to leverage MOOC event data for understanding learning habits in working sessions,

given that the high-level activities are defined correctly.

The paper by Wagner et al. describes an ongoing project that aims to discover, check,

recommend, and predict the academic trajectories of students in higher education insti-

tutions from data stored in campus management systems. The novelty of the proposed

approach lies in the combination of process mining with rule-based artificial intelligence.

The paper by Rohani et al. presents the discovery analysis of student learning strate-

gies in a visual programming MOOC using process mining techniques. The authors use

a combination of Markov models and expectation maximisation to identify four learning

tactics and several learning strategies extracted from a large sample with 3k+ students.

Finally, the paper by Bala et al. presents the findings of a study that analyses stu-

dent behavior in completing open-ended exams on digital platforms. To do so, the paper

analyzed the trace data about student behavior with the use of process mining, descrip-

tive statistics and correlation analysis. The paper specifically compares the assessment

behavior between top and low performing students.

In addition to these papers, the workshop included a panel discussion on the best

practices of process mining education, as well as the challenges that exist. Panel members

were Francesca Zerbato (chair), Mieke Jans, Boudewijn van Dongen, Marcos Sepúlveda,

and Wil van der Aalst. This discussion gave rise to much food for thought, including

the lack of proper datasets for educational purposes, the need for more emphasis on

the event log construction phase, as well as the possibility to organise process mining

certifications in a similar vein as Lean Six Sigma belts.

Finally, two awards were presented: the Best Student Paper Award for the student

Luciano Hidalgo et al. and his work “Domain-Driven Event Abstraction Framework for

Learning Dynamics in MOOCs Sessions”, and the Best Paper Award for the authors

Richard Hobeck, Luise Pufahl and Ingo Weber and their work “Process Mining on

Curriculum-based Study Data – A Case Study at a German University.”

The organisers wish to thank the EduPM’22 Program Committee for their important

work in reviewing the submissions, as well as all the authors who submitted papers

and the workshop participants for making the first edition of this workshop a success.

Furthermore, a word of thanks also goes to the organising committee of ICPM’22.

November 2022 Jorge Munoz-Gama
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Gert Janssenswillen

Wil van der Aalst



Organization

Workshop Chairs

Jorge Munoz-Gama Pontificia Universidad Católica de Chile,

Chile

Francesca Zerbato University of St. Gallen, Switzerland

Gert Janssenswillen Hasselt University, Belgium

Wil van der Aalst RWTH Aachen University, Germany

Program Committee

Wil van der Aalst RWTH Aachen University, Germany

Mitchel Brunings Eindhoven University of Technology,

The Netherlands

Andrea Burattin Technical University of Denmark,

Denmark

Josep Carmona Universitat Politècnica de Catalunya, Spain

Rebeca Cerezo University of Oviedo, Spain

Jan Claes Arteveldehogeschool, Belgium

Dragan Gasevic Monash University, Australia

Jerome Geyer-Klingeberg Celonis SE, Germany

Luciano Hidalgo Pontificia Universidad Católica de Chile,

Chile

Gert Janssenswillen Hasselt University, Belgium

Manuel Lama Penin University of Santiago de Compostela,

Spain

Sander Leemans RWTH Aachen University, Germany

Jorge Maldonado-Mahauad Universidad de Cuenca, Ecuador

Felix Mannhardt Eindhoven University of Technology,

The Netherlands

Niels Martin Hasselt University, Belgium

Jorge Munoz-Gama Pontificia Universidad Católica de Chile,

Chile

Peter Reimann University of Sydney, Australia

Cristobal Romero Universidad de Córdoba, Spain

Mar Pérez-Sanagustin Institut de Recherce en Informatique

Toulouse, France

Marcos Sepúlveda Pontificia Universidad Católica de Chile,

Chile

Pnina Soffer University of Haifa, Israel



Organization 511

Ernest Teniente Universitat Politècnica de Catalunya, Spain

Jochen De Weerdt Katholieke Universiteit Leuven, Belgium

Francesca Zerbato University of St. Gallen, Switzerland



A Combined Approach of Process Mining

and Rule-Based AI for Study Planning

and Monitoring in Higher Education

Miriam Wagner1(B), Hayyan Helal2, Rene Roepke3, Sven Judel3,
Jens Doveren3, Sergej Goerzen3, Pouya Soudmand1, Gerhard Lakemeyer2,

Ulrik Schroeder3, and Wil M. P. van der Aalst1

1 Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
{wagner,pouya.soudmand,wvdaalst}@pads.rwth-aachen.de

2 Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany
{helal,gerhard}@kbsg.rwth-aachen.de

3 Learning Technologies Research Group, RWTH Aachen University,
Aachen, Germany

{roepke,judel,doveren,goerzen}@cs.rwth-aachen.de,
schroeder@informatik.rwth-aachen.de

Abstract. This paper presents an approach of using methods of process
mining and rule-based artificial intelligence to analyze and understand
study paths of students based on campus management system data and
study program models. Process mining techniques are used to character-
ize successful study paths, as well as to detect and visualize deviations
from expected plans. These insights are combined with recommendations
and requirements of the corresponding study programs extracted from
examination regulations. Here, event calculus and answer set program-
ming are used to provide models of the study programs which support
planning and conformance checking while providing feedback on possible
study plan violations. In its combination, process mining and rule-based
artificial intelligence are used to support study planning and monitor-
ing by deriving rules and recommendations for guiding students to more
suitable study paths with higher success rates. Two applications will be
implemented, one for students and one for study program designers.

Keywords: Educational Process Mining · Conformance checking ·

Rule-based AI · Study planning · Study monitoring

1 Introduction

In higher education, study programs usually come with an idealized, recom-
mended study plan. However, given how students have different capacities to
study due to circumstances like part-time jobs or child care, and how one devi-
ation from the intended study plan can have ripple effects spanning several
semesters, in reality, a large number of different study paths can be observed.
Further, capacity limits like room sizes or the amount of supervision that lectur-
ers can provide make the planning of study paths more complex. Even though

c© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 513–525, 2023.
https://doi.org/10.1007/978-3-031-27815-0_37
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individualized study paths are possible due to the flexibility in study programs
and their curriculum, students may need assistance and guidance in planning
their studies. Software systems that assist students and study program design-
ers in planning might do so by analyzing the large amounts of data in higher
education institutions [12]. Of particular interest in this context are event data
extracted from Campus Management Systems (CMS) including course enroll-
ments, exam registrations and grade entries. To this purpose the AIStudyBuddy

project - a cooperation between RWTH Aachen University, Ruhr University
Bochum and University of Wuppertal - is set up. For preliminary analyses, we
received access to the CMS data of two Bachelor programs, Computer Science
and Mechanical Engineering, at RWTH Aachen University. Within the project,
it will be investigated how to preprocess the data of all partners to apply the
preliminary as well as the further intended analyses.

Fig. 1. Overview of the project, showing the two parts: StudyBuddy and BuddyAna-

lytics and their relationships to the different systems and techniques.

The aim of the project is to develop two applications: an intelligent planning
tool for students and an analytics dashboard for study program designers (see
Fig. 1). Both will be powered by a combination of rule-based Artificial Intel-

ligence (AI) and Process Mining (PM) approaches. The implementation and
evaluation of this combination’s ability to efficiently generate rich feedback when
checking the conformance to formal study plans is a key aspect of this project.
This feedback will include PM results in the form of recommendations, which do
not result from explicit regulations but rather historic study path data.

The planning tool for students, StudyBuddy, will use rule-based AI to check
preliminary plans against an encoding of study program regulations. It will be
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able to provide immediate high-quality feedback regarding any potential con-
flicts in students’ study plans. In addition to the rules explicitly codified in
institutional regulations, the tool will have a notion of recommendations, which
result from analyzing historical CMS data using PM approaches and finding
characterizations of successful paths, e.g., finished in standard period of study.

The analytics dashboard, BuddyAnalytics, will enable study program design-
ers to explore the PM results for the process of Curriculum Analytics. Process
models of recommended study plans can be compared to study paths in the data
to detect possible deviations or favorable routes. Various study path analyses
could support monitoring and help study program designers as well as student
counseling services to support successful study paths and intervene in misguided
study planning by providing individualized plans.

The paper is structured as follows: Sect. 2 presents relevant related work in
the fields of PM, rule-based AI and curriculum analytics. Section 3 introduces
the aim of addressing individualized study planning for students and data-driven
study monitoring for study program designers in a combined approach. The
current state as well as challenges of the project are described in Sect. 4, while
Sect. 5 presents objectives of future work. Section 6 concludes the paper.

2 Related Work

2.1 Process Mining in Education

Educational Process Mining (EPM) [4,27] is a sub-field of PM [28], using var-
ious, commonly known PM techniques in the educational context, e.g. higher
education. While we focus on CMS data, most work in EPM has been done
using Learning Management Systems (LMS) data with similar aims. In [20],
two online exams have been analyzed using dotted chart analysis and process
discovery with various miners. The applicability of standard methods provided
in ProM in the context of LMS data is shown. In [5], course-related student
data has been extracted to visualize the learning processes using an inductive
miner to help preventing failing the course. “Uncover relationships between usage
behavior and students’ grades” is the aim of [13] by using Directly-Follow Graph

(DFG). In [11], a case study is described in which the LMS data of one course
is analyzed using among other things DFG. Also, in [18], data from an LMS is
used and the creation of the event log is described in detail. Those event logs
are used for the creation of DFG.

Analyses of LMS data show that the PM techniques can be used in the
educational context but while concentrating on the behavior of students in one
course, Curriculum Mining analyzes the different study paths a student can
take [19] which is a substantial aspect in our work. Here, different approaches
exist: [25,29] describe ways to use curriculum data to uncover the de-facto paths
students take to, in the next step, recommend suitable follow-up courses. To our
knowledge, this next step has not been done. [8] focuses on the study counselor
perspective and uses, e.g., Fuzzy Miner and Inductive Visual Miner, to visualize
the de-facto study paths and use those insights to improve the curriculum. In [23],
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the influence of failing a course on the study success is analyzed using mainly
DFGs, while in [24], the analysis is done by modeling how students retake courses
and the influence on study program dropouts.

Further, we will explore the application of conformance checking [10]. There-
fore, similar approaches to ours are reviewed. An extended approach to confor-
mance checking is multi-perspective conformance checking as in [17]. For our
purpose, one reason to not extend this technique is that the Petri nets repre-
senting the study plan are hard to read when including all allowed behavior. For
example, allowing a course to be in different semesters might lead to reposition-
ing other courses as well. Furthermore, some rules that need to be represented
are not connected to the model itself, e.g., credit point thresholds belonging to a
semester and not to a course. Those could be modeled using invisible transitions,
which makes the model more complicated and less intuitive.

2.2 Related Work on Rule-Based AI

The goal of rule-based AI is to model the examination regulations and the module
catalog in a machine-readable language that allows for dealing with and planning
events. For such scenarios, the combination of Answer Set Programming (ASP)
and Event Calculus (EC) is applied. Both are based on a wider concept called
non-monotonic reasoning, which differentiates from monotonic reasoning by the
ability to retract already made implications based on further evidence [6].

Non-monotonic reasoning can model defaults as described in [22]. Defaults
are assumed to hold, but do not necessarily have to. For instance, Students

typically take course X after they do course Y will be modeled as a default,
as it is a recommendation, not a requirement. As long as the student does not
plan anything against it, it will be considered in their planning. Else, it will be
ignored. A requirement on the other hand must be valid for all plans.

Looking for similar approaches, in [2], the problem of curriculum-based course
timetabling was solved using ASP, however using a mechanism other than EC.
While we consider recommendations to be defaults that must be typically fol-
lowed, they should only ever result in a warning to the student, still giving the
freedom to be deviated from. In [2], recommendations come in handy for plan-
ning, where the number of violations on them should be minimized. Furthermore,
the timetabling problem focuses much more on the availability requirement for
courses rather than also considering the results (e.g. success or failure, Credit

Points (CPs) collected, ...) of these courses, which is the main focal point for us.
More generally, Declarative Conformance Checking [10] is a common appli-

cation of rule-based AI to process models. In [9,16], declarative rules are used
instead of classical conformance checking based on Petri nets. While [16] just
covers the activities for constraints, [9] extended it with a data- and time-
perspective. Furthermore, [1] has a wider model for requirements. It specifies
three kinds of requirements, which refer to the relation in time between events,
e.g. an event has a succession requirement if there is an event that must be done
in the future after doing it. All three approaches use Linear Temporal Logic
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instead of ASP and EC, as it suitable for modeling the three mentioned require-
ments. For our purposes though, it makes the modeling of the contribution of
an event to a specific result (e.g., CPs) harder, because our approach does not
focus on the relation in time between events as much as the contributions of
these events.

2.3 Curriculum Analytics and Planning

Having emerged as a sub-field of Learning Analytics, curriculum analytics aims
to use educational data to drive evidence-based curriculum design and study
program improvements [15]. Leveraging the data gathered in educational insti-
tutions, it can help identify student’s needs and reduce dropout rates [12]. As
such, different approaches and tools (e.g., [3,7,14,21]) have been developed to
support the analysis of CMS or LMS data with the aim of helping instructors and
program coordinators reflect on the curriculum and teaching practices. While
various data and PM approaches have been used to analyze study paths pro-
vided through CMS event data [3,21], curriculum sequencing and study planning
was explored using semantic web concepts applied on examination regulations,
with the overall aim of supporting curriculum authoring, i.e., the design of per-
sonalized curricula fulfilling a set of constraints [1]. Other approaches include rec-
ommender systems [30] or genetic algorithms [26] to support students in course
selection processes and fulfilling requirements of a study program. To the best
of our knowledge, however, no joint approach of PM and rule-based AI has yet
been explored in order to support study planning and monitoring for students
and study program designers.

3 Approach

The aim of AIStudyBuddy is to support individualized study planning (for stu-
dents) and monitoring (for study program designers). Study planning describes
the students’ activities of planning and scheduling modules, courses and exams
throughout the complete course of a study program. The examination regula-
tions provide recommendations and requirements to describe a study program
and the conditions for students to successfully earn a degree. These may include
a sample study plan recommending when to take which module or course and
attempting to distribute CPs evenly over the standard period of study. Students
choose from the module catalog, a list of mandatory and elective modules.

While most students may start with the same recommended plan in their first
semesters, deviations due to various reasons can occur at any time, e.g., working
part-time may result in a reduced course load and delaying courses to the next
year, thus, changing the complete plan and its duration. Therefore, support for
individualized planning as well as recommendations of suitable study paths are
needed. Further, the diversity of study paths and deviations from recommended
study plans raises questions of how different students move through a study
program, if certain modules or courses cause delays in the study plan, or whether
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a study program may need revisions. Here, study monitoring can be provided
by analyzing students’ traces in various systems used in the university. In our
project, we will initially focus on CMS data and might include LMS data later.

In order to support students and study program designers in their respective
tasks, a modular infrastructure (see Fig. 1) with two primary applications for
the target groups will be implemented. The application StudyBuddy presents a
web interface to guide and engage students in study planning activities. As in
many programs students do not necessarily have to follow a recommended plan
and in later phases not even have recommendations. To help finding suitable
courses historic data can be used to give hints which combinations have been
successful. Furthermore, course-content is not always independent from other
courses and a specific order might help to pass with higher chance. It offers an
overview of a student’s study program and allows for creation and validation of
individual study plans. ASP and EC are used to model these regulations. Given
a study plan, they can be used to generate feedback regarding violations and
give recommendations. These recommendations are the result of mining historic
data of previous study paths for those with high success rates.

For study program designers, the application BuddyAnalytics presents an
interactive, web-based dashboard visualizing PM data analysis results. Different
methods, i.e., process discovery and conformance checking, can help to under-
stand how different student cohorts behave throughout the course of the study
program and identify deviations from recommended study plans. Based on dif-
ferent indicators and questions by study program designers, student cohorts can
be analyzed and insights into their paths can be gained. Study program design-
ers can evaluate and compare different study paths and further develop new
redesigned study plans in an evidence-based way.

4 Current State and Challenges

The main data source for this project is the CMS of a university, which contains
information about the students, courses, exams and their combination. Later,
the possibility to integrate LMS data will be explored. As the project aims to
be independent from the systems and study programs at different universities,
a general data model has been created (see Fig. 2). This model is the starting
point for our project work and shows the general relation between courses and
students as well as study programs. The diagram does not include all possible
data fields as they differ depending on the available data of a university.

Students can have multiple study programs, e.g., first do a Bachelor in Com-
puter Science followed by a Master. Each semester a student has a study status,
e.g., enrolled or semester on leave. The same offered course is scheduled in differ-
ent semesters, e.g., Programming is offered every winter semester, and in different
study programs, e.g., Introduction to Data Science is mandatory for a Master in
Data Science but elective for a Master in Computer Science. Students also have
a status for scheduled courses during their study program, e.g., course passed.

Until now, we explored data on exam information (i.e., registrations and
results). The analyzed data includes Bachelor and Master Computer Science
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Fig. 2. A basic and generic data model for CMS data

students as well as Mechanical Engineering Bachelor of RWTH Aachen Univer-
sity. Some standard KPIs used in various departments of universities that give
meaningful insights about students, study programs or cohorts are:

– Success rate of a course [in specific semesters] [for a cohort]
– Number of attempts a course is taken [on average] [for a cohort]
– Exams taken/passed in a [specific] semester [on average] [of a cohort]
– Average study duration [of a cohort]
– Percentage of dropouts [of a cohort] [in a predefined period]

A cohort can be defined based on the semester a group of students
started, e.g., cohort WS21 refers to all students that started in winter semester
2021/2022. It can also be defined by the amount of semesters students already
studied or the examination regulations they belong to. Different cohort defini-
tions are needed to answer various questions about the behavior of students.
For more insights exceeding simple SQL queries used for descriptive statistics,
the data is transferred into specific event logs, in which activities can be based
just on courses and exams, or may even include additional information. First,
we concentrated on events describing the final status of exams for students. A
student can have multiple occurrences of a course, e.g. when they do not pass
the exam in the first try or when they registered first, but in the end, they did
not take it. As a timestamp, the semester or the exact exam date can be used.
Also, some activities may have specific status dates, e.g., the date of the (de-
)registration. Those event logs can be used to create de-facto models showing the
actual behavior of a group of students. As model we use DFG, BPMN models,
process trees and Petri nets, as shown in Fig. 3, because they are easy to read
also for non-specialists in PM.

For useful insights, the multiple occurrence and the partial order of courses
must be treated. The partial order is caused by using, e.g., the scheduled
semester, instead of the arbitrarily set exam dates, based on among others room
capacities. We tried out different solutions with the setting depending on the
underlying questions that should be answered by the resulting model, e.g., when
using a combination of exam attempt and course ID as the activity, the result-
ing de-facto model shows how courses are retried and visualizes better the real
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Fig. 3. Model created by ProM plugin“Mine Petri net with Inductive Miner” for data
of students studying in examination regulation 2018 just using their mandatory courses

workload per semester. In Fig. 3, just the first occurrence of the course is used
and all exams of a semester have the same date. Semester-blocks are visible,
especially when the offered semester of a course is in mind, e.g., Programming

and Calculus are offered in the winter semester. The examination regulation of
2018 states that it should be taken in the first semester. Compared to the (sim-
plified) recommended plan (see Fig. 4) Mentoring occurs two semesters before
Calculus, while they should be concurrent. Data Communication and Security is
taken two semesters earlier than planned and before courses that should precede
it, e.g., Computability and Complexity. Those models give a first impression of
the actual study path but need interpretation.

As a simpler approach to the later proposed combination of ASP and classical
PM conformance checking, we explored the possibility of creating de-jure models
based on the recommended study plan. We used Petri nets since they can cover
course concurrency and are still understandable by non-experts. The de-jure
model in Fig. 4 shows the main recommended path. Note, the data was just
available including the third semester and later courses are invisible. Using Petri
nets and conformance checking this recommendation becomes a requirement.

The results of classical conformance checking are still useful to find typical
deviation points, e.g., Linear Algebra tends to be taken in a different semester
than proposed. Also, when filtering on the first exam attempts, the resulting
insights are different from filtering on the successful passing of exams. Filtered on
the first attempt, we can see how many students actually tried to follow the plan,
while filtered on the passed exams indicates the success route. When we have a
high percentage of students that try to follow the recommended study plan, but
just a low percentage that succeeds, this may be a warning for study program
designers that the rules may need to be adapted to improve the recommendation
and thereby increase the study success of students.
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Fig. 4. Conformance checking result using ProM plugin “Replay a Log on Petri Net for
Conformance Analysis” on data of students studying in examination regulation 2018
and a simplified Petri net model of the regulation

Our findings show that in later semesters, students deviate more from the
recommended study plan, which can be explained by delays occurring earlier
in their study. What is not modeled by the Petri net here is that for Seminar

(semester 5), Proseminar (semester 2) is a prerequisite. Therefore, Proseminar

has to be taken before Seminar and forms a requirement. Including those addi-
tional requirements and all already planned exceptions from the original plan,
those models are fast becoming so called spaghetti models and lose a lot of their
readability. Lastly, additional constraints, e.g., credit point constraints such as
at the end of the third semester, at least 60 CPs must have been earned, are not
taken into account using just the described approach.

For that matter, we used the combination of ASP and EC such that e.g.
defaults can model recommendations. The first main issues concerning modeling
study requirements in general and using EC was translating examination reg-
ulations given in natural languages into formal languages. We encountered the
following problems and challenges:

– There are rules that are understood by any human and thus not written.
– There is a lot of human interference that allows for exceptions. Exceptions in

study plans are not rare.
– There are older versions of the examination regulations, which certain stu-

dents still follow.

The second problem we encountered with EC is that almost all events con-
tribute to a single result (e.g. CPs), instead of a majority of events, each ini-
tiating new kinds of results. EC is designed for the latter, but in study plans
the former holds. We thus adjusted the EC. One modification was to differen-
tiate between events that happened and events that are planned. For planning
in the future, one needs to follow the rules. For events in the past, a record is
sufficient and there is no need for further requirement checking. This allows to
add exceptions that are actually inconsistent with the examination regulations.
It was also important to keep track of certain relevant numbers a student has
at any point in time, in order to be able to do requirement checking. This was
achieved through results, which events can contribute to. Mathematics 1, for
example, adds 9 units to the result credit points, after the event of success at it.
A requirement on CPs should consider the general number of CPs collected or
just within a field or a time frame. For that matter we created the notion of a
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result requirement, which makes sure that the sum of results caused by a subset
of events is less than, greater than, or equal to some value. With all of this in
mind, we separated the required rules into three categories:

– Invariant : Rules about the requirements and the EC modified axiom system.
– Variant by Admins: Rules about modules and their availability.
– Variant by Student : Rules about the plan of the student.

After that, we were able to translate the examination regulations, module
catalogs, and student event logs into rules. This enables us to perform model as
well as conformance checking.

5 Future Steps

Until now, the data are limited to information about exams and is exclusively
derived from the CMS. In a next step, course enrollments will be added to fur-
ther analyze study behavior of students. This additional information will give
more concrete insights about the students’ intended study plan, since at many
universities, course enrollments are not automatically coupled to exam registra-
tions. While students might start to take a course in the intended semester, thus
enroll in it, they might realize that the workload is too high or exam qualification
requirements are not fulfilled and refrain from registering for the exam in the
end. This may also be valuable information considering the instructors’ work-
load as more course enrollments indicate more work during the course and may
require larger lecture halls or additional support staff. As such, this workload
needs to be balanced out when planning courses for upcoming semesters.

The information stored in the LMS contains valuable information to under-
stand students’ learning behavior, as shown in related work. When combined
with activities in the CMS, a more complete view on students’ behavior and
more direct feedback about the success of the intended plan can be provided. This
feedback can then be used in BuddyAnalytics to help study program designers in
improving curricula and recommended study plans, as well as give more informed
suggestions for individual study plans. Possibly, in StudyBuddy, students might
be informed about their behavior deviating from a recommended plan and are
presented with suggestions suitable to their individual circumstances.

On the theoretical side, the possibilities of a combination of AI and PM are
further explored and implemented. The main focus will be to improve the con-
formance checking results. Also, PM conformance checking possibilities will be
further explored. One planned aspect is the extraction of constraints from event
logs directly. We expect to learn rules that are not intended but are beneficial,
e.g., Statistics is a good preparation for Introduction to Data Science and when
taken in order, the grade and success rate of the latter improves. Those rules
could be added to the examination regulations rules as defaults.
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6 Conclusion

The AIStudyBuddy project will combine different existing AI and PM frame-
works and extend them with new features, making use of the already existing
data at universities, to help students and study program designers make more
informed decisions about study paths and curricula. The first results get posi-
tive feedback from students and study program designers. Currently, only a small
fraction of available CMS data was used to produce these results, leaving a lot of
potential for future steps. PM techniques already give valuable new insights to
the study program designers and the combination of AI and PM for conformance
checking in particular helps overcome restrictions due to the data and rule prop-
erties. Having requirements and recommendations, credit point boundaries, and
long-term relations between courses should be included in the system to model
examination regulations in a more accurate manner.
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Abstract. Best practices in (teaching) data literacy, specifically
Exploratory Data Analysis, remain an area of tacit knowledge until this
day. However, with the increase in the amount of data and its impor-
tance in organisations, analysing data is becoming a much-needed skill
in today’s society. Within this paper, we describe an empirical experi-
ment that was used to examine the steps taken during an exploratory data
analysis, and the order in which these actions were taken. Twenty actions
were identified. Participants followed a rather iterative process of working
step by step towards the solution. In terms of the practices of novice and
advanced data analysts, few relevant differences were yet discovered.

Keywords: Process mining · Deliberate practice · Learning analytics

1 Introduction

Data is sometimes called the new gold, but is much better compared to gold-
rich soil. As with gold mining, several steps are needed to go through in order
to get to the true value. With the amount and importance of data in nearly
every industry [13–15], data analysis is a vital skill in the current job market,
not limited to profiles such as data scientists or machine learning engineers, but
equally important for marketing analysts, business controllers, as well as sport
coaches, among others.

However, best practices in data literacy, and how to develop them, mainly
remains an area of tacit knowledge until this day, specifically in the area of
Exploratory Data Analysis (EDA). EDA is an important part in the data analysis
process where interaction between the analyst and the data is high [3]. While
there are guidelines on how the process of data analysis can best be carried out
[15,18,21], these steps typically describe what needs to be done at a relatively
high level, and do not precisely tell how best to perform them in an actionable
manner. Which specific steps take place during an exploratory data analysis,
and how they are structured in an analysis has not been investigated.

The goal of this paper is to refine the steps underlying exploratory data
analysis beyond high-level categorisations such as transforming, visualising,
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M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 526–538, 2023.
https://doi.org/10.1007/978-3-031-27815-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27815-0_38&domain=pdf
http://orcid.org/0000-0002-7474-2088
https://doi.org/10.1007/978-3-031-27815-0_38


Identifying the Steps in an Exploratory Data Analysis 527

and modelling. In addition, we analyse the order in which these actions are per-
formed. The results of this paper form a first step towards better understanding
the detailed steps in a data analysis, which can be used in future research to
analyse difference between novices and experts in data analysis, and create better
data analysis teaching methods focussed on removing these differences.

The next sectionwill discuss relatedwork,while Sect. 3will discuss themethod-
ology used. The identified steps are described in the subsequent section, while an
analysis of the recorded data is provided in Sect. 5. Section 6 concludes the paper.

2 Related Work

A number of high-level tasks to be followed while performing a data analysis have
already been defined in the literature [15,18], which can be synthesised as 1) the
collection of data, 2) processing of data, 3) cleaning of data, 4) exploratory data
analysis, 5) predictive data analysis, and 6) communicating the results. In [21] this
process is elaborated in more detail, applied to the R language. Here the process
starts with importing data and cleaning. The actual data analysis is subsequently
composed of the cycle of transforming, visualising and modelling data, and is thus
slightly more concrete than the theoretical exploratory and prescriptive data anal-
ysis. The concluding communication step is similar to [15,18].

That the different steps performed in a data analysis have received little
attention, has also been recognised by [23], specifically focused on process anal-
ysis. In this paper, an empirical study has been done to understand how process
analysts follow different patterns in analysing process data, and have different
strategies to explore event data. Subsequent research has shown that such anal-
ysis can lead to the identification of challenges to improve best practices [24].

Breaking down a given action into smaller steps can reduce cognitive load
when performing the action [20]. Cognitive load is the load that occurs when
processing information. The more complex this information is, the higher the
cognitive load is. Excessive cognitive load can overload working memory and
thus slow down the learning process. Creating an instruction manual addresses
The Isolated Elements Effect [4], when there is a reduction in cognitive load
by isolating steps, and only then looking at the bigger picture [20]. In [5], this
theory was applied using The Structured Process Modeling Theory, to reduce
the cognitive load when creating a process model. Participants who followed
structured steps, thus reducing their cognitive load, generally made fewer syntax
errors and created better process models [5]. Similarly, in [10], participants were
asked to build an event log, where the test group was provided with the event
log building guide from [11]. The results showed that the event logs built by the
test group outperformed those of the control group in several areas.

An additional benefit of identifying smaller steps is that these steps can be
used in the creation of a deliberate practice—a training course that meets the
following conditions [1,6] :

1. Tasks with a defined objective
2. Immediate feedback on the task created
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3. Opportunity to repeat this task multiple times
4. Motivation to actually get better

Karl Ericsson [6] studied what the training of experts in different fields had
in common [2], from which the concept of deliberate practice emerged. It was
already successfully applied, for example, in [7] where a physics course, reworked
to deliberate practise principles, resulted in higher attendance and better grades.

In addition to studying what kind of training experts use to acquire their
expertise, it has also been studied why experts are better at a particular field
than others. In [6], it is concluded that experts have more sophisticated mental
representations that enable them to make better and/or faster decisions. Mental
representations are internal models about certain information that become more
refined with training [6]. Identifying actions taken in a data analysis can help
in mapping mental representations of data analysis experts. This can be done
by comparing the behaviour of experts with that of beginners. Knowing why an
expert performs a certain action at a certain point can have a positive effect on
the development of beginners’ mental models. In fact, using mental representa-
tions of experts was considered in [19] as a crucial first step in designing new
teaching methods.

3 Methodology

In order to analyse the different steps performed during an exploratory analysis,
and typical flows between them, an experiment was conducted. The experiments
and further data processing and analysis steps are described below.

Experiment. Cognitive Task Analysis (CTA) [22] was used as overall method-
ology for conducting the experiment described in this paper, with the aim to
uncover (hidden) steps in a participant’s process of exploratory data analysis.
Participants were asked to make some simple analyses using supplied data and to
make a screen recording of this process. The tasks concerned analysing the dis-
tribution of variables, the relationship between variables, as well as calculating
certain statistics.

As certain steps can be taken for granted due to developed automatisms
[8], the actual analysis was followed by an interview, in which the participants
were asked to explain step by step what decisions and actions were taken. By
having the interview take place after the data analysis, interference with the
participants’ usual way of working was avoided. For example, asking questions
before or during the data analysis could have caused participants to hesitate,
slow down, or even make different choices.

The general structure of the experiment was as follows:

1. Participants: The participants for this experiment were invited by mail from
three groups with different levels of experience: undergraduate students, grad-
uate students, and PhD students, from the degree Business and Information
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systems engineering. These students received an introductory course on data
analysis in their first bachelor year, where they work with the language R,
which was subsequently chosen as the language to be used in the experiment.
In the end, 11 students were convinced to participate in this experiment: two
undergraduate students, four graduate students and 5 PhD students. The 11
participants each performed the complete analysis of three assignments, and
thus results from 33 assignments were collected.
While having participants with different levels of experience is expected to
result in a broader variety in terms of behaviour, the scale of the experiment
and the use of student participants only will not allow a detailed analysis
of the relationship between experience-level and analysis behaviour. Further-
more, disregarding the different level of students, the once accepting the invi-
tation to participate might also be the more confident about their skills.

2. Survey: Before participants began the data analysis, they were asked to
complete an introductory survey to gain insight into their own perceptions of
their data analysis skill (in R).

3. Assignment: The exploratory analysis was done in the R programming lan-
guage, and consisted of three independent tasks about data from a housing
market: 2 involving data visualisation and 1 specific quantitative question.
The analysis was recorded by the participants.

4. Interview: The recording of the assignment was used during the interview
to find out what steps, according to the participants themselves, were taken.
Participants were asked to actively tell what actions were taken and why.

Transcription. The transcription of the interviews was done manually. Because
most participants actively narrated the actions taken, a question-answer struc-
ture was not chosen. If a question was still asked, it was placed in italics between
two dashes when transcribed.

Coding and Categorization. To code the transcripts of the interviews, a
combination of descriptive and process coding was used in the first iteration.
Descriptive coding looks for nouns that capture the content of the sentence
[16]. Process coding, in turn, attempts to capture actions by encoding primarily
action-oriented words (verbs) [16]. These coding techniques were applied to the
transcripts by highlighting the words and sentences that met them. A second
iteration used open coding (also known as initial coding) where the marked codes
from the first iteration were grouped with similarly marked codes [9,17]. These
iterations were performed one after the other for the same transcription before
starting the next transcription.

These resulting codes were the input for constructing the categories. In this
process, the codes that had the same purpose were taken together and codes
with a similar purpose were grouped together and given an overarching term.
This coding step is called axial coding [9].
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Event Log Construction. Based on the screen recording and the transcrip-
tion, the actions found were transformed into an event log. In addition, if applica-
ble, additional information was also stored to enrich the data such as the location
where a certain action was performed (e.g. in the console, in a script, etc.), what
exactly happened in the action (e.g. what was filtered on) and then an attribute
how this happened (e.g. search for a variable using CTRL+F ). Timestamps for
the event log where based on the screen recordings.

Event Log Analysis. The frequency of activities, and typical activity flows
were subsequently analysed. Next to the recorded behaviour, also the quality of
the execution was assessed, by looking at both the duration of the analysis, as
well as the correctness of the results. For each of these focus points, participants
with differing levels of experiences where also compared.

For the analysis of the event log, the R package bupaR was used [12]. Because
there were relatively few cases present in the event log, the analysis also consisted
largely of qualitative analysis of the individual traces.

4 Identified Actions

Before analysing the executed actions and flows in relation to the different expe-
riences, duration and correctness, this section describes the identified actions,
which have been subdivided in the categories preparatory, analysis, debugging,
and other actions.

Preparatory Actions. Actions are considered preparatory steps if they
occurred mainly prior to the actual analysis itself. For the purpose of this exper-
iment, actions were selected that had a higher relative frequency among the
actions performed before the first question than during the analysis. An overview
of preparatory actions is shown in Table 1.

Table 1. Preparatory actions

Action Description

Check data Check if the data met their expectations, if the data was tidy
(each row is an observation and each column is a variable [21])

Explore data Viewing the data itself, e.g., in the IDE or Excel, or by
consulting the data description. Whereas data checking is really
exploring the quality of the data, the act of data exploring looks
at the content of the data

Load data Checking what file type the data source had, whether column
names were present, what the separator was if any, and in what
directory the data file was present. This operation corresponds
to importing data from [21]

Load library In R, packages must be loaded before they can be used

Read assignment Studying the assignment. This activity was performed both at
the start of the assignment, as well as during the analysis
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Analysis Actions. The steps covered within this category are actions that can
be performed to accomplish a specific task, and are listed in Table 2. These are
actions directly related to solving the data analysis task and not, for example,
emergency actions that must be performed such as solving an error message.

Debugging Actions. Debugging is the third category of operations that was
identified. Next to the actual debugging of the code, this category include
the activities that (might) trigger debugging, which are errors, warnings, and
messages.

Table 2. Analysis actions.

Action Description

Evaluate results Reflection on (intermediate) results. Is this the result I
expect? Does it answer the question?

Execute code Executing the written code

Manipulation data This step covers the preparation of the data for a specific
assignment. Eight types of data manipulation were identified.
– Data grouping: looking at aggregate statistics
– Data filtering: selecting rows in the data.
– Data selection: selecting columns in the data.
– Data joining
– Data transformation: pivoting a dataset
– Mutate data: add a column with calculated variables.
– Change data type: changing the data type of a column.
– Create object: e.g. to store intermediate results

Prepare plot Determine the type of graph and data mapping

Search variable Identifying a particular requested variable, by looking at the
description file or the data itself

Show plot Graph formatting

Summarize data Calculating summary statistics such as frequency, centrality
measures, and measures of variance

Executing the code 77 times out of 377 resulted in an error. Debugging is a
(series of) action(s) taken after receiving an error or warning. Most of these errors
were fairly trivial to resolve. In twenty percent of the loglines registered during
debugging, however, additional information was consulted on, for example, the
Internet.

Other Actions. The last category of actions includes adding structure, rea-
soning, reviewing the assignments, consulting information, and trial-and-error.
Except for the review of the assignments, which was performed after completing
all the assignments, these actions are fairly independent of the previous action
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Table 3. Other actions

Action Description

Add structure Adding intermediate steps and comments and structuring
code in chunks

Consult information Four different sources were used: documentation of
programming functions used, examples included in function
documentations, returning to previous analyses, and
consulting relevant programming course materials

Reasoning Thinking about performing a task was undoubtedly
performed by all participants, though only seven participants
cited actively thinking at certain points during the analysis

Review solution Before finishing, checking all the solutions whether they are
correct and met the assignments

Trial-and-error Experimenting, by just trying out some things or comparing
the outcome of different types of joins

and thus were performed at any point in the analysis. An overview of these
actions can be found in Table 3. Note that as trial-and-error is a method rather
than a separate action, it was not coded separately in the event log, but can be
identified in the log as a pattern.

5 Analysis

In the experiment, a total of 1674 activity instances were recorded. An overview
of the identified actions together with summary statistics is provided in Table 4. It
can be seen that the most often observed actions are Execute code, Consult infor-

mation, Prepare data and Evaluate results. Twelve of the identified actions were
performed by all 11 participants at some point. Looking at the summary statis-
tics, we observe quite significant differences in the execution frequency of actions,
such as the consultation of information (ranging from 4 to 63) and the execution of
code (ranging from 16 to 48), indicating important individual differences. Table 5
shows for each participant the total processing time (minutes) together with the
total number of actions, and the number of actions per category.

Flows. A first observation is that the log records direct repetitions of a certain
number of actions. This is a natural consequence of the fact that information
is stored in additional attributes. As such, when a participant is, for instance,
consulting different sources of information directly after one another, this will
not be regarded as a single “Consulting information” action, but as a sequence
of smaller actions. Information of these repetitions is shown in Table 6. Because
these length-one loops might clutter the analysis, it was decided to collapse them
into single activity instances. After doing so, the number of activity instances
was reduced from 1674 to 1572.
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That the process of data analysis is flexible attests Fig. 1, which contains a
directly-follows matrix of the log. While many different (and infrequent) flows
can be observed, some interesting insights can be seen. Within the analysis
actions, we can see 2 groups: actions related to manipulation of data, and actions

Table 4. Summary statistics of the identified actions.

Category Action #part Total freq Min. freq Avg. freq Max. freq

Preparatory Check data 7 11 1 1.57 3

Explore data 10 52 2 5.20 12

Load data 10 35 2 3.50 6

Load library 11 39 2 3.55 9

Read assignment 11 84 4 7.64 14

Analysis Evaluate results 11 182 5 16.55 33

Execute code 11 377 16 34.27 48

Manipulate data 11 195 6 17.73 34

Prepare plot 11 70 2 6.36 14

Search variable 11 81 4 7.36 10

Show plot 8 40 1 5.00 12

Summarize data 11 44 1 4.00 8

Debugging Debug 11 48 1 4.36 12

Error 11 77 2 7.00 14

Message 1 2 2 2.00 2

Warning 3 8 1 2.67 4

Other Add structure 11 69 3 6.27 10

Consult information 11 229 4 20.82 63

Reasoning 7 17 1 2.43 4

Review solution 9 14 1 1.56 3

Table 5. Statistics per participant

Participant Proc. time #actions Preparatory Analysis Debugging Other

1 26.20 139 19 75 26 19

2 32.87 159 16 110 12 21

3 42.98 172 15 117 19 21

4 52.63 172 31 88 6 47

5 39.67 151 21 87 8 35

6 43.15 155 19 93 14 29

7 38.08 155 14 109 10 22

8 36.17 104 11 54 8 31

9 17.52 97 23 55 5 14

10 38.75 170 28 112 12 18

11 71.52 200 24 89 15 72
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Table 6. Direct repetitions of actions

Action Number of repetitions Action Number of repetitions

Consult information 54.00 Load data 7.00

Prepare data 23.00 Load library 6.00

Search variable 19.00 Debug 2.00

Add structure 14.00 Check data 1.00

Execute code 13.00 Read assignment 1.00

Explore data 7.00 Review solution 1.00

Fig. 1. Precedence flows between actions.

related to evaluation and visualising data. Furthermore, it can be seen that some
analysis actions are often performed before or after preparatory actions, while
most are not.

Duration. In Fig. 2, the total time spent on each of the 4 categories is shown
per participant, divided in undergraduate, graduate and PhD participants. The
dotted vertical lines in each group indicates the average time spent. While the
limited size of the experiment does not warrant generalizable results with respect
to different experience levels, it can be seen that Undergraduates spent the least
time overall, while graduate spent the most time. In the latter group, we can
however see a large amount of variation between participants. What is notable
is that both graduate participants and PhDs spent a significantly larger amount
of time on preparatory steps, compared to undergraduate students. On average,
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graduate students spent more time on other actions than the other groups. Pre-
dominantly, this appeared to be the consultation of information. This might be
explained by the fact that for these students, data analysis (specifically the course
in R) was further removed in the past compared to undergraduate students. On
the other hand, PhDs might have more expertise about usage of R and data anal-
ysis readily available.

Correctness. After the experiment, the results where also scored for correct-
ness. Table 7 shows the average scores in each group, on a scale from zero to
100%. While the differences are small, and still noting the limited scope of the
experiment, a slight gap can be observed between undergraduates on the one
hand, and PhDs and graduates on the other. The gap between the latter two is
less apparent.

Table 7. Average scores per group.

Group Avg score (out of 100)

Undergraduate 83.5

Graduate 91.5

PhD 93.5

Fig. 2. Duration per category for each participant in each experience level.

Figure 3 shows a correlation matrix between the scores, the number of actions
in each category, and the time spent on each category. Taking into account
the small data underlying these correlations, it can be seen that no significant
positive correlations with the score can be observed. However, the score is found
to have a moderate negative correlation with both the amount and duration of
debugging actions, as well as the duration of analysis actions. While the former
seems logical, the latter is somewhat counter-intuitive. Given that no relation
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is found between with the number of analysis actions, the average duration of
an analysis task seems to relevant. This might thus indicate that the score is
negatively influenced when the analysis takes place slower, which might be a
sign of inferior skills.

Fig. 3. Correlations between score, number of (distinct) actions in each category, and
duration of each category.

6 Conclusion

The steps completed during an exploratory data analysis can be divided into
four categories: the preparatory steps, the analysis steps, the debug step, and
finally the actions that do not belong to a category but can be used throughout
the analysis process. By further breaking down the exploratory data analysis
into these steps, it becomes easier to proceed step by step and thus possibly
obtain better analyses. The data analysis process performed by the participants
appeared to be an iterative process that involved working step-by-step towards
the solution.

The experiment described in this paper clearly is only a first step towards
understanding the behaviour of data analysts. Only a small amount of people
participated and the analysis requested was a relatively simple exercise. As a
result, the list of operations found might not be exhaustive. Furthermore, the
use of R and RStudio will have caused that some of the operations are specifically
related to R. While R was chosen because all participants had a basic knowledge
of R through an introductory course received in the first bachelor year, future
research is needed to see whether these steps are also relevant with respect to
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other programming languages or tools. Moreover, this course may have already
taught a certain methodology, which might not generalize to other data analyst.
Additionally, the fact that the participants participated voluntarily, might mean
they feel more comfortable performing a data analysis in R than their peers,
especially among novices.

It is recommended that further research is conducted on both the operations,
the order of these operations as well as the practices of experts and novices. By
using more heterogeneous participants, a more difficult task and different pro-
gramming languages, it is expected that additional operations can be identified
as well as differences in practices between experts and beginners. These can be
used to identify the mental representations of experts and, in turn, can be used
to design new teaching methods [19]. In addition, an analysis at the sub-activity
level could provide insights about frequencies and a lower-level order, such as in
what order the sub-activities in the act of preparing data were usually performed.
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Abstract. Understanding students’ learning patterns is key for support-
ing their learning experience and improving course design. However, this
is particularly challenging in courses with large cohorts, which might
contain diverse students that exhibit a wide range of behaviours. In
this study, we employed a previously developed method, which considers
process flow, sequence, and frequency of learning actions, for detecting
students’ learning tactics and strategies. With the aim of demonstrat-
ing its applicability to a new learning context, we applied the method
to a large-scale online visual programming course. Four low-level learn-
ing tactics were identified, ranging from project- and video-focused to
explorative. Our results also indicate that some students employed all
four tactics, some used course assessments to strategize about how to
study, while others selected only two or three of all learning tactics. This
research demonstrates the applicability and usefulness of process min-
ing for discovering meaningful and distinguishable learning strategies in
large courses with thousands of learners.

Keywords: Process mining · Massive open online courses ·

Educational data mining · Visual programming · Learning tactic ·

Learning strategy

1 Introduction

The increasing use of digital learning environments enables the collection of large
amounts of data, which can be analysed through Educational Process Mining
(EPM) to better understand educational processes [1,2]. A problem that has
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recently attracted increasing research interest in the EPM community is around
detecting students’ learning tactics and strategies [19,20].

Identification of learning tactics and strategies can help customize course
design, provide helpful feedback to students and assist them to adopt the best
strategies for learning [20]. A learning tactic is defined as a series of actions that a
student carries out to fulfil a specific task, such as passing an exam [7,13,17,21];
whereas, a learning strategy is “a coordinated set of learning tactics that are
directed by a learning goal, and aimed at acquiring a new skill or gaining under-
standing” [17]. Identifying learning tactics and strategies is challenging, as they
are invisible and latent [14]. It is even more challenging in courses with large
cohorts, which may include more diverse student behaviour. Hence, appropri-
ate analytical methods are needed, such as EPM. Most previous research that
applied EPM methods to education are limited to traditional process mining
methods, such as Alpha Miner, Heuristic Miner and Evolutionary Tree Miner
[2,3]. On the other hand, Matcha et al. [19,20] proposed a novel EPM-based
method for discovering students’ learning tactics and strategies, which combines
processes flow, frequency and distribution of learning actions, thus providing a
more comprehensive view of student behaviour. However, the generalisability of
this method needs to be further investigated, specifically in Massive Open Online
Courses (MOOCs), which are less studied. To the best of our knowledge, only
one MOOC [20] has been studied with the use of this method, and it involved a
student cohort that is relatively small for a MOOC.

To take a step toward addressing this gap, we apply the EPM method by
Matcha et al. [19] to study students’ learning tactics and strategies in a large-
scale visual programming MOOC with thousands of learners. The contributions
of this paper are:

– We provide further evidence of the applicability of the method by Matcha
et al. [19], by replicating their approach on large-scale data from a visual
programming MOOC with thousands of students. To the best of our knowl-
edge, this is the first time that this method is applied to such a large student
cohort.

– We discover students’ learning tactics and strategies in a visual programming
MOOC. This is the first time that such learning patterns are investigated in
a visual programming course.

2 Related Work

A growing number of studies have been conducted recently to analyse the edu-
cational behaviours of students, and detect their learning tactics and strategies
using process mining and sequence mining [6,16,19]. Maldonado-Mahauad et
al. [16] used the Process Mining PM

2 method [8] on three MOOCs in engineer-
ing, education, and management. They identified seven different learning tactics,
such as only-video or only-assessment. Then, by applying hierarchical clustering,
they discovered three learning strategies (i.e. comprehensive, targeting, and sam-
pling) that involved different levels of self-regulated learning. In another study,
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Jovanovic et al. [14] analysed trace data from an engineering course delivered in
a flipped classroom. They discovered four learning tactics using sequence mining
techniques and identified five learning strategies by applying hierarchical clus-
tering to the tactics used by students. Fincham et al. [10] used the trace data
from the same course and applied a different method. Instead of sequence min-
ing, they used process mining based on Hidden Markov models, which resulted
in the identification of eight learning tactics. Then, they clustered the students
based on their used tactics and identified four learning strategies in two different
periods. Matcha et al. [19] also studied the learning tactics and strategies in
the same course. They employed a combination of First-order Markov models
and the Expectation-Maximization algorithm for discovering learning tactics.
This novel method is capable of considering not only the process flow of learn-
ing actions, but also their distribution and frequency. By applying hierarchical
clustering, they also obtained three learning strategies.

In 2020, Matcha et al. applied the same methodology to two additional
courses: a blended learning course in biology and a Python programming
MOOC [20]. In the latter, they discovered four learning tactics (Diverse-Practice,
Lecture-Oriented, Long-Practice, and Short-Practice) and three learning strate-
gies (Inactive, Highly active at the beginning, and Highly active). By using the
same methodology as in their previous work, they provided evidence of the gen-
eralisability of their method. However, further research is needed in order to
draw solid conclusions about its i) generalisability to different learning contexts
(e.g. different course designs) and ii) its scalability to large student cohorts and
datasets. This is particularly important, as the MOOC analysed in [20] had only
368 students enrolled, which is a much smaller number than the average MOOC
size of thousands of learners [4].

3 Materials and Methods

In this paper, we applied the EPM-based method in [19] on an introductory
visual programming MOOC. We utilise course assessment and clickstream data
from the “Code Yourself ! An Introduction to Programming” (CDY) MOOC,
which was delivered on Coursera [5] from January 2016 to December 2017.

CDY teaches the basics of programming using Scratch, which is one of the
most popular visual programming languages [23]. It covers five topics (referred
to as ‘weeks’ from now on) through 71 videos, 11 reading materials, 5 weekly
discussion forums, 5 weekly quizzes/exams, and 2 peer-reviewed projects (on the
third and fifth week). Notably, students can submit a quiz or project multiple
times, and they receive the highest achieved score among all submissions.

The CDY dataset contains information about 46,018 enrolled students (45%
male, 33% female, 22% unknown) and 55,485 learning sessions. A learning session
is a series of clickstream actions that a student performs within one login into
the platform. In this study, the sessions that have at least one of the following
actions were considered for the analysis (i.e. 37,282 sessions in total):

1. Video-start: Starting to watch a video for the first time
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2. Video-play: Playing a video lecture
3. Video-end: Watching a video until end
4. Video-seek: Skipping forward or backward throughout a video
5. Video-pause: Pausing a video lecture
6. Video-revisit: Watching a video for the second time or more
7. Reading engagement: Any activity related to the reading material such

as visiting reading pages
8. Discussion engagement: Any activity related to the discussion forums
9. Exam-visit: Visiting exam-related pages without submitting answers

10. Exam-failed: Failing an exam (score lower than 50% of total score)
11. Exam-passed: Passing an exam
12. Peer-reviewed project engagement: Any activity related to the peer-

reviewed projects, such as submitting or reviewing a submission

3.1 Pre-processing

Learning sessions were profiled for each student and analysed to identify their
learning tactics. We considered two consecutive sessions with a time gap less
than 30 min as one session. Due to the high variation between session lengths
(i.e. between the number of actions in sessions), very long sessions (higher than
the 95th quantile) and sessions with only one action were removed to obtain a
more representative dataset. Since the course is a MOOC, there are numerous
participants without the intention to take the quizzes and pass the course [15,25].
Therefore, students without any attempt to submit an assessment were removed.
A same approach for pre-processing was used in related work [6,19]. The pre-
processing steps resulted in 3,190 students (sample size 8 times larger than in
[19]) and 34,091 sessions. The course completion rate among the 3,190 students
considered in this study was 42%.

3.2 Detecting Learning Tactics and Strategies Through Process

Mining and Clustering

To detect the learning tactics and strategies of CDY students, we followed the
methodology in [19], the main steps of which are shown in Fig. 1. Learning tac-
tics were detected with the use of process mining and clustering methods. In par-
ticular, First-order Markov Models, as implemented in the pMineR package [12],
were employed to calculate the transition probability matrix of actions. The num-
ber of possible learning tactics (no. tactics=4) was estimated based on a process
flow created by first-order Markov model, Elbow method, Hierarchical clustering
dendrogram, and prior contextual knowledge. To identify the learning tactics, the
Expectation-Maximisation algorithm [12] was applied to the obtained transition
probability matrix. To shed light on the identified learning tactics, the TraMineR
package [11] was used for analysing the distribution, duration and the order of
employed learning actions. A student may apply a range of tactics throughout a
course. Therefore, a learning strategy is defined as the goal-driven usage of a collec-
tion of learning tactics with the aim of obtaining knowledge or learning a new skill
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Fig. 1. Schema of the method: 1) Sessions with at least one coded action were selected.
2) First-order Markov Model was applied to create a process map and a transition
matrix for all pairs of actions. 3) The transition matrix was used to cluster the sessions
into four tactics using Expectation-Maximization method. 4) Hierarchical clustering
was used to cluster students into four groups of strategies based on the frequency of
their tactics.

[17]. To extract the various strategies adopted by students, and following meth-
ods established in related work [6,19], we calculated the number of occurrences
of each tactic used by each student and we transformed it to the standard normal
distribution. Finally, the strategies were identified by clustering the students using
Agglomerative hierarchical clustering with Ward’s linkage and Euclidean distance
of the normalised vectors as the distance of students. The number of clusters (no.
strategies = 4) was determined based on the dendrogram analysis, Elbow method,
and contextual prior knowledge.

4 Results

Four learning tactics were discovered, which are characterised as follows.

Tactic1: Video-Oriented (17,819 sessions, 52.3% of all learning sessions) is
the most commonly used learning tactic in CDY. It is characterized by relatively
short sessions (median = 11 actions per session) that include mostly (over 99%)
video-related learning actions. The high proportion of Video-end and Video-
revisit actions indicate the high degree of interaction with videos (Fig. 2).

Tactic2: Long-Diverse and Video-Oriented (11,794 sessions, 35.12% of all
learning sessions) are long sessions (median = 74 actions per session) composed
of diverse actions, predominantly video-related. The majority of these sessions
begin with a high peak in reading- and video-related actions, followed by a peak
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Fig. 2. Sequence distribution plot for the learning tactics. The X-axis presents the
position of each learning action in the sessions and the Y-axis shows the relative fre-
quency for each action in the corresponding position in the sessions. For example, the
top right image for Tactic 2 shows that sessions in this cluster can contain over 500
actions. The relative frequency of reading-related actions decreases throughout these
sessions, while the relative frequency of project-related actions increases.

in project engagement (Fig. 2). We can infer that students employed this tactic
to first gain knowledge and then do the peer-reviewed projects.

Tactic3: Short-Diverse and Project-Oriented (2,617 sessions, 7.7% of all
learning sessions) are the shortest (median = 8 actions per session) and most
diverse sessions, shaped by a wide range of learning actions and dominated by
project engagement (Fig. 2). The frequency of reading- and exam-related actions
is much higher in this tactic than in other tactics. Figure 2 demonstrates that
most of these sessions start with understanding theoretical concepts using video
and reading actions, and continue with project actions. There is also a notice-
able proportion of exam-related actions in these sessions, which indicates that
students not only used video and reading materials to understand the concepts,
but also they engaged in quizzes for self-assessment.

Tactic4: Explorative (1,861 sessions, 5.4% of all learning sessions) is the least
frequent learning tactic. It involves relatively long sessions (median = 22 actions
per session), largely dominated by video-seeking actions (Fig. 2). This indicates
the exploratory behaviour of students, i.e. students may use this tactic to explore
the videos or look for a specific concept.
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Fig. 3. Weekly changes in the applied learning tactics for the discovered learning strate-
gies.

After finding the learning tactics, four learning strategies were identified fol-
lowing the methodology described in Sect. 3. It is worth noting that similarly to
other MOOCs, the average number of sessions per student is low (avg: 2) and
almost all students across all strategies have a relatively low level of engage-
ment, especially with assessments [19]. The characteristics of the four learning
strategies are as follows.

Strategy1, Selective: This strategy is followed by the majority of students
(69.9% of students) and it is characterized mainly by using the Long-Diverse
and Video-Oriented, and Short-Diverse and Project-Oriented learning tactics.
In other words, this group of students are highly selective and use only two
tactics. Based on the discussion in the learning tactics section, we can infer
that students tend to use these two learning tactics to obtain knowledge, with
the objective of answering questions in exams or doing peer-reviewed projects.
Therefore, this group of students are characterized as Selective learners. Figure 4
indicates that the students using this strategy mainly start their learning process
by a Long-Diverse and Video-Oriented tactic (p = 0.89). Afterwards, they tend
to keep using this tactic (p = 0.7). The highest probable tactic to finish their
learning process is also Long-Diverse and Video-Oriented (p = 0.24), and the
most probable transition between the two tactics is the shift to a Long-Diverse
and Video-Oriented tactic from a Short-Diverse and Project-Oriented tactic
(p = 0.38).
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Fig. 4. Process models of the discovered learning strategies, which were created by
pMineR package.

Strategy2, Multi-tactic: This strategy contains 13.5% of students who used
multiple learning tactics each week (Fig. 3). In other words, all learning tactics
except Explorative are employed in this strategy. Moreover, the frequency of
Long-Diverse and Video-Oriented, and Video-Oriented tactics in this strategy
remains almost the same during the course, while the frequency of Short-Diverse
and Project-Oriented fluctuates throughout the different weeks. Multi-tactic stu-
dents mainly tend to start their week with a Long-Diverse and Video-Oriented
(p = 0.55) or Video-Oriented (p = 0.34) tactic; either way, they tend to con-
tinue the week with a Long-Diverse and Video-Oriented. The most probable
shifts between used tactics are the transitions from any tactic to Long-Diverse
and Video-Oriented, underlining this tactic as the predominantly used tactic by
Multi-tactic learners (Fig. 4).

Strategy3, Strategic: This group contains 11.8% of all students, who mostly
used the Short-Diverse and Project-Oriented and Video-Oriented learning tac-
tics. Short-Diverse and Project-Oriented was mostly used at the time of sub-
mitting peer-reviewed projects, while the rest of the time these students pri-
marily used Video-Oriented to learn the course materials (Fig. 3). On the other
hand, the process flow of these students’ sessions (Fig. 4) demonstrates that
these students tend to start their learning process with a Short-Diverse and
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Project-Oriented tactic (p = 0.84) and continue using this tactic until the end
of the session (p = 0.71). The second most probable scenario is to start (p =
0.16) and continue (p = 0.52) to use only the Video-Oriented tactic with lower
probability tactic. Alternatively, they might start the session with a Short-
Diverse and Project-Oriented tactic and shift to Video-Oriented tactic. This
strategy is named Strategic due to the high probability of using Short-Diverse
and Project-Oriented tactic, which is a short tactic including a considerable
number of project and exam-related actions along with the rest of the actions.
Therefore, it can be inferred that the students strategically started their learning
session with this tactic to achieve the required understanding for doing projects
and exams.

Strategy4, Intensive: This is the smallest group of students (4% of all stu-
dents) and they are very diligent, with relatively high engagement across all
weeks (Fig. 3). These students used all learning tactics every week. Although the
frequency of employed tactics varies across weeks, the least and most used tac-
tics in this strategy are the Explorative and Short-Diverse and Project-Oriented,
respectively. The Video-Oriented tactic was primarily used in the fourth week
with two drops in the third and the fifth weeks, which is similar to the frequency
trend of this tactic in the Strategic group. The average frequency of Explo-
rative and Long-Diverse and Video-Oriented remains fairly steady throughout
the course. Figure 4 shows the process flow of this strategy, which is not as
straightforward as the process flow of the other strategies. The learning pro-
cess in this strategy mainly starts with a Long-Diverse and Video-Oriented (p
= 0.49) or an Explorative tactic (p = 0.27). Irrespective of the starting tactic,
students tend to shift to Long-Diverse and Video-Oriented and continue using
it with the highest probability. The process flow also highlights the diversity of
tactics used in this strategy and the fact that there is no clear structure in terms
of learning tactic transitions.

It is worth mentioning that we also investigated the association between
learning strategies and academic performance, and found that the learning
strategies in CDY do not correlate significantly with students’ assessment scores.
However, the discovered learning strategies in [20] were significantly associated
with student performance. An explanation for this phenomenon can be the fact
that the strategies discovered in [20] are indicative of students’ engagement level,
and students that engage more with a course tend to perform better. The strate-
gies discovered in this study, however, are not indicative of engagement level and
are rather characterised by different combinations of tactics.

5 Discussion

In this study, we applied an existing EPM-based method [19] to data from a
large-scale course in visual programming, and detected novel learning tactics
and strategies. Our main contribution is around evidence of the applicability
of this method to a different learning context, namely a visual programming
MOOC with thousands of learners. Only one other MOOC has been studied
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with the use of this method. Another important factor is student cohort size –
our study involved 3,190 learners (after pre-processing), while the largest cohort
analysed with this method in previous work was 1,135 students [20].

The learning tactics and strategies detected in our study are novel for pro-
gramming and computing courses. In fact, it is the first time that such learning
behaviours are investigated in a visual programming course. Most of the tactics
detected include the high employment of video-related actions, which is reason-
able given the high volume of video materials in the CDY course. This finding
is in line with the fact that learning tactics can represent the different study
approaches that are embedded in course designs and supplemented by course
materials [9,10,18–20].

The four learning strategies discovered differ in terms of the learning tac-
tics employed, whereas the engagement level does not vary much. However, the
strategies found by Matcha et al. [20] were primarily focused on student engage-
ment. In particular, most students in [20] used almost all learning tactics; there-
fore, clustering was based on the number of tactics used, which is an indicator
of engagement. On the other hand, in CDY, clustering was based on the dif-
ferent combinations of tactics used. This demonstrates that the EPM method
employed can effectively yield conceptually different strategies. Another advan-
tage of this method is that it considers the process flow of learning tactics in
order to group students, thus providing further insight into learning processes.
Our findings indicate that the process flow of learning tactics in CDY is distinct
in each group. For example, the process models of selective and strategic learn-
ers are composed of only two learning tactics; while multi-tactic and intensive
students used multiple different learning tactics.

Moreover, the learning strategies extracted with the use of process mining
are helpful resources for optimizing future course designs and understanding how
the course design impacted the students’ learning behaviour. The more insights
we gain about the learning tactics and their relation to the course design, the
better we can design future courses to achieve better student comprehension
and fit with their learning preferences. As an example, the high rate of using the
Video-Oriented tactic may be due to the high number of available videos in CDY.
Therefore, the course design can be adjusted by supplementing more diverse
resources, such as pre-lab reading, adding some programming lab notes, and
making the exams or projects more interactive and attractive, so as to increase
student engagement with assessments. Furthermore, informing students about
their used learning strategies and other possible strategies that they can apply,
can lead to better awareness and improvement of their learning approach. Also,
teachers can consider students’ learning strategies for providing personalized
feedback [22]. For example, identifying a student that is erratic or that is only
focusing on projects can help teachers provide personalized suggestions.

5.1 Limitations and Future Directions

The learning tactics and strategies that can be detected with the use of EPM
methods are limited to the kind of data collected on the learning platform. For a
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programming course, it would have been interesting to also consider the pro-
gramming process, for example when attempting assignments. This was not
possible in the case of CDY, but it is worth addressing in future research.
Another promising avenue for future research is to combine self-declared infor-
mation and trace data [24] for analysing students’ educational behaviour.

There is also a great opportunity to extend this work to investigate how stu-
dent’s demographic features, such as gender, academic degree, and age, impact
the selection of learning tactics and strategies. This is particularly interesting to
examine for courses with diverse student populations, such as MOOCs.

Similarly to related work, in this study we assume that learning strategies
are static. However, it is plausible that students change their learning strategy
throughout a course. Future studies should relax this assumption and consider
changes in learning strategies over time.

Finally, we see great value in comparing learning strategies before and after
the outbreak of the Covid-19 pandemic. An interesting methodological question
is to what extend the method by Matcha et al. [19] enables such comparisons.
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Abstract. In conjunction with the rapid expansion of Massive Open
Online Courses (MOOCs), academic interest has grown in the analysis of
MOOC student study sessions. Education researchers have increasingly
regarded process mining as a promising tool with which to answer simple
questions, including the order in which resources are completed. How-
ever, its application to more complex questions about learning dynamics
remains a challenge. For example, do MOOC students genuinely study
from a resource or merely skim content to understand what will come
next? One common practice is to use the resources directly as activities,
resulting in spaghetti process models that subsequently undergo filter-
ing. However, this leads to over-simplified and difficult-to-interpret con-
clusions. Consequently, an event abstraction becomes necessary, whereby
low-level events are combined with high-level activities. A wide range of
event abstraction techniques has been presented in process mining liter-
ature, primarily in relation to data-driven bottom-up strategies, where
patterns are discovered from the data and later mapped to education
concepts. Accordingly, this paper proposes a domain-driven top-down
framework that allows educators who are less familiar with data and
process analytics to more easily search for a set of predefined high-level
concepts from their own MOOC data. The framework outlined herein
has been successfully tested in a Coursera MOOC, with the objective of
understanding the in-session behavioral dynamics of learners who suc-
cessfully complete their respective courses.

Keywords: Event abstraction · MOOC · Learning dynamics

1 Introduction

The use of technology in educational environments has increased the learning
alternatives around the world. In this regard, Massive Open Online Courses
(MOOCs) are one of the most popular alternatives, since they enable learners to
operate through a completely online environment, across a variety of subjects,
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scaling seamlessly across hundreds or thousands of users [4]. These courses were
originally conceived of as opportunities for personal capacity building and have
now been integrated into the curricula of numerous educational institutions, in
which the line between face-to-face and online learning has become increasingly
blurred. This integration has led to an increase in the understanding of how
users carry out their tasks and perform on these platforms, and this in itself
has become both a topic of interest for all stakeholders and an open area of
research [2,4]. In particular, there is a growing interest in understanding learner
dynamics within a session, i.e., during an uninterrupted period of work [2,4].

Educational managers have considered process mining a promising tool with
which to answer their research questions, given its ease of use for users who are
not necessarily experts in data and process analytics [14]. A common approach
in the literature consists of using fields directly from a database table as activi-
ties for process mining algorithms, e.g., the accessed MOOC resource [14]. The
conclusions that can be drawn from this approach are limited. Given the number
of possible activities and variants, the result may end up as a spaghetti process
model. In such cases, a majority of authors opt to heavily filter the number
of activities or arcs to achieve a readable albeit partial model and to limit the
complexity of the questions that can be answered.

More complex questions necessarily require event abstractions, i.e., low-level
events are combined in high-level patterns, creating logs that are better tai-
lored to answering such questions and with less variability, thus improving inter-
pretability. In the literature on process mining, there is a broad variety of event
abstraction methods (for a literature review on the topic, readers should see [15]).
Most event abstraction approaches are data-driven (bottom up), i.e., domain-
agnostic and unsupervised methods to detect frequent patterns in data. In cer-
tain cases these frequent patterns are mapped according to the most fitting
education concepts, e.g., self-regulated learning profiles. However, the applica-
tion of these techniques, although possible, is difficult when there is a set of
high-level activities that have already been defined and an attempt is made to
determine such behaviors in the log in a domain-driven (top-down) manner.
For example, in the case of learning dynamics, the same pattern of accessing a
MOOC resource may reflect whether the learner is studying from a resource, or
simply skimming over it to understand what will come next. Finally, defining an
event abstraction can be a highly complex task for educational decision-makers
who are not experts in process mining, since it requires a solid understanding of
concepts such as case ID, activity ID and event ID. That is why it is necessary to
define frameworks (or easy-to-follow recipes) in interdisciplinary scenarios, such
as education, in order to apply process mining.

This paper proposes a domain-driven event abstraction framework specifi-
cally to analyze learning dynamics in MOOC sessions. The framework is simple
enough to be replicated by educational managers and defines the following: 1) a
minimal data model that can be adapted to most platforms (Coursera, Future-
Learn, EdX); 2) the definition of a low-level event log, including the definition
of case ID and session; and 3) the definition of seven high-level learning dynam-
ics and their corresponding high-level log. In addition, this paper validates and
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illustrates the application of the framework by means of a case study: to deter-
mine the learning dynamics of the sessions of students who successfully complete
the MOOC “Introduction to Programming in Python” on the Coursera platform.
The remainder of the paper is structured as follows: Sect. 2 describes the most
relevant research undertaken in the area; Sect. 3 presents the framework and
its three core elements; Sect. 4 illustrates the application of the framework in
the selected case study in order to validate the feasibility thereof; and Sect. 5
concludes the paper and outlines potential future work.

2 Related Work

Process Mining and MOOCs: Although MOOC systems generate a signif-
icant amount of data, their research using process mining techniques is just
starting [14]. However, several authors have attempted to describe or explore
student processes from this data. For example, [12] investigate the differences in
the process between three different sets of students depending on whether they
have completed all, some or none of the MOOC activities. On the other hand,
by combining clustering techniques with process mining, [3] identify four sets of
students, ranging from those who drop out at the very beginning of the course to
those who successfully complete it. Their research shows how students who com-
posed the cluster of individuals who successfully completed the course tended to
watch videos in successive batches. In one of the most relevant works in this sub-
ject, [9] study the event logs of three MOOC Coursera courses and discovered
six patterns of interaction among students. These patterns were also grouped
into three clusters, identified as sampling learners, comprehensive learners and
targeting learners, according to the behavior described. Furthermore, this work
has incorporated the concept of “session” as a unit of analysis. [4] explore in
greater depth the behavior of students in work sessions according to eight dif-
ferent possible interactions, segmenting them according to those who complete
and those who do not complete the course. The aforementioned paper finds that
students who complete the course are those who show more dedicated behavior
and carry out a greater number of sessions.

Process Mining and Event Abstraction: Despite the utility of process min-
ing techniques for understanding how organizations function, the systems that
generate this data are not necessarily capable of handling the appropriate level
of detail. Therefore, techniques that allow the abstraction of high-level activi-
ties from granular data are vital for the correct application of process mining
techniques [15]. Currently, there are several strategies with which to address this
problem. One family of techniques uses unsupervised machine learning by group-
ing events according to different dimensions, such as: the semantics of activity
names [13], the physical proximity in which events occur [11], events that occur fre-
quently together [10], and sub-sequences of activities that are repeated [5], among
others. Additional authors have proposed less automated strategies, such as [7],
who group elements according to the relationships between entities (ontologies) in
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order to abstract events using domain knowledge. This latter research was success-
fully applied in the medical domain. Similarly, [1] proposes a four-stage method
based on the prior identification of process activities, a granular matching between
activities and events according to their type, and certain context-sensitive rules.
Indeed, this method proposes the grouping of different events into activities. Fur-
thermore, in a combination of supervised and unsupervised methods, [8] propose
a method for event abstraction in diffuse environments. As such, the aforemen-
tioned approach is based on the separation of events into sessions according to
activity periods, prior to the generation of clusters of events, which are manually
reviewed in a heat map in order to subsequently map them to high-level activities.

3 Domain-Driven Event Abstraction Framework

This section presents the domain-driven event abstraction framework to aid edu-
cational managers in building a high-level event log with which to analyze the
learning dynamics of students during their MOOC work sessions. The framework
is composed of three stages: 1) a minimal data model capable of being mapped
to any MOOC system; 2) the definition of a low-level log from the minimal data
model; and 3) the definition of a high-level log derived from the low-level log.

S1: Minimal Data Model. The first stage that defines the framework is the
minimal data model. This is a data model with the minimum information nec-
essary to build the low-level event log, which serves as a lingua franca among
different MOOC systems, including Coursera, FutureLearn and edX, among oth-
ers. Figure 1 shows the minimal data model, which is filled with information each
time a user interacts with a MOOC resource. The model contemplates the iden-
tification of three main elements: the resource interacted with, the user who per-
forms the interaction, and the time at which the interaction is made. Resources
and users are identified with a unique identifier, present in all MOOC systems.
In addition, the model determines that each resource adheres to an associated
order within the MOOC. Utilizing this approach, it can be determined whether
the user is interacting in a sequential or disorderly manner via the resources.
The model also defines the type of resource in question. In this proposal, two
generic types are defined: content resources (video-lectures, presentations, etc.)
and assessments (quizzes, exams, etc.). However, the framework can be easily
extended to include other types of resources, such as project or bibliographical
resources. Finally, each interaction with a resource has an associated state (start
or complete) in the event log. This makes it possible to identify whether the learn-
ing dynamics of students correspond to exploratory or in-depth work patterns.
The majority of MOOC systems contain the necessary information to be able
to determine status. In some cases, such as Coursera, state is explicitly recorded
as two different interactions (one is “Started” and the other is “Completed”) in
its Course Progress table. In other systems, status can be determined from two
timestamps (“Start” and “End”) that are associated with the same interaction.

S2: Low-Level Log. The second stage of the framework describes how to build
the low-level log, based on the information contained in the minimal data model,
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Fig. 1. Minimal data model suggested.

as defined in the previous stage. Each interaction with a MOOC resource recorded
in the minimal data model represents an event in the low-level log. The trans-
formation of the information in the minimal data model to the low-level log is
straightforward, with the exception of two elements: the session and case ID.

This framework is designed to analyze the learning dynamics in student work
sessions, i.e., an uninterrupted period of work. Therefore, it is necessary to define
to which session each interaction with a resource pertains. Certain MOOC sys-
tems have their own built-in session definition and identification. However, in
most MOOC systems this definition is not explicitly available, although it can
be determined. For example, two consecutive interactions pertain to different
sessions if, between their timestamps, a certain threshold of time has passed in
which no interaction with the MOOC has been carried out. Different thresholds
and the implications thereof have been reviewed in the literature [6]. Once the
session has been determined, the framework defines the case ID of the low-level
log as the pair (user ID, session ID), i.e., different sessions of the same student
correspond to different cases in the log.

S3: High-level Log. The low-level event log obtained in stage two resembles
the analysis input that a non-expert user in process mining would normally use
directly in a tool such as Disco or ProM. However, the large amount of resources
and variants that result from this type of log make it difficult to obtain process-
driven answers. Therefore, stage three of the framework defines seven high-level
activities (Fig. 2), with each one representing a different learning dynamic which
reflects learner behavior, regardless of the resources consulted. In particular, this
includes four dynamics associated with content consumption and three related
to interaction with assessments.

– Progressing : this represents the learning dynamic of a student who consumes
a resource and then continues, in the correct order, with the next resource in
the course.

– Exploring : this represents the learning dynamic of a student who interacts
in a superficial manner with new content, simply in order to know what to
expect, for example, to determine the time needed to consume that content.

– Echoing : this represents the learning dynamic of a student who consumes a
resource, and then continues on to the next resource in the correct order, but
with resources that have already been previously completed. A good example
is a learner who decides to review content prior to sitting an exam.

– Fetching : this represents the learning dynamic of a student who interacts with
a previously completed resource, with or without completing it, and in no
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particular order. A good example is a student who, after failing an assessment
question, re-watches (partially or totally) a specific video in order to identify
the answer.

– Assessing : this represents the learning dynamic of a student who interacts
with and completes an assessment-type resource that has not been previously
completed. In the case of a block of several Assessing dynamics in a row,
regardless of their order, these are collapsed into a single dynamic.

– Skimming : this represents the learning dynamic of a student who initiates but
does not complete interactions with assessments. For example, the student
could be reviewing the questions before taking an assessment seriously or
could be reviewing an assessment beforehand in order to understand where
he/she went wrong.

– Retaking : this represents the learning dynamic of a student who initiates and
completes assessments that have been previously completed. For example, a
user who did not obtain a satisfactory score and who decides to retry in order
to improve their previous result.

Fig. 2. Criteria to assign to each activity.

4 Case Study: Successful Student Sessions in Coursera

To illustrate the application of the framework and validate its applicability with
real data, a case study was conducted using data from the “Introduction to
Programming in Python” course on the Coursera platform. The objective of the
case study was to examine the learning dynamics that took place in the sessions
of students who successfully completed the course. Specifically, the following
two questions are defined: RQ1: What are the characteristics of the sessions
that involve learning dynamics in which a resource is revisited? and RQ2: Are
there differences in terms of learning dynamics between the first sessions and the
final sessions carried out by students? With that in mind, this section presents
the following: first, the descriptive information of the course and the application
of the three levels of the framework related to the case study; second, the results-
based answers of the two research questions; and third, a brief discussion of the
implications of these results.

Case Study and Framework: This study considers data generated from
a Coursera course held during the period June 23, 2017 to April 14, 2018.
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The course involved a total time commitment of 17 h and was organized into
6 modules, 1 for each week. In this analysis, consideration was taken of 58 pos-
sible resources with which to interact, 35 content resources (video lectures) and
23 assessment resources.

The first step in the application of the framework was to align the minimal
data model available to Coursera with the minimal data model proposed herein.
The Coursera data model contained more than 75 tables. The most relevant
table for this study was the Course Progress table, which recorded the course
ID, the resource interacted with, the user who performed the interaction, the
status (start/complete) and the timestamp detailing when it occurs. However,
as this table only contained IDs, it was necessary to supplement it with the
course information tables (Course Item Types, Course Items, Course Lessons,
Course Modules, Course Progress State Types) so as to establish the order of
the resources within the course and obtain descriptive information.

The second step in the application of the framework was to build the low-
level event log, including the concept of session ID. To do so, an activity was
considered to occur in the same session as the previous activity if, between them,
there was a lapse equal to or less than 60 min, which is the maximum limit for
time-on-task, as established by [6]. Hence, the case ID for the low-level event
log was established as the pair (user ID, session ID). Only users who began and
completed the course during the observation period were used for this analysis.
The criterion to determine whether a user completed the course was based on
whether that learner completed either of the final two course assessments. This
yielded 209 user cases for analysis and a total of 320,421 low-level events. Finally,
Coursera recorded progress through each question within the assessment as each
new event started, e.g., a student completing an assessment with 10 questions
results in 11 events started and 1 completed. This duplication was subsequently
condensed, resulting in a low-level event log of 39,650 events.

The final step in the application of the framework was the creation of the
high-level event log from the definition of the seven high-level activities: Pro-
gressing, Exploring, Echoing, Fetching, Assessing, Skimming and Retaking. The
resulting high-level log contained 18,029 events. This represented a 54.5% reduc-
tion of activities compared to the low-level log. As with the low-level log, the
case ID for the high-level event log was established as the pair (user ID, session
ID). From the 209 users, this generated 7,087 cases which were grouped into
1,237 distinct variants.

RQ1: This study detected differences between the various sessions that involved
learning dynamics in which a resource was revisited, i.e., Echoing, Fetching, and
Retaking. An exploratory analysis of the sessions showed that Fetching appeared
in 13% of cases, and the interaction of this activity seems to be strongly related
to assessment dynamics (i.e., Assessing, Skimming, Retaking); in 54.3% of cases
in which this activity was detected, its occurrence was preceded by one of the
activities related to assessment; and in 50.9% of cases, Fetching was followed by
some form of assessment.
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In this case, the Fetching of a content (totally or partially) suggests a specific
search-related action, either in preparation for an assessment or in response to a
certain element that appeared in an assessment and about which it is worth clar-
ifying a particular doubt. However, when consideration is taken of the sessions
that included an Assessing or Retaking activity besides Fetching, the proportion
changed, with 25.6% performing the fetch prior to the assessment and 21.5%
afterwards. Analysis of the content associated with Fetching showed that the
most commonly fetched resources were 2.2.2 Input, 3.1.1 If/Else, 3.2.2 For,
2.1.1. Data Types (which can be understood as the first different elements for
someone with no prior programming knowledge), and 6.1.4 List Functions (fol-
lowing analysis, it could be seen that this particular content was poorly designed
and suggestions were made to re-record the video using a new structure).

When comparing with cases in which Echoing appeared (as shown in Fig. 3),
behavior was seen to have changed, since in the majority of cases this activity
was directly related to Progressing, to the extent that in 35.9% of the cases with
Echoing, the previous activity or the one that immediately succeeded it was
Progressing. This indicates that the extensive repetition of content occurred in
sessions in which the student was oriented towards studying content and that
during these study sessions doubts arose, which therefore necessitates an in-
depth review of previously seen content. This differs to the patterns generated
with regards to Fetching, which appears more strongly related to assessment
activities. Nonetheless, in this case a relationship also existed with the assessment
activities. Yet, they differed in the sequence point in which they appeared, since
a repetition of content occurred more frequently prior to the assessment, as
opposed to the variants that included Fetching, whereby the content review
occurred more frequently after the assessment was accessed.

Fig. 3. Comparison between sessions fetching (left) and echoing (right) sessions.

Finally, when reviewing Retaking (Fig. 4) it can be assumed that the user
entered the session directly with the intention of retaking assessments, since the
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most common variant (25.9% of cases) only repeated their assessments and then
concluded the session. Similarly, the activity with which there was the strongest
relationship in this case is Skimming, which indicates a dynamic whereby learners
performed a self-evaluation and then reviewed the results, or looked at their
previous results which they then attempted to improve. The transition from
Retaking to Skimming occurred in 33.6% of cases in which repetition was present,
while the reverse occurred in 32.1% of the cases. This implies that either (or both)
of these interactions appeared in 43.0% of the cases with Retaking. By reviewing
the most commonly repeated Retaking-related assessments, one assessment in
particular was noted as having a significantly higher number of Retaking than
the rest (597 occurrences out of an average of 285). In consultation with the
course designers, this assessment, which measured the topics of variables and
input/output, was found to have had a bug in one of the questions. The bug was
subsequently corrected after the observation date had been recorded.

Fig. 4. Learning dynamics in sessions with retaking.

RQ2: The sessions of each student were divided into quintiles by considering the
total number of sessions completed by each one. Thus, the sessions of the first
and last quintile were compared. This made it possible to verify the existence of
differences between behavior at the beginning and end of the course.

In the process model obtained from the analysis of the initial sessions (Fig. 5)
it can be observed that the most common activities were associated with orderly
and comprehensive learning (Progressing 63.9% and Echoing 29.7%). Further-
more, a relatively low commitment to assessment can also be seen at this point in
the course, since although the Skimming activity appeared in 36.7% of cases, stu-
dents were observed undertaking sessions without completing an assessment in
66.3% of cases. This idea is reinforced by the observation that in 5.78% of cases,
the Progressing activity involved more than one piece of content being completed
in the correct order. This suggests that students preferred not to interrupt their
content study progression in order to carry out the interspersed assessments.
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As the Progressing and Exploring activities refer to the very first time a piece
of content was viewed, these activities were expected to be more frequent at the
beginning of the course, showing a decreasing frequency towards the end of the
course. However, it is noteworthy that the Echoing activity experienced a high
frequency of 29.7% during the initial sessions.

Conversely, by grouping the sessions into quintiles it was possible to evince
that sessions at the beginning of the course tended to experience the most
changes in terms of learning dynamics. Indeed, despite comprising 19% of the
sessions, 23% of all events in the high-level log were found to take place in these
initial stages. By conducting the same exercise with each quintile in turn, it
can be seen that the number of events grouped together in each one decreased,
reaching a mere 15% of events in the final quintile.

It seems that with regards to the final sessions (Fig. 5) these were mainly
carried out in relation to assessment activities, since all associated activities
(Skimming, Assessing and Retaking) appeared more frequently than those asso-
ciated with contents. For example, 39.9% of the former performed at least one
Assessing or Retaking activity. However, it is striking to find that 40.4% of cases
corresponded to students who only undertook Skimming and then finished the
session, thus suggesting that a significant number of learners simply logged on to
browse the questions without completing the broader assessment. Regarding the
dynamics of the content activities, the Progressing activity tended to be the one
that initiated the sessions in which it appeared, and was most frequently suc-
ceeded by assessment activities, particularly Assessing. This indicates changes
from the beginning of the course, whereby the user tended to either continue
to study or repeat content more frequently. In addition, from this perspective
it should be noted that even at the end of the course the Progressing activ-
ity appeared more frequently than Echoing and with a higher average duration
(23.5 min versus 9.6 min, on average). Similarly, the behavior of continuing to
study by skipping an assessment drastically reduced its occurrence, accounting
for merely 2 cases or 0.1% of these sessions.

Fig. 5. Difference between initial sessions and ending sessions (30% paths).
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Discussion: First, the results show that students varied their session behavior
during the duration of the MOOC, given that at the beginning of the course they
were more reluctant to assess themselves and preferred to review content rather
that to measure the extent of their overall knowledge. The situation changed
as they progressed through the course, as 25% of the total number of events
recorded in the log ended up as completed assessments, either for the first time
or by repeating an already-completed assessment. This indicates that student
commitment to the course increased as they progress through it. By examining
the detail of the cases, it was found that the most common variants were of
a single activity and that the longest sequences commonly involved activities
of the same type (e.g., Progressing and Echoing or Skimming and Retaking).
This confirms the findings of [2] who suggest that successful students change
the priority of the activities they complete between course sessions. On the
other hand, the patterns observed are consistent with experiments that use other
techniques or optics on MOOC data, such as machine learning or clustering.

One of the unexpected results in this research was the discovery that the sole,
most common variant was the Skimming activity, which accounted for 26.7% of
the high-level log. This could point to the need to refine the skimming activity,
since the review of an unfinished assessment may be the result of several possible
factors, including: that the difficulty of the content due to be assessed is being
reviewed in preparation for a serious attempt to complete it; that mistakes made
in previous attempts are being reviewed; and that the questions are being used
as learning examples, among others.

5 Conclusions

This paper presents a domain-driven event abstraction framework that facilitates
the construction of a high-level event log with which to analyze learning dynam-
ics in MOOC sessions. Specifically, the framework is composed of three stages:
1) the minimal data model necessary; 2) the construction of a low-level event
log; and 3) the definition of seven high-level activities that can be used to build
the high-level event log: Progressing, Exploring, Echoing, Fetching, Assessing,
Skimming, Retaking. The application of the framework in a real scenario was val-
idated in a case study in which the learning dynamics of the sessions of students
who successfully completed the course were analyzed. Specifically, analysis was
undertaken of the behavior in the sessions in which a resource was reviewed and
an error found in the course, in addition to the differences in behavior between
the first and last sessions of the students.

This research should be considered as exploratory and preliminary in nature,
with significant room for improvement in future work. First, the framework
attempts to extrapolate the intentions of the students (e.g., progressing vs
exploring) from the available data. Nevertheless, such extrapolations could be
refined if the framework were complemented with certain additional instruments,
for example, surveys and interviews, as has been carried out in other types
of MOOC analysis, such as self-regulated learning [2]. Second, domain-driven
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event abstractions and data-driven event abstractions should not be considered
as opposing techniques, but rather as two sides of the same coin that can com-
plement one another. In this regard, rather than a purely domain-driven event
abstraction, this investigation could be complemented by one of the data-driven
event abstraction techniques outlined in [15], thus creating a hybrid method
that combines the two approaches in an iterative manner. Third, it is crucial to
test the framework in different courses and MOOCs to ensure its generality and
usefulness.
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Abstract. Computer-based education relies on information systems to
support teaching and learning processes. These systems store trace data
about the interaction of the learners with their different functionalities.
Process mining techniques have been used to evaluate these traces and
provide insights to instructors on the behavior of students. However, an
analysis of students behavior on solving open-questioned examinations
combined with the marks they received is still missing. This analysis
can support the instructors not only on improving the design of future
edition of the course, but also on improving the structure of online and
physical evaluations. In this paper, we use process mining techniques
to evaluate the behavioral patterns of students solving computer-based
open-ended exams and their correlation with the grades. Our results
show patterns of behavior associated to the marks received. We discuss
how these results may support the instructor on elaborating future open
question examinations.

Keywords: Education · Process mining · Educational process
mining · Exam process

1 Introduction

Educational process mining [1] analyzes data generated from educational systems
using process mining techniques. These analyses may support the course instruc-
tors for example on understanding how students engage with self-assessment [2]
or how the students behave while using the online educational systems [3]. Typ-
ically, these kind of analyses focus on online courses, such as the ones provided
by Massive Open Online Course (MOOC) platforms like Coursera1, Edx2, etc.
In these settings the courses are designed for being taught online. Consecutively
also students assessments is performed online using closed-answer questions [3,4].

However, with the advent of the COVID-19 pandemic, a new reality emerged:
courses that were designed to be held in presence had to switch to online mode

1 https://www.coursera.org.
2 https://www.edx.org.
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due to the various lockdowns. Oftentimes this transfer from physical mode to
online mode had to be performed with short notice, leaving the instructors little
or not time to design the course anew. As a result, many courses “switched” to
online by simply mimicking their in-presence version. Thus, previously planned
on-paper exams, were simply replaced by online documents to be downloaded by
the students, performed within a remotely-controlled environment (i.e., monitor-
ing students via webcam, microphone, screenshots) and uploaded again to the
system [5]. These kind of exams are referred to as open questions computer-aided

examinations.
In order to make it possible for the teacher or other authorities to check for

students misconduct during the exam at a later stage, the monitoring data are
usually persisted in event logs as trace data [6]. In this way, such setting opens
up to a unique opportunity to use process mining to gain further insights on the
exam-taking process. Specifically, mining techniques can be used to support the
instructors on understanding how the students behave when solving the exam,
for example to understand which question was more or less demanding. Also, con-
fronting the behavior for solving the exam with the marks the students received
may provide other insights to the instructors. For example, if certain behavior
leads to better performance, if the most demanding question was also the one
with lower marks meaning that the students did not acquire the knowledge.

In this paper, we use a multi-method approach based on process mining [7]
to analyze the trace data generated from the interaction of students with an
online system while doing an exam with open questions. We used data from two
master course exams. We enriched the trace data with the marks the students
received for each of the questions. The results show that there is a pattern on
solving the exam when considering the topmost performers students. Also, there
is a relation between the time spent by the students on solving the question with
the marks they received for the question. With this research we contribute to
the area for educational process mining by showing how process mining can be
used also to support courses designed as physical.

The rest of the paper is structured as follows. Section 2 discusses the related
work. Section 3 presents our method for evaluating students behavior on solving
an online exam. Section 4 describes our scenario of application including the
setting, results and some discussions. Section 5 concludes our work and provide
some future directions.

2 Related Work

Educational data has been exploited by process mining techniques for various
analyses [8] and in several ways. In [3] the data is grouped considering the grades
and the behavior of the students while using an online educational tool. Process
mining techniques are then applied to the different groups showing that the
models discovered are more comprehensible and with higher fitness than the
models learned using the whole data. In [9] data from a Massive Open Online
Course (MOOC) was used to analyze the behavior of the students during the
learning phase confronted with the final marks they achieve in the course.
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Our literature review did not find many works related to ours, i.e., that focus
on using process mining for analyzing the behavior of the students considering an
online assessment. In the remaining of this section we outline the contributions
of works who take online assessment into account.

In [2] process mining is used to evaluate how students engage with self-
assessment and formative assessment and how these two types of assessments
are related. In [4] process mining is used to evaluate the navigation behavior
of students when answering to a close-ended online test. Also, a navigation ref-
erence model is used for conformance checking. The results of the paper show
that the navigation behavior impacts on the performance of the students. In [10]
a system to automatically evaluate the performance of students was proposed.
Process discovery is used to learn the process used by the students when doing
an online test that requires the use of a special software, e.g., ERP system. The
process discovered represent how the student behaved to achieve the given busi-
ness scenario. Based on the learned model students’ performance is automatically
evaluated. In [11] different techniques of process mining were used to evaluated
assessment data from online multiple choice tests. Data from two exams were
considered where in a first study the questions must be answered in a strict order
and immediately after the students could receive feedback and learn the correct
answer. In the second study, the student could choose the order for answering
the questions and they could revisit earlier questions and their answer. In [12]
process mining was used to examine self-regulated learning (SRL) of students.
By analyzing data recorded during think-aloud sessions, differences were found
in the frequency and order of the regulatory activities. In [13] a framework called
Trace-SRL was proposed to analyze SRL processes, using stochastic process min-
ing under the theoretical lens of SRL. Findings include the discovery of different
learner-strategy types along with specific patterns.

While related, none of the above-mentioned works focuses on evaluating
computer-aided examinations with open-ended questions. In the following section,
we describe how this format of examination can be evaluated. Also, we com-
pare the behavior of the students when answering the test with the marks they
received for the questions.

3 Method

Computer-aided examinations with open-ended questions belong to the context
of computer-aided teaching and learning, In this environment there are two main
actors, the instructor and the student. The instructor is responsible for designing

the course, teaching and grading the students. The students are responsible for
learning the content taught to them and perform an examination that assesses
how well they acquired the content taught in the course. During the course
design phase the instructor designs the classes to be taught and also how the
examination will be. In this environment, the examination is performed using



568 S. Bala et al.

an online system that is able to store the interactions of the students with the
system during the examination. Also, the grading of the examination is made
available digitally.

Our method aims at improving the instructors knowledge about the exam-
process. To this end, its input is constituted by the generated trace data and the
grades of the students. Next, it encodes them onto an enriched event log. Process
mining techniques and statistical methods are used to analyze this enriched
event log, presenting the discovered knowledge to the instructor. Based on this
knowledge the instructor may change the design of future editions of the course,
which may include more teaching time on concepts that were shown to be not
clear to the students or changing the order of the concepts being evaluated (i.e.,
questions) in the examination. Figure 1 depicts a sketch of our method. The
shaded steps are the steps of the computer-aided teaching and learning process
on which this research focuses.

Course 

design

Learning Examination

Instructor

Students

Grading

Students

interactions
Grades

Event 

log

Analysis

Knowledge

Computer-Aided Teaching and Learning

Teaching

Encoding

Fig. 1. Exploiting process mining to analyze exams in order to gather knowledge for
improving computer-aided teaching & learning processes.

The encoding of the event log is done in two steps. The first step creates a
standard event log in the XES [14] format with case ID, activity and timestamp.
And the second enriches the created event log with attributes that correspond
to the grades received in the questions and in the overall exam. Also, attributes
that store the duration of working on each question are included in the event
log.

For generating the event log the method requires that the online system
being used stores data that allow one to identify when the student was working
in each of the questions. Given that the goal is to analyze the student behavior on
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performing an online exam, the student matriculation number defines a case in
the event log and the student interactions with the system define the activities.

We focus on collecting insights on how the students answered the questions of
the exam, therefore we created four activity templates: Look Question X, Work

on Question X, Save Draft of Question X and Submit Question X, where X is a
placeholder for the question number. The first activity starts when the student
opens question X and finishes when the student either closes question X, starts
working on question X or save or submit question X. The second activity starts
when the student starts writing on the environment and finishes when the student
closes the question or presses the save or submit button in the system. The third
activity happens when the student pushes the button to save a draft of the ques-
tion. The fourth activity happens when the student pushes the button to submit
the question. Saving a draft or submitting a question do not have a meaningful
duration. The duration that we are interested on is the duration of the Work on

Question X activity, which represents the overall time that the student took to
answer the question. The structure of the final traces in the event log is Tracei =
〈Studenti, Activity, T ime,GradeQ1

, ..., GradeQn
, DurationQ1

, ..., DurationQn
〉.

For the analysis phase process mining techniques [7] are used. Process dis-
covery is used to explore the sequence behavior of solving the exam searching
for possible patterns. Process data such as duration of the activities, activities
most frequently executed wee collected for the analysis. The choice of the process
data collected is of the instructor depending on the investigation he or she wants
to do.

4 Application

As an application scenario, we applied our method on a case of open ques-
tion examinations, henceforth called Exam1 and Exam2. These examinations
stemmed from two master courses of an Austrian university. The two courses
were designed for in-presence teaching and examinations. However, due to a
COVID-19 wave the classes and the exams were moved to online.

For what concerns the exams, all the setup was kept the same as to a writ-
ten exam taken physically. All the questions were made available online in the
Teaching and Learning information system in the same way that they were avail-
able in the paper format. The students could visit the questions in the order
they wanted and as many times as they wanted. It was possible to save a draft
of the answers until the submission of the final answers. Each exam had to be
performed in 90 min, however the students were given 10 min more than planned
for the physical exam to compensate any possible infrastructure issue, summing
up a maximum of 100 min for doing the exam.

In the following, we describe the details of applying our method to analyze
the behavior of the students when answering the questions of Exam1 and Exam2

and how this behavior is related to the grades they achieved. Section 4.1 describes
the event logs generated from the data logged by the Moodle system and the
grades achieved by the students. Section 4.2 presents the results found. And,
Sect. 4.3 discusses our findings.
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4.1 Setting

Exam1 had 8 questions and Exam2 had 4 questions. Thus, the event log for
each of the exams were composed by 32 and 16 distinct activities, respectively.
The teaching and learning system stored every interaction event along with a
timestamp. This timestamp was used to set when each activity started. The
students matriculation identifiers defined the cases in the event log. For Exam1

61 students completed the exam and for Exam2 27 students. Thus, the event
logs had 61 and 27 cases, respectively.

The event log was enriched with the grade received for each of the questions
and also the final grade on the exam. Both exams have a maximum of 100
points. For Exam1 the points were split equally, i.e., each of the questions had a
maximum of 12.5 points. For Exam2, three questions (1,2 and 4) had maximum of
20 each and one question (3) had a maximum of 40 points. The event logs where
then filtered by the achieved final grade generating two event logs for each exam.
One event log was composed by the traces of the students that achieved more
than 80 (inclusive) in the exam, i.e., the topmost performers (TP ) of the exam.
The other event log was composed by the traces of the students that achieved
less than 50 (inclusive), i.e., the lowermost performers (LP ) of the exam. Table 1
provides details on the event logs generated. For analyzing the data we used the
Disco3 tool for process mining and R4 software for correlation analysis and plot
generation. The analyses were guided by the following questions:

Table 1. Event logs description

Event log Cases Events Activities Median
case
duration

Mean case
duration

Min.
activity
frequency

Median act.
freq.

Mean act.
freq.

Max act.
frequency

Act.
frequency
std. dev.

Exam1 61 7173 32 88.9 min 86.7 min 2 178 224.16 769 199.15

Exam1TP 24 2708 31 89.4 min 87.6 min 1 76 87.35 349 84.85

Exam1LP 7 820 29 87.8 min 82.5 min 1 27 28.28 85 23.26

Exam2 27 2892 16 99.3 min 91 min 2 115 180.75 707 203.53

Exam2TP 7 698 15 84.1 min 84.4 min 1 27 46.53 163 50.58

Exam2LP 10 1144 16 103.8 min 97.2 min 1 52 71.5 274 75.2

Q1: What are patterns in the behavior of exam solving?
Q2: How does the grade correlate with the time spent to solve a question?

4.2 Results

The number of variants is the same as the number of cases, amounting to 61
variants for Exam1 and 27 variants for Exam2, which shows that every student
used a different strategy to solve the exam.

Figure 2 and Fig. 3 depict the process models learned from the event logs
generated for Exam1 and Exam2, respectively. The processes on the left (a)

3 https://fluxicon.com/disco.
4 https://www.r-project.org.

https://fluxicon.com/disco
https://www.r-project.org
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were learned from Exam1TP and Exam2TP event logs, while the processes on
the right (b) were learned from Exam1LP and Exam2LP event logs.

The activities most executed in all cases are the Work on Question X, given
that these activities are executed when the students are working on the answers
for question X. By analyzing the difference in the color of these activities it is
possible to notice which question the students took more time for answering.
There are self cycle in some of these activities, which means that the teaching
and learning information system automatically saved the draft of the answer.
This happens when the student is continually changing the content of the ques-
tion, so periodically the system auto saves the content. Cycles are observed in
all processes, meaning that the students did not work in one question and sub-
mitted it. They chose to save the draft of the answers and they returned to the
question either to change its content or to validate before submitting it. Also, the
control flow analysis of the processes show that in general the topmost performer
students solved the exam following the order presented while the lowermost per-
former students solved the exam in a more chaotic way.

Figure 4 depicts the distribution of points for each question. For Exam1 the
majority of the students achieved the maximum points for questions 2, 6 and
8, given the median close to 12.5. Question 7 has a diversity of points, which
indicate that it was the most controversial question in this exam. It is potentially
a question about concepts not well understood by the students and thus a concept
more deeply discussed with the students in future editions of the course. Exam2

seems a more hard exam given that the majority of the students did not score the
maximum points of the questions. Question 3 is the question with more variation
on the points received by the students. It seems the hardest question in this exam,
which it is expected given that it is the only question with maximum of 40 points.
Some of the outliers presented in Exam1 correspond to students in the lowermost
performers students. The rest correspond to students that achieve between 50
and 80 points.

Figure 5 depicts the distribution of the time spent to solve each of the ques-
tions. The duration considers only the time spent on working on a particular
question. It is expressed in seconds. For Exam1 the question that was done
faster by the students were Question 6, while the question that demanded more
time was question 5. When confronting this result with the one presented in
Fig. 4 it seems that Question 6 was the easiest, given that it was the fasted to
be executed and the majority of the students score the maximum points. Also,
it may indicate a concept well understood by the students. When confronting
the data for Question 5, it was the second question with more spread points
and given that it was the question with higher duration, it may indicate that it
was a hard question or the concepts discussed in it were not well understood by
the students. In Exam2, Question 2 was the question that demanded less time
from the students. It was also the question where the students achieved highest
points and there was a less variation on the points achieved. This result indicate
to the instructor that either the question was easy or the concept discussed in
it was well understood by the students. Question 3 had a duration higher than
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(a) Exam1TP

(b) Exam1LP

Fig. 2. Exam solving processes for the Exam1 exam. Left (a): top performers (students
who achieved more than 80 points). Right (b): lowermost performers (students who
achieved less than 50 points)
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(a) Exam2TP

(b) Exam2LP

Fig. 3. Exam solving processes for Exam2. Left (a): top performers (students who
achieved more than 80 points). Right (b): lowermost performers (students who achieved
less than 50 points)

the other, but this was an expected result given that it was the biggest question.
As the maximum points of this question is double the points of each of the other
questions, it was also expected to be normal a duration of double the duration of
each of the other questions. However, considering the medians this situation was
not observed. Given the variation on points achieved it seems that the content
of this question was not fully understood by some of the students.

A correlation analysis between the duration and the points for each ques-
tion using Pearson correlation showed that only Question 2 in Exam2 presents
a correlation between these two attributes considering 95% confidence level.
Correlation 0.418 and p-value 0.0299. In Exam1 questions 1, 2, 3, 5 and 6
showed a correlation between the two attributes. The correlations and p-values
were (0.461, 0.000185), (0.289, 0.0241), (0.399, 0.00144), (0.492, 0.0000572) and
(0.347, 0.00617) respectively.
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Fig. 4. Questions versus points achieved on them

4.3 Discussion

From the results observed it is not possible to state that there is not a common
behavior on solving the exams (Q1). Each student created their own strategy for
solving the exam. However, when evaluating groups of students based on their
performance, it was possible to observe a pattern in the behavior of the topmost
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Fig. 5. Questions versus time (in seconds) spent on solving them
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performers students. This group solved the questions in the same order in which
they were presented in the exam.

When evaluating the correlation between the time spent for answering the
questions and the points received for each of the questions only Question 2 in
Exam2 showed a correlation. This result conforms with the previous analysis that
showed that the highest points were achieved in Question 2 and this question
was the one with lower duration. It means that the students were confident when
answering this question. It seems that its content was well assimilated by the
students.

5 Conclusion

Process mining has been used in the education area to support the analysis
of the behavior of students in online educational environments. In this paper,
we used process mining to analyze the behavior of students when solving an
exam with open ended questions. Trace data generated from the online teaching
and learning environment was used to generate a event log. This event log was
enriched with attributes that encoded the points received in each question and
the time spent by the students to solve the questions.

We applied our approach in two exams performed by students from two
master courses of an Austrian university. The results raised interesting questions
for the instructor to investigate further, which may support them on the design of
future editions of the courses. Especially, when designing further editions of the
course, our method can help at better content and granularity of the questions.

Future work shall increment the depth and scope of the analysis of the edu-
cational data at hand. More specifically, we want to improve our analysis in two
ways. First, we want to improve the encoding and consider more cases for the
analysis, such as for example differentiating between students that receive zero
points in a question because they answered it wrongly from those that did not
answer the question. Second, we want to apply other kind of process mining tech-
niques, such as conformance checking, in order to quantify how much deviation
is associated to a good or a bad grade.
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Abstract. On their trajectory through educational university systems,
students leave a trace of event data. The analysis of that event data
with a process lens poses a set of domain-specific challenges that is
addressed in the field of Educational Process Mining (EPM). Despite
the vast potential for understanding the progress of students and improv-
ing the quality of study programs through process mining, a case study
based on an established process mining methodology is still missing. In
this paper, we address this gap by applying the state-of-the-art process
mining project methodology (PM2) in an EPM case study with a focus
on student trajectory analysis at a German university. We found that
process mining can create actionable items to improve the quality of
university education. We also point out domain-specific challenges, like
handling reoccurring exams (retaken after failing) for future research in
EPM. Finally, we observe insights of some value in our case.

Keywords: Educational Process Mining · Curriculum mining · Case
study

1 Introduction

Students are the lifeblood of universities and their main reason for existence.
Universities’ role in society is unquestionably large, with more than 40% of the
population in Europe1 and 24% in the U.S.2 attaining at least a Bachelor degree.
We aim to recruit young academic talents from the best graduating students
to sustain excellent work across sectors. But talent is not spread equally: the
international competition among universities for top students is largely driven

1 https://www.statista.com/statistics/1093466/eu-28-adults-with-tertiary-education-
attainment/, 2020 data, accessed 2022-08-22.

2 Estimated population: 328.24M; Bachelor, Master, and Doctoral degrees: 80.33M;
both for 2019. Sources: https://www.statista.com/statistics/183489/population-of-
the-us-by-ethnicity-since-2000/ and https://www2.census.gov/programs-surveys/de
mo/tables/educational-attainment/2019/cps-detailed-tables/table-1-1.xlsx,
accessed 2022-08-22.
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by university rankings, in which the quality of teaching is a pivotal factor. On the
other end of the spectrum, unfortunately large shares of students leave colleges
and universities without a degree – for the U.S., this was the case for at least 20
million inhabitants in 20193. In summary, universities can be expected to have
a high level of motivation to increase student success.

Once students enroll in a program, they complete courses to receive their
degrees – with varying levels of freedom, depending on the respective university
system. On their trajectory through the university system, those students leave
a trace of data. Some universities analyze that data with basic statistics, others
employ more elaborate data mining techniques [4]. Insights from such analyses
inform refinement of curricula and course offerings, to improve the quality of
teaching and (global) competitiveness, and to lower drop-out rates [13].

As a set of process-focused data science techniques, process mining is widely
used in various business environments [1]. A core value proposition of process min-
ing is an increased understanding of the actual execution of processes and lever-
aging that knowledge for process improvements. Those benefits are not limited to
an industrial or business context and can also be applied in other domains, such
as education [16]. The process perspective on education interprets learning and
teaching as an ordered number of activities (such as taking an exam) that are
being executed over time (like each semester) [5]. The term Educational Process
Mining (EPM) [9,15] covers the analysis of execution data with process mining
techniques in the education domain. As the limited number of case studies and
publications on process mining on student trajectory data [5] shows, the poten-
tial of process mining for improving university teaching has rarely been unlocked.

In this paper, we add a case study to the EPM field that has been conducted
at a German university. In contrast to former case studies, our initiative is guided
by the Process Mining Project Management methodology [7] (PM2). Our main
contributions are two-fold: (i) we document our lessons learned and motivate
potential refinements to cater for the application of PM2 to student data; and
(ii) through the case study, we obtain insights which, in some instances and for
some contexts, indicate a rather clear value of educational process mining.

In the remainder, we elaborate on preliminary work in the field (Sect. 2),
present our research methodology (Sect. 3) and execute the methodology based
on a case study at a German university (Sect. 4). Section 5 sums up our lessons
learned, before Sect. 6 concludes.

2 Related Work

Data analysis in education is widely applied and has drawn research atten-
tion in the past decades under the umbrella term Educational Data Mining
(EDM) [2,13]. The process perspective on courses taken by students is covered in
the subfield Educational Process Mining (EPM) [9,15,16], which by itself spans

3 See source in footnote 2, “Some college, no degree”, and https://www.statista.com/
statistics/235406/undergraduate-enrollment-in-us-universities/ for current enroll-
ment numbers; accessed 2022-08-22.

https://www.statista.com/statistics/235406/undergraduate-enrollment-in-us-universities/
https://www.statista.com/statistics/235406/undergraduate-enrollment-in-us-universities/
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a spectrum of application areas. In our paper, however, the focus lies on cur-
riculum mining – a term covering course-based analysis of student trajectories in
educational institutions [5]. In its original meaning, curriculum mining described
the pattern-based discovery of a curriculum from observed study data and its
subsequent usage for process mining [11,16]. From this origin, authors picked up
on the term curriculum mining and extended it, adding comparisons between
individual curricula of successful and less successful students, while “success”
was measured in course or program grading [18]. Due to the extension of the
term curriculum mining, earlier case studies may be subsumed under the term
in retrospect such as [17]. [10, Ch.8] explored student’s paths with a focus on the
impact of failure on their trajectories. [18] furthermore proposed a process-based
recommender system for students to provide guidance when choosing courses,
which they published in 2018 [19]. Other initiatives aimed at creating specific
techniques for curriculum mining. [3] contributed an approach for conformance
checking multiple events with the same timestamps (e.g., courses taken in the
same semester). However, they excluded student’s option to retake courses (e.g.,
after failing them) in their method, leaving room for improvement. Notably, some
recent attempts to apply EPM on student curricula lagged behind expectations
due to domain-specific challenges [14] that in part remained unsolved as yet. One
of the related case studies [6] (in German) presents a method for a curriculum
mining initiative, although that method focuses on gaining insights from three
specific techniques: bubble-chart-analysis, fuzzy mining and inductive mining;
disregarding established process mining methodologies such as PM2 [7].

3 Research Method and Case

We employ a case study-based method to explore how student trajectories can
be analyzed in a process mining project. A case study, as a qualitative research
method, analyzes a phenomenon in its natural setting to gain insights into emerg-
ing topics [12, Ch.5]. With this work, we address the research question: Does
curriculum-based EPM with PM 2 provide benefits for the study program analy-
sis and improvement? In the process, we explore the arising challenges.

The case we selected deals with the study progress of Bachelor of Science stu-
dents in Information Systems Management (B.Sc. ISM) at Technische Univer-
sität Berlin (TUB). B.Sc. ISM is the third-largest study program of the depart-
ment for Electrical Engineering and Computer Science comprising 985 students
(winter term 2021/22). The department provides a study plan which recom-
mends taking certain courses in certain semesters. We chose this case study, due
to our high influence on the study process (one of the authors of this paper serves
as program director4) and our domain expertise as we teach in the program. In
that respect, our team encompassed all roles for a process mining project. Next,
the case and study design are described.

4 https://www.eecs.tu-berlin.de/menue/studium und lehre/studiengaenge/wirtschaft
sinformatik information systems management/beratung und service/studiengangsb
eauftragter/, accessed 22-08-2022.

https://www.eecs.tu-berlin.de/menue/studium_und_lehre/studiengaenge/wirtschaftsinformatik_information_systems_management/beratung_und_service/studiengangsbeauftragter/
https://www.eecs.tu-berlin.de/menue/studium_und_lehre/studiengaenge/wirtschaftsinformatik_information_systems_management/beratung_und_service/studiengangsbeauftragter/
https://www.eecs.tu-berlin.de/menue/studium_und_lehre/studiengaenge/wirtschaftsinformatik_information_systems_management/beratung_und_service/studiengangsbeauftragter/
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Fig. 1. BPMN diagram representing the case study design.

Case. TUB has around 34.000 enrolled students (winter term 2021/22) and 335
professors. The program B.Sc. ISM has existed since 2013. Currently, 717 B.Sc.
ISM students are studying based on the study regulation from 2015, and 268 B.Sc.
ISM students are studying based on the study regulation from 2021. To increase
the data quality for the case study, we focus on trajectories of the 696 students
that started their program with or after the effective date of the 2015 study regu-
lation (01-10-2017). (Bi-)Yearly study program meetings are a central element of
the teaching quality management at TUB. In such meetings, the study program
director, lecturers, and students discuss development and improvement options for
the program based on experiences, teaching evaluations, and a high-level analysis
of student trajectory data (e.g., cohort analysis of students in the program, drop-
out rates, etc.). The controlling department of TUB collects student trajectory
data of all study programs. Process mining for a more detailed analysis of student
trajectory data was applied for the first time at TUB in this case study.

Case Study Design. The BPMN diagram in Fig. 1 provides an overview of our
main case study that consisted of (1) a preparation phase, (2) a process min-
ing analysis, and (3) a finalization phase. We prepared the case study in two
teaching committee meetings, in which we gathered questions (1a) for a (process-
centered) analysis of student trajectory data. Next, we composed a data contract
(1b) between the controlling department and our research group to define the
appropriation for the data usage, required data attributes, data storage means
with respect to data security, and privacy protection mechanisms. This step was
supported by the privacy protection department of the TUB. As an output,
we received a defined subset of the student trajectory database for doing the
process mining analysis. In parallel, we talked to the system experts (1c) from
the controlling department regularly to understand the different data tables and
attributes of the database and their quality issues. Finally, we also reviewed
study program regulations as well as the study plan, and (1d) created a norma-
tive BPMN process diagram based on the study plan. After these preparation
steps, we started with the analysis (2a). The first step was the creation of an
event log from the database tables that suited a process representation of a stu-
dent curriculum and qualified for answering the analysis questions. After mining
and analysis of the event log, the results were discussed with the data and study
program experts (2b). In the final phase, the resulting analysis was presented at
the meeting of the teaching committee (3a). Feedback and further questions were



TR: Process Mining on Curriculum-Based Study Data: A Case Study 581

collected. In parallel, the results and further ideas for analysis were presented to
an ethics expert (3b) to discuss how and in which way the results should be used.
Based on these insights, we finalized our analysis of the student trajectories (3c),
which is presented in the following section.

4 Applying PM2 for Educational Process Mining

The PM2 [7] is the defacto standard process mining methodology and consists
of six main phases: (1) project planning, (2) extraction and (3) data process-
ing of the event log, (4) mining and analysis, (5) evaluation and (6) process
improvement & support. In the following, we describe them for our EPM case.

4.1 Planning

The process under scrutiny was the trajectory of students through the university
course system. The goal of the project was 1) to learn about student’s paths
through the university system, and 2) to find deviations from recommended path
(the study plan) through the university system provided by the department.

Selecting Business Processes. As described in Sect. 3, the program B.Sc. ISM
was well known to the members of the project team. Also, the project had lively
support of the program director, which provided a lever on changeability of
the process. Additionally, availability of the necessary data in the university’s
information systems was given, following the signing of the data contract.

Identifying Research Questions. To avoid confusion with the research question
in this paper, we refer to research questions of the project as “project question
(PQ)”. The mentioned study plan recommends a certain order of courses to
Bachelor students. The teaching committee did not yet have information about:

PQ1 Do B.Sc. ISM students follow the study plan?
PQ2 Are students that follow the study plan successful in their studies?
PQ3 Which behavioral patterns can be observed in the data?

Composing the Project Team. The project team comprised four people with the
following roles: the study program manager (process owner), three lecturers in
the study program (business experts), a member of the controlling team with
experience of data warehousing at TUB (system expert) and three process ana-
lysts. Additionally, we frequently sought feedback from TUB’s data protection
unit about the use of the data. We also incorporated ethical advice for result
exploitation.

4.2 Extraction

For data extraction, we had different sources of input. On the one hand,
the university operates partially self-deployed information systems building on
off-the-shelf student lifecycle management systems holding all available data
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Fig. 2. Data scheme showing a subset of available data attributes. Note that the tables
were not normalized (PK ... Primary key; FK ... Foreign key).

about students’ study progress. On the other hand, several documents officially
issued by the university contained descriptions of the process students go through
at TUB.

Determining the Scope. With respect to the project questions, two levels of
granularity were required: 1) exams taken by the students on specific days during
a semester, and 2) the semester the students were enrolled in, including the status
of the semester (actively studying, sabbatical, exmatriculated, etc.). The relevant
time-frame for B.Sc. ISM students of the most recent long-running version of the
program was from September 2017 to January 2021. We were provided with a
data schema covering student-related data attributes. An abbreviated version is
depicted in Fig. 2. Note that student’s study data are considered personal data
according to the European Union’s General Data Protection Regulation and thus
have to be handled with additional care (GDPR Art. 4). To sustain the ability
to assign courses to individual students, we created pseudonyms for student ID
numbers to which courses were assigned. Additionally, the data was delivered
using an encrypted and secure data transfer mechanism.

Extracting Event Data. The data was delivered as a multi-table SQL dump.
The tables, as we received them, were not normalized. As notion of an instance,
we selected the student with the pseudonym of the matriculation number
(student key) and selected some case-specific attributes from the student table.
The main two extracted event types are the (re-)enrollment of a student for
a semester and their exams taken for which we also consider event-specific
attributes (e.g., timestamp, name of the exam, (non-)compulsory exam). Fun-
damentally, we joined the tables Student and Exam based on the attribute
student key to generate the event log. Note that we did not make use of the
data in the table Application. Including the following additional preparatory
steps to transform the data, the SQL commands for the event log generation
amounted to 150 lines of code: 1) filtering for time frame the program B.Sc.
ISM; 2) unifying event labels; 3) flagging compulsory and elective courses; 4)
flagging events by their type; 5) initial filters, e.g. for the study program and its
version; 6) creating and re-labeling semester re-enrollment events; and 7) adjust
the timestamps for discovery of parallelism.



TR: Process Mining on Curriculum-Based Study Data: A Case Study 583

Analysis I und 

Lineare Algebra 

für 

Ingenieurwissen

schaften

Einführung in 

die 

Programmierung 

mit Java

Einführung in 

die Wirtschafts-

informatik

Bilanzierung 

und 

Kostenrechnung

Wahlbereich

Theoretische 

Grundlagen

der Informatik

Fortgeschritten

e 

Programmierung 

mit Java

Anwendungssy

steme

Investition und 

Finanzierung

Statistik I für 

Wirtschaftswiss

enschaften

Softwaretechnik

und Pro-

grammierparad

igmen

Technische 

Grundlagen der 

Informatik

Operations 

Research – 

Grundlagen

Marketing und 

Produktions-

management

Statistik II für 

Wirtschaftswiss

enschaften

Wahlpflicht 

Programmier-

praktikum

Informationssy

steme und 

Datenanalyse

Geschäftsproze

sse

Organisation 

und Innova-

tionsmanageme

nt

Wahlpflichtberei

ch

Wahlbereich

Wirtschaftspriva

trecht

Wahlpflichtberei

ch

Bachelorarbeit

Rückgemeldet 

für das 

Statussemester 

2

Rückgemeldet 

für das 

Statussemester 

3

Rückgemeldet 

für das 

Statussemester 

4

Rückgemeldet 

für das 

Statussemester 

5

Rückgemeldet 

für das 

Statussemester 

6

Ersteinschreibu

ng für das 

Statussemester 

(1. HS)

Exmatrikuliert 

im 

Statussemester

Fig. 3. Normative BPMN diagram capturing the study plan for B.Sc. ISM.

Transferring Process Knowledge. We transferred knowledge from written
document-bound information issued by TUB that described the study process
such as the General Study and Examination Regulations of TUB (university-
wide). For the project, we created a normative BPMN diagram shown in Fig. 3
representing the study plan. We had to take a few aspects into consideration
during modeling. First, how can we model the structure of semesters? To this
end, the first activity in the process corresponds to initial enrollment (i.e., the
registration for the first semester). This is followed by the activities for the first
four modules in parallel (between a parallel split and a parallel join). Subse-
quently comes the activity to re-enroll for the second semester. In the parallel
construct that follows, the top branch of the process has an optional activity,
labeled “Wahlbereich”, i.e., free electives, while the other modules are compul-
sory. The rest of the process follows the same logic.

4.3 Data Processing

Creating Views. To create meaningful views on the event data for the purposes
of our project (analyzing course sequences taken by students) we chose student
ID (pseudonyms) as a case notion. That way, for each student their exams as
well as their status for a semester were aligned as a series of events.

Aggregating Events. One major challenge of the event log are the two levels of
granularity in the events: exams taken and semesters studied, while multiple
exams can be taken in one semester. Since the study plans suggested an order of
taking exams, there was a de facto part-of relation between the exams and the
semesters. We thus aggregated the exams to the semester level for parts of the
analysis.

Enriching Logs. For this project, answering the project questions did not require
enriching the log with additional information.

Filtering Logs. The applied filters concerned various attributes. Most frequently,
we filtered for particular cohorts of students (e.g., only students that enrolled in
a specific semester) or particular courses (e.g., to learn about the order in which
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Fig. 4. High-level view on the event data in a dotted chart.

two exams were taken). Lastly, in April 2021, TUB was the target of an IT hack
that led to multiple services being interrupted, including the exam database.
Hence, most exams taken since could not be tracked as complete entries and
were available to us as “unknown”, which caused a data quality issue for this
case study. The “unknown” events were filtered out in almost all analyses, except
for investigating the count of exams over the observed time period.

4.4 Mining and Analysis

Mining and Analysis started with applying process discovery techniques to
answer PQ2 and PQ3. PQ1 was approached with conformance checking.

Process Discovery. To gain an overview of the data and its time distribution,
we generated a dotted chart5 from the filtered data, which is shown in Fig. 4. The
different cohorts of students starting in the five years appear clearly separated,
with the yellow dots for matriculation forming basically solid lines in October of
the respective years. Most students attend classes for the first semester before
sitting their first exam, but interestingly some students do not; these might
have transferred from a different university or program, or might have prior
knowledge that allows them to sit an exam. The dots corresponding to some
exams form almost solid lines, like the ones shown in blue, green, and pink
after the first semester – e.g., in February–April 2018 – indicating that the
corresponding cohorts take these exams in unison.

Very noticeable is also the decline of participation in exams over the years
(e.g., following the first cohort at the top of Fig. 4): while almost all students
sit some exam after the first and second semester, the number of exam events is
subject to a sharp decline from the second to the third semester and slowly drops
further. To understand this decline, it is worth noting that German universities
often have a low bar for matriculation into a study program – first-semester

5 A number of events highlighted in green appears in the observed traces as of spring
2021 across cohorts. These are the “unknown” events that resulted from the TUB’s
IT being compromised. Exams that are “unknown” were filtered out in all analysis
(as described above), but included in the dotted chart for illustration purposes.
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Fig. 5. Order of programming courses (left: all attempts; right: passed attempts).

Fig. 6. Conformance in semester 1 Fig. 7. Conformance in semester 3

students are then admitted without a test to measure their qualification for a
particular program. Other students might have started a program without a solid
understanding about its content, and decide that they prefer a different one. For
these or similar reasons, it is rather common that about one third to half of the
students drop out of a study program without a degree. One concrete question
in our case was, whether students attempted (or passed) the advanced program-
ming course (“Fortgeschrittene Programmierung mit Java”) before the introduc-
tory programming course (“Einführung in die Programmierung mit Java”). To
examine this, we filtered the DFG of individual exam attempts to only show
these two exams – depicted in Fig. 5 in terms of all attempts (left) and passed
attempts (right). Clearly the answer is “no”: 93 (85) times the introductory
course is attempted (passed) before the advanced one, and only 5 (4) times the
opposite is true. This is one of the more concrete questions that we have collected
for the B.Sc. ISM program.

Conformance Checking. For evaluating the question: “To which degree do
students follow the study plans of their programs?” conformance checking can
be applied. As the variance in non-compulsory modules is high, we projected
the process model (see Fig. 3) and the log to only re-enrollments and compul-
sory exams. We focused only on the first cohort of students that matriculated
in September 2017 and had a chance to finish their studies (participate in all
courses) to avoid result distortions from non-finalized cases of early semester stu-
dents. With the help of ProM6 6.9, we converted the normative BPMN diagram
into a Petri net and then, used it for the alignment-based conformance checking.
The resulting Petri net’s layout is very long, hence we only show results for the
first and the third semester, in Figs. 6 and 7, respectively. Clearly observable

6 https://www.promtools.org/doku.php, accessed 2022-08-22.

https://www.promtools.org/doku.php
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is that the percentage of adherence (shown by the green bar at the bottom of
a transition in the net) to recommended modules (i) varies somewhat within a
semester, and (ii) decreases considerably from the first to the third semester.
This trend continues further after the third semester, though at varying speeds
as observed from the dotted chart above. In addition, we obtain statistics for
the entire log: The average trace fitness was approx. 29% – for the compulsory
modules. This indicates that students make ample use of the freedom provided
by the study regulation at TUB.

4.5 Evaluation

For the diagnosis as well as the verification, we conferred with the teaching
committee yet again. Most of the results of the study confirmed speculations,
in particular the decreasing conformance of student trajectories with the study
plan. Given the novelty of the study results for the committee, the meeting was
largely used to define further research questions, e.g.: How can the findings be
incorporated in study plans? Can process mining techniques be used to predict
drop-outs? What are ethical ways to communicate potential prediction findings
to students?

4.6 Process Improvement and Support

The implementation of this phase is still in progress. For process improvements,
we identified two areas to take action: 1) the study plan that could be adapted
following the findings, 2) communicating results of the project to students and
providing them an outside perspective on how they advanced in their studies.
In both scenarios, ethical considerations ought to play a crucial role: e.g., nudg-
ing students away from using their freedom of choice in courses is disputable.
Supporting operations, i.e., including process mining in the stable set of anal-
ysis tools to inform the university directors and teaching committees, was at
the heart of the case study and is ongoing in collaboration with the controlling
department.

5 Lessons Learned

In this section, we report on our lessons learned from the case study in the
different phases of the PM2 methodology.

Planning. Our research questions such as “Do B.Sc. ISM students follow the
study plan?” were defined based on the related work (in particular [11] and [10,
Ch.8]) and the discussion in the study program meeting. More specific questions
can be added for each study program. Besides, data on students’ studies are
considered as personal data that need to be handled with special care according
to the GDPR. We worked with the TUB data privacy department for consultancy
in this regard and recommend allocating time for these matters. Defining student



TR: Process Mining on Curriculum-Based Study Data: A Case Study 587

success over the course of the whole degree is a non-obvious question. We could
distinguish levels of success by the GPA, like [19], or overall grade, but might
run the risk of overly simplifying.

Extraction. We showed a first approach to define a normative process diagram
in BPMN representing the study plan for a program and the challenges thereby.

Data Processing. Due to experiences with existing regulations and new require-
ments, study regulations are regularly changing (also see [11,14]). This leads to
different student cohorts that should be analyzed independently (also see [17]). It
is challenging to define consistent student cohorts for different event log views. In
this study, we filtered for time-frame in which the regulation was valid. Addition-
ally, timestamps of events of student trajectories are usually on different levels of
granularity, discussed as one of the timestamp imperfections of event logs by [8].
Whereas the information about the re-registration for a semester and its status
is on a semester level, exams are captured finer-grained on a day-level. Also,
German universities offer a very high degree of flexibility in (compulsory) elec-
tives. Based on our observations, for most analyses it makes sense to aggregate
such courses.

Mining and Analysis. In this phase we encountered several challenges. To
many of them the obvious solution would have been to apply strong event filters
to reduce noise in the log and simplify the analysis, coming at the cost of reducing
the expressiveness of the log. These challenges include handling exam repetitions
after failing (also see [3,14]), semesters abroad students spend trying to recognize
modules as equivalent to offerings at their home university, lateral program entry
by students switching programs at various points (also see [14]), and handling
non-finalized cases which poses a particular challenge in conformance checking.

Evaluation. Students of TUB have access to a wide variety of (compulsory)
electives in their B.Sc. studies. This results in many snow flakes, i.e., unique
traces. As above, aggregation might be necessary to be able to obtain insights
from this data, since the raw data might be too fragmented.

Process Improvement and Support. Communicating individual data anal-
ysis results back to students may cause unease, or be stressful to students. Addi-
tionally, purely data-based results do not include alternative cause of action yet.
Opt-in options or coupling the communication with consultation offers should
be considered. Lastly, the results of the case study analysis may nudge students
to follow very specific succession of courses, which is opposing the Humboldtian
ideal7 of freedom of study for students – one of the basic principles of the Ger-
man university system. Hence, there is an area of conflict between educational
ideals and efficiency goals of EPM projects that need to be debated.

7 https://en.wikipedia.org/wiki/Humboldtian model of higher education, accessed
2022-08-22.

https://en.wikipedia.org/wiki/Humboldtian_model_of_higher_education
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6 Conclusion

In this paper, we study how to apply process mining to curriculum-based study
data. Our case encompasses a major Bachelor program at TU Berlin, a leading
university in Germany. Section 4 describes our approach using the PM2 method-
ology. We were able to answer concrete questions about student behavior and
adherence to the study plan; as such, with regards to our research question we
observe an indication that indeed curriculum-based EPM can provide insights of
some value – e.g., checking if contents of succeeding lectures are coordinated in a
way that lets students advance, or potential to translate student trajectories into
curriculum recommendations which we expect to reduce study time and even-
tually (personal and social) costs. In Sect. 5 we reflected on specific challenges
encountered during our study. If similar challenges appear in coming curricular
EPM case studies, we suspect future domain-specific alterations of PM2 might
be justified considering its objective to “overcome common challenges” [7]. Given
the research method, case study, we inherit typical threats to validity of such
research [12, p.125], specifically threats of limited replicability and generaliz-
ability. Also, the analysis team was also responsible for data preparation, which
might have introduced bias.
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