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Abstract

Using a relatively small training set of*16 thousand images frommacromolecular crystalli-

sation experiments, we compare classification results obtained with four of the most widely-

used convolutional deep-learning network architectures that can be implemented without

the need for extensive computational resources. We show that the classifiers have different

strengths that can be combined to provide an ensemble classifier achieving a classification

accuracy comparable to that obtained by a large consortium initiative. We use eight classes

to effectively rank the experimental outcomes, thereby providing detailed information that

can be used with routine crystallography experiments to automatically identify crystal forma-

tion for drug discovery and pave the way for further exploration of the relationship between

crystal formation and crystallisation conditions.

Introduction

The determination of protein structures using X-ray crystallography provides insight into the

interaction between a protein and target drug compounds in the drug discovery pipeline.

Despite technical advances in the crystallisation process, obtaining suitable crystals for X-ray

diffraction is still a major bottleneck in drug design [1]. The current laboratory procedure still

relies heavily on trial and error, although crystallisation screens have been developed to sample

the search space of different conditions intelligently. Many screens from both commercial and

academic sources have been created [2–6], providing combinations of chemicals designed to

encourage nucleation and maintain a particular pH. Such screens allow tens of thousands of

unique conditions to be tested [7], with the protein construct, concentration, suitable ligand

selection and experimental temperature chosen by the crystallographer.

The use of robotics now allows nanolitre volume crystallisation experiments and automated

storage and imaging systems are routinely used to record the results. In high-throughput cen-

tres, thousands of experiments can be produced each day and each experiment may be imaged

multiple times over several weeks. Successful crystallisation rates are thought to be less than

5% [8] and optimization experiments are usually required to obtain X-ray diffraction quality
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crystals from the most positive results in the initial screening. Plate storage and imaging sys-

tems can store many crystallisation plates and image the experimental results at pre-specified

times whilst maintaining a constant temperature and little disturbance to the experimental

plate. Each image time-series can then be extracted for examination, although the monotony

of the task can often lead to erroneous classification and observer bias and inter-observer dif-

ferences are frequent with the human classification of images. An investigation of agreement

rates between crystallographers found these were rarely above 70% with this rate decreasing

for greater numbers of classes [9]. Visual inspection of images is becoming increasingly

impractical and there is an urgent need for automated image analysis.

Automated classification of protein crystallisation images was initially proposed by Zuk

&amp; Ward in 1991 when storage and imaging systems were introduced [10]. They used sim-

ple Sobel edge detection with the Hough transform to identify straight lines that could indicate

the presence of crystals and suggested that more advanced algorithms could be used to moni-

tor crystal growth and better assess the outcome of an experiment. Spraggon et. al [11] (2002)

expanded on this idea, using self-organising maps to classify protein crystallisation images as

one of six classes, two of which corresponded to crystals, achieving a 75.6% true positive rate

for crystals. Since then several research groups have reported improved results using various

machine learning algorithms and different numbers of classes. For example, Cumbaa &amp;

Jurisica [12] (2005) used linear discriminant analysis to classify protein crystallisation images

into four classes namely clear, precipitate, crystal and unknown, whilst Pan and coworkers

[13] (2005) classified their images as containing crystals or not using support vector machines.

Although this study achieved a false negative rate of less than 3%, this was at the expense of

*38% false positives. Following the introduction of convolutional neural networks (CNNs)

for image analysis [14], Yann &amp; Tang introduced CrystalNet, reporting a 90.8% accuracy

with ten classes [15]. However, they used a carefully selected set of cleaned images, for which

the class was agreed by multiple crystallographers and the same architecture has since been

trained to classify more realistic protein crystallisation images with just 73.7% accuracy for ten

classes [16].

The Machine Recognition of Crystallisation Outcomes (MARCO) [17] project in 2018

aimed to develop a classifier that was not specific to a particular imaging system or laboratory

and used a training dataset of nearly half a million labelled images from five academic and

industrial institutions, including pharmaceutical companies GlaxoSmithKline (GSK), Merck

and Bristol Myers Squibb. Although classification rates of>94% were reported for test-set

images from multiple imaging platforms, problems with transferability were identified during

training. A classifier trained with images from GSK, Merck and the Hauptman-Woodward

Institute (HWI) achieved a classification rate of just 61.6% for a test set of images from the Col-

laborative Crystallisation Centre (C3, CSIRO). However, when C3 images were included in

training (making up just 3% of the total training set), 87.5% of C3 images were classified cor-

rectly. In fact, transferability is still an issue with the final MARCO classifier [18]. It achieved

an accuracy of just 63% for a set of labelled crystallisation images from AstraZeneca (AZ) in

our test. Unfortunately, improving the model by transfer learning with representative images

from AstraZeneca is not straightforward as it was developed in collaboration with Google sci-

entists and utilised their computational resources. The model and its weights were not pub-

lished, so the only way to retrain it is to start from scratch. This has motivated the

development of a new model that can be trained without the need for supercomputers. Here

we compare the most widely used convolutional neural network architectures with an efficient

training strategy, which reuses as much as possible pre-trained deep-learning models (freely

available from Keras [19]) with initial weights from the Imagenet dataset. We also show that

an ensemble classifier obtained by combining these classifiers gives significantly improved
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results compared to any of the individual classifiers, achieving an accuracy comparable to the

94% reported in the MARCO project. We provide hyper-parameters that were used with all

four networks without further optimisation to allow others to obtain similar results with their

own images.

Data and labelling

The number of classes used to categorise crystallisation images has varied between studies,

ranging from just two, crystal and non-crystal, to as many as ten [20]. If the goal is simply to

identify drops containing crystals, then the former might be appropriate but, if the results are

to be used in further analyses, for example, to optimise crystallisation conditions and to better

understand the crystal formation process, then more classes are required. We have chosen to

use the eight classes shown in Table 1 to provide information on the level of success of an

experiment. Our categories include three separate crystal classes: shootable representing crys-

tals of a quality that could be sent for X-ray diffraction, optimisable which includes very small

crystals, needles and plates and crystalline representing microcrystalline precipitate (often

interpreted as“promising looking” by crystallographers). Where initial screens do not result in

any crystalline material, information on other experimental outcomes could be used to design

optimisation protocols. Phase separation, the separation of a protein-rich phase within the

crystallisation drop, can provide a boundary where crystals sometimes form later. We consider

light precipitate and heavy precipitate as different outcomes, as light precipitate showing some

order indicates supersaturation and can lead to crystal growth whereas heavy amorphous pre-

cipitate is unlikely to. The level of precipitate can reveal the suitability of the protein concentra-

tion, a fact that has been commercialised by Hampton Research in their Pre-Crystallisation

Test (https://hamptonresearch.com). In addition to empty drops, labelled clear, we have a null

class which covers the case where no drop is dispensed as well as experiments affected by fac-

tors unrelated to the experiment, such as condensation or issues with focus. Example images

from each class are shown in Fig 1.

Our complete dataset consists of 25,316 images from protein crystallisation experiments,

labelled according to the classes shown in Table 1. Regardless of the number of classes there

will always be disagreements on classification by humans with classes that are not discrete.

After a training session led by an experienced crystallographer, a subset of 3095 images was

labelled independently by three researchers, allowing the level of agreement to be assessed. Of

these images, 2745 were unique with an additional set of 50 duplicated 7 times interspersed.

Images were labelled in the same order by each classifier and intra-observer bias measured by

the number of times that the 50 repeated images were given the same label. At least 86% of the

Table 1. Training data. The eight categories used to classify images in our dataset and the number of images in the training set associated with each class, before and after
data augmentation.

class number class name before augmentation after augmentation

1 null 636 4452

2 clear 3589 3589

3 heavy precipitate 3493 3493

4 light precipitate 4520 4520

5 phase separation 668 4676

6 crystalline 1834 3668

7 optimisable 652 4564

8 shootable 925 4625

https://doi.org/10.1371/journal.pone.0282562.t001
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images were given the same label four out of seven times, but scores for more than four agree-

ments dropped drastically with scores for an individual giving the same label all seven times

between 10% and 28%. Overall agreement rates between different human classifiers ranged

from 50% to 70%, showing the difficulty in classification with continuous outcomes.

Given the low agreement rates between classifiers, a set of 5972 images were given labels

agreed by three scientists together to produce an initial training set. The model produced with

this training data was then used to classify further images and a simple graphical user interface

developed to check the results (S1 Fig in S1 File). Any image for which the classification was con-

sidered correct was added to the training set with the assigned label, whereas any image consid-

ered misclassified was relabelled before being added. This allowed the size of the training set to

increase rapidly but reliably in an iterative procedure that continuously improved the classifier.

As each experiment is imaged multiple times, often with little change between consecutive

images, only images from days 1, 8 and 13 were ever included in the training set to reduce

redundancy.

Images are mainly from two particular projects, with 7,395 images associated with the

receptor tyrosine kinases EGFR [21] and c-KIT [22]. A further 8,922 images are from initial

crystallisation screens involving several different proteins to provide the model with a greater

variety of experimental outcomes and different crystal forms. In total, 16,317 images were used

for training the classifier and Table 1 shows the number in each class.

Classification results were validated with three independent test sets. To assess the effect of

including very similar images in the training and test sets, our first test set consists of images

from time courses represented in the training data but from different batches (i.e. from days

other than 1, 8 and 13). The second test consists of images related to proteins represented in

the training set but from different experimental plates and the third test set comprises images

Fig 1. Example images from each class. (a) shows a null image in which no drop has been dispensed;(b) shows a clear drop;(c) shows heavy precipitate
where the protein is denatured;(d) shows light precipitate; (e) shows phase separation; (f) shows crystallinematerial; (g) shows optimisable crystals and (h)
shows shootable crystals.

https://doi.org/10.1371/journal.pone.0282562.g001
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from independent experiments associated with the chemotherapy drug Trastuzumab [23], for

which no images were included in the training set. S2 Fig in S1 File shows the distribution of

images in each of the three test sets and Table 2 gives the number of images in each.

As colour images multiply the complexity of models and increase computational cost, our

RGB images are converted to grayscale, or more specifically luminant (L), where L = 0.299R

+ 0.587G + 0.114B. Each image is cropped to 800x800 pixels, covering the protein crystallisa-

tion drop. Class imbalance is a fundamental issue in image classification as unbalanced train-

ing data results in models that are biased towards the better represented classes. With an

estimated crystallisation rate of<5%, it is especially problematic for automated crystallisation

image analysis. Although we limited the number of images in other classes, the three crystal

classes (crystalline, optimisable and shootable) account for just 20.9% of the training data with

just 5.7% labelled shootable. As recognising crystals is a key aim, we incorporated data aug-

mentation into the pre-processing stage to balance the number of images in each training clas-

ses. Multiple independent transformations are applied to images from underrepresented

classes, these being random rotations, horizontal and vertical flips, and contrast, brightness

and resolution adjustments. Each class is duplicated by the rounded inverse of its proportion

to the largest class light precipitate. The training set is summarised in Table 1.

Model comparison

The MARCO classifier used an inception-V3 architecture [24] with an additional convolu-

tional layer that reduces the image dimensions from 599x599 to 299x299 pixels. Inception-V3

Table 2. Test data sets. The number of images in each class for the three different test sets with their similarity to images in the training set.

number of images in each class similarity to training set

Test set 1 (N = 3000) Shootable 131 Different time point of represented experiment

Optimisable 296

Crystalline 379

Phase separation 187

Light precipitate 435

Heavy precipitate 859

Clear 418

Null 295

Test set 2 (N = 3000) Shootable 107 Different experiment from represented project

Optimisable 135

Crystalline 267

Phase separation 295

Light precipitate 452

Heavy precipitate 1054

Clear 529

Null 161

Test set 3 (N = 2999) Shootable 18 Unrepresented project

Optimisable 27

Crystalline 91

Phase separation 364

Light precipitate 598

Heavy precipitate 1275

Clear 614

Null 12

https://doi.org/10.1371/journal.pone.0282562.t002
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is a variation on the original Inception module in which a set of convolutional operations

occur in parallel before concatenation on output. The V3 module incorporates larger convolu-

tions and regularisation in the form of batch normalisation and label smoothing. This intro-

duces greater complexity but reduces the top-5 error on the ImageNet dataset from 6.67% to

4.2% in comparison to Inception-V1 (GoogLeNet [25]).

Advances in image classification are constantly being made, leading to reduced training

times and computational cost as well as improved classification rates. The building blocks, or

layers, used to create the architecture of a deep learning network vary and are often combined

with new architectures to extend and improve previous ideas. The application programming

interface (API) Keras [19] compared network architectures using the ImageNet validation set

[26] and provided the results in terms of Top-1 accuracy, where the class given the highest

probability is correct, and Top-5 accuracy, which means that one of the five highest probability

answers is the correct class. The number of parameters involved and training times are also

reported. Computational efficiency in relation to accuracy has been investigated previously for

the most popular CNNs [27] and, although NASNet-A-Large was found to have the greatest

Top-1 and Top-5 accuracies, it also had the greatest computational cost. Here. we chose to

investigate the four architectures with the best-reported Top-1 and Top-5 accuracy that did

not exceed our GPU capacity, these being:

1. ResNet50 [28]

2. DenseNet121 [29]

3. InceptionV3 [24]

4. Xception [30]

The architectures for these four networks are given in the (S3-S8 Figs in S1 File). ResNet

provides a popular architecture with shortcuts that allow skipped connections to stabilise

training but this can compromise the learning capacity of the network. This is mitigated by

DenseNet by concatenating all previous feature maps rather than summing them as in ResNet

and results in a 2.4% improvement in Top-1 accuracy on the ImageNet validation data with

5.4 million fewer parameters. Similarly, Xception, aka ‘extreme Inception’ was designed to

improve on InceptionV3 and achieved a 1.1% increase in accuracy on the ImageNet images

while using a million fewer parameters.

Network parameters were optimised using DenseNet121 architecture with a subset of 8,000

images from the MARCO project, split into training (80%) and validation (20%) sets. During

optimisation, training was carried out for 20 epochs using a cross-entropy loss function and

improvements in validation accuracy were identified as individual parameters were changed.

Tests indicated that two additional fully connected layers, separated by dropout layers reduced

overfitting and increased validation accuracy. The network parameters found to be optimal

(S1 Table in S1 File) were used to train new classifiers with the four chosen architectures and

the training data shown in Table 1. A consistent batch size of 16 was used for all architectures

regardless of complexity, whilst training occurred for 100 epochs in each case with no early

stopping. Weights were optimised using stochastic gradient descent with the Adam optimiser

and an initial learning rate of 2e−4. The learning rate was divided by 2 if the loss had not

decreased in 5 epochs. Multiple training runs performed with the DenseNet121 classifier with

different subsets of the MARCO dataset as validation data achieved accuracies between 91%—

94%.

Transfer learning allows the weights from pre-trained models to be re-used as a starting

model for new deep learning problems to save time. However, the models provided for the
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC), are based on RGB images and

therefore, in order to adapt them to work with our grayscale images, we created two Keras

Application models (keras.io/api/applications) for each framework, one accepting RGB images

using the ImageNet weights and the other accepting gray scale images with no initial weights

specified. The ImageNet weights were transferred to the gray scale model from the layer at

which the input shape allowed this. This approach has been shown to improve the efficiency of

the model by reducing the number of initial channels without significantly affecting precision

[31]. All training was implemented using TensorFlow and Keras and run on four NVIDIA

Tesla V100 graphic processing units. The training times per epoch are shown in Table 3.

Results

Fig 2 shows the performance of the four classifiers in ROC space when considering the three

classes, crystalline, optimisable and shootable together as positive results and all other classes as

negatives. As expected, the results for all architectures are best for Test set 1, for which images

from the same time series were included in the training data. The ResNet50 classifier stands

out as most different with noticeably higher sensitivity for Test sets 1 and 2 at the expense of

much lower specificity. There are fewer false positives for Test Set 3, comprising images from

experiments on a protein not represented in the training data, with this classifier but the sensi-

tivity is also much lower. The DenseNet121 classifier has similar sensitivity for Tests sets 2 and

3 but with lower specificity for Test set 2, where images from experiments with the same pro-

tein but not the same time series were included in the training set. Xception gives very similar

results to DenseNet for Test set 3, whereas Inception-V3 produces fewer true positives. How-

ever, for Test set 2, Inception-V3 shows a slight improvement over DenseNet, whereas a reduc-

tion in false positives is outweighed by a reduction in true positives with Xception. It should be

noted that the number of images in each class differs between test sets and that Test set 3 in

particular has few positive results (see Table 2).

Accuracy is measured as the proportion of classifications that are correct irrespective of

class and can therefore be misleading when classes are unbalanced. Cohen’s Kappa, originally

devised to compare inter-rater agreement, allows for class imbalance when used to assess clas-

sification results and so can provide a better representation of performance. Fig 3 shows the

Kappa and accuracy scores for the three test sets along with two other common performance

metrics, precision and the F1-score. Although the latter two scores are typically used for binary

classification, one-vs-all scores can be computed for each class and the weighted average used

to provide an overall score. Regardless of the performance metric, it can be seen that Dense-

Net121 outperformed the other classifiers on all three test sets. Xception produced the next

best results, followed by InceptionV3 and ResNet50 with little to choose between them for Test

sets 2 and 3. Results are also shown in S2 Table in S1 File.

It is somewhat surprising that the results obtained for Test set 3, using images from a proj-

ect not represented in the training data, are consistently better than those for Test set 2, for

which images from experiments with same proteins are included. These results are not

Table 3. Training times per epoch for each classifier.

classifier hours:minutes:seconds

DenseNet121 0:23:08

ResNet50 0:22:52

InceptionV3 0:18:45

Xception 1:16:24

https://doi.org/10.1371/journal.pone.0282562.t003
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explained by the fact that there are far fewer examples in the crystal classes. In fact, the results

for Test set 3 are proportionally similar to those for Test Set 1 for most classes as can be seen

from the full confusion matrices in (S9—S12 Figs in S1 File).

Fig 4 compares the results between test sets obtained with the DenseNet121 classifier. Here

balanced accuracy, i.e the average of sensitivity and specificity, is plotted for Test set 1 against

each of the other two test sets. For five of the classes, Test set 3 gives very similar results to Test

set 1, as can be seen from their proximity to the dotted diagonal line, whereas the results for

Test set 2 are lower. Here heavy precipitate is not only confused with light precipitate, but also

crystalline. There is also more confusion of crystalline with phase separation for Test set 2. Test

set 2 and 3 results are more similar for the other three classes (light precipitate, optimisable and

Fig 2. ROC space comparison of the four chosen architectures with the three different test data sets in Table 2.Note that only the pertinent area of
ROC space is shown.

https://doi.org/10.1371/journal.pone.0282562.g002

PLOS ONE Practical deep learning for crystallisation image classification

PLOSONE | https://doi.org/10.1371/journal.pone.0282562 March 9, 2023 8 / 16

https://doi.org/10.1371/journal.pone.0282562.g002
https://doi.org/10.1371/journal.pone.0282562


null) although, apart from null which also has few examples in Test set 3, results for Test set 3

are still closer to those for Test set 1. Fig 5 shows the results for Test sets 2 and 3 together, in

confusion matrices where the number of classes has been reduced by combining the two pre-

cipitate classes and the three crystal classes.

The lowest class accuracy overall is for phase separation with Xception, being confused

with both precipitate and crystals. The Xception classifier also confuses both null and clear

images with precipitate as does the InceptionV3 classifier. Other regular errors with Incep-

tionV3 are crystals classified as precipitate and phase separation classified as crystals. With

ResNet50 the lowest accuracies are for phase separation most often confused with crystal clas-

ses and crystals confused with precipitate. As seen earlier, the best results overall are obtained

with the DenseNet121 classifier with the lowest accuracy for null images, mainly confused

with clear although*10% of precipitate images are classified as crystals.

The differences in misclassifications between classifiers suggest the possibility of improved

classification from ensemble classification. Indeed, majority voting with all four classifiers

yields improved balanced accuracies over the DenseNet121 classifier of 13% and 19% for

phase separation and crystalline examples respectively with a reduction of just 1 or 2% for null

and optimisable (Table 4). Table 5 shows improvements of up to 21% for overall accuracy and

26% for Cohen’s Kappa when the predictions of all four classifiers are combined (Ensemble4)

with improvements of 12% for accuracy and 13% for Kappa over the DenseNet121 classifier.

We found that choosing the class randomly in the case of tied votes actually gave slightly worse

results than simply taking the class that comes up first and realised that this was due to the

order that the predictions were provided. The predictions from the DenseNet121 classifier,

shown to be the best individual classifier for our data, are given first and so are given priority

in the case of ties. Further investigation showed that changing the order of the other three clas-

sifiers did not make any difference to the results. However, as the Xception architecture

required so much extra training time, we also tried combining the results without this classifier

(Ensemble3). Tables 4 and 5 show that correct classifications fall by 3–4%. Comparison of the

accuracies in Table 5 with those achieved during training (97–99%) show that, although there

is some overfitting of the individual models, this is greatly reduced for the ensemble models

and is therefore not a major problem.

Discussion

The MARCO classifier was trained with over 440 thousand images from five different aca-

demic and industrial sources, achieving an accuracy of*94% on test images from these

Fig 3. Performance metrics for the four chosen architectures on (a) Test set 1, (b) Test set 2 and (c) Test set 3.

https://doi.org/10.1371/journal.pone.0282562.g003
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institutions [17]. However, even when the same imaging system is used, subtle differences in

the set-up result in much lower accuracies for images from other organisations. Although the

classifier is freely available [18] the weights are not, which means that tuning with additional

images is not possible and the only way to incorporate new information is to retrain from

scratch. Rosa and colleagues characterised the image data used in the original MARCOmodel

investigated the training settings most likely to enhance the local performance of a classifica-

tion model based on these images [32]. However, we found that using only our own images

Fig 4. Comparison of Test set results by class. For each class, the balanced accuracy obtained for Test Set 1 is plotted against the balanced accuracy for
Test Sets 2 and 3, identified by different symbols. The results shown were obtained using the DenseNet121 classifier.

https://doi.org/10.1371/journal.pone.0282562.g004
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gave better results than including even subsets of the MARCO images. Our training set is very

small in comparison but diverse and carefully labelled and we have shown that similar results

are achieved for independent test data whether from projects represented in the training data

or not.

We compared four of the most widely-used network architectures, chosen by their perfor-

mance reported by the Keras API but taking into account computational limitations. It is pos-

sible that with greater computational capacity more advanced models, such as inception-v4

and SENet-154, could further improve classification rates as they do with the ImageNet valida-

tion data. Each of our chosen architectures has been used in recent studies on the detection of

Fig 5. Confusion matrices showing the results obtained with the four different classifiers for Test sets 2 and 3 combined. The number of classes has
been reduced for easier comparison by combining light precipitate and heavy precipitate as just precipitate and the three classes crystalline, optimisable and
shootable as crystal.

https://doi.org/10.1371/journal.pone.0282562.g005

Table 4. Balanced class accuracies for Tests sets 2 and 3 combined obtained using ensemble classification in comparison to those obtained for individual classifiers.
Ensemble4 combines the results of all four classifiers, whereas ensemble3 does not use the predictions from the Xception classifier. Accuracies greater than 90% are
highlighted.

classifier null clear heavy ppt light ppt phase sep crystalline optimisable shootable

DenseNet121 0.97 0.95 0.93 0.93 0.86 0.79 0.92 0.94

ResNet50 0.86 0.91 0.87 0.88 0.82 0.89 0.71 0.99

InceptionV3 0.93 0.98 0.77 0.87 0.91 0.85 0.96 0.84

Xception 0.96 0.97 0.81 0.89 0.97 0.81 0.97 0.88

Ensemble4 0.96 0.99 0.97 0.98 0.99 0.98 0.90 1.00

Ensemble3 0.96 0.98 0.94 0.95 0.98 0.95 0.91 97.0

https://doi.org/10.1371/journal.pone.0282562.t004
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COVID-19 from chest X-Ray images, sometimes in combination. Rahimzadeh and Attar

concatenated the output features from Xception and ResNet50V2 to provide a classification

model that could differentiate between COVID-19 and pneumonia [33], achieving an overall

accuracy of 91.4%. With many more normal and pneumonia cases, they had just 30 COVID-

19 cases in the test set for which the sensitivity was 75.3%. A balanced dataset comprising 320

chest X-Ray images from each of COVID-19 patients and healthy volunteers was used in the

ratio 50:20:30 for training, validation and testing [34]. Zhang and colleagues compared the

results of three DenseNet architectures (121,169 and 201) with different transfer learning set-

tings. They found that DenseNet201 gave the best results with an overall accuracy of 96.9%

and suggested that its deeper neural structure could learn more complicated patterns. A com-

parison of three other architectures (ResNet50, InceptionV3 and VGG16) was carried out by

Guefrechi and colleagues with a larger data set of chest X-Ray images [35]. The full data set

consisted of 623 COVID-19 positive images augmented to 2000 together with 3000 COVID-19

negative images. They fine-tuned each classifier and obtained similar results for the different

architectures, with accuracies of 97.1% to 98.3% on test data.

Previous benchmark analysis of different architectures found that Xception gave the highest

accuracy, followed by InceptionV3, ResNet50 and then DenseNet121 [27], whereas, for our

data, the DenseNet121 architecture outperformed the other architectures. However, we did

obtain very similar accuracy with Xception and, in fact, did give a higher Kappa score for Test

sets 2 and 3 combined. Although the ResNet50 architecture produced the worst predictions

overall, this classifier had a high crystal detection rate of 93.8%. It does however produce more

false positives as can be seen in Fig 2. The training time for the Xception classifier was four

times that for InceptionV3, requiring 127 hours over the 100 epochs in comparison to between

31 and 39 hours for the other three classifiers. As the four classifiers had different strengths in

terms of particular class accuracies, we were able to combine their results in an ensemble clas-

sifier using majority voting and achieve accuracy comparable to that seen in the MARCO proj-

ect. We consider the increase in accuracy over the best individual classifier to be worth the

combined training time.

We have chosen to categorise the results of crystallisation experiments using eight classes

rather than the four used in the MARCO projects in order to provide useful information for

further analysis. Whereas the MARCO classes combined both good and bad results in the

ambiguously named other class, we aim to show just how good an outcome is by having more

classes. With the exception of null, which could represent unavoidable technical problem

rather than an experimental outcome, our eight classes reflect some ranking, even within the

three crystal classes, that could inform further work. We have developed a graphical user inter-

face (GUI) to visualise the results for each experimental plate and Fig 6 shows an example

obtained using the Morpheus crystallisation screen [4]. This screen was designed as a grid with

Table 5. Overall accuracy and Kappa values for ensemble classification in comparison to those obtained from indi-
vidual classifiers. Ensemble4 combines the results of all four classifiers, whereas ensemble3 does not use the predic-
tions from the Xception classifier.

classifier Accuracy Cohen’s Kappa

DenseNet121 0.83 0.81

ResNet50 0.74 0.68

InceptionV3 0.78 0.73

Xception 0.81 0.88

Ensemble4 0.95 0.94

Ensemble3 0.92 0.90

https://doi.org/10.1371/journal.pone.0282562.t005
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columns covering 4 different precipitant-cryoprotectant mixes for three different buffer sys-

tems (pH 6.5, 7.5 and 8.5) and rows corresponding to different additives. Patterns can be seen

in Fig 6 with certain columns being associated with particular classes, while some additives are

noticeable for being different, for example row B (halides) and row G (carboxylic acids). As

with the MARCO Polo interface, developed to display and share the results of the MARCO

classifier [36], our GUI allows images in the time course to be displayed and provides experi-

mental details. Patterns such as those seen in Fig 6 suggest that successful conditions could

potentially be related to particular protein properties, allowing optimal conditions for new

proteins to be predicted.

Conclusion

We have shown that a bespoke ensemble classifier can be trained to classify images from crys-

tallisation experiments without the need for supercomputers or a huge training data set. Com-

parison of four popular deep learning architectures revealed interesting differences in class

accuracies between these classifiers. While DenseNet121 provided the best overall accuracy,

each architecture was optimal for at least one particular class. The results in Table 4 show that

Fig 6. Visualisation of experimental outcomes obtained using the Morpheus crystallisation screen [4]. In addition to being labelled with the predicted
class number, each well in the plate is colour-coded according to the predicted class. The sequence of numbers in small text for each well shows the class
numbers predicted earlier in the time series.

https://doi.org/10.1371/journal.pone.0282562.g006
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DenseNet121 actually only gave the best results for null images and the two precipitate classes,

whereas InceptionV3 gave the highest accuracy for it clear images, Xception was best for phase

separation and optimisable images and ResNet50 produced the best results for images in the

crystalline and shootable classes. Although the overall accuracy achieved with ResNet50 is 9%

lower than that for DenseNet121, this classifier did in fact have an accuracy for crystalline

images 10% higher than that with the DenseNet architecture. These differences in misclassifi-

cation suggested ensemble classification could improve the results and the use of majority vot-

ing with all four classifiers increased the overall accuracy from 83%, obtained for the best

individual classifier, to 95% and Cohen’s Kappa from 81% to 94%.
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