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We study variational quantum algorithms
from the perspective of free fermions. By de-
riving the explicit structure of the associated
Lie algebras, we show that the Quantum Ap-
proximate Optimization Algorithm (QAOA)
on a one-dimensional lattice – with and with-
out decoupled angles – is able to prepare all
fermionic Gaussian states respecting the sym-
metries of the circuit. Leveraging these re-
sults, we numerically study the interplay be-
tween these symmetries and the locality of the
target state, and find that an absence of sym-
metries makes nonlocal states easier to pre-
pare. An efficient classical simulation of Gaus-
sian states, with system sizes up to 80 and deep
circuits, is employed to study the behavior of
the circuit when it is overparameterized. In
this regime of optimization, we find that the
number of iterations to converge to the solu-
tion scales linearly with system size. More-
over, we observe that the number of itera-
tions to converge to the solution decreases ex-
ponentially with the depth of the circuit, un-
til it saturates at a depth which is quadratic
in system size. Finally, we conclude that the
improvement in the optimization can be ex-
plained in terms of better local linear approx-
imations provided by the gradients.

1 Introduction
Variational quantum algorithms have recently re-
ceived much attention as a potential candidate for
demonstrating quantum advantage. Originally pro-
posed in the context of quantum chemistry [76] and
classical optimization problems [28], such algorithms
have since found wide use as a tool for leveraging
the current generation of noisy, intermediate scale
quantum computers [77] to tackle problems which
Gabriel Matos: pygdfm@leeds.ac.uk

are hard to solve classically. For that purpose they
have been extended to a myriad of domains, includ-
ing machine learning, [1, 9, 18, 27, 38, 81], prepa-
ration of general condensed matter quantum states
[29, 41, 46, 79, 80, 101, 105], finance [25, 71], molecular
biology and biochemisty [10, 74], and linear algebra
[11, 17, 106], and have been implemented in numerous
quantum simulation platforms [5, 34, 48, 75, 102].

A major issue with this class of algorithms is that
they are notoriously hard to optimize classically. Not
only are they known to have an optimization land-
scape riddled with local minima [44, 58], they also
suffer from the phenomenon of “barren plateaus", in
which the gradients with respect to the optimization
parameters vanish exponentially with system size [63,
99]. Though several strategies have been proposed to
deal with this problem [35, 52, 56, 57, 64, 90, 110] it
remains an active area of research.

Successfully employing parametrized circuits re-
quires a balance between expressibility and train-
ability. Indeed, while universal circuit ansätze ex-
ist [8, 66], problem-agnostic circuits typically present
barren plateaus [43]. Thus, it is crucial to design pa-
rameterized circuits that are able to adequately pre-
pare or approximate the quantum state of interest,
while not being overly expressive so as not to compro-
mise its trainability. To this end, a characterization
of the expressibility of these algorithms has been per-
formed in several contexts, and strategies to systemat-
ically quantify it have been proposed [1, 2, 23, 68, 84].
A way to constrain the expressibility of a parameter-
ized circuit is to employ problem-tailored ansätze, such
as the Hamiltonian Variational Ansatz [103], among
other strategies such as exploiting symmetries in the
problem [26, 33, 59, 95, 98] or removing redundant
parameters [31, 32].

Other factors not immediately linked to the ex-
pressibility of the circuit are known to affect the opti-
mization, such as the boundary conditions used; these
have been observed to greatly affect the success of
optimization, and strategies have recently been pro-

Accepted in Quantum 2023-03-16, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

20
6.

06
40

0v
3 

 [
qu

an
t-

ph
] 

 1
7 

M
ar

 2
02

3

https://quantum-journal.org/?s=Characterization%20of%20variational%20quantum%20algorithms%20using%20free%20fermions&reason=title-click
https://quantum-journal.org/?s=Characterization%20of%20variational%20quantum%20algorithms%20using%20free%20fermions&reason=title-click
https://orcid.org/0000-0002-3373-0128
https://orcid.org/0000-0002-1648-6725
https://orcid.org/0000-0002-8451-2235
mailto:pygdfm@leeds.ac.uk


posed to address this issue [86]. Another set of such
factors is related to the individual characteristics of
states to be prepared, such as locality of correlations
and entanglement [20, 42, 60, 93, 94, 96]. Despite
the extensive work done on this subject, there is no
systematic characterization or theory explaining the
interplay between all these aspects and their connec-
tion to expressibility.

Finally, it has been observed that an increase in
the number of parameters in the circuit without a
corresponding increase in the expressibility induces
an overparameterized regime, where the optimization
is known to converge significantly faster, becoming
less prone to local minima and alleviating the afore-
mentioned issues [49, 50, 53, 54]. Though significant
progress in explaining the mechanism behind this phe-
nomenon has been achieved [54, 108], open questions
remain, such as how to determine the optimal circuit
depth that best leverages this effect.

In this work, we begin by comprehensively charac-
terizing the original QAOA protocol [28] on a 1D lat-
tice and a variation on it using decoupled angles [40].
By deriving the explicit structure of the associated Lie
algebras [54, 66], we show that it can prepare exactly
all fermionic Gaussian states satisfying the symme-
tries of the circuit. Guided by these results, we find
that, while decoupling the angles increases the num-
ber of parameters and the expressibility of the circuit
by removing symmetries, this makes the preparation
of non-local states easier and of local states harder,
flipping the behavior observed when these angles are
coupled. This contrasts with the commonly held be-
lief that the use of symmetries is beneficial to the
optimization [6, 33, 55, 65, 73, 82, 83, 92, 109].

By leveraging covariance matrix and automatic dif-
ferentiation techniques to simulate deep circuits and
system sizes up to 80 qubits, we study the overparam-
eterized regime of optimization, exploiting the fact
that its onset is polynomial in lattice size for the an-
sätze we consider (see [53, 54] and Section 3.1). In
these conditions, we observe that the number of iter-
ations to converge to the solution scales linearly with
the size of the system. This contrasts with the poly-
nomial scaling we encounter at smaller depths. More-
over, we quantify the degree of improvement that
overparameterization confers to the optimization as
the circuit depth increases. We find that the num-
ber of iterations to converge decays exponentially with
circuit depth, and that the optimization hardness de-
velops a minimum for a depth that is proportional to
L2, the square of the system size. Finally, we find
that the exponential convergence to the solution seen
in the overparameterized regime can be explained in
terms of an improvement of the quality of the linear
approximations provided by the gradients, elucidating
why the optimization hardness continues to decrease
even after local minima disappear.

This paper is organized as follows. In Sec. 2 we in-

troduce the variational setup, focusing on free-fermion
systems, and establish the associated notation. More-
over, we develop Lie theoretical tools for the analy-
sis of variational algorithms. We apply these tools
in Sec. 3 which contains our main results. In par-
ticular, Section 3.1 characterizes the expressibility
of protocols introduced in Section 2.3, where they
are presented alongside a concise introduction to free
fermionic systems. In Section 3.2, we explore the opti-
mization associated to the corresponding parameter-
ized circuits, and highlight the influence of symmetries
and the locality of the target state. In Section 3.3 we
discuss the effect of overparameterization, and per-
form a scaling of the number of iterations to converge
with system size and circuit depth. Our conclusions
are presented in Section 4, while the Appendixes con-
tain further numerical characterization of the circuit’s
optimization landscape in terms of gradient variance,
staircase structure in optimization traces, and the de-
tails of the underlying Lie algebra structure.

2 Preliminaries
2.1 Variational Quantum Algorithms
Variational quantum algorithms (VQA) [7, 14] are
generally formulated as a feedback loop between an
optimization routine running on a classical computer,
and a quantum simulator. This routine manipulates a
set of controllable parameters defining a family quan-
tum circuits with the objective of finding a circuit
which is able to prepare a quantum state of interest
(though more general definitions exist depending on
the problem at hand). In this context, the parame-
terized family of quantum circuits we will focus on is
constructed by following the alternating “bang-bang"
structure of the Quantum Approximate Optimization
Algorithm (QAOA) [28, 107]. Given a set of Hamilto-
nians H = (H1, ...,Hm), the circuit is defined by the
unitary operator

U(θ, p) = exp(−iθp,mHm)... exp(−iθp,1H1)
... exp(−iθ1,mHm)... exp(−iθ1,1H1). (1)

where p controls the circuit depth and θ ≡
{θ1,1, θ1,2, . . . , θp,m} are the parameters to be opti-
mized. We call such a set of Hamiltonians H a proto-
col. The associated parameters are often called angles
in the literature.

Given an initial state |ψ(0)〉 and a set of parameters
θ, this circuit prepares the state

|ψ(θ)〉 = U(θ, p) |ψ(0)〉 . (2)

The goal, as outlined above, is to employ a classical
optimization routine in order to find a set of angles
θ∗, such that |ψ(θ∗)〉 is the quantum state of inter-
est, which we call the target state. This is done by
supplying the optimizer with a cost function, which
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measures the distance between the state in prepara-
tion and the target state.

Here, we define the target state as being the unique
ground state of some quantum HamiltonianH. In this
case, one can use a cost function based on the expec-
tation value of the state with respect to this Hamil-
tonian. We use the shifted energy density as the cost
function,

e(ψ) = 〈ψ|H|ψ〉 − E0

L
, (3)

where E0 is the ground state energy of H and L is
the size of the system under consideration. By the
variational principle, and given that we assume that
the target state is the unique ground state of H, this
cost is minimized and is equal to zero when |ψ〉 is the
target state. In what follows, we refer to the Hamil-
tonian featuring in this cost function as the target
Hamiltonian.

2.2 Lie Theory and Expressibility
Lie theoretical techniques provide a powerful tool to
characterize the expressibility of quantum controllable
systems [3]. They have been previously used in the
literature to prove the universality of a set of protocols
under certain assumptions [66]. These have been fur-
ther employed to characterize controllability and over-
parameterisation in variational quantum algorithms
[53, 54], and have recently found use in characterizing
symmetries in data in the context of machine learning
[55, 65].

Here we summarize and formalize the theory behind
this and define the associated notation. Given U(θ, p)
defined by the Hamiltonians H = (H1, ...,Hm) as in
Section 2.1, we define

U =
∞⋃
p=1
Up, Up = {U(θ, p) : θ ∈ Rmp}. (4)

The set U contains all unitaries that the protocol H
can generate at arbitrary circuit depth. It is a group,
as it contains the product of any two of its elements
and the inverse of any of its elements. Further, since
matrix multiplication is differentiable, it constitutes a
Lie group.

Associated to the Lie group U is a Lie algebra u,
which can be defined at a point θ as

u =
{
∂U(θ, p)
∂θi

: i, p ∈ N+
}
. (5)

It characterizes how the circuit U(θ, p) changes with
an infinitesimal variation of the parameters. Note
that U = {e−iH : iH ∈ u} and that u = 〈iH1, ..., iHm〉
[19, 66], where 〈...〉 denotes the Lie algebra generated
by these elements i.e the space obtained by itera-
tively taking the Lie bracket [A,B] = AB − BA of
iH1, ..., iHN [36].

. . . ...

. . . ...
site-independent

. . . ...

. . . ...
site-dependent

Rz(𝜗)

Rxx(θ)

Rxx(θ)
Rz(𝜗)
Rz(𝜗)

Rxx(θ)

Rxx(θ)

Rxx(θ1)

Rxx(θ3)

Rxx(θ2)

Rxx(θ4)

Rz(𝜗1)

Rz(𝜗2)

Rz(𝜗3)

Figure 1: 1. Schematic depicting the Lie structures intro-
duced in Section 2.2 and their relation to variational opti-
mization. From an initial state, the set of unitaries gener-
ated by the parameterized circuit, U , prepares a manifold
of states S. The space of directions that the protocol is
able to explore at a given point is characterized by the Lie
algebra u, and there is a redundancy in the unitaries prepar-
ing a state which is represented by a stabilizer gauge group
G. Symmetries in the protocol constrain the optimization
(a) to a submanifold of states Ssym, which affects the land-
scape by introducing local minima (b) and restricting the
features available to the optimizer, causing the optimization
to take longer (c), as explained in Section 3.2. By increas-
ing the depth of the circuit, the variational protocol enters
an overparameterized regime (d), where minima disappear
and convergence of the cost function to a global minimum
becomes exponential. 2. Circuits illustrating the variational
protocols introduced in Section 2.3 and studied throughout
the rest of this paper 3. The parameterization at minimal
circuit depth p̂ (e) matches the dimension of the manifold of
states, so that minima exist and are unique. By the implicit
function theorem, the overparameterization (f) defines local,
lower-dimensional parameterizations matching the dimension
of the manifold. These more adequately capture its features,
while describing the optimization path in a piecewise manner
(see Section 3.3). It is an open question whether a global
exact parameterization with these properties could be found.

We further define

Sp = {U(θ, p)|ψ(0)〉 : θ ∈ Rmp}, S =
∞⋃
p=1
Sp, (6)

as the set of states preparable by the variational quan-
tum circuit at depth p and at any depth, respectively.
We emphasize that S depends on the initial state cho-
sen.

We will restrict our analysis to finite dimensional
spaces, for which there must exist a p∗ such that
U = Up∗

[19]. By the same argument, there must
be a p̂ such that S = S p̂. This represents the circuit
depth at which the circuit has reached maximum ex-
pressibility for a given initial state. We will see that,
in general, p̂ < p∗. This happens because there can be
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a set G of unitary matrices in U that leave the initial
state |ψ(0)〉 invariant, forming a stabilizer subgroup.
Mathematically, this translates into U having a fiber
bundle structure and S ∼= U/G, where G represents
a Gauge symmetry group [67] (see Figure 1.1 for a
graphical summary). As a consequence of this,

dimS = dimU − dimG (7)

justifying that, in general, S will require less parame-
ters to describe than U . It is an open question whether
there is a method to systematically determine p∗ and
p̂ given a set of Hamiltonians H.

Since U = {e−iA1e−iA2 ....e−iAm : m ∈ N, Aj ∈ u}
[19, 66], the unitaries in U can approximate a quan-
tum annealing protocol and thus adiabatically pre-
pare the ground state of any Hamiltonian in u [62],
provided that |ψ(0)〉 is the ground state of some
H0 ∈ u. Conversely, if |ψ〉 is prepared by U ∈ U ,
then it is the ground state of H = UH0U

† ∈ u.
Thus, the Lie algebra u fully characterizes the set S
of preparable states; we will exploit this in Section 3.1
to study the expressibility of the protocols defined in
Section 2.3.

2.3 Free fermionic systems and VQA

Throughout this paper, we work with a 1D spin sys-
tem on a linear lattice, and we denote the correspond-
ing lattice size by L. We define Majorana operators
through the standard Jordan-Wigner transformation

γ2j−1 = Z...ZXj , γ2j = Z...ZYj , (8)

where we assume that the string of Zs stretches
from the left end of the lattice to the ith position.
Quadratic fermionic Hamiltonians (which we abbre-
viate to “quadratic Hamiltonians") are of the form

H = i
∑
j,k

hj,kγjγk, (9)

where hj,k is a 2L×2L real and antisymmetric matrix.
Note that all quadratic Hamiltonians preserve (com-
mute with) the fermionic parity P =

∏
j Zj . The

eigenstates of a quadratic Hamiltonian are fermionic
Gaussian states (FGS), which are a class of quantum
states that are fully determined (up to a phase) by
their 2L× 2L covariance matrix

Γjk = i

2 〈γjγk − γkγj〉ψ

= i

2 Tr(|ψ〉〈ψ|(γjγk − γkγj)), (10)

which is real and antisymmetric.

Both FGS and quadratic Hamiltonians are effi-
ciently representable, requiring a number of param-
eters that is quadratic in system size to be specified.
Moreover, the quantum dynamics associated to the
evolution of a covariance matrix under the action of
a quadratic Hamiltonian is efficiently computable, as
is its expectation value with respect to a quantum
observable [88, 91, 97].

We now establish how symmetries in the 1D lat-
tice are reflected on the structures we have just in-
troduced. The covariance matrix of a translation-
ally invariant FGS |ψ〉 and a translationally invariant
quadratic Hamiltonian defined by hj,k satisfy, respec-
tively:

Γjk = Γj+2m k+2m, hj,k = hj+2m,k+2m, (11)

for all integersm and it is understood that coefficients
are taken modulo the lattice size. The covariance ma-
trix of a lattice inversion symmetric FGS ψ and a
lattice inversion symmetric quadratic Hamiltonian H
defined by hj,k satisfy, respectively:

Γjk = (−1)j−k+1ΓL−k+1 L−j+1,

hj,k = (−1)j−k+1hL−k+1 L−j+1 (12)

Throughout, we denote by “symmetric FGS" and
“symmetric quadratic Hamiltonians" those that are
invariant both under translation and lattice inversion.

Following the framework outlined in Section 2.1 we
study two different protocols, both of which feature
only quadratic Hamiltonians:

1. A site-independent protocol, defined by the set

I =

i∑
j

Zj , i
∑
j

XjXj+1


=

−∑
j

γ2j−1γ2j ,−
∑
j

γ2jγ2j+1

 . (13)

and we denote its Lie algebra by i.

2. A site dependent protocol, where

D = (iX1X2, ..., iXN−1XN ,

iZ1, ..., iZN )
= (− γ2γ3, ...,−γN−1γN−2,

− γ1γ2, ...,−γN−1γN ), (14)

and we denote its Lie algebra by d.

The former corresponds to the original QAOA proto-
col [28] on a linear lattice, while the latter results from
removing the layer-wise coupling in the angles of this
original protocol [40]. We will see that this decou-
pling results in distinct properties with respect to the
optimization of the associated variational algorithm.

Writing out the corresponding unitary explicitly:
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U(p, θ) = exp(−i
∑
k

θkp,ZZk) exp(−i
∑
k

θkp,XXXkXk+1)... exp(−i
∑
k

θk1,ZZk) exp(−i
∑
k

θk1,XXXkXk+1). (15)

As mentioned above, the site-independent protocol
can be seen as the site-dependent one with the ad-
ditional constraint that θia,P = θa,P , i.e., the value of
the angle is the same across a circuit layer.

The full structure of the Lie algebras corresponding
to the protocols above is elucidated in Appendix B.
In particular, a basis for these algebras is obtained
by iteratively taking the commutators of their genera-
tors. Moreover, we clarify how their structure changes
when we restrict ourselves to a particular sector of the
parity symmetry. In the next section, we will employ
them to study the expressibility of the corresponding
protocols following Section 2.2.

3 Results
3.1 Circuit expressibility and saturation
Here, we determine the expressibility of the protocols
introduced in the previous section by examining the
corresponding Lie algebra. In particular, we study
the set of unitaries U that each protocol can generate
and the set of states S that each can prepare. In what
follows we consider the initial state to be a fermionic
Gaussian state of a given parity respecting the sym-
metries of the circuit.

Our results are summarized in Table 1. All pro-
tocols are able to prepare every FGS with the same
parity as the initial state and respecting the symme-
tries of the circuit. This can be proved by studying
the structure of the corresponding Lie algebras, de-
rived in Appendix B and referenced in Table 1. By
applying the Jordan-Wigner transformation, these Lie
algebras can be seen to form the set of free fermionic
Hamiltonians satisfying the symmetries of the circuit.
As shown in Section 2.2, every ground state of such a
Hamiltonian can be prepared by the circuit at some
depth; and the set of these ground states are precisely
the fermionic Gaussian states having the same par-
ity as the initial state and respecting the appropriate
symmetries.

As outlined in Section 2.2, there can be a symmetry
subgroup G of U that leaves the initial state invari-
ant. In the case of a FGS, there is a U(L) freedom
in the fermionic modes, which can be rotated without
changing the underlying state [104]. The subset of
these rotations contained in U will form G; this can
be all of the U(L) freedom, as is the case of the site
dependent protocol, or only part of it, in which case
dimG < dimU(L).

We further attempt to determine the minimum
depth p̂ necessary to prepare any state in S for each

of the cases in Table 1. In what follows, we denote by
q the number of variational parameters per unit of p.
While it is clear that qp̂ must be greater than dimS,
the circuit must be also be deep enough so that corre-
lations are able to propagate across the lattice [62]. A
consequence of this is that p̂ ≥ dL/2e. We compute p̂
numerically by randomly generating Hamiltonians in
u and verifying that their ground states are prepared
to numerical precision. The quantity

qp̂− dimS, (16)

represents the number of parameters in the circuit
that exceeds dimS.

We find, in cases where periodic boundary con-
ditions (PBC) are employed, or where the site-
dependent protocol is used, that p̂ = dL/2e, saturat-
ing the aforementioned lower bound. For the remain-
ing case, which corresponds to the site-independent
protocol using open boundary conditions (OBC), p̂
proved to be unfeasible to determine numerically in a
precise manner due to a significantly higher number
of local minima.

In the site-independent case with periodic bound-
ary conditions, qp̂ = dimS, which suggests an ex-
act parameterization of S. In contrast, in the site-
dependent case with PBCs, there are qp̂− dimS = L
redundant parameters at p̂. One can, however, do
away with them by removing the last e−i

∑
j
θp,ZZj

layer from this circuit, while still being able to pre-
pare all states in S. Thus, in this case, one can also
obtain an exact parameterization. By abuse of termi-
nology, we will refer to the behavior at circuit depth
p̂ as the exactly parameterized regime, regardless of
whether qp̂ = dimS. A consequence of having an ex-
act parameterization of S is that, when the associated
angles are appropriately restricted, global minima ex-
ist and are unique.

3.2 Effect of Symmetries and Locality on the
Optimization Landscape
We proceed to study the hardness of the optimization
and the characteristics of the associated landscape
when running a variational algorithm using the site-
independent, Eq. (13), and site-dependent, Eq. (14),
protocols. We work with PBC, and target the ground
state of two models:

1. The critical transverse field Ising model [41]

HI = −
∑
j

XjXj+1 −
∑
j

Zj . (17)
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Dependent Independent
OBC PBC OBC PBC

S fixed parity FGS

fixed
parity
FGS

satisfying
(12)

fixed
parity
FGS

satisfying
(11) & (12)

u (24) (26) (28) (30)
u

(fixed parity) (24) (28) (37)

dimU L(2L− 1) 2L(2L− 1) L2 3L− 2
dim U

(fixed parity) L(2L− 1) L2 b3L/2c

dimG L2 L(L+ 1)/2 bL/2c
dimS L(L− 1) L(L− 1)/2 L

Table 1: Table summarizing the expressibility of the site-
dependent, Eq. (13), and site-independent, Eq. (14), proto-
cols. The structure of the Lie algebras u corresponding to
each protocol is given in Appendix B; the entries in this table
refer to the respective basis. As outlined in the main text,
these are used to analytically deduce U , the space of unitaries
that each protocol can generate, and S, the space of states
that each protocol can prepare. We assume that the initial
state is a FGS of a given parity respecting the symmetries of
the circuit.

2. Randomly generated symmetric quadratic Hamil-
tonians

HG = i
∑
jk

hjkγjγk (18)

where hjk respects Eq. (12) and Eq. (11).

The first is a well-known quantum-critical model in
condensed matter physics [24], possessing a ground
state whose entanglement entropy diverges logarith-
mically with system size [13]. The second Hamilto-
nian is obtained by sampling at random out of all
the ones for which the ground state is possible to
prepare with both protocols. As mentioned at the
end of Section 2.3, this is characterized by the Lie
algebra corresponding to each protocol; in practice,
the algebra of the site-dependent one contains that
of the site-independent, and the latter, when using
PBC, consists of all quadratic Hamiltonians satisfy-
ing Eqs. (11)-(12). These Hamiltonians are sampled
by directly generating entries in hij using a normal
distribution with mean equal to zero and standard
deviation equal to one, following these constraints.

Moreover, below we use a Z-polarized state

|ψ(0)〉 = |↑ ... ↑〉 (19)

as the initial state of the protocol. The classical min-
imization is performed using the BFGS optimization
algorithm; though other optimizers such as Nelder-
Mead and conjugate gradient were checked and the
behavior obtained was qualitatively the same.

Figure 2 shows the optimization traces after classi-
cally optimizing the algorithm. We compare two cir-

cuit depths: p = L/2 [41, 62, 100], which we have de-
termined to be the minimum depth for which the pro-
tocol reaches maximum expressibility, and p = L2/4,
well into the overparameterized regime (as we quan-
tify in Section 3.3), where the redundancy in param-
eters is known to greatly reduce the computational
cost of the optimization [49, 50, 53, 54]. We defer a
discussion of the latter for Section 3.3.

We observe that changing the target state and the
protocol employed can drastically alter the character-
istics of the optimization. In particular, we identify
a “staircase" pattern, signaling a harder optimization
problem, which is discernible at higher system sizes.
It emerges both when employing the site dependent
protocol to target the Ising model [Figure 2(a)], and
when using the site independent protocol to target
generic quadratic Hamiltonians [Figure 2(d)]. We dis-
cuss and propose a mechanism for this phenomenon in
Appendix C, where we see that the cost function is not
able to distinguish the target state from other states in
the Hilbert space, even if they are orthogonal. It was
argued in [4] that this behavior is not possible when
the barren plateau phenomenon is present; here, we
see that it can represent an intermediate behavior of
the landscape as the size of the system increases and
gradients begin to vanish (we study the scaling of the
gradients in Appendix A). The efficient classical sim-
ulation of FGS is pivotal in observing it, as it is not
as evident in smaller system sizes.

The only case susceptible to local minima is the
site independent one at p = L/2 when target-
ing generic symmetric quadratic Hamiltonians [Fig-
ure 2(d)]. There, the optimization is highly sensitive
to the initial condition, and the number of iterations
to converge, along with the value found at the min-
imum, can vary drastically. This starkly contrasts
with the other cases in Figure 2 — in particular, the
one where we target the Ising model using the same
protocol [Figure 2(b)]. While the average number of
iterations to convergence is approximately the same in
both cases, the former has a high standard deviation,
as can be seen in Figure 5. Thus, using a protocol
with less symmetry produces more consistent results
which are not susceptible to local minima. This shows
that imposing more symmetries may not always be de-
sirable, as it may have an unpredictable effect in the
optimization landscape and can result in local min-
ima.

We now study how different properties of the tar-
get Hamiltonian can give rise to the phenomenol-
ogy we previously observed and thereby explain Fig-
ure 2. One obvious property that distinguishes the
Ising Hamiltonian, Eq. (17), from that of the random
Hamiltonian in Eq. (18) is the presence of locality in
the former case. Locality of the target Hamiltonian is
known to influence whether the optimization associ-
ated to a quantum circuit will feature barren plateaus,
with non-local terms presenting exponentially vanish-
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Figure 2: Cost function optimization traces exposing the differences between the minimizations as the protocol and target
Hamiltonian change. The effect of circuit depth is probed using the exactly parameterized regime (p = L/2) and the
overparameterized regime (p = L2/4). The target Hamiltonian is (Top row): the Ising model, defined in Eq. (17), as the
target Hamiltonian, and 5 random initializations per value of p, lattice size and protocol. (Bottom row): 3 randomly generated
symmetric quadratic Hamiltonians, defined in Eq. (18), and 5 random initializations per generated Hamiltonian, value of
p, lattice size and protocol. When preparing the ground state of the Ising model (a), the site dependent protocol displays a
"staircase" pattern, where the cost function undergoes little variation before dropping to a new plateau; in stark contrast, when
preparing a generic symmetric FGS (c), it exhibits a smoother decrease. The site independent protocol presents the opposite
behavior: when preparing the ground state of the Ising model (b), the cost initially undergoes a slow, but smooth, decrease,
before sharply dropping when the state is prepared; when the target state is a generic symmetric FGS (d), the staircase pattern
is again visible, this time also accompanied by local minima. This behavior is highlighted in Figure 9 in Appendix C. After
increasing the depth of the circuit into the overparameterized regime, the differences in optimization between states vanish,
and the cost function decrease becomes exponential with no local minima present.

ing gradients [15]. Locality can also have an influence
below system sizes at which barren plateaus appear,
and it has been argued that long-range interactions in
the target Hamiltonian make the optimization harder
[89], resulting in higher values of the cost function at
the optimum and requiring more iterations to con-
verge. In our case, we will see that the influence of
the locality of the target Hamiltonian on optimization
depends on the constraints of the protocol being used.
In particular, we will show that the site-independent
and the site-dependent protocol behave differently in
this respect, which explains the observed differences
in the optimization.

We use three families of models to quantify how the
locality of the target Hamiltonian affects the hardness
of the optimization:

1. A special type of a long-range Ising Hamiltonian:

H(α) = −
∑
r

e−αr
∑
j

XjZj+1Zj+2 . . . Zj+rXj+r+1

−
∑
j

Zj , (20)

where α describes exponentially decaying interac-
tions in a lattice. The choice of this Hamiltonian
is motivated by the fact that its ground state can

be expressed in terms of free fermions for any α,
unlike the related models with power-law decaying
interactions recently studied in Refs. [42, 89].

2. (k + 2)-local, symmetric, quadratic Hamiltonians

HLG(k) = i
∑
jl

h̃jlγjγl, (21)

h̃jl =
{

random, if |j − l| < 2(k + 2),
0, if |j − l| ≥ 2(k + 2),

which are derived from the randomly-generated
generic symmetric quadratic Hamiltonians in
Eq. (18) by setting hjl = 0 for any pair of Ma-
joranas at a distance ≥ 2(k + 2).

3. A cluster Ising model at criticality [21, 70]

HC(k) = −
∑
j

XjZj+1Zj+2 . . . Zj+rXj+k+1

−
∑
j

Zj , (22)

for which the ground state in one of the gapped
phases is a symmetry-protected topological state
[78].
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In the two latter models, interactions are strictly lim-
ited to sites at most k+2 sites away, while in the first
model they are exponentially suppressed.

Figure 3 compares the effect of locality on the
optimization. We vary the parameters controlling
localization of the couplings in each of the models
Eqs. (20)-(22), and we measure the success probabil-
ity in the site-independent case or the number of it-
erations to converge in the site-dependent case. The
success probability is defined as the ratio between the
number of random initializations that resulted in the
cost function dropping below numerical precision (and
thus the target state being successfully prepared) ver-
sus the total number of initializations. This measure
was not used as a benchmark for the site-dependent
protocol, as this protocol is not susceptible to getting
trapped in local minima, thus the success probability
is always equal to one regardless of the locality of the
Hamiltonian.

We see in Figure 3 that the more non-local the tar-
get Hamiltonian is, the lower the success probabil-
ity is in the site-independent protocol. Surprisingly,
however, we see that the more non-local the target
Hamiltonian is, the lower the number of iterations
is to converge is the site-dependent case. Both state-
ments are verified for all the models introduced above.
Thus, while locality makes it easier to prepare the
target state using site-independent protocol, it makes
the site-dependent protocol harder to optimize. We
conclude that, on the one hand, the symmetry con-
straints in the site-independent protocol cause non-
locality in the cost function to drive the optimization
into difficult regions that trap it in local minima. The
site-dependent case, on the other hand, is free to ex-
plore the entire manifold of FGS and bypass these
traps, and non-local terms lead the optimization to
converge faster, consistent with Figure 1(a), (b), (c).

3.3 Overparameterized regime
It has been pointed out [49, 103] that taking the cir-
cuit depth to be very large, the optimization asso-
ciated with Eq. (1) becomes considerably easier – a
phenomenon dubbed overparameterizaton. The onset
of the overparameterized regime has been argued to
correspond the circuit depth at which the Quantum
Fisher Information Metric saturates at every point θ
in the optimization landscape [37, 54]. This is equiv-
alent to the circuit depth at which an increase in p
does not lead to an increase in the states that can be
prepared by the variational circuit Eq. (2), i.e., the
circuit depth corresponding to p̂ as defined in Sec-
tion 2.2. We numerically confirm this to be the case
for all the cases discussed at the end of Section 3.1.

We perform a scaling analysis of the number of iter-
ations that the optimizer takes to prepare the state as
the depth of the circuit increases well into the overpa-
rameterized regime. We find that, as depth increases,
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Figure 3: Plots characterizing the effect of Hamiltonian lo-
cality on optimization hardness in both the site-dependent
and site-independent protocols in the exactly parameterized
regime using PBCs. Horizontal axes are the parameters k
and α, which control the locality of the Hamiltonians stud-
ied. On the left, the y- axis shows the success ratio, defined
as the ratio between the number of random initializations
which ended in state preparation and all random initializa-
tions. In the right panel, the y-axis is the (logarithm of)
total number of iterations to converge. The labels refer to
the target Hamiltonians defined in Eqs. (20), (21) and (22).
Lattice sizes used were either 12 or 16. Between 20 and 150
random initialisations were computed for each Hamiltonian
parameter in the site dependent cases, and between 200 and
500 were computed in the site independent ones; solid line
is the mean value, while the shaded area indicates standard
deviation.

the average number of iterations to converge initially
suffers a large initial decay, until it slows down and
saturates at p ∼ L2, i.e., no further increase in cir-
cuit depth provides a decrease in the average num-
ber of iterations to converge. We observe this trend
consistently between different optimizers and differ-
ent system sizes, the latter shown in Figure 4, where
an exponential decay is seen. Further, by comparing
how the average number of iterations the optimizer
takes to converge scales with lattice size, both when
the circuit depth is equal to p̂ and into the overparam-
eterized regime, we see that what is initially a poly-
nomial scaling turns into a linear scaling with lattice
size – see Figure 5.

From the above, we note that the overparameter-
ized regime effectively represents a shift in the work-
load from the quantum computer to the classical one
and vice-versa, as increasing the number of parame-
ters makes the classical optimization easier, but the
preparation of the state in the quantum computer
harder given the increased circuit depth (and corre-
sponding time to run the circuit, see Appendix D).
Thus, as noise levels in a device decrease, increasing
the depth of the circuit allows variational algorithms
to take immediate advantage of these advancements.
This has the caveat that when the number of param-
eters passes a certain threshold, the overhead associ-
ated with certain algorithms, such as BFGS, exceeds
the advantage obtained from overparameterizing the
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.

circuit; we quantify this in Appendix D. In this case,
algorithms designed to handle a large number of pa-
rameters, such as ADAM or stochastic gradient de-
scent, should be employed instead.

Since in the site dependent case each circuit layer
has ∼ L parameters, the behavior we have just de-
scribed in terms of circuit depth p ∼ L2 corresponds
to ∼ L3 parameters in this case. As all quantities
in Table 1 scale quadratically or linearly with system
size, the phenomenon of overparameterisation can nei-
ther be explained by the saturation of the manifold of
preparable states nor by the saturation of the mani-
fold of unitaries. In what follows, we propose and test
an explanation for gradient based optimizers in terms
of a change in the very properties of the parameteri-
sation of the manifold as the circuit depth increases.

A gradient based optimizer is an algorithm that,
given an initial condition θ0, iterates the following
update function

θi+1 = θi − ηA∇e(θi)

until it converges, that is, it can not find a value of η,
called the learning rate, such that the update reduces
the cost function e. The matrix A is a bias that pro-
vides extra information to the algorithm. It can be
the inverse of the Hessian H−1 in the case of Newton
based methods (or an approximation of it as in the
case of quasi-Newton methods such as BFGS), or the
inverse of the metric of the manifold being optimized
over, as is is done in e.g. Quantum Natural Gradient
descent methods [85]. Importantly, the gradient of a
function is a linear local approximation of the function
at that point. While that means that, if ‖∇e‖ 6= 0,
there is a value of η such that e(θi+1) < e(θ), it does
not offer any real guarantee about the actual change
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Figure 5: Number of iterations to converge vs. lattice size
corresponding to the data in Figure 2. Solid line is the mean
value, the shaded area indicates the standard deviation. The
legend refers to the Hamiltonian targetted and protocol used,
in this order. The target Hamiltonians are either the Ising
model, Eq. (17), or generic symmetric quadratic Hamiltoni-
ans, Eq. (18). The number of iterations to converge scales
polynomially with system size when p = L/2 (left), which is
the minimum circuit depth for maximum expressibility. This
turns into a linear scaling as the circuit enters the overpa-
rameterized regime (right).

∆ei+1 = e(θi)− e(θi+1).
Here, we examine how good this local approxima-

tion is as the optimization progresses, both when the
circuit depth is equal to p̂ and in the overparameter-
ized regime. We run the BFGS algorithm, and the
learning rate is picked on a per-iteration basis by us-
ing the strong Wolfe conditions, an established heuris-
tic based on a minimum descent criterion [69]. This
is a quasi-Newton method, and so A = H̃−1 will be
an approximation to the inverse of the Hessian. In
Figure 6, we plot

l = ∆ei
||H̃−1∇ei||2∆θi

, (23)

which quantifies how much of the variation in the cost
function can be attributed to the local approximation
given by the gradient at the ith iteration. We see that
in the overparameterized regime, most of the variation
in the cost is accounted for by this approximation, and
that it concentrates around an average of k̃ leading to
the exponential decay seen in Figure 2 following the
equation ∂e/∂θ = k̃e. We conclude that the over-
parameterized regime leads to parameterizations that
are more amenable to optimization, as they capture
the variation in the cost for longer distances in the
parameter space (see panel 3 in Figure 1).

4 Conclusion
By deriving the corresponding Lie algebra structure,
we showed that the original QAOA protocol on a 1D
lattice can prepare all fermionic Gaussian states sat-
isfying the symmetries of the circuit, and we have
numerically determined the circuit depth needed to
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mization. We see that in the overparameterized regime, the
value of the gradient consistently predicts the decrease in the
cost function up to a constant factor; while it only accounts
for a decreasing fraction of this variation in the exactly pa-
rameterized regime. Here, the target state was that of the
Ising model with PBCs.

achieve maximum expressibility. The efficient clas-
sical simulation of these states was employed to sys-
tematically study the optimization associated to these
protocols.

We observed that decoupling the angles of the pro-
tocol makes the preparation of non-local states easier,
and of local states harder, which is the opposite of
what is observed when the angles are coupled. We ar-
gued that this is due to the symmetries in the system
constraining the features available to the optimizer.
Further, we studied in detail the overparameterized
regime, exploiting the larger system sizes and circuit
depths accessible to us, where we find that the number
of iterations to converge to the solution scales linearly
with system size. Moreover, we found that the num-
ber of iterations to converge to the solution decreases
exponentially with the depth of the circuit, until it
saturates at a depth which is quadratic in system size.
Finally, we observed that the improvement in the op-
timization can be explained in terms of of better local
linear approximations provided by the gradients.

Beyond elucidating the current knowledge on the
interplay between symmetry and optimization, and
furthering the understing on the overparameterized
regime of optimization, our work can serve as the ba-
sis for a benchmarking scheme for the implementa-
tion of variational algorithms in quantum computers.
These have already been performed using free states
such as, e.g., Majorana zero modes [87] or the ground
state of the Ising model [16]; this scheme could po-
tentially be leveraged into error correcting methods
[12]. Moreover, it provides a framework to better un-
derstand the theory behind the preparation of free
states using variational algorithms, already studied

in models such as the Ising model [22, 41], the Kitaev
model in the exactly solvable limit [45], or the clus-
ter model [70]. Furthermore, while there are estab-
lished algorithms to build circuits that prepare FGS
[47, 51], these require a full description of the corre-
sponding covariance matrix; a variational approach is
relevant where this structure is not known beforehand
e.g. when approximating interacting states [61, 70]
or maximizing a quantity of interest such as magic
[39, 72]. Finally, by fully characterizing these circuits
on 1D lattices, we open the possibility to describe
more complex graphs in terms of simpler ones follow-
ing a divide-and-conquer strategy [30, 111].
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A Variance of gradient
Here, we study how the variance of the gradient with
respect to the center angle scales with the lattice size
and the circuit depth. This variance is known to cap-
ture the phenomenon of barren plateaus, as it pro-
vides an upper bound for the magnitude of the gradi-
ents across the optimization landscape [43, 63]. The
scaling with respect to the center angle is taken to be
representative of the scaling with respect to the other
angles [4].

Figure 7 illustrates the scaling of this variance with
the lattice size, expressed in terms of the dimension of
the Lie algebra, following Ref. [53] which conjectured
that the variance of the gradient is inversely propor-
tional to this dimension. We see that while this seems
to hold in general, it depends on the circuit depth
and the state under peparation. When preparing the
Ising model, increasing the circuit depth changes this
proportionality by a constant factor; while, curiously,
when preparing generic FGS with the site dependent
protocol, it is independent of the circuit depth. Note
also that when the circuit enters the overparameter-
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ized regime, for instance when targeting the Ising
model in the site-independent case at p = 7L, this re-
lation can break down as the variance of the gradient
saturates at high circuit depths (see next paragraph).
Finally, we note that there are exceptions to this re-
lation; in particular, we note that when preparing a
generic FGS using the site independent protocol, the
gradient seems to oscillate around a constant value of
∼ 10 without decaying as the system size increases.

Figure 8 illustrates the scaling of the variance of
the gradient with circuit depth. We see that when
targeting the Ising model, there is an initial drop in
this variance, which then stabilizes to a fixed value. In
contrast, when preparing a generic FGS, the variance
almost immediately converges to this stable value,
particularly in the site-dependent case.
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Figure 7: Variance of gradient taken at center angle
||∂e/∂θi|| using the site-dependent protocol (left) and the
site-independent protocol (right) with the ground state of the
Ising model as a target state (top) and 5 generic quadratic
Hamiltonians (symmetric quadratic Hamiltonians in the in-
dependent case) as a target state (bottom), plotted against
the inverse of the dimension of the Lie algebra generated by
the Hamiltonians used in each protocol at different system
sizes. Various values of p/L (bottom labels) between 1 and 7
were used. 20000 samples were taken per value of p, random
state and lattice size.

B Lie algebra structure
Here, we deduce the structure of the Lie algebras as-
sociated with the protocols in Eqs. (13)-(14) for both
OBCs and PBCs. We do so by deriving a basis for the
algebras generated by the aforementioned sets when
unrestricted to any symmetry sector. Then, we re-
strict these bases to a fixed parity symmetry sector,
and see how this affects the structure and dimensions
of the algebra. Note that, for notational simplicity,
throughout this section we often disregard signs when
converting from spin to Majorana operators when it
does not influence the generated Lie algebras.
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site-independent protocol (right) with the ground state of the
Ising model as a target state (top) and 5 generic quadratic
Hamiltonians (symmetryc generic quadratic Hamiltonians in
the independent case) as a target state (bottom), plotted
against various values of p between 1 and 4L. Several sys-
tem sizes (bottom labels) were used. 20000 samples were
taken per value of p, random state and lattice size. The
vertical line indicates p = L/2.

Let us recall the fermionic parity operator

P =
∏
j

Zj .

Lemma 1. The Lie algebra generated by D =
{iZj , iXjXj+1}j=1,...L

1. with OBC is

dOBC = {iZj ,iXjZ...ZXk, XjZ...ZYk, (24)
iYjZ...ZXk, YjZ...ZYk :
1 ≤ j < k ≤ L}

= {γjγk : 1 ≤ j < k ≤ L} (25)

and has dimension L(2L− 1).

2. with PBC is

dPBC = dOBC ∪ (P · dOBC) (26)

where

(P · dOBC) = {iZ...Zj−1Zj+1...Z, iZ...ZXjXkZ...Z,

iZ...ZXjYkZ...Z, Z...ZYjXkZ...Z,

iZ...ZYjYkZ...Z : 1 ≤ j < k ≤ L}
(27)

and this algebra has dimension 2L(2L− 1).

Lemma 2. The Lie algebra generated by I =
{i
∑
j Zj , i

∑
j XjXj+1}
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1. with OBC is

iOBC = {iZj + iZL−j+1, (28)
iXjZ...ZXk + iXL−k+1Z...ZXL−j+1,

iXjZ...ZYk + iYL−k+1Z...ZXL−j+1,

iYjZ...ZXk + iXL−k+1Z...ZYL−j+1,

iYjZ...ZYk + iYL−k+1Z...ZYL−j+1,

1 ≤ j < k ≤ dL/2e}
= {γ2j−1γ2j + γ2L−2j+1γ2L−2j+2, (29)

γ2jγ2k−1 + γ2L−2k+2γ2L−2j+1,

γ2jγ2k − γ2L−2k+2γ2L−2j+2,

γ2j−1γ2k−1 − γ2L−2k+1γ2L−2j+1,

γ2j−1γ2k + γ2L−2k+1γ2L−2j+2,

: 1 ≤ j < k ≤ dL/2e},

and this algebra has dimension L2 [53].

2. with PBC is

iPBC = {i
∑
j

(Zj + Z1...Zj−1Zj+1...ZL), (30)

i
∑
j

(XjZ...ZXj+k

+ Z1...Zj−1XjXj+(L−k)Zj+(L−k)+1...ZL),

i
∑
j

(XjZ...ZYj+k + YjZ...ZXj+k

+ Z1...Zj−1XjYj+(L−k)Zj+(L−k)+1...ZL

+ Z1...Zj−1YjXj+(L−k)Zj+(L−k)+1...ZL),

i
∑
j

(YjZ...ZYj+k

+ Z1...Zj−1YjYj+(L−k)Zj+(L−k)+1...ZL)
: 1 ≤ k ≤ L− 1}

and has dimension 3L− 2.
The proofs for these statements follow by induc-

tively taking the brackets of the generators of these
algebras. Here, we provide a proof for the structure
of dOBC; the others are derived in a similar fashion.

Proof. By induction on L:
L = 2: Taking the Lie brackets iteratively of

{iZ1, Z2, iX1X2}, one obtains the linearly inde-
pendent set {iZ1, iZ2, iX1X2, iX1Y2, iY1X2, iY1Y2},
which has 6 elements.
L =⇒ L+ 1: Assume the Lemma holds for L.

Then, define

Ga,b := {iZj , iXjXj+1}j=a,...,b (31)

La,b := {iZj , iTj,k : a ≤ j < k ≤ b} (32)

Tj,k :=Aj ⊗

 k−1⊗
m=j+1

Zm

⊗Bk,
Am, Bm ∈ {Xm, Ym} (33)

and let Ra,b be the Lie algebra generated by Ga,b. We
must prove that R1,L+1 = L1,L+1.

By induction hypothesis R1,L = L1,L. Using this,
and the definition of Lie algebra generators, we obtain
L1,L ⊆ R1,L+1. Since it is easy to prove that

[
iTi,j , iTk,l

]
∝ δjkiTi,l, (34)

and
[
iTi,j , iZk

]
∝ (δik + δjk)iTi,j , we conclude that

R1,L+1 \ L1,L ⊆ {iTk,L+1}k=1,...,L ∪ {iZL+1}. But
Tk,L+1 ⊂ Lk,L+1 = Rk,L+1 ⊆ R1,L+1, and ZL+1 ∈
G1,L+1. Thus it must be the case that R1,L+1 =
L1,L+1.

Since, from the above, L1,L+1 = L1,L ∪
{Tk,L+1}k=1,...,L∪{ZL+1}, and since these sets are dis-
joint, using the induction hypothesis, the dimension of
L1,L+1 is L(2L−1)+4L+1 = (L+1)(2(L+1)−1)

Noting that every element of the generators of the
Lie algebras commute with P , we now state the struc-
ture of these algebras restricted to each of the parity
symmetry sectors.

We first note that, as can be seen in Lemma 1 for
the generators D, when restricting to a parity sector,
the algebra in the OBC case remains unchanged, while
the algebra in the PBC case is cut in half, and is equal
to former. Hence:

d := dOBC = dOBC

∣∣∣
P=±1

= dPBC

∣∣∣
P=±1

(35)

and it has dimension L(2L− 1).

As for the case of the set of generators I, we see
that the algebra with OBC remains unchanged when
restricted to a parity sector. Hence

iOBC = iOBC

∣∣∣
P=±1

(36)

and it has dimension L2.
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Finally, the same set of generators with PBC yields

iPBC

∣∣∣
P=±1

=
{
i
∑
j

Zj , (37)

i
∑
j

(XjZ...ZXj+k ∓ YjZ...ZYj+N−k),

i
∑
j

(XjZ...ZYj+k + YjZ...ZXj+k

±XjZ...ZYj+N−k ± YjZ...ZXj+N−k),

i
∑
j

(YjZ...ZYj+k ∓XjZ...ZXj+N−k) :

1 ≤ k ≤ L− 1
}

=
{∑

j

γ2j−1γ2j ,∑
j

γ2jγ2(j+k)−1 ± γ2j−1γ2(j+N−k),∑
j

γ2jγ2(j+k) − γ2jγ2(j+k)−1

± γ2jγ2(j+N−k)−1 ∓ γ2j−1γ2(j+N−k)−1,∑
i

γ2j−1γ2(j+k) ± γ2jγ2(j+N−k)−1

: 1 ≤ k ≤ L− 1
}

(38)

and it has dimension b3L/2c.

C Mechanism behind staircases
In Section 3.2, we described a pattern that we dubbed
"staircase", where the optimizer gets stuck and the
value of the cost function undergoes very little varia-
tion for a number of iterations until it sharply drops
to a new plateau; we highlight this phenomenon more
clearly in Figure 9. Here, we offer an explanation for
this observation.

In Figure 10, we plot the overlap of the state along
the optimization with the eigenstates of the target
Hamiltonian. We notice that the overlap of the state
under preparation with the target Hamiltonian is or-
ders of magnitude higher than with other excited
eigenstates. The dynamics of state preparation is
thus dominated by a competition between the ground
state and the first excited state. We propose that the
staircase plateaus we observe follow a similar mecha-
nism: in each plateau, there is a state in the Hilbert
space (akin to the first excited state in the previous
description) that fully captures the features that the
cost function struggles to distinguish from those of
the ground state in each of these plateaus.

D Scaling of Hessian and optimization
In Figure 11, we examine the effect of increasing the
circuit depth on the total time taken to run an op-

0 5000 10000 15000 20000

iterations

10−3

10−2

10−1

100

e

dependent
+ Ising

independent
+ HG

Figure 9: Optimization traces showing the “staircase" pat-
tern previously seen in Figure 2. Here, the system size is 40,
and the label refers to the protocol used and the Hamilto-
nian targetted, respectively. The target Hamiltonian is either
the Ising model, Eq. (17), or a generic symmetric quadratic
Hamiltonian, Eq. (18)). PBCs and exact parameterization
(p = L/2) are assumed.

timization and on the time it would take to prepare
these states on a quantum simulator (measured by the
sum of the angles). We see that despite increasing
the circuit depth into the overparameterized regime
making the optimization easier, the sum of the an-
gles in the protocol grows linearly with the circuit
depth, increasing the time to run the circuit on a
quantum simulator and making it more prone to er-
rors. Furthermore, we see that despite the number of
iterations to converge decreasing into the overparam-
eterized regime, when one looks at the actual time
taken to run the optimizer, there is an inflexion point
where it first goes down and then starts increasing
again. This is due to the algorithm (BFGS) used,
which stores an approximation to the Hessian; as the
size of the Hessian increases, the computational cost
associated to storing and manipulating it dominates
the computational time. Thus, while it is feasible to
a larger class of optimization algorithms at lower sys-
tem sizes, as one increases the circuit depth, one has
to switch to algorithms specialized to dealing with a
large number of parameters e.g. ADAM or stochastic
gradient descent.
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Figure 11: Different quantities characterizing the hardness of the optimization with increasing circuit depth. On the left, we
plot the mean of the logarithm of the number iterations to converge; the center plot depicts the mean of the sum of all the
angles of the protocol, where periodicity is appropriately taken into account; on the right, the average of the logarithm of the
total computational time is shown. Generic symmetric quadratic Hamiltonians were targeted, and results were averaged over 5
random states and 5 random initializations per state. Filled line corresponds to the site-dependent protocol, while dotted line
represents the site-independent protocol; these two cases essentially display the same behavior. Periodic boundary conditions
were used, and the black vertical line indicates p = L/2, the depth at which the circuit is exactly parameterized. These results
were obtained on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz.
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