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Functional and effective connectivity methods are essential to study the complex information flow in brain net-
works underlying human cognition. Only recently have connectivity methods begun to emerge that make use of
the full multidimensional information contained in patterns of brain activation, rather than unidimensional sum-
mary measures of these patterns. To date, these methods have mostly been applied to fMRI data, and no method
Source estimation allows vertex-to-vertex transformations with the temporal specificity of EEG/MEG data. Here, we introduce time-
Leakage lagged multidimensional pattern connectivity (TL-MDPC) as a novel bivariate functional connectivity metric for
MEG EEG/MEG research. TL-MDPC estimates the vertex-to-vertex transformations among multiple brain regions and
across different latency ranges. It determines how well patterns in ROI X at time point 7, can linearly predict
patterns of ROI Y at time point 7. In the present study, we use simulations to demonstrate TL-MDPC'’s increased
sensitivity to multidimensional effects compared to a unidimensional approach across realistic choices of number
of trials and signal-to-noise ratios. We applied TL-MDPC, as well as its unidimensional counterpart, to an existing
dataset varying the depth of semantic processing of visually presented words by contrasting a semantic decision
and a lexical decision task. TL-MDPC detected significant effects beginning very early on, and showed stronger
task modulations than the unidimensional approach, suggesting that it is capable of capturing more information.
With TL-MDPC only, we observed rich connectivity between core semantic representation (left and right anterior
temporal lobes) and semantic control (inferior frontal gyrus and posterior temporal cortex) areas with greater se-
mantic demands. TL-MDPC is a promising approach to identify multidimensional connectivity patterns, typically
missed by unidimensional approaches.

1. Introduction

Cognitive functions are generated by distributed networks of dy-
namically interacting brain regions (Bullmore and Sporns, 2009;
Passingham et al., 2002). Understanding how cortical areas cooperate
to produce complex cognition, requires assessment of their structural-
anatomical connections and their functional interactions. A wealth of
methods have been proposed to study connectivity from structural, func-
tional and effective perspectives (Basti et al., 2020; Bastos and Schoffe-
len, 2016; Friston, 2011; Hipp et al., 2012; Lachaux et al., 1999; Le Bi-
han et al., 2001; Marinazzo et al., 2008; Nolte et al., 2008; Van Den
Heuvel and Pol, 2010; Vinck et al., 2011). However, these methods are
typically unidimensional, whilst functional interactions between brain
regions are likely to be multidimensional (DiCarlo et al., 2012). Patterns

of activity within brain regions may contain important information that
is ignored in conventional unidimensional methods, in which dynamic
patterns of brain activity are reduced to one value/time course by aver-
aging or through principal component analysis (Anzellotti et al., 2017b,
2017a; Basti et al., 2019, 2018). Therefore, we need methods that can
measure multidimensional (i.e. voxel-to-voxel) functional interactions
between brain regions. In the literature, the terms “multivariate” and
“multidimensional”, as well as “univariate” and “unidimensional”, have
been used interchangeably. Here, we try to make clearer definitions and
distinguish them. Thus, similar to Basti et al. (2020), we use the term
“multidimensional” to refer to scenarios where multiple time courses
per brain region are explicitly taken into account (shown in Fig. 1b).
“Unidimensional” is used for cases where time courses within each re-
gion are collapsed across voxels, e.g. by taking the average (shown in
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Fig. 1. Representation of different terminologies used in connectivity studies. a) Shows one ROI with a single time course/value, representing the concept of “unidi-
mensional”. b) Shows one ROI with multiple time courses/values within, representing the concept of “multidimensional”. ¢) Indicates the investigation of connectivity
between two brain ROIs with unidimensional time courses values while not considering other ROIs potential effects. d) Same as ¢) but with multidimensional time
courses within each ROI. e) Shows the investigation of connectivity between two brain ROIs with unidimensional time courses values while considering other ROIs
potential effects. f) Same as e) but with multidimensional time courses within each ROL.

Fig. 1a). Additionally, in the context of connectivity which deals with
the relationship with at least two regions/nodes, “bivariate” refers to
cases considering two brain regions time courses (shown in Fig. 1c, d),
whereas “multivariate” refers to the case with multiple brain regions
effects (shown in Fig. le, f). As a result, a method can be bivariate-
unidimensional, as in coherence, or be bivariate-multidimensional, e.g.
Multivariate Pattern Dipendence (Anzellotti et al., 2017a, 2017b). An-
other point as to the terminology is that, even though the term “con-
nectivity” may imply the presence of “connections”, it has been used
for most, if not all, of the literature on functional connectivity and in
particular its bivariate implementations. In this study, we only test sta-
tistical dependencies, yet, in line with the literature, we use the terms
“connectivity” and “functional connectivity” as well.

Some of these issues have recently been addressed by the intro-
duction of different multidimensional connectivity analyses (reviewed
in Anzellotti and Coutanche, 2018; Basti et al., 2020). While multi-
variate activation methods exploit pattern information within regions-
of-interest (ROIs) to assess information coding, such as Multi-Variate
Pattern Analysis (MVPA) (Cichy and Pantazis, 2017; Haxby, 2012) or
Representational Similarity Analysis (Karimi-Rouzbahani et al., 2022;
Kriegeskorte et al., 2008; Laakso and Cottrell, 2000), multidimen-
sional connectivity methods make use of the pattern-to-pattern relation-
ships among different ROIs to identify functional interactions between
brain areas. For example, Multivariate Pattern Dependence (MVPD)
(Anzellotti et al., 2017a) determines statistical dependencies between
patterns of responses in different brain regions whose dimensionalities
are first reduced by principal component analysis (PCA). This is accom-
plished by testing for either linear or nonlinear relationships between

principal components in different regions. Unlike unidimensional ap-
proaches, when more than one principal component is used, some pat-
tern information is retained which is a step forward from unidimensional
techniques. However, the use of PCA for dimensionality reduction in this
approach obscures the original voxel-to-voxel relationships between ac-
tivity patterns in different ROIs. This issue was addressed in some sub-
sequent studies (e.g. Basti et al., 2019; Fang et al., 2019). Using func-
tional Magnetic Resonance Imaging (fMRI) data, Basti et al. (2019) es-
timated the linear transformation matrices between patterns with all
voxels (without dimensionality reductions) using cross-validated ridge
regression. Assessing the goodness-of-fit, sparsity and pattern deforma-
tion allowed more detailed examination of these voxel-to-voxel trans-
formation matrices. The above-mentioned multidimensional connectiv-
ity methods have mostly focused on fMRI which is well-known to have
limited temporal resolution. Electroencephalography and magnetoen-
cephalography (EEG and MEG) signals track processes at a timescale
appropriate for perceptual and cognitive processes and, in combination
with appropriate source estimation procedures, have reasonable spa-
tial resolution for cortical activity. Thus, appropriate analysis methods
would enable multidimensional connectivity among brain regions to be
tracked across different stages of perceptual and cognitive processes.
A few methods that exploit vertex-to-vertex relationships in EEG/MEG
data have already been proposed, such as the Multivariate Interaction
Measure (MIM, Ewald et al., 2012), Multi-Variate Lagged Coherence
(MVLagCoh, Pascual-Marqui, 2007a), and Multivariate Phase-Slope-
Index (MPSI, Basti et al., 2018). These are frequency-domain meth-
ods that expand the imaginary part of coherency (ImCoh, Nolte et al.,
2004), lagged coherence (Pascual-Marqui, 2007b), and phase-slope in-
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dex (Nolte et al., 2008), respectively, to multivariate time-series. Fre-
quency domain methods depend on the choice of valid frequency bands
as well as latency ranges to estimate the spectral connectivity metrics
(Bastos and Schoffelen, 2016). While there is ample evidence that some
brain processes and brain states are reflected in specific frequency bands
(Fries, 2015; Siegel et al., 2012), it is uncertain that this is generally
the case, as for example for short-lived brain processes in event-related
experimental paradigms. To date, there is no multidimensional connec-
tivity method utilising EEG/MEG data to estimate the vertex-to-vertex
transformations of activity patterns across time. Here, we fill this gap
by extending the approach of Basti et al. (2019) to EEG/MEG source
estimates.

More specifically, we propose Time-lagged Multidimensional Pattern
Connectivity (TL-MDPC) as a novel functional connectivity method for
event-related data that not only estimates relationships between the
spatial activity patterns of two ROIs (as in Anzellotti et al., 2017a;
Basti et al.,, 2019), but also examines their relationship over time
through estimating vertex-to-vertex transformations for pairs of time
points. The aim of this method is to determine how well patterns of
ROI X at time point 7, can predict patterns of ROI Y at time point 7,
through a linear transformation. The cross-validated goodness-of-fit of
this transformation acts as a connectivity metric for every pair of ROIs
and time points. This results in a bivariate undirected functional con-
nectivity metric, and thus shares the limitations of other exemplars of
this category, such as coherence or phase-locking values (Bastos and
Schoffelen, 2016). It can detect statistical relationships between signals
across trials in event-related experimental designs, but does not allow
inferences about direction and causality of the underlying effects. It does
not require a separation of signals into frequency bands and is relatively
computationally inexpensive. It also furnishes a matrix relating the re-
sponse pattern in ROI X at each time point to ROI Y at each time point,
which can be interrogated to discover the nature of the transformation
between patterns in different regions over time (Basti et al., 2019), even
if the patterns themselves change dynamically.

Compared to activity patterns in fMRI data, EEG/MEG source es-
timates have a limited spatial resolution and are inherently smooth
(Hauk et al., 2019; Molins et al., 2008; Samuelsson et al., 2021). There-
fore, ROI patterns in source estimates contain redundant information.
We used a novel approach to determine the most informative vertices in
ROIs using k-means clustering of patterns across trials and selecting the
vertex with the highest variance in each cluster. Reducing ROISs to their
most informative vertices significantly increases computational process-
ing speed. However, unlike a PCA approach, this approach does not
conflate activity across voxels, and it does not require a pre-definition
of latency ranges, i.e. it can be applied on a sample-by-sample basis.
Thus, our approach allows the estimation of pattern transformations be-
tween specific vertices in two regions and for specific pairs of latencies.
Following this reduction of patterns, the multidimensional relationship
between patterns is estimated using cross-validated Ridge Regression
(Hoerl and Kennard, 1970), i.e. potential overfitting is avoided using
10-fold cross validation and regularisation of the underdetermined re-
gression problem. The explained variance (EV) from the transformation
between patterns is used as the goodness-of-fit. High EV indicates a
strong linear relationship between the activity patterns of two ROIs at
two latencies.

We evaluate our novel approach in simulations, as well as in real
EEG/MEG data. Our simulations were designed to demonstrate that 1)
TL-MDPC is indeed sensitive to linear multidimensional relationships
between patterns, while a corresponding unidimensional version of this
method is not; 2) TL-MDPC is also sensitive to unidimensional relation-
ships, and 3) TL-MDPC is not prone to producing false positives for inde-
pendent random patterns. We demonstrate these findings in simulations
with typical pattern dimensions and numbers of trials, as well as over a
wide range of SNRs.

In our EEG/MEG data analysis, we address timely questions about
semantic brain networks, following our recent study using evoked re-
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sponses and coherence analysis (Rahimi et al., 2022). Previous litera-
ture on semantic networks has linked the anterior temporal lobe (ATL)
to semantic representation (Acosta-Cabronero et al., 2011; Binder et al.,
2016; Martin, 2016; Pobric et al., 2007; Rogers et al., 2004) and pos-
terior temporal cortex (PTC) and inferior frontal gyrus (IFG) to seman-
tic control (Badre et al., 2005; Jackson, 2021; Jefferies and Lambon
Ralph, 2006; Lambon Ralph et al., 2016; Noonan et al., 2013). The
role of angular gyrus (AG), another region often associated with se-
mantics, is less clear as it has been implicated in semantic represen-
tation (Binder et al., 2009), control (Noonan et al., 2013), and episodic
memory processes (Humphreys et al., 2015). While the semantic net-
work is usually reported to be left-lateralised (Binder et al., 2009),
the ATL displays a graded lateralisation across both cerebral hemi-
spheres depending on stimulus and task features (Marinkovic et al.,
2003; Olson et al., 2007; Patterson et al., 2007; Pobric et al., 2007;
Rice et al., 2015b, 2015a; Visser et al., 2010). Therefore, our ROIs
comprise left-hemispheric regions commonly assumed to be involved in
word processing and semantics (left ATL, PTC, IFG, AG, primary visual
area (PVA)), as well as right ATL. In general, evidence on semantic net-
works from dynamic neuroimaging methods is still scarce (Rahimi et al.,
2022). Our previous study (Rahimi et al., 2022) compared tasks with
varying semantic demands, revealing a critical role for left ATL in the
semantic network. Utilising spectral coherence as a conventional uni-
dimensional connectivity method, we found rich connectivity for left
ATL, identifying connections with frontal semantic control areas as well
as right ATL. However, the absence of connectivity between other nodes
of the semantic network could be due to the fact the coherence is only
sensitive to a very specific type of statistical relationship in specific fre-
quency ranges. Utilising the same dataset, here we probe for further
functional connectivity in the semantic network by comparing TL-MDPC
with its unidimensional counterpart, time-lagged unidimensional con-
nectivity (TL-UDC). The connectivity score for each pair of ROIs at each
latency is presented in a time-time matrix which we call a temporal
transformation matrix (TTM). This comparison demonstrates the utility
of the TL-MDPC method in real brain data and confirms and extends the
results of our previous study by elucidating the dynamic connectivity of
the semantic network.!

2. Materials and methods
2.1 Time-Lagged multidimensional pattern connectivity (TL-MDPC)

2.1.1 General idea

The relationship between multidimensional time series is often in-
vestigated using multivariate autoregressive models (Anderson et al.,
1998; Ding et al., 2000; Dutta et al., 2018; Schlogl, 2000; Schlogl and
Supp, 2006; Siggiridou and Kugiumtzis, 2015; Zhang et al., 2017). The
number of coefficients in the transformation matrix between two mul-
tidimensional time series is larger than the number of time series (in
our case the numbers of vertices in an ROI). Thus, the estimation of
these matrices from one or even a few samples is underdetermined. For
continuous time series, this is addressed by estimating the coefficients
across all samples in a time series (or a large enough subset), assum-
ing that the matrix is stable across the whole time series. This may,
for example, be suitable for resting state data (Blinowska et al., 2017;
Colclough et al., 2015; Liegeois et al., 2017; Olejarczyk et al., 2017).
However, event-related data is unlikely to be stable, since surface to-
pographies and source distributions can change within tens of millisec-
onds. Nevertheless, the assumption of event-related designs is that brain
processes are similar across a number of trials, at least for stimuli of the
same category and in the same task. Thus, the transformation matrices
can be estimated for pairs of ROIs and pairs of latencies across trials.

1 A previous version of our manuscript has been published as a pre-print:
https://biorxiv.org/cgi/content/short/2022.05.21.492913v1
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Fig. 2. Illustration of TL-MDPC for event-related activity patterns in two ROISs,
ROI X and RO Y, across trials and across latencies. Each matrix represents activ-
ity patterns in one ROI at one latency, with rows representing activity patterns
across different trials, and columns representing activity patterns across differ-
ent vertices in the ROI. We test whether there is an all-to-all mapping between
the patterns of the two ROIs at different latencies and determine how well X
and Y can predict each other, by estimating a linear transformation per ROI pair
and latency pair. Bidirectional arrows indicate possible transformations between
pairs of patterns.

The resulting problem may still be underdetermined and ill-posed, and
may therefore require a regularisation procedure. This approach was
applied to fMRI data by Basti et al. (2019). Here we extend and apply it
to EEG/MEG data as TL-MDPC as follows.

In order to deal with event-related data, let us consider X and Y as
matrices with activity patterns in ROI X and ROI Y at time point 7, and
t, of size n,x ny and n, X ny, respectively, where n, is the number of
trials, and ny and ny are the number of vertices in the two ROIs. Fig. 2
illustrates patterns of activity in ROI X and ROI Y over time. We are in-
terested in whether there is an all-to-all mapping between the vertices
(or voxels) of the patterns of the two ROIs at each pairs of time points. In
other words, we want to see how well patterns of ROI X at time point 7,
can predict patterns of ROI'Y at time point 7, through a linear transfor-
mation. We will use the explained variance of this transformation as a
connectivity metric. In order to avoid overfitting, the explained variance
will be obtained via cross-validated regularised ridge regression.

2.1.2 TL-MDPC: Modelling statistical dependence
We can estimate the transformation T from X to Y through Ridge
Regression (Hoerl and Kennard, 1970) using a train subset of trials:

Ytrain [ty] = Xtrain [tx]Ttrain + Etrain (1)

where T, ,;,
error matrix of size n, X n
pseudoinverse of X

is the transformation matrix, of size n, X n, and E,,;;, is the
v T'irain €an be estimated using the regularised

train®

-1 T
Xtrain + aI) XtrainYtrain (2)

where « is the regularisation parameter (Tikhonov and Ars-
enin, 1977) to be determined using cross-validation and I is the Identity
matrix of size n, X n,.

After estimating the coefficient matrix T,,,;,, ROI Y’s predicted pat-
terns can be obtained using the test subset and 7},,;, as follows:

xT

train = ( train

T

rain
Ytest [ty] = Xiest [tx] T irain 3)

where ¥,,,, is the predicted pattern. For each vertexj = 1,..., n,, we then
compute the explained variance (EV):
Jj o
Uar(Ytest - Ytest)

j o
EV(Y:est’Ytest> =1- 4

uar(Yﬁest)
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Finally, as a metric for multidimensional connectivity between two
ROIs, we average the EVs across vertices:

n i oo
i I EV (Yo ¥l
EV(Ytest’ Ytest) = S

ny

Thus, the best possible score in case of a perfect linear relationship
between patterns is 1, whereas the score would approach zero or can
even be negative when there is no linear relationship. This measure of
explained variance can produce negative values if the magnitude of the
prediction error is larger than the magnitude of the data themselves.
This indicates that the model predicts incorrect data. In our own simu-
lations and real data, we indeed observed some small negative values,
which we do not consider interpretable. Thus, we replaced negative val-
ues with zeros, i.e. we reported max (EV(Y .Y ,0s) » 0) as the final
metric.

TL-MDPC can be computed in two ways for each ROIs pair: Y can be
predicted from X and X can be predicted from Y. The transformations
in the two cases are unlikely to be the same. Indeed, this is impossible
if the numbers of vertices in the two regions are different. Because our
metric is not directional and only reflects a statistical relationship be-
tween patterns, and to avoid any potential bias due to different number
of vertices and noise, we compute transformations for both cases and
use the average EV as the connectivity metric.

2.1.3 Cluster-based spatial sub-sampling of vertices within ROIs

Given the limited spatial resolution of EEG/MEG signals, not all
vertices within an ROI are independent (they “leak” into each other)
(Hauk et al., 2019; Palva et al., 2018). In other words, activity pat-
terns across vertices within ROIs are smooth, and including all vertices
in the above transformation estimation procedure might lead to a large
amount of redundant information. Transformations between this redun-
dant information would be computationally expensive with little gain.
Here, we propose a novel pre-processing method based on unsupervised
k-means clustering to spatially sub-sample vertices within an ROI in or-
der to determine the optimal number of informative vertices needed to
describe the activity pattern in an ROI. Note our aim here is “feature
selection”, i.e. choosing the subset of features that are most relevant
(informative) to the problem at hand. This is distinct from “feature ex-
traction” methods which transform the features and create new ones,
including the use of PCA for prior assessments of functional connectivity
(Khalid et al., 2014). The k-means approach used was developed as we
need a way to reduce our data that 1) yields individual vertices that al-
lows the estimation of vertex-to-vertex transformation, rather than pro-
ducing summaries across vertices, such as PCA/singular value decom-
position (SVD) components, 2) takes into account the spatial resolution
(smoothness) within individual ROIs, and 3) can be applied sample-by-
sample, i.e. does not require a latency range such as PCA/SVD. Here, we
propose a novel preprocessing method based on unsupervised k-means
clustering to spatially sub-sample vertices within an ROI in order to de-
termine the optimal number of informative vertices needed to describe
the activity pattern in an ROL

In the clustering step, the aim is to partition all samples into k clus-
ters, such that each cluster contains samples with similar profiles across
features. Here, vertices can serve as samples and trials serve as features.
Therefore, we partition all vertices into k clusters, such that each clus-
ter contains vertices with similar activation profiles across trials. To find
the optimum number of clusters, we use the elbow method (Ng, 2012)
implemented in Python? (k_min=5, k.max=13, in cases where the algo-
rithm could not find an optimum k, we used k = 10). After clustering,
we pick one vertex within each cluster as a representative. Note that dif-
ferent options exist here, e.g. selecting the mean of all vertices within a
cluster, the vertex with the highest variance, or the centroid of the clus-
ter. However, as we intended to preserve the genuine pattern space to

2 https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
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estimate pattern transformations, we picked the vertex with the highest
variance from each cluster as the cluster representative. This removes
redundant vertices and reduces the dimension of patterns and subse-
quent vertex-to-vertex transformations. Our patterns in ROI X and Y at
time points t, and t, are now of reduced size n, X n, and n, X ny, where
n, and n, are the number of clusters in X and Y. Prior to this step, we
standardised each pattern matrix per ROI and time point by demeaning
and variance normalisation.

2.1.4 Unidimensional vs. multidimensional connectivity

We wanted to test whether our new TL-MDPC approach indeed cap-
tures more information than a comparable unidimensional approach for
realistic choices of number of trials, number of vertices and signal-to-
noise ratios (SNR). Thus, we compared TL-MDPC with a unidimensional
approach in which summarised activation values (e.g. averages across
absolute values of vertices per ROI) are regressed against each other
for pairs of ROIs at different latencies. This is similar to the study of
Anzellotti et al. (2017a) for fMRI data in combination with prior data
reduction via PCA. The authors argued that a fair comparison between a
unidimensional and multidimensional approach should be based on ex-
plained variance on the same data. However, since the unidimensional
approach collapses the multi-voxel data into a single time course, it has
less data to explain than the multidimensional approach that attempts
to explain the variance across all voxels. Therefore, the authors pro-
jected the data from the unidimensional approach back into the orig-
inal multidimensional space before computing the explained variance.
Here, we take a different approach. We argue that because we attempt
to compare methods in the way they would be applied to real data,
i.e. to find whether there is evidence for a connection and not to pre-
dict the particular activation value in each vertex, we do not have to
back-project the unidimensional data. This may result in an advantage
of one method over the other in specific situations — but this is what the
methods are designed for. For example, we expect the unidimensional
method to perform well when patterns are indeed purely related in a
unidimensional manner. This provides a more conservative test of our
TL-MDPC method, highlighting the particular situations where it pro-
vides an advantage for detecting relationships between regions and not
simply for predicting individual vertex responses. The critical tests are
therefore, whether the unidimensional approach can also detect multi-
dimensional relationships, and whether the multidimensional approach
is sensitive to unidimensional effects.

2.2 Simulations: Performance of the unidimensional and multidimensional
methods across different types of relationships between activity patterns

In this section, we compare the unidimensional and multidimen-
sional approaches on simulated data for three different scenarios: no re-
lationship between patterns, a unidimensional linear relationship, and
a multidimensional linear relationship. From a mathematical point of
view, the estimation of pattern transformations does not depend on the
exact time lag between the patterns in ROI X and Y, but only on the
structure and relationships between patterns in these matrices. Thus,
we can test properties of our methods in simulations without explic-
itly simulating time courses. Instead, we simulated scenarios with dif-
ferent properties for X and Y. Therefore, we will use the terms MDPC
and UDC for the multidimensional and unidimensional approaches, re-
spectively. Scenario 1 is illustrated in Fig. 3a, which shows two ran-
dom patterns that are independent of each other and thus have no
connectivity, meaning that they cannot be mapped to each other by
any function: Y # f(X). Fig. 3b shows UD effects in scenario 2, where
all vertices of ROI X show the same time course x of size n, X 1

plus noise: X = [x!,...,x*]+ E,, x' =x, i=1,...,n,. Vertices in ROI
Y have the same time course x multiplied by a random constant plus
noise: Y = [constant X x\, ... constant X x"y]+Ey, xi=x,i=1,.. Jny.

We used a range of constants ([-2, —1.5, -1, -.5, 0.01, 0.5, 1, 1.5, 2])
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and then averaged the results. Scenario 3 in Fig. 3c illustrates multi-
dimesnional (MD) effects, with vertices in ROI X having no correlation
with each other but being transformed to ROI Y through a matrix T,
so that Y = XT + E, where T is of size n, x n,, and E is a zero-mean
Gaussian matrix. For all cases, we predicted Y from X and vice versa,
and took the EV average across the two directions as the connectivity
metric.

2.2.1 Simulation parameters

In order to evaluate MDPC with respect to experimental parameters
of practical relevance, we varied signal-to-noise ratios (SNR), number of
vertices, and number of trials in our simulations within realistic ranges.
As described above, we reduced the number of vertices per ROI using a
clustering-based selection approach. In our real EEG/MEG data (below),
this resulted in 5-13 vertices depending on ROI and latency range. We
therefore manipulated the number of vertices in the simulations, includ-
ing either 5 or 15 vertices in each region. For each set of parameters of
each simulation, we computed the average of 100 simulations.

2.2.2 Scenario 1: Checking for spurious connectivity measurement between
two independent activity patterns

We first compared performance between MDPC and UDC approaches
for the case where there is no relationship between ROI activity patterns
(as in Fig. 3a), in order to compare the false positive rates of the two
methods. We generated two random noise patterns using normal distri-
butions (mean=0 and std=1), and varied the number of trials [30, 50,
100, 150, 300] and vertices [5,15].

2.2.3 Scenario 2: Testing the methods’ ability to detect the unidimensional
dependency between two patterns

We then compared MDPC and the UDC method for the case where a
unidimensional relationship exists between activity in ROIs X and Y (as
in Fig. 3b). For this purpose, we first created activity patterns for region
X by generating one time course x from a normal distribution (mean=0,
and std=1) and replicating this vector n, times (across vertices). To cre-
ate patterns in ROI Y, x was multiplied by a constant and replicated n,
times. Again, different levels of noise were added using normal distribu-
tions (mean=0, and different standard deviations (std=10%4P" where
std pow €[-2, —-1.5, -1, —0.5, 0, 0.5, 1, 1.5])). As before, we varied the
number of trials [30, 50, 100] and vertices [5, 15].

2.2.4 Scenario 3: Testing the ability of each method to detect
multidimensional connectivity between two patterns

In order to compare methods for multidimensional effects, we gen-
erated patterns X using a normal distribution (mean=0, and std=1). For
transformation matrix T, we created matrices with different degrees of
sparsity (varying from 10% of the matrix size to 100%, with 10% as
the step) using a normal distribution (mean=0, and std=1). Y was then
obtained via a linear transformation of X by multiplying X by T (as il-
lustrated in Fig. 3c). We added different levels of noise from a normal
distribution (mean=0, with a varying standard deviation (std=10%t4Po¥,
where std pow €[-2, —-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2])). We also varied
the number of trials [30, 50, 100], as well as vertices [5, 15].

2.3 Real EEG/MEG dataset: Comparing TL-MDPC to a unidimensional
approach through application to EEG/MEG data

As the next step, we asked whether and how the differences we ob-
served between the MDPC and UDC approaches in simulated data man-
ifest themselves in real data. Here the MDPC approach was the same as
for the simulations, but applied over varying latencies, constituting the
full TL-MDPC approach. Thus, we applied TL-MDPC and the time-lagged
UDC (TL-UDC) approach to an existing dataset (Farahibozorg, 2018;
Rahimi et al., 2022), aimed at revealing the task modulation of seman-
tic brain networks through contrasting a semantic decision requiring
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Fig. 3. Illustration of different connectivity scenarios used in our simulations. The matrices illustrate activity patterns in regions X and Y, with rows representing
different trials and columns representing vertices. a) X and Y contain random patterns. Thus, there is no reliable transformation between the patterns and consequently
no connectivity. b) Patterns in X and Y have a unidimensional relationship. The amplitudes of patterns in the two regions covary linearly across trials (plus added
noise). ¢) Patterns in X and Y have a multidimensional relationship. The patterns in Y were obtained by applying a linear transformation matrix to the patterns in

X (plus noise).

deep semantic processing with a lexical decision task only requiring vi-
sual word recognition. Specifically, we asked whether the TL-MDPC ap-
proach identified connections within the dynamic semantic brain net-
work that are missed with unidimensional approaches that cannot utilise
the information contained in the patterns of activity within each brain
region.

2.3.1. Participants

We used data from 18 healthy native English speakers (mean age
27.00+5.13, 12 female) with normal or corrected-to normal vision. The
experiment was approved by the Cambridge Psychology Research Ethics
Committee and volunteers were paid for their time and effort.

2.3.2. Stimuli and procedure

We used 250 words and 250 pseudowords in our analysis. The
EEG/MEG experiment consisted of four blocks presented in a random
order. One of the four blocks comprised a lexical decision (LD) task and
the other three blocks comprised a semantic decision (SD) task. In the LD
task, participants were required to identify whether the presented stimu-
lus was referring to a meaningful word or a pseudoword. In the SD task,
they were required to identify catch items where the presented word
was referring to a specific group of words, “non-citrus fruits”, “some-
thing edible with a distinctive odour” or “food that contains milk, flour
or egg”. This requires deeper semantic processing than lexical decisions,
and as such contrasting SD over LD is expected to identify greater in-
volvement of the semantic network, as found in Rahimi et al. (2022).
Only word stimuli (no pseudoword catch items) were included in the
following EEG/MEG analyses. Each stimulus was presented for 150 ms,
with an average SOA of 2400 ms.

2.3.3. Data acquisition and pre-processing

We used the same dataset presented in Rahimi et al. (2022). MEG and
EEG data were acquired simultaneously using a Neuromag Vectorview
system (Elekta AB, Stockholm, Sweden) and MEG-compatible EEG cap
(EasyCap GmbH, Herrsching, Germany) at the MRC Cognition and Brain
Sciences Unit, University of Cambridge, UK. MEG was recorded using a
306-channel system that comprised 204 planar gradiometers and 102
magnetometers. EEG was acquired using a 70-electrode system with an
extended 10-10% electrode layout. Data were acquired with a sampling
rate of 1000 Hz.

To filter noise generated by distant sources, we applied Maxwell-
Filter software to the raw MEG data (Taulu and Kajola, 2005). The pre-
processing and source reconstruction were done in the MNE-Python soft-
ware package (Gramfort et al., 2014, 2013). We visually inspected the
raw data for each participant, and marked bad EEG channels for linear
interpolation (max=9 channels per person, min=0, mean=2.85). While
interpolation is not necessary and does not recover any lost information,
it is often applied and we applied it to facilitate any possible sensor space

analyses across datasets. We then used a finite-impulse-response (FIR)
filter between 0.1 and 45 Hz. To remove artefacts (e.g. eye movement
and heart signals), we applied the FastICA algorithm (Hyvarinen, 1999;
Hyvérinen and Oja, 2000) and selected artefact components based on
their temporal correlations with EOG signals. After ICA, data were di-
vided into epochs from 300 ms pre-stimulus to 600 ms post-stimulus.

2.3.4. Source estimation

To reconstruct the source signals, we employed L2-Minimum Norm
Estimation (MNE) (Haméildinen and Ilmoniemi, 1994; Hauk, 2004). We
then assembled inverse operators based on a 3-layer Boundary Element
Model (BEM) of the head geometry obtained from structural MRI im-
ages. To do so, we assumed sources are perpendicular to the cortical
surface (“fixed” orientation constraint). The noise covariance matrices
were computed using baseline intervals of 300 ms choosing the best
based on cross-validated Gaussian likelihood from a list of methods from
MNE Python (’shrunk’, ’diagonal fixed’, ’empirical’, ’factor_analysis’)
(Engemann and Gramfort, 2015). To regularise the inverse operator for
evoked responses, we used MNE Python’s default SNR of 3.0. The partic-
ipants’ source estimates were morphed to the standard Freesurfer brain
(fsaverage).

2.3.5. Regions of interest

To examine the critical semantic network regions described in the In-
troduction, six regions of interest were selected including left and right
anterior temporal lobes, left inferior frontal gyrus, left posterior tempo-
ral cortex, left angular gyrus, and left primary visual area (1IATL, rATL,
IFG, PTC, AG, and PVA) using the Human Connectome Project (HCP)
parcellation (Glasser et al., 2016). See Rahimi et al. (2022) for more
details.

2.3.6. Leakage

EEG/MEG source estimates have limited spatial resolution due to
leakage. As introduced in (Rahimi et al., 2022), we provide a leak-
age matrix to quantitatively describe leakage among our six ROIs. To
do so, first we computed the resolution matrix and then extracted the
relevant point spread functions (PSFs) (Hauk et al., 2011; Liu et al.,
2002) for all regions. We then created non-homogenous activations
and multiplied them with PSFs to obtain the leakage from one re-
gion to another one. Then, we summarised the leakage activation by
taking the absolute values and summed across vertices (as shown in
Fig. 4a). We replicated this stage 100 times for each PSF and partici-
pant, and averaged the results. The leakage matrix (shown in Fig. 4b)
is then organised so that the ith column shows how much all other
ROIs leak into the ith ROI relative to ith ROI leakage into itself. To
have a better description of each matrix, we considered leakage val-
ues between 0-0.2/0.2-0.4/0.4-0.6/0.6-0.8/0.8-1 to reflect low/low-
medium/medium/medium-high/high leakage. Looking at the leakage
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matrix, all elements except for 1ATL to PTC, show medium or lower leak-
age, suggesting that the multidimensional connectivity results might not
be greatly affected by the limited spatial resolution of EEG/MEG. Fig. 4c
represents the pattern of leakage between all pairs. The strength of the
leakage indices has been reflected in the width of arrows. According to
this network, the strongest leakage would be from 1) 1ATL to PTC, 2)
IFG to 1ATL and AG to PTC. Thus, if the effects were only driven by
leakage, we would expect to see the highest connectivity between these
pairs.

2.3.7. Applying TL-MDPC to the real brain data

As described earlier, TL-MDPC can be computed for X predicting Y
and for Y predicting X. Because we do not consider it meaningful to
interpret the differences between these two cases, we averaged their re-
sults in the following analyses. Results were averaged across the two
directions for every 25 ms of data from 100 ms pre-stimulus to 500 ms
post-stimulus. The connectivity score for each pair of ROIs at each la-
tency, is presented in a TTM. Every row of a TTM shows dependencies
between Y at a specific time point and X across the whole time pe-
riod (across all columns), while every column indicates dependencies
between X at a specific time point and Y over time (across all rows).
Thus, we can explore statistical dependencies at different time lags.

Within a TTM we can distinguish three broad areas of interest:

1) ty =1x: The diagonal shows simultaneous or zero-lag dependencies
between X and Y.

2) ty < tx: The lower triangle shows dependencies between current pat-
terns of X and past patterns of Y, i.e. dependencies in which X is
ahead of Y.

3) ty > tx: The upper triangle shows dependencies in which Y is ahead
of X.

Points 2) and 3) indicate that the upper and lower triangles capture
different information. Consequently, TTMs are not necessarily symmet-
rical.

As in the simulations, the TTMs were masked to replace negative val-
ues with 0. Furthermore, to ensure connectivity estimation is not biased
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Fig. 4. Representation of leakage in an example and our
real EEG/MEG dataset. a) Illustration of how to compute
leakage from ROI X into ROI Y using the corresponding res-
olution matrix and point-spread-functions (PSFs) as well as
non-homogeneous activation vectors. b) The leakage ma-
trix for our six ROIs. ¢) The pattern of leakage across the se-
mantic network. The width of the arrows reflects the leak-
age indices in b).

Leakage
summarised value

c) The pattern of leakage

due to the different numbers of trials between our two tasks (Bastos and
Schoffelen, 2016), similar to our previous study (Rahimi et al., 2022),
the final TTMs were computed individually for the three SD blocks and
the results averaged before comparison with LD.

2.3.8. Statistical analysis

We then compared the TTMs of SD and LD using cluster-based
permutation tests, implemented in MNE-Python (Maris and Oosten-
veld, 2007), accounting for multiple observations (participants) across
the different latencies of both ROI Y and X. To do so, t-values were com-
puted and thresholded with a t-value equivalent to p-value < 0.05 for a
given number of observations, and randomisation was replicated 5000
times to determine the largest cluster size likely to be identified in data
without true differences between the conditions. We applied two-tailed
t-tests and the upper (SD>LD) and lower (LD>SD) 2.5% values in the
resulting permutation distribution were considered to be significant. In
order to remove small and possibly spurious clusters, we only reported
clusters whose size was greater than 2% of the TTMs total size (in this
case 0.02x(24x24)~ 12).

3. Results
3.1 Simulation results

3.1.1 Scenario 1: Checking for spurious connectivity measurement between
two independent activity patterns

We first assessed the case where there is no (unidimensional or multi-
dimensional) relationship between the activity patterns in two simulated
ROIs (Fig. 2a). In this scenario, both the MDPC and the UDC approach
should fail to identify a connection unless they are prone to false pos-
itive errors. Fig. 5a shows the connectivity metric (explained variance,
y-axis) for different number of trials (x-axis) and different numbers of
vertices using the UDC approach. All values are close to zero, indicat-
ing that the UDC method does not produce false positive connections
between two independent patterns. The same holds for the MDPC ap-
proach in Fig. 5b. Thus, neither the MDPC nor the UDC approach are
prone to yielding spurious connectivity for independent patterns.
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Fig. 5. Estimating connectivity (explained variance) between two independent activity patterns, i.e. simulated regions without true connectivity, using MDPC and
the UDC approach. a) Connectivity measured using the UDC method as a function of the different numbers of trials, for three different combinations of number of
vertices in ROI X and ROI Y. b) Similar to a), but for the MDPC method. Both UDC and MDPC methods show connectivity scores close to zero, i.e. they do not produce
false positives for independent patterns in the two regions. Error bars reflect standard deviations. Note that while all data points and their means were positive (since
negative values were replaced by zeros), error bars based on standard deviations can still extend into the negative range.

3.1.2 Scenario 2: Testing the methods’ ability to detect unidimensional
dependencies between two patterns

We next assessed how well the MDPC and UDC approaches could
identify connectivity between activity patterns with a unidimensional
dependency (as illustrated in Fig. 3b). The left-hand panels in Fig. 6
show how well the UDC method (red) and MPDC (blue) methods per-
form when the simulated patterns have a unidimensional relationship.
The same pattern can be seen across panels a, ¢ and e indicating that dif-
ferent numbers of vertices in X and Y regions do not have a strong effect
on the methods’ performance in this range. In each, EV approaches 1 for
SNRs greater than 10db, and is almost zero for SNRs below —25db. For
intermediate SNRs both UDC and MDPC produce above-zero explained
variance, with higher values for MDPC compared to UDC. Importantly,
the MDPC is able to capture the unidimensional dependency between
the patterns at medium to high SNRs. As expected, this is also possible
with the UDC approach. Thus, both methods can identify connectiv-
ity between regions which display a unidimensional relationship. Both
methods demonstrate improved detection of the relationship from 30 to
50 trials, but hardly any improvement from 50 to 100 trials.

3.1.3 Scenario 3: Testing the ability of each method to detect
multidimensional connectivity between two patterns

In a final set of simulations, we assessed how well the MDPC and UDC
methods are able to detect a multidimensional relationship between two
regions (illustrated in Fig. 3c). The results for the MDPC (blue) and the
UDC (red) approaches are displayed in the right-hand panels of Fig. 6.
Whilst connectivity scores for the MDPC increase gradually and reach
more than 0.75 at high SNRs (> 20db), the UDC approach fails to cap-
ture the multidimensional dependency and cannot explain more than
0.35 of data variance. Regardless of the number of vertices or trials, the
MDPC method outperforms the UDC approach for SNRs > —5db (below
which both methods perform poorly). The MDPC captures the multi-
dimensional relationships between activity patterns, which are missed
with the UDC approach. As with the unidimensional relationships the
MDPC performance increases with more trials, with larger improvement
from 30 to 50 than from 50 to 100 trials.

Overall, our simulations demonstrated that both the MDPC and UDC
approaches avoid false positives, whilst identifying unidimensional pat-
tern dependencies. However, only the MDPC can capture multidimen-
sional pattern dependencies between regions. Thus, the MDPC may iden-
tify additional connections between brain areas that would typically be
overlooked with standard unidimensional approaches.

3.2 Real EEG/MEG dataset: Comparing TL-MDPC to a unidimensional
approach through application to EEG/MEG

In this section, we applied the same methods to a real EEG/MEG
dataset to test whether this ability to identify additional, multidimen-
sional relationships enables the TL-MDPC approach to uncover addi-
tional dynamic connections within the brain. We identify differences
in connectivity within the semantic network when greater semantic
processing is required, by contrasting a semantic decision task with
a lexical decision task. A detailed analysis of the task modulation of
evoked responses and unidimensional functional connectivity (mea-
sured as coherence) in this dataset can be found in our previous publi-
cation (Rahimi et al., 2022). Here, we will test whether TL-MDPC iden-
tifies additional connectivity when applied to this dataset, highlighting
the advantages of this novel connectivity method over unidimensional
approaches and extending our previous assessment of dynamic connec-
tivity within the semantic network.

Fig. 7 illustrates the application of TL-MDPC and TL-UDC approach
to EEG/MEG data for two ROIs, namely 1ATL and IFG, key regions in-
volved in semantic representation and control, respectively. Example
TTMs are presented for TL-UDC (panel a) and TL-MDPC (panel b), for
the semantic decision (SD), lexical decision (LD) tasks, as well as their
statistical comparison (with cluster-based permutation tests).

Greater semantic demands (SD task) result in greater connectivity
between 1ATL and IFG compared to LD task, suggesting there exist more
reliable and consistent linear pattern transformations in SD than LD.
This pattern of results can be seen using both TL-UDC and TL-MDPC
analyses. However, this difference is only significant at a limited number
of late time points in the TL-UDC case with short latencies. In contrast,
the TL-MDPC approach identifies task-dependant semantic connectivity
between IATL and IFG throughout the trials, and can detect relationships
over longer latencies.

For both methods, the largest connectivity values occur along the
matrix diagonal, i.e. at zero lag. For the TL-MDPC approach, differences
are present in this example even in the baseline interval. This could be
due to leakage or true baseline differences between our tasks, a possibil-
ity we discuss further below. When applying the TL-MDPC approach to
both tasks, off-diagonal connectivity values start to fan out after stimu-
lus presentation at 0 ms, with the area of larger values broadening over
time. The same pattern of increasingly broad off-diagonal connectivity
is identified by the statistical analysis of the task differences presented
in the right-most panel of Fig. 7b. The pattern around the diagonal is
approximately symmetric, suggesting that there is a statistical relation-
ship between the patterns in the two regions, which varies depending
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Fig. 6. Comparing the MDPC and unidimensional connectivity (UDC) approaches on the detection of unidimensional (left panels) and multidimensional (right panels)
relationships. All panels show explained variance (y-axis) across different SNRs (x-axis) for the MDPC (blue) and UDC (red) approaches with different numbers of
trials (darker versus lighter shades of blue or red). a, c, ) show the connectivity scores for simulated activity patterns with a unidimensional dependency. In all
cases, EV approaches 1 for SNRs greater than 10db, and is almost zero for SNRs below —25db. Both UDC and MDPC methods capture unidimensional relationships in
medium-to-high SNRs, with greater EV for UDC. b, d, f) represent connectivity scores between patterns with a multidimensional dependency. For the MDPC method,
EV approaches 1 for SNRs greater than 20db, and is almost zero for SNRs below —10db. For the UDC approach, the EV never exceeds a variance of 0.2, and is almost

zero below —10db. Error bars reflect standard deviations.

on the pair of latencies involved, but not their order. For example, if
there is a relationship between X at 200 ms and Y at 300 ms, then there
is typically also a relationship between X at 300 ms and Y at 200 ms.
If brain areas activated strictly serially (e.g. “first PVA then ATL then
IFG”) then the TTMS in Figs. 7 and 8 would be expected to be asymmet-
rical with relationships identified over short lags only. The sustained
symmetrical relationship between regions across the semantic network
identified here may suggest that this is not the case. It may be that rel-
evant brain areas activate in a cascaded and temporally overlapping
manner, in line with previous EEG/MEG work on visual word recogni-
tion (Hoffman et al., 2018; Rogers et al., 2004). It could be evidence that
for a sustained period of time, there is information flow between these
regions, perhaps bidirectionally, as suggested by prior electrophysiolog-
ical data (Clarke et al., 2015, 2011; Rogers et al., 2021) and perspectives
emphasising the importance of recurrence in the brain (Kietzmann et al.,
2019; McClelland and Rumelhart, 1989; Rogers et al., 2021; Rogers and

McClelland, 2014). More specifically, our results suggest that some brain
areas have overlapping time periods of activations, interacting with each
other near simultaneously and stay connected for a long latency range.
Although these patterns are interesting, it is also important to note that
with our bivariate functional connectivity method we cannot unravel
the full effective connectivity dynamics in the semantic network, i.e.
how regions influence each other. This would require future work using
effective connectivity methods such as Granger Causality or Dynamic
Causal Modelling (Farahibozorg et al., 2022).

3.2.1. Capturing the connectivity within the semantic network across time
with TL-MDPC

We next apply TL-MDPC to examine the connectivity between our
full set of semantic ROIs, and compare these results to the TL-UDC
approach. To summarise the TTM comparisons for all pairs of ROISs,
we arranged the statistical results in a larger matrix, which we call an
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Fig. 7. An example of TTMs showing the connectivity between the left ATL (y-axis) and IFG (x-axis), for the semantic decision (SD) task (the left column), the
lexical decision (LD) task (the middle column), and their comparison (the right column) for which cluster size was thresholded at 12 cells. a) TTMs obtained using
the time-lagged unidimensional connectivity (TL-UDC) approach demonstrate some modulation between the two tasks at a limited number of time points early in
processing. b) TTMs obtained using the TL-MDPC method. Here, there is a wider pattern of significant task differences across the trial with prediction across longer
lags. We also found baseline modulations (—100 to 0 ms) using TL-MDPC, possibly reflecting differences in preparation or alertness, present due to the blocked-design
of the dataset (see Discussion for more details). The upper diagonal indicates statistical dependencies where the 1ATL is ahead in time, and the lower part shows
dependencies where the IFG is ahead in time. Colour bars show connectivity scores (explained variance) for the first two columns. For the third column, the first
colour bar (hot and cold colours) highlights significant effects based on the cluster-based permutation test, while the grey-scale colour bar indicates non-significant
t-values (this colour bar is the same across all TTMs). Note, the matrices have idiosyncratic scales for display purposes, and the connectivity values are greater for

the TL-MDPC method than the TL-UDC approach.

‘inter-regional connectivity matrix’ (ICM), displayed in Fig. 8. The up-
per diagonal (yellow area) represents the transposed TL-UDC TTMs, and
the lower diagonal (blue area) shows TTMs based on the TL-MDPC re-
sults. Figure S1 in the Supplementary Materials, provides the TTMs for
each individual task for both TL-MDPC and unidimensional approaches.
For the TL-UDC method, in total eleven connections were modulated at
some latencies, though some show very small effects, by task demands:
IATL-rATL, IATL-PTC, IATL-IFG, rATL-PTC, rATL-IFG, PTC-IFG, IATL-
AG, rATL-AG, rATL-PVA, PTC-PVA, and AG-PVA with larger connec-
tivity scores for SD. For the TL-MDPC method, also eleven connections
were modulated across latencies by task demands: IATL-rATL, IATL-PTC,
1ATL-TFG, rATL-PTC, rATL-IFG, rATL-AG, rATL-PVA, PTC-IFG, PTC-AG,
PTC-PVA, and AG-PVA with larger connectivity scores for SD. The most
striking result is that, although the same pairs of ROIs are typically high-
lighted by both approaches, TL-MDPC revealed more reliable and con-
sistent task modulations across many more latencies than the TL-UDC
approach. For both approaches, all significant modulations show greater
connectivity scores with a greater demand for semantic cognition. We
also provide a direct statistical comparison between the two methods in
Figure S2 in the Supplementary Materials, which shows that TL-MDPC
significantly outperforms TL-UDC for many ROI pairs, revealing more
significant connectivity modulations in IATL-PTC, 1ATL-IFG, rATL-PTC,
rATL-IFG, rATL-AG, PTC-IFG, PTC-AG, PTC-PVA, and AG-PVA.

10

Additionally, the modulations found with TL-MDPC were significant
across a larger time window. Our simulation results indicate that this
increased sensitivity of TL-MDPC compared to TL-UDC approach is
unlikely to be due to false positives. Instead, the ability of the TL-MDPC
approach to utilise the multidimensional activity pattern across a brain
region may allow identification of connections that are missed with
unidimensional connectivity approaches, as demonstrated with the
simulated data. The current analyses highlight that this increased sen-
sitivity to additional, multidimensional connections may extend to real
EEG/MEG data, detecting plausible connectivity changes across known
task networks. It is also possible that MDPC is more prone to leakage
than UDC, which we consider in the Discussion. It is noteworthy that
although the ROIs included have all been linked to semantics, the con-
nections revealed by TL-MDPC do not appear to be arbitrary. Instead,
the core regions consistently implicated in multimodal semantic cogni-
tion, left and right ATL, IFG and PTC, show strong interconnectivity. In
contrast, the PVA which is a visual region required to interact with many
networks and not merely the semantic network, and the AG, which may
have a role in some aspect of semantic or episodic memory, are not well
connected to this core semantic network, but do connect to each other
and the PTC. TL-MDPC appears to identify meaningful dissociations
within the regions assessed. These connectivity differences are present
at early time points and are prolonged across the trial, confirming our
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Fig. 8. The Inter-regional Connectivity Matrix (ICM) - the upper triangle (yellow shaded area) shows temporal transformation matrices (TTMs) created using the
TL-UDC approach and the lower diagonal (blue shaded area) TTMs constructed using the TL-MDPC approach. All TTMs shown are formed from the t-tests comparing
the more over the less semantically demanding task. Cluster-based permutation tests were used for statistical comparisons. The alpha-level for both vertex-wise
and cluster-wise t-tests was 0.05, and cluster size was thresholded at 12 cells. The TL-UDC approach produced significant task modulation for eleven connections,
yet the most constitant ones are IATL-rATL, IATL-PTC, rATL-PVA, and AG-PVA, with greater connectivity for SD. The TL-MDPC approach revealed more reliable
and consistant connections, including: IATL-rATL, IATL-PTC, 1ATL-IFG, rATL-PTC, rATL-IFG, rATL-AG, PTC-IFG, PTC-AG, PTC-PVA, and AG-PVA, all with greater
connectivity scores for SD than LD. The right-hand side colour bar (hot and cold colours) highlights significant effects based on the cluster-based permutation test,
while the grey-scale colour bar indicates non-significant t-values (this colour bar is the same across all TTMs).

previous findings of semantic task modulations on evoked responses and
functional connectivity in early processing stages (Rahimi et al., 2022).

As in the example in Fig. 7, most TTMs show connections centred
around the diagonal. Interestingly, some TTMs show patterns of signifi-
cant effects diverging from the diagonal at early latencies, e.g. connec-
tions involving the visual cortex (AG-PVA and PTC-PVA), while others
diverge later (e.g. IATL-IFG), and yet others stay around the diagonal
(e.g. rATL-IFG). In some ROIs, significant zero-lag effects may be seen
on the diagonal even in the baseline period. We must note that the signif-
icance of these effects was probed using cluster-based permutation tests,
which means that determining their precise temporal extent (onsets and
offsets) is not straightforward as the identification of an effect depends
on the significance of contiguous cells of the matrix (Sassenhagen and
Draschkow, 2019). This is a general issue, since the onset of effects in
noisy data depends on both signal and noise (e.g. Hauk et al., 2012).
However, our results suggest that there are task differences in the base-
line, at least at an uncorrected significance level. It is possible that TL-
MDPC is more prone to false positives than TL-UDC. However, our sim-
ulation results suggest that this is not the case, at least not for random
patterns. Instead, this may reflect real differences between the rest pe-
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riods of our two tasks, which when presented in a blocked design, may
indeed produce different baseline connectivity prior to stimulus onset
as participants anticipate the upcoming stimulus.

We provide a summary of our results, also including findings from
our previous study using coherence analysis for comparison, in Fig. 9.
In that study, we computed coherence at an early (50-250 ms) and late
(250-500 ms) time window and in four frequency bands, namely theta
(4-8 Hz), alpha (8-16 Hz), beta (16-26 Hz), and gamma (26-36 Hz), us-
ing ROI-based connectivity approach. In this figure, we show the gamma
band connections in blue (i.e. rATL-PTC, IFG-AG at the first time win-
dow, and PTC-AG at the second time window), and those consistent
across the three frequency bands (i.e. alpha, beta, and gamma) in yel-
low (i.e. IATL-rATL, at the first time window, and IATL-IFG at the later
time window). Also, to summarise the ICM results for both TL-MDPC
and TL-UDC, we summed the significant t-values in each time window as
the representative of connectivity intensity. We then represent different
connectivity intensities based on the resulting values, being reflected in
the width of connecting arrows (e.g. weakest connectivity: represented
by the thinnest arrows, as in rATL-IFG using TL-MDPC at the earlier time
window, and strongest connectivity: represented by the thickest arrows,
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a) Early time window (0-250ms)

1) Coherence* network 2) TL-UDC network

b) Late time window (250-500ms)

1) Coherence* network 2) TL-UDC network

3) TL-MDPC network
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Fig. 9. Summary of semantic task modulations of
brain connectivity revealed by three different ap-
proaches. a) Networks revealed in an early time win-
dow (0-250 ms), using 1) coherence (Rahimi et al.,
2022), 2) TL-UDC method, and 3) TL-MDPC. b) Same
as a), but for a later time window (250-500 ms). In
general, TL-MDPC captures many more and stronger
connections compared to the other two methods. Im-
portantly, for both time windows, TL-MDPC highlights
rich connectivity between core semantic representa-
tion (IATL and rATL) and semantic control (IFG and
PTC) areas, while AG connectivity is comparatively
sparse, connecting to the visual sensory region but lit-
tle of the core semantic network. Lines with differ-
ent thickness/width show different strengths (obtained
through summing the significant t-values in each time
window).

3) TL-MDPC network

as in AG-PVA using TL-MDPC at later time window). For coherence con-
nectivity, however, shown in different colour (yellow and blue), the ar-
rows do not reflect intensity. Fig. 9a and b show the network revealed in
an early and late time window, respectively, using 1) coherence in our
previous study (Rahimi et al., 2022), 2) the TL-UDC method tested as
a comparison here, and 3) TL-MDPC. Both the current unidimensional
analysis and the standard coherence metric identify very weak and lim-
ited task-related connectivity changes, respectively, in the semantic net-
work, despite the large task-differences in evoked responses throughout
the semantic network and the large change in the necessity of semantic
cognition for the two tasks. In contrast, TL-MDPC demonstrates strong
connectivity between regions across the semantic network. The major-
ity of the connectivity changes highlighted with TL-MDPC, are present
within the early time window (with the exception of rATL-AG and rATL-
PVA). The identification of rich connectivity throughout the core seman-
tic network, including key regions for semantic representation (left and
right ATL) and semantic control (IFG and PTC) persists from the early to
the late latency window. In contrast, the connectivity of the visual PVA
region, and the AG whose role in semantic cognition is debated, show
relatively sparse connectivity and do not connect to the core semantic
network, with the exception of the PTC and rATL at later time points.

4. Discussion

In this study, we introduced time-lagged multidimensional pattern
connectivity (TL-MDPC) to investigate the linear multidimensional re-
lationships between patterns of event-related brain activation in space
and time. TL-MDPC makes use of the full vertex-to-vertex transforma-
tions between patterns in different brain regions and is well-suited for
EEG and MEG applications, exploiting their high temporal resolution to
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describe the bivariate relationships between patterns in pairs of ROIs
across different pairs of latencies. We showed in simulations that nei-
ther a unidimensional (UDC) nor a multidimensional pattern connectiv-
ity approach (MDPC) are prone to false positives in the case of random
and independent patterns in different regions.

Interestingly, for simulated patterns that had a linear unidimen-
sional (but no multidimensional) relationship between regions, the UDC
method and the MDPC almost performed equally well. In this case,
the simulated scenario exactly matched the assumptions underlying the
UDC method. In contrast, for simulated linear multidimensional pat-
tern relationships the UDC method performed poorly even at high SNRs,
while the MDPC performed well. Thus, TL-MDPC is sensitive to both lin-
ear unidimensional and linear multidimensional pattern relationships
and may provide a more complete picture of brain connectivity than
the unidimensional approach.

This pattern was confirmed in our analysis of real EEG/MEG data.
TL-MDPC was able to identify task-dependant connectivity changes
across the semantic network that the unidimensional approach and spec-
tral coherence failed to detect, likely due to the presence of multidimen-
sional connections. Using TL-MDPC, we observed rich connectivity be-
tween core semantic regions, including the left and right ATL hub for
semantic representation and the IFG and PTC regions crucial for seman-
tic control. These changes were prolonged throughout the epoch and
started early in processing. Not all regions assessed demonstrated such
broad changes in connectivity throughout the semantic network, with
PVA and AG demonstrating more limited connectivity changes. We con-
clude that TL-MDPC provides a richer description of the semantic brain
network across time than unidimensional methods.

The description of the semantic network connectivity provided by
TL-MDPC is highly informative with clear implications for the roles of
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the regions assessed and how they interact. The rich task-related con-
nectivity between core semantic regions aligns with the central tenets
of the controlled semantic cognition (CSC) framework, supporting both
the importance of the bilateral ATLs as the hub for multimodal semantic
representation and the need for both control and representation regions
(Lambon Ralph et al., 2016). Rahimi et al. (2022) delineated changes in
evoked responses with greater semantic demands across this network,
with strong differences in the ATLs. Both coherence and TL-MDPC iden-
tified stronger connectivity between left and right ATLs for the semantic
compared to the lexical decision task. This corroborates the idea that
right ATL is critical for semantic cognition and contributes more in se-
mantically more demanding tasks (Rahimi et al., 2022; Stefaniak et al.,
2022). Previous studies have showed that greater semantic demand
leads to larger evoked responses in the IFG, primarily at later time
points. This delay in engaging control areas, relative to representa-
tion regions was considered indicative that some initial representation
may be performed without control, for instance, accessing some con-
ceptual information before assessing how this information informs the
task judgement. However, assessing task-related changes in connectivity
with TL-MDPC identified early and persistent interactions between pos-
terior temporal and inferior frontal control regions and the representa-
tional hubs. This demonstrates the importance of control areas through-
out processing, suggesting that identification of task-relevant aspects
of a concept is an iterative process requiring continual interaction be-
tween concepts and task context information, consistent with current
models of controlled semantic cognition (Jackson et al., 2021). Gaining
this additional understanding of how control and representation regions
work together required the ability to track multidimensional relation-
ships across time, demonstrating the utility of TL-MDPC of EEG/MEG
data.

While rich connectivity changes were identified between the core
semantic regions (IATL, rATL, IFG, PTC), the connectivity of the AG
and PVA were relatively sparse. This finding may be expected for PVA,
which is not responsible for multimodal semantic cognition but instead
provides visual input to the semantic network, as well as to other net-
works responsible for other aspects of cognition. However, the relatively
sparse connectivity of the AG with the core semantic network (in the
context of early increases in evoked responses) may be more revealing.
There are multiple possible explanations of this pattern of results: 1)
AG may have some semantic-related role that is not part of the core
semantic network, e.g. combinatorial semantics (Graves et al., 2010;
Matchin et al., 2019; Price et al., 2016, 2015), 2) it could be perform-
ing a distinct task with the semantic stimuli, such as episodic encoding
or directing attentional processes (Cabeza, 2008; Cabeza et al., 2012;
Chambers et al., 2004; Humphreys et al., 2021; Humphreys and Lambon
Ralph, 2015; Shimamura, 2011; Vilberg and Rugg, 2008; Wagner et al.,
2005), or 3) task-related changes in the AG could simply reflect leakage
from nearby visual areas which have a similar early time course result-
ing in connections with these nearby ROIs only. Overall, our findings
provide little support for a core semantic role for the AG, but are com-
patible with a non-semantic role of the AG for example related to con-
trol and episodic memory (Farahibozorg et al., 2022; Humphreys et al.,
2021; Noonan et al., 2013).

Intriguingly, both TL-MDPC and the unidimensional approach iden-
tified task modulations in connectivity prior to stimulus presentation.
These effects had short lag times and could therefore reflect leakage,
yet this would not explain why these effects are modulated by the task.
Instead, as our tasks were administered in a blocked design, it is possible
that task affected baseline activity, e.g. anticipatory processes or alpha
rhythm. Indeed, the presence of these differences within the semantic
network may suggest greater recruitment of the semantic network in
anticipation of the greater semantic demands of the semantic decision
task. However, it is important to note that the extent of significant ef-
fects cannot be accurately inferred from cluster-based permutation test-
ing (Sassenhagen and Draschkow, 2019), and onsets and offsets of ef-
fects are notoriously difficult to detect (Hauk et al., 2012). Our novel
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method offered the possibility to investigate the spatiotemporal dynam-
ics in semantic brain networks in more detail than previous assessments
utilising fMRI data (Chiou et al., 2018; Jackson et al., 2016; Jung and
Lambon Ralph, 2016) and unidimensional analyses (Rahimi et al., 2022;
Sormaz et al., 2017). This demonstrates the clear utility of TL-MDPC to
investigate the interactions within other cortical networks.

One important methodological consideration for future applications
of TL-MDPC is the sensitivity of the approach to leakage. As in our
previous study (Rahimi et al., 2022), here we provided a leakage ma-
trix based on the assumption of non-homogenous activation across ver-
tices within ROIs that describes the leakage among our ROIs based on
point-spread and cross-talk functions. This analysis revealed that leak-
age among those ROIs was low to moderate. According to our leakage
matrix, the strongest leakage would be between IATL-PTC, IATL-IFG and
PTC-AG. Thus, if the effects were only driven by leakage, we would
expect to see the highest connectivity between these pairs, while the
strongest connectivity was actually observed between 1) AG-PVA, 2)
IATL-IFG, rATL-PTC, and PTC-PVA. Furthermore, we observed several
connections with rATL (i.e. across the hemispheres) which are unlikely
to be due to leakage. Of course, this does not rule out the possibility
that some connections are affected by leakage. Leakage from an active
source occurs instantaneously, and is therefore often discussed in the
context of zero-lag connectivity. However, since leakage occurs from
each of a pair of ROIs, spurious connectivity can still be caused by leak-
age even at non-zero lags (Colclough et al., 2015; Farahibozorg et al.,
2018; Palva et al., 2018). In our study, we used combined EEG and MEG
to achieve optimal spatial resolution, and in contrast to most previous
studies we do provide a quantitative assessment of leakage for our re-
gions of interest. A more detailed analysis of leakage for multivariate
and multidimensional scenarios should be performed in the future but
is beyond the scope of the present study. Whilst increased leakage could
lead to more connections as found with TL-MDPC, it is unlikely these
results are due to leakage alone because of the following reasons. 1) The
pattern of our results is meaningful in the context of current theories of
semantic brain networks. Our analysis distinguished between the core
semantic network, comprising key semantic control and representation
regions (IATL, rATL, IFG, and PTC) and the more restricted connectiv-
ity of posterior visual areas and the AG. 2) Unidimensional methods are
not immune to leakage. The smoothness of patterns within ROIs should
also result in some unidimensional leakage effects and affect the UDC
method as well. Instead, we observed meaningful and more widespread
connectivity for TL-MDPC in line with our simulation results.

Further to introducing the TL-MDPC method, this study provides a
novel approach for sub-sampling EEG/MEG data. EEG/MEG data con-
tain redundant information due to their low spatial resolution, which
can vary across ROIs. To alleviate this issue, we sub-sampled the most in-
formative vertices within a brain region using a k-means clustering algo-
rithm. This resulted in 5 to 13 vertices per region, suggesting a high de-
gree of redundancy in the source estimates. It is well-established that the
spatial resolution of source estimates is not only limited but also varies
greatly across brain regions (e.g. is lower for deep rather than superfi-
cial locations) and depends on parameters such as the SNR (Hauk et al.,
2019; Krishnaswamy et al., 2017; Samuelsson et al., 2021). In the fu-
ture, our approach may become useful to quantify spatial resolution and
the degree of redundancy across brain regions and for different param-
eter settings, especially for computationally demanding multivariate or
multidimensional methods.

Our approach is a first step towards exploiting the full information
contained in dynamic multidimensional data. Here, we presented a first
application of the method proposed by Basti et al. (2019), inspired
by the work of Anzellotti et al. (2017a) for fMRI data to EEG/MEG
data in source space. Furthermore, our method estimates statistical
dependencies at different time lags, i.e. it can distinguish between
zero-lag and non-zero-lag dependencies, while orthogonalisation pro-
cedures (as well as imaginary part of coherency) completely remove
zero-lag connectivity, even when it could potentially be meaningful.
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This initial method makes multidimensional connectivity available for
EEG/MEG applications and opens multiple possibilities for extension in
future work. For example, our approach could be extended to nonlin-
ear pattern transformations, similar to the neural network approach by
Anzellotti et al. (2017b). In our simulations we showed that our mul-
tidimensional method can outperform its unidimensional counterpart
when the pattern-to-pattern transformations are linear. It remains to be
assessed in future work whether this is still the case when these trans-
formations are nonlinear. While linear methods can often produce rea-
sonable approximations to nonlinear phenomena at least within certain
parameter ranges, nonlinear methods are likely to complement linear
approaches. However, there are many different ways to incorporate non-
linearities, and these methods may increase demands on numbers of tri-
als and SNR. Therefore, this extension is non-trivial, and will be an excit-
ing endeavour for future research. Additionally, our proposed TL-MDPC
approach is a bivariate non-directional functional connectivity method.
It can be generalised to more sophisticated methods, e.g. multivariate
multidimensional dependencies. Most of our statistical comparisons re-
vealed almost symmetrical patterns which could be evidence that for
a period of time, there is bidirectional information flow between pairs
of ROIs. More specifically, brain areas start activating near simultane-
ously and stay connected for the whole latency range. It is important to
note that our bivariate functional connectivity method establishes statis-
tical relationships between signals in two brain regions, yet cannot un-
ravel the full effective connectivity dynamics in the semantic network.
Our approach could be easily extended to autoregressive models that
use a Granger-causality logic for multidimensional data (Granger, 1969;
Hu et al., 2012). Finally, these methods could be applied to the fre-
quency domain, time-frequency domain, wavelet or resting state data
for envelopes to reveal how those representations are transformed across
brain regions. We hope that our study is a useful step towards future
methods development and research that can “transform” spatiotempo-
ral connectivity analyses.
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