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Abstract. With phenotypic heterogeneity in whole cell populations widely recognised, the de-12

mand for quantitative and temporal analysis approaches to characterise single cell morphology and13

dynamics has increased. We present CellPhe, a pattern recognition toolkit for the unbiased char-14

acterisation of cellular phenotypes within time-lapse videos. CellPhe imports tracking information15

from multiple segmentation and tracking algorithms to provide automated cell phenotyping from16

different imaging modalities, including fluorescence. To maximise data quality for downstream anal-17

ysis, our toolkit includes automated recognition and removal of erroneous cell boundaries induced18

by inaccurate tracking and segmentation. We provide an extensive list of features extracted from19

individual cell time series, with custom feature selection to identify variables that provide greatest20

discrimination for the analysis in question. Using ensemble classification for accurate prediction of21

cellular phenotype and clustering algorithms for the characterisation of heterogeneous subsets, we22

validate and prove adaptability using different cell types and experimental conditions.23

1 Introduction24

Heterogeneity in whole cell populations is a long-standing area of interest1,2, 3 and previous25

studies have identified cell-to-cell phenotypic and genotypic diversity even within clonally derived26

populations.4 The emergence of methods such as single-cell RNA sequencing has enabled charac-27

terisation of subsets within a population from gene expression profiles,5 yet these methods involve28

collection of data at discrete time points, missing the subtle temporal changes in gene expression29

on a continuous scale. Such methods exclude information on single-cell morphology and dynamics,30

yet cellular phenotype plays a crucial role in determining cell function,6,7 disease progression,8 and31

response to treatment.9 There remains a demand for quantitative and temporal analysis approaches32

to describe the subtleties of single-cell heterogeneity and the complexities of cell behaviour.33

Modern microscopy advancements facilitate the ability to produce information-rich images of34

cells and tissue, at high-throughput and of high quality. Temporal changes in cell behaviour can35

be observed through time-lapse imaging and features describing the cells’ behaviour over time can36

be extracted for analysis. However, the task of identifying individual cells and following them37

over time is an ongoing computer vision challenge.10,11 Initial processing requires segmentation,38

the detection of cells as regions of interest (ROIs) distinguished from background, and tracking,39

with each cell given a unique identifier that is retained over subsequent frames. Recent work using40

the similarity between cell metrics on consecutive frames highlighted the importance of accurate41

tracking to follow cell lineage.12 Imaging artefacts vary between experiments and issues such as42

background noise, inhomogeneity of cell size and overlapping cells are still challenges for biomedical43

research.13 Reliable cell segmentation protocols are non-deterministic and experiment-specific14 but44

user-friendly software systems that use machine learning algorithms are emerging to provide ob-45

jective, high-throughput cell segmentation and tracking.15,16 Recent developments to TrackMate1746

allow the results of various segmentation software to be integrated with flexible tracking algorithms47

and provide visualisation tools to assess both segmentation and cell tracks. Although the time series48
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for certain cell properties, such as cell area and circularity, can be displayed, the extraction and49

analysis of descriptive time series is not within the scope of the TrackMate software. Comparison of50

the tracked cells behaviour is challenging as cells are tracked for different numbers of frames with51

frames missing where cells leave the field of view. This has meant that analysis of any extracted52

features has been limited to visualisation. CellPhe interpolates the time series and then calculates53

a fixed number of variables that characterise each feature’s time series- the features of features!54

Here we present CellPhe, a pattern recognition toolkit that uses the output of segmentation55

and tracking software to provide an extensive list of features that characterise changes in the cells’56

appearance and behaviour over time. Customised feature selection allows the most discriminatory57

variables for a particular objective to be identified. These extracted variables quantify cell morphol-58

ogy, texture and dynamics and describe temporal changes and can be used to reliably characterise59

and classify individual cells as well as cell populations. To ensure precise quantification of cell mor-60

phology and motility, and to monitor major cellular events such as mitosis and apoptosis, it is vital61

that instances of erroneous segmentation and tracking are removed from data sets prior to down-62

stream analysis methods.18 Manual removal of such errors is heavily labour-intensive, particularly63

when time-lapses take place over several days. To maximise data quality for downstream analysis,64

CellPhe includes the recognition and removal of erroneous cell boundaries induced by inaccurate65

segmentation and tracking. We demonstrate the use of ensemble classification for accurate predic-66

tion of cellular phenotype and clustering algorithms for identification of heterogeneous subsets.67

We exemplify CellPhe by characterising the behaviour of untreated and chemotherapy treated68

breast cancer cells from ptychographic time-lapse videos. Quantitative phase images (QPI)19,20,2169

avoid any fluorescence-induced perturbation of the cells but segmentation accuracy can be affected by70

reduced differences in intensity between cells and background in comparison to fluorescent labelling.71

We show that our methods successfully recognise and remove a population of erroneously segmented72

cells, improving data set quality. Morphological and dynamical changes induced by chemothera-73

peutics, particularly at low drug concentration, are often more subtle than those that discriminate74

distinct cell types and we demonstrate the ability of CellPhe to automatically identify time series75

differences induced by chemotherapy treatment, with the chosen variables proving statistically sig-76

nificant even when not observable by eye.77

The complexities of heterogeneous drug response and the problem of drug resistance further mo-78

tivate our chosen application. The ability to identify discriminatory features between treated and79

untreated cells can allow automated detection of ”non-conforming” cells such as those that possess80

cellular drug resistance. Further investigation of such features could elucidate the underlying bio-81

logical mechanisms responsible for chemotherapy resistance and cancer recurrence. We validate the82

adaptability of CellPhe with both a different cell type and a different drug treatment and show that83

variables are selected according to experimental conditions, tailored to properties of the cell type84

and drug mechanism of action.85

CellPhe is available on GitHub as an R package with a user-friendly interactive GUI that al-86

lows completely unbiased cell phenotyping using time-lapse data from fluorescence imaging as well87

as ptychography. A working example guides the user through the complete workflow and a video88

demonstrating the GUI is also provided.89

2 Results90

Overview of CellPhe91

CellPhe is a toolkit for the characterisation and classification of cellular phenotypes from time-92

lapse videos, a diagrammatic summary of CellPhe is provided in Figure 1. Experimental design93

is determined by the user prior to image acquisition where seeded cell types and pharmacology are94

specific to the user’s own analysis. Example uses are discrimination of cell types (e.g, neurons vs.95

astrocytes), characterisation of disease (e.g. healthy vs. cancer) , or assessment of drug response96

(e.g. untreated vs. treated). The user can then time-lapse image cells for the desired amount of time,97

using an imaging modality of their choice. Once images are acquired and segmentation and tracking98

of cells are complete, cell boundary coordinates are exported and used for calculation of an extensive99
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list of morphology and texture features. These together with dynamical features and extracted time100

series variables are used to aid removal of erroneous segmentation by recognition of error-induced101

interruption to cell time series. Once all predicted segmentation errors have been removed from102

data sets, feature selection is performed and only features providing separation above an optimised103

threshold are retained. This identifies a list of most discriminatory features and allows the user104

to explore biological interpretation of these findings. The extracted data matrices are then used105

as input for ensemble classification, where the phenotype of new cells can be accurately predicted.106

Furthermore, clustering algorithms can be used to identify heterogeneous subsets of cells within the107

user’s data, both inter- and intra-class.108

The remaining results exemplify the use of CellPhe with a biological application, characterisation109

and classification of chemotherapeutic drug response. We look at each of the CellPhe stages in110

detail (segmentation error removal, feature selection, ensemble classification and cluster analysis) and111

demonstrate that each step provides interpretable, biologically relevant results to answer experiment112

specific questions and aid further research.113

114

Figure 1: Summary of the CellPhe toolkit. Following time-lapse imaging, acquired images are pro-
cessed and segmentation and tracking recipes implemented. Cell boundary coordinates are exported, features
extracted for each tracked cell and the time series summarised by characteristic variables. Predicted seg-
mentation errors are excluded and optimised feature selection performed using a threshold on the class
separation achieved. Finally, multiple machine learning algorithms are combined for classification of cell
phenotype and clustering algorithms utilised for identification of heterogeneous cell subsets.115

CellPhe application: characterising chemotherapeutic drug response116

The 231Docetaxel data set, obtained from multiple experiments involving MDA-MB-231 cells,117

both untreated and treated with 30µM docetaxel, is the main data set used to demonstrate our118

method. We show that the same analysis pipeline can be applied to other data sets by considering119

both a different cell line, MCF-7, in the MCF7Docetaxel data set, and a different drug, doxorubicin,120

with the 231Doxorubicin data set. In each case, we remove segmentation errors, as described in121

Section 2.5, before using feature selection (Section 2.6) to identify discriminatory variables tailored122

to the particular data set. We show that different variables are chosen depending on the inherent123

nature of the cell line and the effect of the drug in question. Using these features in classification124
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algorithms, we characterise and compare the behaviour over time of untreated and treated cells.125

126

Segmentation Error Removal127

We improve the quality of our data sets prior to untreated vs. treated cell classification by128

automating detection of segmentation errors and optimising the exclusion criteria of predicted errors.129

Comparison of time series for cells with and without segmentation errors showed many of our130

features to be sensitive to such errors, motivating the need to remove these cells prior to treatment131

classification. Size metrics, such as volume, were particularly affected by segmentation errors as132

under- or over-segmentation could result in halving or doubling of cell volume respectively (Figure133

2a). Such noticeable disruption to the time series of several features suggested that reliable detection134

of segmentation errors would be possible.135

After excluding 62 instances identified as tracked cell debris, a training data set for MDA-MB-231136

cells (from the 231Docetaxel data set), was obtained, consisting of 1185 correctly segmented cells137

and 278 cells with segmentation errors. The number of cells in the segmentation error class was138

doubled using SMOTE and the resulting data set with 1741 observations used for the classification139

of segmentation errors as described in Section 2.5. The MDA-MB-231 cells (from 231Docetaxel and140

231Doxorubicin, both untreated and treated) that were not used for training formed independent141

test sets (Table 1).142

A total of 223 of the 1478 cells in the 231Docetaxel test set were predicted to be segmentation143

errors. Of these, 217 were confirmed by eye to be true segmentation errors, most of which were due144

to under- or over-segmentation throughout their time series. Other segmentation issues observed145

included background pickup, cells swapping cell ID, and cells repeatedly entering and exiting the146

field of view, all of which result in problem time series (Figure 2b). Of the remaining six cells that147

were misclassified as segmentation errors, one was a large cell and the other five were cells tracked148

before, during and after attempted mitosis. Further investigation showed that removal of these cells149

did not exclude an important subset from the data.150

This classifier was also used to identify a further 78 segmentation errors from the 955 cells in151

the 231Doxorubicin data set, all 78 were confirmed by eye to be true segmentation errors (Table 1).152

It was necessary to train a new classifier for MCF-7 segmentation error detection due to differences153

between the cell lines. In this case 308 correctly segmented cells and 192 segmentation errors were154

identified by eye. After applying SMOTE to double the number of segmentation error observations,155

a classifier was trained with the resulting 692 observations as described in section 2.5. 188 cells in156

the MCF7Docetaxel data set (848 cells in total) were classified as segmentation errors. 185 of these157

cells were confirmed by eye to be true segmentation errors, the remaining three were large cells or158

cells tracked before, during and after attempted mitosis.159

Data set TP FP

231Docetaxel (1478) 217 6

231Doxorubicin (955) 78 0

MCF7Docetaxel (848) 185 3

Table 1: Segmentation error prediction on the test data. The number of correctly classified segmentation
errors (True Positives, TP) and the number of correctly segmented time series incorrectly classified as seg-
mentation errors (False Positives, FP) are shown. The number of cells in each test data before segmentation
error removal is shown in parentheses.

160
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Figure 2: (a) Volume time series for i. a correctly segmented cell and ii. a cell experiencing segmenta-
tion errors, demonstrating greater fluctuation in volume when a cell experiences segmentation errors. (b)
Examples of test set cells classified as i. correct segmentation and ii. segmentation error. (c) Box and
whisker plots of features that are significant for identifying segmentation errors in the 231Docetaxel training
set (****: p < 0.0001). The median value is shown by the line within the box representing the interquartile
range (IQR) and the whiskers extend to the most extreme data points. (d) A representative 231Docetaxel
trained decision tree, demonstrating how size, shape, texture and density are used in combination to make
classifications.162

As decision trees are used in the identification of segmentation errors, our feature selection is163

not required. However we still calculated separation scores for the MDA-MB-231 training data to164

investigate the effect of such errors. As might be expected, volume was most affected, with seg-165

mentation errors resulting in larger standard deviation, ascent and maximum value. Other features166

with high separation scores included area as well as spatial distribution descriptors with the highest167

thresholds, features that detect the clustering of high intensity pixels, characteristic of cell overlap168

and over-segmentation (Figure 2c). Analysis of the trained decision trees showed that a combina-169
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tion of size, shape, texture and density variables frequently formed the most important features for170

detecting segmentation errors with MDA-MB-231 cells, see Figure 2d for an example.171

For the MCF7Docetaxel data set, velocity was found to be important in determining whether172

or not a cell experienced segmentation errors in addition to texture and shape variables. The cell173

centroid, used to determine position and hence velocity, is affected by boundary errors and so high174

velocity, uncharacteristic of MCF-7 cells, is a good indication of segmentation error for these cells.175

176

Feature Selection177

For the 231Docetaxel data set, the calculation of separation scores identified variables that pro-178

vided good discrimination between untreated MDA-MB-231 cells and those treated with 30µM doc-179

etaxel. As separation scores do not provide information on how these variables work in combination,180

we performed Principal Component Analysis (PCA) to explore relationships between discriminatory181

variables.182

Differences in the appearance of MDA-MB-231 cells induced by docetaxel treatment were ob-183

served by eye from cell timelapses. Untreated cells displayed a spindle-shaped morphology (a circular184

cross-section with tapering at both ends), with contractions and protrusions facilitating migration.185

Cells that received treatment were generally dense and spherical, and increased in size following186

a failed attempt at cytokinesis (Figure 3a). Discriminatory features identified by calculation of187

separation scores were consistent with differences observed by eye, the 100 variables that achieved188

greatest separation are shown in Figure 3b. Texture, shape and size variables provided great-189

est discrimination of untreated and treated cells. Untreated cells experienced increased elongation190

throughout the time-lapse and displayed irregular, spindle-shaped morphology in comparison to the191

generally spherical appearance of treated cells. Furthermore, separation scores highlighted differ-192

ences in the texture of cells, with intensity quantile metrics characterising changes in granularity of193

cells induced by drug treatment.194

Principal Component Analysis (PCA) demonstrated that the main variance within the data arises195

due to class differences, with separation of classes observed across PC1 which explains 66% of the196

total variance (Figure 3c). The dispersion of points within the scores plot illustrates heterogeneity197

of cells both inter- and intra-class. The non-conformity of some cells, for example treated cells be-198

having as untreated cells, is demonstrated by points clustering within the opposite class. Analysis199

of PCA loadings highlighted increased ascent, descent and standard deviation for untreated cells,200

as can be observed from the PCA biplot in Figure 3d. Although descent variables appear to have201

opposite loadings to all other variables, in fact, this is only due to their negative values. As the ma-202

jority of untreated cells had negative PC1 scores we deduced that greater standard deviation, ascent203

and descent of features for untreated cells indicates that these cells experience increased fluctuation204

throughout their time series. As treated cells mainly had positive PC1 scores, they experience less205

fluctuation throughout their time series and instead display greater stability. Identified differences206

in feature time series are visualised in Figure 3d.207

208
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Figure 3: a) Images taken from cell timelapses of i. untreated MDA-MB-231 cells and ii. 30µM docetaxel
treated MDA-MB-231 cells. Scale bar = 200µm. Increased cell count at 49h post-treatment demonstrates
healthy proliferation of untreated cells. Static cell count at 49h for treated cells is a result of cell cycle arrest
and failed cytokinesis, leading to enlarged cell phenotype. b) Features with the top 100 highest separation
scores, colour-coded according to feature type. Texture, shape and size features provide greatest separation.
c) PCA scores plot with points colour-coded according to true class label. Observable separation of classes
along PC1 demonstrates that the greatest source of variance within the data arises due to class differences.
Only features with the 100 highest separation scores were included in PCA. d) i. PCA biplot demonstrating
how features with the 100 highest separation scores work in combination to discriminate between untreated
and 30µM docetaxel treated MDA-MB-231 cells. Greater ascent and descent can be observed for untreated
cells, indicating greater activity across a range of features for untreated cells. ii. Representative feature
time series plots for untreated and 30µM docetaxel treated MDA-MB-231 cells. Untreated cells experience
greater fluctuation within their time series in comparison to treated cells where activity is more stabilised.210

We assessed the adaptability of our feature selection method by calculating separation scores211

for both a different cell line and a different treatment, using PCA to evaluate the main sources of212

variance. We compared MCF-7 cells treated with 1µM docetaxel with untreated MCF-7 cells, and213

MDA-MB-231 cells that were treated with 1µM doxorubicin with untreated MDA-MB-231 cells and214

found that changes in the morphology and motility of cells upon treatment were both drug and215

cell-line specific with different variables selected (Figure 4).216

As was observed within the 231Docetaxel timelapses, cells increased in size due to failed cytoki-217

nesis. However, MCF-7 cells maintained a polygonal, epithelial-like morphology following treatment218

similar to that of the untreated population. Conversely, remarkable differences in cellular dynamics219

were observed within the 231Doxorubicin data set, with motility of cells being severely hindered220

following treatment, particularly after the 24-hour time point. Only subtle differences in size and221

morphology of cells were observed by eye, with doxorubicin treated cells appearing slightly enlarged222

as a result of cell cycle arrest. Both untreated and treated sets contained examples of cells in G1223

and G2, hence varied cell morphology can be observed within both (elongated and adherent cells in224

G1, round and dense morphology of cells in G2.)225
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The 100 variables that achieved greatest separation for each of the MCF7Docetaxel and 231Dox-226

orubicin data sets are shown in Figure 4b. Density variables were highly discriminatory for un-227

treated and docetaxel treated MCF-7 cells, characterising decreased proliferation and cell-cell ad-228

hesion induced by drug treatment. Size, shape and texture variables were also identified as most229

discriminatory with variables such as length, width and area characterising the enlarged cell shape230

of treated cells. Spatial distribution variables were chosen for several intensity thresholds, demon-231

strating differences in the clustering of pixels, following docetaxel treatment. As was observed by232

eye, movement features formed the majority of discriminatory variables for the 231Doxorubicin data233

set, with untreated cells having greater velocity, tracklength and displacement than treated cells.234

Differences in movement were also described through density ascent and descent, as cell density235

fluctuated more for untreated cells due to the increased likelihood of passing neighbouring cells236

when migrating. Subtle differences in cell shape and size observed by eye upon doxorubicin treat-237

ment were described by changes in rectangularity, width and radius variables. Notably both data238

sets received lower separation scores than the 231Docetaxel data set, with 231Doxorubicin having239

the lowest. This effectively provides a measure of class similarity, with high separation scores for240

231Docetaxel indicative of significant changes to cells upon treatment and low separation scores for241

231Doxorubicin suggesting these changes are more subtle.242

PCA scores plots obtained with the selected features are shown in Figure 4c. Differences be-243

tween classes can be observed for the MCF7Docetaxel data set, with separation of classes along244

PC1 (40% of the total variance) and PC2 (13% of the total variance). The PCA scores plot for245

231Doxorubicin shows the greatest source of variance to be due to class differences, with separation246

of classes along PC1 (49% of the total variance). All PCA scores plots demonstrated the potential247

to characterise untreated and treated cell behaviour, with feature selected variables providing good248

distinction of classes which was improved by using variables in combination.249

250
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Figure 4: a) Images taken from cell timelapses of i. untreated and 1µM docetaxel treated MCF-7 cells and
ii. untreated and 1µM doxorubicin treated MDA-MB-231 cells. Scale bar = 200µm. Differences in cell count
following treatment can be observed for both due to cell cycle arrest induced by docetaxel or doxorubicin
respectively. Docetaxel treated MCF-7 cells display enlarged cell phenotype at the 49h time point due to
failed cytokinesis. In comparison, differences in morphology are more subtle for doxorubicin treated MDA-
MB-231 cells at the 49h time point. b) Features with the top 100 highest separation scores, colour-coded
according to feature type for i. MCF7Docetaxel, where cell density and texture provide greatest separation,
and ii. 231Doxorubicin where shape and movement features provide greatest separation. c) PCA scores plot
with points colour-coded according to true class label for i. MCF7Docetaxel and for ii. 231Doxorubicin.
Only features with the 100 highest separation scores were included in PCA.251

Classification of Treated and Untreated Cells252

We found that the distribution of separation scores differed for each data set, with the 231Doc-253

etaxel set having the greatest number of variables achieving high separation, followed by MCF7Docetaxel254

and 231Doxorubicin generally having much lower separation scores (Figure 5a). Optimal separation255

thresholds of 0.075, 0.025 and 0.025 were obtained for 231Docetaxel, MCF7Docetaxel and 231Dox-256

orubicin respectively, resulting in 437, 539 and 442 variables (of a possible 1111) being selected for257

classifier training.258

Having chosen an optimal separation threshold, we trained an ensemble classifier for each data259

set as described in Section 2.6. Classification accuracy scores for training and test sets obtained260

using our ensemble classifier are provided in Table 2. Through visual inspection, we found that261

misclassifications formed subsets of cells whose behaviour deviated from the behaviour of the main262

population, we call this subset ”non-conforming”. (Figure 5b). For untreated cells, we found263

that healthy, proliferating cells were correctly classified whereas less motile cells, cell debris or large,264

non-motile mutant cells were instead classified as treated. For treated cells, we found that cells expe-265

riencing the drug-induced phenotypic differences identified through feature selection were classified266

as treated. However, treated cells displaying behaviour similar to that of an untreated cell, such267

as increased migration or fluctuation and elongation in cell shape, and were classified as untreated268

(Figure 5c).269

We found that the proportion of non-conforming treated cells, those classified as untreated,270

decreased as drug concentration increased for all three data sets (Figure 5d). To explore the con-271

nection between the proportion of non-conforming treated cells and the population drug response272

of each treated set, we considered the total volume growth rate at each drug concentration in re-273

lation to the percentage of cells predicted as untreated (Figure 5d). We found that the overall274

growth rate decreased with increased drug concentration due to more cells responding at higher275

concentrations. This correlated positively with the percentage of cells predicted as untreated, with276

a greater percentage of cells predicted as untreated for high volume growth rate with proliferation277

still occurring.278
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279

Figure 5: a) i. The number of variables with separation scores above different thresholds. A greater number
of variables achieve high separation for 231Docetaxel in comparison to 231Doxorubicin and MCF7Docetaxel.
ii. Optimisation of separation threshold for each data set. Thresholds of 0.075, 0.025 and 0.025 were selected
for 231Docetaxel, MCF7Docetaxel and 231Doxorubicin respectively resulting in 437, 539 and 442 variables
being used for classifier training. b) Sub-populations within each class, colour-coded according to the ideal
final classification of each sub-population. Non-conforming cells for each class form a subset of misclassified
cells. c) Examples of docetaxel treated MDA-MB-231 cells misclassified as untreated. Time-lapse images
demonstrate how these cells exhibit an elongated morphology characteristic of migratory untreated cells.
Time series plots for cell length demonstrate the fluctuation in shape of these cells, typical of untreated
cells. d) i. The percentage of cells predicted as untreated for a range of drug concentrations (log

10
scale).

For all three data sets, this percentage decreases as drug concentration increases due to a greater number of
cells responding to treatment at higher concentrations. Lines were fitted using asymmetric, five parameter,
non-linear regression. ii. Positive correlation between the total volume rate of growth and the percentage
of cells predicted as untreated, with higher volume growth rates associated with a higher number of cells
being predicted as untreated. Linear regression slopes were found to be significant (p values shown). R2

correlation coefficients are also provided, demonstrating positive correlation for each data set.280

231Docetaxel MCF7Docetaxel 231Doxorubicin

Train
Untreated: 98%
Treated: 100%
Overall: 99%

Untreated: 100%
Treated: 99%
Overall: 100%

Untreated: 100%
Treated: 100%
Overall: 100%

Test
Untreated: 97%
Treated: 85%
Overall: 94%

Untreated: 83%
Treated: 90%
Overall: 85%

Untreated: 86%
Treated: 66%
Overall: 81%

Table 2: Ensemble classification accuracy scores for each data set. All percentages have been rounded to
the nearest whole number.

Subset Identification281

Classification accuracy scores for the untreated and treated cell populations were imbalanced282

across all three of the data sets (Table 2). Imbalance of classification accuracy scores in binary283
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classification is often a result of hidden stratification,22 where poor performance of one class is a result284

of misclassifications of important, unlabeled subsets. To investigate this phenomenon we performed285

hierarchical clustering on 231Docetaxel treated cells and the obtained dendogram is provided in286

Figure 6a, with examples of cells from each cluster.287

Figure 6b shows the distribution of mean volumes for each cluster in comparison to the untreated288

MDA-MB-231 population. Clusters 1 and 2 span a similar range of volumes to the untreated set,289

whereas clusters 3 and 5 have greater mean volumes. Cluster 4 is formed primarily of cell debris as290

a result of cell death with mean volumes much lower than those of the untreated set.291

Cells in the same cluster share similar properties and morphological differences between clusters292

of different cell cycle states can be observed. For example cells in clusters 1 and 2 are much smaller293

and brighter than cells in clusters 3 and 5 as the cells are heading towards attempted mitosis,294

confirmed by visual inspection of cell time-lapses, and hence resemble untreated mitotic cells. The295

PCA biplot in Figure 6c shows how variables work in combination to determine cell clusters.296

Clusters 1 and 2 are generally bright and spherical, similar to a mitotic treated cell, as these cells297

are tracked prior to failed cytokinesis. Cells that have attempted to split, clusters 3 and 5, are298

larger, longer, wider and display greater irregularity in shape. These cells become less dense and299

are often multinucleated resulting in changes to texture features. Cell debris is best distinguished300

by granularity, hence texture metrics are fundamental in identifying these instances.301

Clusters also spanned a range of mean cell volumes beyond those of the untreated set when302

hierarchical clustering was repeated for MCF7Docetaxel treated cells. However, this was not the303

case for 231Doxorubicin treated cells and therefore k-means clustering was used to explore the304

connection between misclassifications and hidden subsets in the 231Doxorubicin treated cell test set.305

Two distinct clusters were obtained (Figure 6di), cluster 1 was formed of 33 cells and cluster 2 of306

32 cells. We calculated classification accuracy scores for the two clusters individually and found that307

91% of cells in cluster 1 were correctly classified as treated but only 31% in cluster 2 (Figure 6eii).308

The increased migration and fluctuation in shape of cells in cluster 2 mean these cells have greater309

similarity to the untreated population (Figure 6eiii). These non-conforming treated cells form the310

majority of treated cell misclassifications in the 231Doxorubicin test set and highlight the presence311

of heterogeneous subsets within a population.312

Notably there was a greater number of misclassifications for untreated MCF-7 cells in comparison313

to the docetaxel treated set. Cluster analysis demonstrated the presence of heterogeneous subsets314

within the untreated population, with one cluster in particular consisting mainly of misclassified cells315

(Figure S1). Texture metrics discerned this cluster from other untreated cell clusters, containing316

several instances of cell debris that were understandably classified as ”non-conforming”. Other cells317

within this cluster shared similarities in texture to cell debris.318
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Figure 6: a) i. Dendogram obtained from hierarchical clustering of 231Docetaxel treated cells, with 5
clusters coloured. ii. Examples of cells from each cluster with background colours identifying the cluster.
Cells within a cluster share similar properties but differ to cells in other clusters. b) Density plots of
mean cell volume, colour-coded according to cluster. The grey, dashed density plot represents 231Docetaxel
untreated cells for reference. Cluster 4 (cell debris cluster) has the greatest leftward shift due to cells losing
volume upon cell death. Clusters 1 and 2 primarily span the same range of volumes as the untreated set
as cells in these clusters have not yet attempted cytokinesis. Clusters 3 and 5 have mean volumes greater
than the untreated set as cells in these clusters have continued to grow following failed cytokinesis. c) d) i.
k-means clustering of 231Doxorubicin test set treated cells. Cells are colour-coded according to which cluster
they were assigned. ii. The number of cells predicted as treated for each of the clusters. Cluster 1 was
formed of successfully treated cells with 91% (30/33) of cells correctly classified as treated, whereas cluster
1 formed a subset of non-conforming treated cells, with only 31% (10/32) correctly classified as treated.
iii. Increased velocity and ascent in cell elongation are characteristic of untreated cells. These metrics
show extremely significant decrease for cells in cluster 1 but no significant difference for cells in cluster 2.
Extremely significant differences are observed between cluster 1 and cluster 2, highlighting the presence of
subsets within the treated cell population (ns: p ≥ 0.05, ****: p < 0.0001, dashed lines in violin plots are
representative of the lower quartile, median and upper quartile).320

Compatibility with fluorescence images and TrackMate321

TrackMate-Cellpose17 was used to demonstrate the compatibility of CellPhe with outputs ob-322

tained from alternative segmentation and tracking software and show that CellPhe extends to flu-323

orescence time-lapse imaging. Ptychographic and fluorescence time-lapse images of untreated and324

docetaxel treated MDA-MB-231 cells stably expressing dsRed were acquired in parallel (Fig 7a).325

Cell segmentation from the fluorescence images was performed using Cellpose and a representative326

image is provided in Fig 7bi. Segmented cells were then tracked using TrackMate resulting in 123327

cell tracks of greater than or equal to 50 frames (Fig 7bii). The resulting folders of cell ROIs and328

TrackMate feature tables were used as input for CellPhe to extract single-cell phenotypic metrics329

to describe cell behaviour over time. An optimal separation threshold of 0.3 was determined for330

discrimination between untreated and treated cells, with 231 variables achieving separation scores331

greater than the threshold (Fig 7c). As observed with the phase images, size, shape and texture332

variables provide greatest separation, with cell density amongst the most discriminatory variables.333
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Good separation of untreated and treated cells can be observed within the PCA scores plot in Fig334

7d, supporting the use of CellPhe for cell phenotyping from fluorescence images.335

336

337

Figure 7: a) Images taken from cell timelapses of untreated and 1µM docetaxel treated MDA-MB-231 cells
stably expressing dsRed. Phase and fluorescence images were acquired in parallel. Scale bar = 200µm. b) i.
Representative image of Cellpose segmentation on a fluorescent image of MDA-MB-231 cells stably expressing
dsRed. ii. Cell tracks obtained from TrackMate for untreated MDA-MB-231 cells stably expressing dsRed.
Only cell tracks greater than or equal to 50 frames are displayed. c) Features with separation scores greater
than or equal to 0.3, the optimal separation threshold, colour-coded according to feature type. Texture,
density, shape and size features provide greatest separation. d) PCA scores plot with points colour-coded
according to true class label. Observable separation of classes along PC1 demonstrates that the greatest
source of variance within the data arises due to class differences. Only features with separation score greater
than or equal to 0.3 were included in PCA.338

3 Discussion339

The CellPhe toolkit complements existing software for automated cell segmentation and track-340

ing, using their output as a starting point for bespoke time series feature extraction and selection,341

cell classification and cluster analysis. Erroneous cell segmentation and tracking can significantly342

reduce data quality but such errors often go undetected and can negatively influence the results343

of automated pattern recognition. CellPhe’s extensive feature extraction followed by customised344

feature selection not only allows the characterisation and classification of cellular phenotypes from345

time-lapse videos but provides a method for the identification and removal of erroneous cell tracks346

prior to these analyses. Attribute analysis showed that different features were chosen to identify seg-347

mentation errors for different cell lines. For example, sudden increases in movement resulting from348

large boundary changes can indicate segmentation errors for MCF-7 cells, contrasting with their349

innate low motility. On the other hand, size and texture variables provide better characterisation of350
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the unexpected fluctuations in cell size and clusters of high intensity pixels induced by segmentation351

errors for MDA-MB-231 cells. Current approaches for removal of segmentation errors are subjective352

and labour-intensive, requiring manual input of parameters such as expected cell size that need to353

be fine-tuned for different data sets. CellPhe provides an objective, automated approach to segmen-354

tation error removal with the ability to adapt to new data sets.355

For cell characterisation, we have shown that CellPhe’s feature selection method is able to adapt356

to different experimental conditions, providing discrimination between untreated and treated groups357

of two different breast cancer cell lines (MDA-MB-231 and MCF-7) and two different chemotherapy358

treatments (docetaxel and doxorubicin). The discriminatory variables identified here coincide with359

previously reported effects of docetaxel or doxorubicin treatment and can be interpreted in terms360

of the mechanism of action of each drug. Previous studies have identified a subset of polyploid,361

multinucleated cells following docetaxel treatment due to cell cycle arrest and occasionally cell cycle362

slippage.23 Our findings support this with shape and size variables providing the greatest separation363

for docetaxel treatment in both MDA-MB-231 and MCF-7 cells. Many texture variables were also364

identified as discriminatory following docetaxel treatment, providing label-free identification of the365

multiple clusters of high intensity pixels in treated cells, likely a result of docetaxel-induced multin-366

ucleation. We found that at a higher, sub-lethal concentration of 1µM, migration of MDA-MB-231367

cells was reduced with variables associated with movement providing greatest discrimination be-368

tween untreated and doxorubicin treated cells. This is supported by studies that have identified369

changes in migration of doxorubicin treated cells, noting that low drug concentrations in fact facili-370

tate increased invasion.24,25371

We found an imbalance in untreated and treated classification accuracy scores, with a greater372

proportion of treated cells misclassified for all three data sets. This consistent imbalance suggests the373

misclassifications are in fact representative of a subset of non-conforming, and potentially chemore-374

sistant, cells. The concept of hidden stratification, where an unlabelled subset performs poorly375

during classification, has been described previously26 and poses a challenge in medical research as376

important subsets (such as rare forms of disease) could be overlooked. Here, the misclassified cells377

could be of most interest and the ability to identify non-conforming behaviour is precisely what378

is required from a classifier as treated cells that display behaviour similar to untreated cells could379

indicate a reduced response to drug treatment. The classification of cells treated with a range of380

concentrations supported this hypothesis as a greater proportion of cells were classified as untreated381

at lower drug concentrations, demonstrating that our trained ensemble classifier can be used to382

quantify drug response, at both single-cell and populational level.383

Cluster analysis revealed cell subsets that appear to represent different responses to drug treat-384

ment. Heterogeneity of cellular drug response is a commonly reported phenomenon in cancer treat-385

ment, yet mechanisms underlying this are not well understood.27 Analysis of cell volumes showed386

the mean volume of treated and untreated cells to be comparable for doxorubicin reflecting the fact387

that this treatment can induce G1, S or G2 cell cycle arrest.28 However, for docetaxel treated cells,388

we found that clusters spanned a range of mean cell volumes beyond those of the untreated set for389

both cell lines. Clustering allowed identification of three general responses to docetaxel treatment:390

pre-”cytokinesis attempt”, with cells having similar volumes to the untreated MDA-MB-231 popula-391

tion; post-”cytokinesis attempt”, where cells were tracked following failed cytokinesis and therefore392

continued to grow to volumes beyond those of the late stages of the untreated cell cycle; and cell393

death, with a final cluster, composed primarily of cell debris. Furthermore, giant cell morphology394

has been linked with docetaxel resistance, a potential cause of relapse in breast cancer patients9 and395

through cluster analysis we were able to identify a potentially resistant subset of very large, treated396

cells that could be isolated for further investigation.397

Our chosen application demonstrated the breadth of quantification and biological insight that398

can be made by following our workflow, with characterisation of drug response and detection of399

potentially resistant cells just two of many potential applications for CellPhe. CellPhe offers several400

benefits for the quantification of cell behaviour from time-lapse images. First, errors in cell segmen-401

tation and tracking can be identified and removed, improving the quality of input for downstream402

data analysis. This is particularly important with machine learning where automation means that403

such errors can easily be missed, and algorithms consequently trained with poor data. Although404
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different cell lines have different properties that allow segmentation errors to be recognised, we have405

shown that ground truth data for a particular cell-line can be re-used for different experiments, in406

our case, different drug treatments.407

Second, cell behaviour is characterised over time by extracting variables from the time series408

of various features whereas many studies explore temporal changes by collecting data at discrete409

time points (for example, 0 and 24 hours post-treatment) and using metrics from each static image,410

missing behavioural changes experienced by cells on a continuous level. With CellPhe, changes over411

time in features that provide information on morphology, movement and texture are quantified not412

just by summary statistics but by variables extracted from wavelet transformation of the time series413

allowing changes on different scales to be identified.414

Third, whilst most studies use a limited number of metrics, assessed individually for discrimi-415

nation between groups,29,30 CellPhe provides an extensive list of novel metrics and automatically416

determines the combination that offers greatest discrimination. The bespoke feature selection fre-417

quently found the most discriminatory variables to be those with the ability to detect changes in418

cell behaviour over time. Previous research in this field has focused on identification of cell types419

from co-cultures31 for use in automated diagnosis of disease such as cancer. Analysis methods for420

these studies are often cell line specific whereas CellPhe’s feature selection method is successful in421

identifying discriminatory variables tailored to different experimental conditions.422

Finally, CellPhe uses an ensemble of classifiers to predict cell status with high accuracy and423

we show that separation scores can be used to identify the variables associated with different cell424

subsets identified in cluster analysis to explore cell heterogeneity within a population, even when425

subtle differences are not readily visible by eye.426

The interactive, interpretable, high-throughput nature of CellPhe deems it suitable for all cell427

time-lapse applications, including drug screening or prediction of disease prognosis. We provide a428

comprehensive manual with a working example and real data to guide users through the workflow429

step-by-step, where users can interact with each stage of the workflow and customise to suit their430

own experiments. Here we demonstrated the abundance of information and insight that can be431

made by following the CellPhe workflow to quantify cell behaviour from QPI images. CellPhe can432

be used with tracking information from multiple segmentation and tracking algorithms and different433

imaging modalities, including fluorescence, and would be suitable for all time-lapse studies including434

clinical applications.435
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19 J. Marrison, L. Räty, P. Marriott, et al. Ptychography - a label-free, high contrast imaging505

technique for live cells using quantitative phase information. Scientific Reports, 3(2369), 2013.506

20 Y. Rivenson, Y. Zhang, H. Günaydın, et al. Phase recovery and holographic image reconstruction507

using deep learning in neural networks. Nature Light Sci Appl., 7(17141), 2018.508

21 Y. Park, C Depeursinge, and G. Popescu. Quantitative phase imaging in biomedicine. Nature509

Photon, 12:578–589, 2018.510

22 L. Oakden-Rayner, J. Dunnmon, G. Carneiro, et al. Hidden stratification causes clinically mean-511

ingful failures in machine learning for medical imaging. arXiv, 2019.512

23 H. Hernandez-Vargas, J. Palacios, and G. Moreno-Bueno. Molecular profiling of docetaxel cytotox-513

icity in breast cancer cells: uncoupling of aberrant mitosis and apoptosis. Oncogene, 26:2902–2913,514

2007.515

24 J. Liu, L. Qu, L. Meng, et al. Topoisomerase inhibitors promote cancer cell motility via ros-516

mediated activation of jak2-stat1-cxcl1 pathway. Journal of Experimental and Clinical Cancer517

Research, 38:370, 2019.518

25 C.L. Liu, M.J. Chen, J.C. Lin, et al. Migration and invasion of breast cancer cells through the519

upregulation of the rhoa/mlc pathway. j breast cancer. Journal of Breast Cancer, 22:185–195,520

2019.521

26 N.S. Sohoni, J.A. Dunnmon, G. Angus, et al. No subclass left behind: Fine-grained robustness in522

coarse-grained classification problems. CoRR, 2020.523

27 R. Wang, C. Jin, and X. Hu. Evidence of drug-response heterogeneity rapidly generated from a524

single cancer cell. Oncotarget, 8:25, 2017.525

28 X. Wang, Z. Chen, A.K. Mishra, et al. Chemotherapy-induced differential cell cycle arrest in b-cell526

lymphomas affects their sensitivity to wee1 inhibition. Haematologica., 103(3):466–476, 2018.527

29 F. M. Frame, A. R. Noble, S. Klein, et al. Tumor heterogeneity and therapy resistance - impli-528

cations for future treatments of prostate cancer. Journal of Cancer Metastasis and Treatment,529

3:302–314, 2017.530

17



30 R. Suman, G. Smith, and K. E.A. Hazel et al. Label free imaging to study phenotypic behavioural531

traits of cells in complex co-cultures. Scientific Reports, 6(1):22–32, 2016.532

31 Y. Ozaki, H. Yamada, H. Kikuchi, et al. Label-free classification of cells based on supervised533

machine learning of subcellular structures. PLoS One, 14(1), 2019.534

32 M. Yang, D.J. Kozminski, L. Wold, et al. Therapeutic potential for phenytoin: targeting nav1.5535

sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer536

Research and Treatment, 134(2):603–615, 2012.537

33 C. Uphoff, S. Gignac, and H. Drexler. Mycoplasma contamination in human leukemia cell lines.538

i. comparison of various detection methods. Journal of Immunological Methods, 149:43–53, 1992.539

34 R. Kasprowicz, R. Suman, and P. O’Toole. Characterising live cell behaviour: Traditional label-540

free and quantitative phase imaging approaches. The international journal of biochemistry & cell541

biology, 84:89–95, 2017.542

35 Godfried T Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE543

Melecon, volume 83, page A10, 1983.544

36 Julie Wilson. Towards the automated evaluation of crystallization trials. Acta Crystallographica545

Section D: Biological Crystallography, 58(11):1907–1914, 2002.546

37 Julie Wilson, Karen Hardy, Richard Allen, Les Copeland, Richard Wrangham, and Matthew547

Collins. Automated classification of starch granules using supervised pattern recognition of mor-548

phological properties. Journal of Archaeological Science, 37(3):594–604, 2010.549

38 Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer550

graphics and image processing, 1(3):244–256, 1972.551

39 Namita Aggarwal and R.K. Agrawal. First and second order statistics features for classification of552

magnetic resonance brain images. Journal of Signal and Information Processing, 3:146–153, 2012.553

40 L.K. Soh and C. Tsatsoulis. Texture analysis of sar sea ice imagery using gray level co-occurrence554

matrices. IEEE Transactions on geoscience and remote sensing, 37(2):780–795, 1999.555

41 S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE556

Transactions on Pattern Analysis & Machine Intelligence, 7:674–693, 1989.557

42 R.M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification. IEEE558

Transactions on systems, man, and cybernetics, 6:610–621, 1973.559
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Methods575

Cell Culture. MDA-MB-231 cells and MCF-7 cells were cultured separately in Dulbecco’s modified576

eagle medium supplemented with 5% fetal bovine serum and 4mM L-glutamine.32 Fetal bovine serum577

was filtered using a 0.22µm syringe filter prior to use to reduce artefacts when imaging. Cells were578

incubated at 37◦C in plastic filter-cap T-25 flasks and were split at a 1:6 ratio when passaged. No579

antibiotics were added to cell culture medium. Cells were confirmed to be mycoplasma-free by 4′,6-580

diamidino-2-phenylindole (DAPI) method.33 In cases where dsRed expressing MDA-MB-231 cells581

were used, cells were sorted via FACS prior to imaging to enrich for a transfected cell population.582

To image the following day, cells were counted and then seeded in a Corning Costar plastic, flat583

bottom 24-well plate. Cells were seeded at a density of 8000 cells per well with a final volume of584

500µL in each of the 24 wells.585

586

Pharmacology. Docetaxel (Cayman Chemical Company) was prepared as 5mg/mL of DMSO and587

doxorubicin (AdooQ Bioscience) as 25mg/mL of DMSO, both were then frozen into aliquots. Once588

thawed, docetaxel and doxorubicin stock solutions were diluted in culture medium to give final589

working concentrations. Docetaxel dose response analysis for both MDA-MB-231 and MCF-7 cells590

involved imaging eight wells treated with the following concentrations of docetaxel: 0nM, 1nM, 3nM,591

10nM, 30nM, 100nM, 300nM, 1µM, with additional concentrations 3µM, 10µM and 30µ imaged for592

MDA-MB-231 cells. Doxorubicin dose response analysis for MDA-MB-231 cells involved imaging593

eight wells treated with the following concentrations of doxorubicin: 0nM, 10nM, 30nM, 100nM,594

300nM, 1µM, 3µM, 10µM.595

Medium was removed from wells selected to receive treatment 30 minutes prior to image acqui-596

sition, and 500µL of desired drug concentration was added to each well. Control wells received a597

medium change and were treated with DMSO vehicle on the day of imaging to maintain consistent598

DMSO concentration throughout.599

600

Image Acquisition and Exportation. Cells were placed onto the Phasefocus Livecyte 2 (Phase-601

focus Limited, Sheffield, UK) to incubate for 30 minutes prior to image acquisition to allow for602

temperature equilibration. One 500µm x 500µm field of view per well was imaged to capture as603

many cells, and therefore data observations, as possible. Selected wells were imaged in parallel for604

48 hours at 20x magnification with 6 minute intervals between frames, resulting in full time-lapses of605

481 frames per imaged well. Phase and fluorescence images were acquired in parallel for each well.606

For phase images, Phasefocus’ Cell Analysis Toolbox® software was utilised for cell segmen-607

tation, cell tracking and data exportation. Segmentation thresholds were optimised for a range608

of image processing techniques such as rolling ball algorithm to remove background noise, image609

smoothing for cell edge detection and local pixel maxima detection to identify seed points for final610

consolidation.611

The Phasefocus software outputs a feature table for each imaged well. Information on missing612

frames for tracked cells can be obtained from this table which also provides descriptive features.613

However, most features are calculated within CellPhe and we only utilise the Phasefocus’ features614

that rely on phase information, these being the volume of the cell and sphericity.34615

For fluorescence images, the TrackMate-Cellpose ImageJ plugin was used for cell segmentation616

and tracking. Cells were segmented using Cellpose’s pre-trained cytoplasm model and image con-617

trast was enhanced prior to segmentation to improve detection of cell boundaries. Once complete,618

TrackMate feature tables and individual cell ROIs were exported from ImageJ. Prior to use with619

CellPhe, it was necessary to interpolate TrackMate-Cellpose ROIs to obtain a complete list of cell620

boundary coordinates. Interpolation of ROIs was performed using a custom ImageJ macro.621

622

Implementation of CellPhe.623
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Feature extraction. Using cell boundary information from Regions of Interest (ROIs) produced by624

the Phasefocus software or TrackMate, a range of morphological and texture features were extracted625

for each cell that was tracked for at least 50 frames. In addition to size and shape descriptors cal-626

culated from the cell boundaries, a filling algorithm was used to determine the interior pixels from627

which texture and spatial features were extracted. The local density was also calculated as the sum628

of inverse distances from the cell centroid to those of neighbouring cells within three times the cells629

diameter. A complete list of features together with their definitions is provided in Supplementary630

table S1.631

632

Movement descriptors. By considering the position of a cell’s centroid on subsequent frames, vari-633

ables describing the cell’s movement were extracted from the images. The current speed of the cell634

estimated by considering its position in consecutive frames, taking into account any missing frames.635

The measure provided is proportional to rather than equal to velocity as this would require the rate636

at which frames were produced to be entered by the user for no gain in discriminatory power. The637

displacement, or straight line distance between the cell centroid on the current frame and the frame638

it was first detected in, and the tracklength or total path length travelled by the cell up to the639

current frame, are also calculated. To see how these vary, the quotient current tracklength/current640

displacement is also calculated.641

642

Size descriptors. In addition to volume, calculated using phase information, the size variables deter-643

mined are cell area, as the number of pixels within (or on) the cell boundary, the length and width644

of the cell, determined from the minimal rectangular box that the cell can be enclosed by,35 and the645

radius, as the average distance of boundary pixels from the cell centroid.646

647

Shape descriptors. We make use of an imported feature, sphericity, which requires phase information648

for calculation, but extract a number of other shape features within CellPhe. As well as determining649

the length and width from the arbitrarily oriented minimum bounding box, we use this to provide650

a measure of ’rectangularity’ as max(x, y)/(x + y) where x and y are the length and width of the651

minimal bounding box.36 We also consider the shape of the cell by calculating the fraction of the652

minimal box area that the cell area covers and by comparing the number of pixels on the boundary653

with the total pixels within the cell.36 Here the number of boundary pixels is squared in the quotient654

to avoid the effect of cell size. We also calculate the variance on the distance from the centroid to655

the boundary pixels, with more circular cells having less variance36 and an measure of boundary656

curvature based of the triangle inequality.37 Finally 4 shape descriptors are obtained from a poly-657

gon fitted to the cell boundary, being the mean and variance of both edge length and interior angle.38658

659

Texture descriptors. Textural features of each cell are represented in terms of three first order660

statistics calculated from the pixel intensities within the cell: mean, variance and skewness.39 For661

second order texture features, we used gray-level co-occurrence matrices (GLCMs)40 but, rather than662

consider the positions of pixels within a cell, we calculated GLCMs between the image of the cell at663

different resolutions to differentiate textures that are sharp and would be lost at lower resolution from664

those that are smooth and would remain. This was achieved by performing a two-level 2-D wavelet665

transform41 on the pixels within the axis-aligned minimum rectangle containing a cell. GLCMs were666

then calculated between the original interior pixels and the corresponding values from the first and667

second levels of the transform as well as between the two sets of transformed pixels (levels 1 and668

2). Statistics first described by Haralick42 were then calculated from each GLCM. We use 14 of the669

20 Haralick features described by Löfstedt et al.:43 Angular Second Moment, Contrast, Correlation,670

Variance, Homogeneity, Sum Average, Sum Variance, Entropy, Sum Entropy, Difference Variance,671

Difference Entropy, Information Measure of Correlation 2, Cluster Shade, Cluster Prominence. With672

three co-occurrence matrices, this gives 42 Haralick features.673

We calculated spatial distribution descriptors to quantify the uniformity or clustering of cell in-674

terior pixels at different intensity levels. IQn is a measure of dispersion calculated for the subset of675

interior pixels with intensities greater than or equal to the (n×10)th quantile. Based on a Poisson676

distribution, for which the mean is equal to the variance, the measure is calculated as the variance677
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divided by the mean, calculated over the pairwise distances between pixels within the nth subset.678

IQn = 1 indicates a random distribution whereas a value of IQn less than 1 indicates that the pixels679

are more uniformly distributed and a value greater than 1 indicates clustering.680

681

Characterising Cell Time Series. Cell tracking provides a time series for each of the 74 features682

extracted for a cell. The length of the time series depends on how many frames the cell has been683

tracked for and so differs between cells. In order to apply pattern recognition methods, we extracted a684

fixed number of characteristic variables for each cell from the time series for each feature. Statistical685

measures (mean, standard deviation and skewness) summarise time series of varying length, but686

may not be representative of changes throughout the time series. Therefore, in addition to summary687

statistics, we calculated variables inspired by elevation profiles in walking guides, that is, the sum of688

any increases between consecutive frames (total ascent), the sum of any decreases (total descent) and689

the maximum value of the time series (maximum altitude gain). Similar variables were calculated for690

different levels of the wavelet transform of the time series to allow changes at different scales to be691

considered. The wavelet transform decomposes a time series to give a lower resolution approximation692

together with different levels of detail that need to be added to the approximation to restore the693

original time series. Using the Haar wavelet basis44 with the multiresolution analysis of Mallat41694

allows increases and decreases in the values of the variables to be determined over different time695

scales. With Haar wavelets, a negative detail coefficient represents an increase from one point to696

the next, and so we used the sum of the negative detail coefficients to provide the equivalent to697

total ascent and the sum of the positive detail coefficients as total descent. Rather than an overall698

maximum, we use the maximum detail coefficient for the transformed time series.699

Occasionally the automated cell tracking misses a frame or even several frames, for example700

when a cell temporarily leaves the field of view. To prevent jumps in the time series, we interpolated701

values for the missing frames, although these values were not used to calculate statistics. After702

interpolation, the three elevation variables were calculated from the original time series and three703

wavelet levels which, together with the summary statistics, provided 15 variables for each feature704

(Supplementary table S2). The 72 extracted features together with the 2 imported features would705

have given 74 x 15 = 1110 variables in total, but, as one feature, the tracklength or total distance706

travelled up to the current frame, is monotonically increasing, the total descent is always zero and707

therefore variables related to tracklength descent were not used. Similarly, as the tracklength and708

displacement are the same for the first frame and the displacement can never be greater than the709

tracklength, the maximum value for their quotient will always be 1 and this variable is also not used.710

One further variable was introduced to summarise cell movement as the area of the minimal711

bounding box around a cell’s full trajectory. This area will be large for migratory cells and small for712

cells whose movement remains local for the duration of the time series. If, within a cell’s trajectory,713

minX and minY are the minimal X and Y positions respectively with maxX and maxY the714

corresponding maximal positions, then the trajectory area is defined as715

trajectory area = (maxX −minX)× (maxY −minY ). (1)

Thus, a total of 1106 characteristic variables were available for analysis and classification.716

717

Segmentation Error Removal. To improve characterisation of cellular phenotype, we only included718

cells that were tracked for at least 50 frames in our analyses. Whilst the majority of these cells719

were correctly tracked, others had segmentation errors, with confusion between neighbouring cells,720

missing parts of a cell or multiple cells included.721

In order to increase the reliability of our results, we developed a classification process to identify722

and remove such cells prior to further analysis. Cells (both treated and untreated) were classified by723

eye to provide a training data set. Due to class imbalance, with the number of segmentation errors724

far less than the number of correct segmentations, the Synthetic Minority Oversampling Technique725

(SMOTE)45 was performed using the smotefamily package in R, with the number of neighbours K726

set to 3, to double the number of instances representing segmentation errors.727

The resulting data set with all 1111 variables was used to train a set of 50 decision trees using728

the tree package in R with default parameters. For each tree, the observations from cells with seg-729
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mentation errors were used together with the same number of observations randomly selected from730

the correctly segmented cells to further address class imbalance. For each cell, a voting procedure731

was used to provide a classification from the predictions of the 50 decision trees. To minimise the732

number of correctly tracked cells being falsely classified as segmentation errors, this class was only733

assigned when it received at least 70% of the votes (i.e. 35). To add further stringency, the training734

of 50 decision trees was repeated ten times and a cell only given a final classification of segmentation735

error if predicted this label in at least five of the ten runs. MDA-MB-231 cells that were not used736

for training formed an independent test set. All cells either manually labelled as segmentation error737

or predicted as such were excluded from further analyses.738

739

Classification of Untreated and Treated Cells. After removing segmentation errors, the remaining740

data were used to form training and test sets for the classification of untreated and treated cells.741

Training sets were balanced prior to classifier training to mitigate bias and data from cells in the742

independent test sets were never used during training.743

A separate classifier was trained for each cell line - treatment combination, as shown in Table744

3 and feature selection performed to determine the most appropriate variables in each case. Each745

variable was assessed using the group separation, S = VB/VW , where VB is the between-group746

variance:747

VB =
n1(x̄1 − ¯̄x)2 + n2(x̄2 − ¯̄x)2

(n1 + n2 − 2)
(2)

and VW is the within-group variance:748

VW =
(n1 − 1)s21 + (n2 − 1)s22

(n1 + n2 − 2)
. (3)

Here n1 and n2 denote the sample size of group 1 and group 2 respectively, x̄1 and x̄2 are the sample749

means, ¯̄x the overall mean, and s1
2 and s2

2 are the sample variances. The most discriminatory vari-750

ables were chosen for a particular data set by assessing the classification error on the training data to751

optimise the threshold on separation. Starting with a threshold of zero, the nth separation threshold752

was minimised such that the classification error rate did not increase by more than 2% from that753

obtained for the (n−1)th threshold. The aim here was to reduce the risk of overfitting by only retain-754

ing variables achieving greater than or equal to this threshold for the next stage of classifier training.755

756

Data were scaled to prevent large variables dominating the analysis and ensemble classification757

used to take advantage of different classifier properties. The predictions from three classification758

algorithms, Linear Discriminant Analysis (LDA), Random Forest (RF) and Support Vector Ma-759

chine (SVM) with radial basis kernel were combined using the majority vote. Model performance760

was evaluated by classification accuracy, taking into account the number of false positives and false761

negatives. All classification was performed in RStudio46 using open-source packages. LDA was per-762

formed using the lda function from the MASS library,47 SVM classification used the svm function763

from the e1071 package48 with a radial basis kernel and the randomForest package49 was used to764

train random forest classifiers with 200 trees and 5 features randomly sampled as candidates at each765

split.766

767

Cluster analysis. Both hierarchical clustering and k-means clustering were used to investigate sub-768

groups within single-class data sets (i.e. treated and untreated cells separately). Data were scaled769

prior to clustering and analyses performed in R. Hierarchical clustering was implemented with the770

factoextra package50 using the hcut function to cut the dendrogram into k clusters. Agglomerative771

nesting (AGNES) was used with Ward’s minimum variance as the agglomeration method and the772

Euclidean distance metric to quantify similarity between cells. k-means clustering was performed773

using the R stats package, with the number of random initial configurations set to 50. The number of774

clusters k was chosen to obtain clusters with meaningful interpretation. Similarities and differences775

between clusters were identified through evaluation of separation scores to determine discriminatory776

features, as well as through observation of cells within each cluster by eye.777

778
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Statistical tests. All tests of statistical significance within this study are two-tailed, non-parametric779

Mann-Whitney t-tests performed using Graphpad Prism 9.1.0 (GraphPad Software, San Diego, CA).780

781

Data. Three data sets were used to demonstrate our pipeline for the classification of untreated and782

treated cells. For brevity we use abbreviations throughout to refer to each data set, for example783

”231Docetaxel” is a data set consisting of MDA-MB-231 cells, both untreated and treated with784

30µM docetaxel. This is the main data set used to develop the methods, with a training data set785

compiled from 6 experiments performed on different days and an independent test data set compiled786

from a further 3 experiments, also performed on separate days and by a different individual.787

We validate our methods using two further datasets, the 231Doxorubicin and MCF7Docetaxel788

data sets, details of which are given in Table 3. This table also includes details of the number of789

cells within each training and test set. We show that the classification pipeline can be successfully790

reproduced using fewer experimental repeats for the 231Doxorubicin and MCF7Docetaxel data sets.791

The 231Doxorubicin training set consists of data from one experiment with a further, independent792

experiment performed on a separate day used as a test set. Training and test sets for MCF7Docetaxel793

are from the same two experiments, with random sampling used to produce independent training794

and test sets. Each training data set contains a balanced number of untreated and treated cells,795

treated with a single drug concentration. We selected 30µM docetaxel and 1µM doxorubicin for796

the experiments with MDA-MB-231 cells as the optimal doses with which to induce changes in797

cell morphology and migration without inducing cell death. However, a lower concentration (1µM)798

of docetaxel was used for MCF-7 cells as we found that this induced similar morphological and799

dynamical changes to those induced by higher concentrations but with reduced cell death (Table800

3).801

Data set Cell line Treatment Training set Test set

231Docetaxel MDA-MB-231 30µM Docetaxel Untreated: 646 Untreated: 913
Treated: 600 Treated: 300

231Doxorubicin MDA-MB-231 1µM Doxorubicin Untreated: 213 Untreated: 191
Treated: 215 Treated: 60

MCF7Docetaxel MCF-7 1µM Docetaxel Untreated: 200 Untreated: 441
Treated: 200 Treated: 128

802

Table 3: The three data sets used in this study with the number of cells in training and test sets used for
untreated vs treated classification.803
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