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a b s t r a c t 

Laser additive manufacturing is transforming several industrial sectors, especially the directed energy deposition 
process. A key challenge in the widespread uptake of this emerging technology is the formation of undesirable 
microstructural features such as pores, cracks, and large epitaxial grains. The trial and error approach to establish 
the relationship between process parameters and material properties is problematic due to the transient nature of 
the process and the number of parameters involved. In this work, the relationship between process parameters, 
melt pool geometry and quality of build measures, using directed energy deposition additive manufacturing 
for IN718, is quantified using neural networks as generalised regressors in a statistically robust manner. The 
data was acquired using in-situ synchrotron x-ray imaging providing unique and accurate measurements for our 
analysis. An analysis of the variations across repeated measurements show heteroscedastic error characteristics 
that are accounted for using a principled nonlinear data transformation method. The results of the analysis 
show that surface roughness correlates with melt pool geometry while the track height directly correlates with 
process parameters indicating a potential to directly control efficiency and layer thickness while independently 
minimising surface roughness. 

1. Introduction 

Laser Additive Manufacturing (LAM) enables the direct fabrication 
of complex geometries layer-by-layer from powder or wire feedstock. 
Its flexibility in manufacturing is transforming several industrial sectors 
including aerospace, biomedical, and automotive. Directed Energy 
Deposition Additive Manufacturing (DED-AM) is one of the most 
industrial appealing LAM methods due to its capability for producing 
large near-net-shape free-form components. However, one of the key 
challenges which restrict the widespread industrialisation of DED-AM 

is the formation of undesirable microstructural features such as pores, 
cracks or large epitaxial grains. Trial and error experiments have been 
used to establish the relationship between process parameters and 
resulting material properties, however, an accurate description is still 
unavailable due to the highly transient nature of the process and the 
many parameters involved. 

In 2019, Chen et al. [1] implemented the world’s first L-DED process 
replicator on the Diamond Light Source, UK, and reported first-hand 
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information including the melt pool behavior, defect formation, and 
micro-structural revolution of the process. In-situ and operando fast ac- 
quisition Synchrotron X-ray imaging, as a promising approach, has been 
applied to LAM, assisting the interpretation of the processes [2–4] with 
a series of previously unseen phenomena have been revealed in both 
real and reciprocal space. Chen et al. [5] used X-ray radiography to 
visualise how keyhole formation connects to porosity during laser pow- 
der bed fusion (L-PBF). These Synchrotron experiments have focused 
on the observation of physical phenomena including surface roughness, 
and defect density during LAM directly correlate with the processing 
parameters. However, due to the constraint of synchrotron time and 
the complexity of the experiment, limited process maps and repeats 
can be realised. Many other groups have performed in-situ imaging 
of LAM; however, most have been on laser powder bed fusion. One 
group, Wolff et al. [6] , performed a study identifying the mechanisms 
by which laser-matter interaction influences powder flow and porosity 
formation. However, the study did not explore the parameter-properties 
relationship. 
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The aim of this work is to quantify, for IN718 super alloy, the rela- 
tionship between process parameters, melt pool geometry and two build 
properties: Surface Roughness (SR) and Resultant Track Height (RTH). 
To this end we employ neural networks, specifically multi-layer percep- 
trons, as generalised regressors and subsequently assess the potential for 
finding sets of process parameters that optimise the material properties, 
in this case, minimising surface roughness while maximising efficient 
use of feedstock material. 

Neural networks, in particular the multilayer perceptron (MLP), have 
been employed in the analysis of the LAM process [7–9] . However, there 
are particular fundamental issues, related to small data samples and er- 
ror characteristics, that need to be accounted for with AM data when 
optimising models. Qi et al. [10] systematically reviewed the recent 
work investigating process-property-performance linkage, using neu- 
ral networks, for a number of different additive manufacturing meth- 
ods. One of the challenges identified, as noted above, is the limited 
data available to constrain models and give useful predictions in un- 
explored areas of the input domain (generalisation). In the machine 
learning literature methods, such as data augmentation, have been used 
to increase dataset sizes, however, these methods provide no more 
independent information to refine model parameters with respect to 
knowledge discovery. Rather, these methods are a brute force method 
to enforce robustness and are more akin to regularisation via noise 
injection [11] . 

For robust inferences to be concluded with confidence, using small 
data, it is imperative that information is used efficiently to give the 
best accuracy of model parameters. In this study, we employ a method- 
ological framework [12] that accounts for the properties of stochas- 
tic variations, derived from repeated measurements, to enable the full 
use of available data during optimisation of model parameters and fur- 
ther enables results to be interpreted from a statistically motivated 
perspective. 

The experimental design, with repeated measurements, allows 
stochastic variations to be characterised using Bland-Altman plots [13] . 
The stochastic variations in the measurements were found to be het- 
eroscedastic and correlate with the measurement value itself. It is well 
known, for linear systems, that the ordinary least squares (OLS) solution 
results in the best linear unbiased estimate (BLUE) of the model param- 
eters when the uncertainties are uncorrelated, the expectation value of 
zero and equal variance (homoscedastic). Therefore, we use power law 

functions to transform measurements to a domain where the variance is 
stabilised and the stochastic variations are homoscedastic. The transfor- 
mation functions are optimised with a novel approach (see Section 2.3 ) 
that is independent of the model and maximises the likelihood of the 
stochastic variations being normally distributed. 

Stabilisation and normalisation (in the sense of transforming to a 
normal distribution) allow the distribution of the stochastic variations 
to be robustly summarised with a single statistic; the variance (assuming 
expectation to be zero). In terms of a neural network, the dependent out- 
put variable may be standardised by the standard deviation of the vari- 
ations resulting in an output space that has a z-score style of statistical 
interpretation; the units may now be expressed in standard deviations 
of ‘noise’. Standardisation of the dependent variable in this manner also 
has implications in interpreting the reliability of the regression found 
by the neural network in that the squared error cost function is now ex- 
pected to follow a reduced chi-square distribution. This property may be 
used to objectively assess the goodness of fit of the neural network and 
may further be used, in this sense, as a stopping criterion for the training 
process without the need for cross-validation and thus maximising the 
amount of training data available. 

The results of the analysis show that, while surface roughness may 
be optimised through process parameters settings, this is an indirect re- 
lationship. We hypothesise that the determining factor in surface rough- 
ness is the geometry and dynamics of the melt pool while efficiency in 
the use of feedstock is determined by the relationship between energy 
density and powder feed rate. 

2. Methods and data 

2.1. Data 

Synchrotron in situ X-ray imaging of the DED-AM process was 
performed at I12: Joint Engineering, Environmental, and Processing 
(JEEP) beamline at the Diamond Light Source (Beam time number LTP 
MT20096). A DED-AM process replicator, which faithfully replicates a 
commercial DED-AM system, was designed to fit onto a synchrotron 
beamline to capture the key physics during the laser-matter interaction 
under X-ray. Figure 1 shows a schematic of the experimental set-up and 
details of the process may be found in [14] . A process map was ex- 
plored with a range of process parameters including laser power, tra- 
verse speed, and powder feed rate listed in Table 1. Measurements of 
the melt pool morphology (length and height), top surface roughness, 
and resultant track height were mapped from the radiographs. 

To estimate top surface roughness and resultant track height the ra- 
diographs were binarised. The resultant track height was calculated as 
the mean value of the top surface height variations. The top surface 
roughness was then estimated as the arithmetic mean deviation around 
the resultant track height as given by 

𝑅 𝑎 = 
1 

𝑁 

𝑁 ∑

𝑛 =1 

|ℎ 𝑖 | (1) 

where ℎ 𝑖 is the deviation between a point on the profile and the resultant 
track height (see [14] for more details of the image processing). 

For each experiment, 3 repeated measurements were made from the 
radiographs for length, the height of the melt pool, surface roughness 
and the resultant track height of the deposition. Each measurement was 
made at fixed points, along each track, spatially separated to ensure no 
correlation between measurements due to dynamics. 

2.2. Regression analysis 

Neural network models were employed, as generalised regressors, 
to investigate the relationship between metal additive manufacturing 
(AM) process parameters, the resultant build properties (roughness and 
material deposition) and melt pool geometrical measurements (length 
and height). 

As with many cases in AM, the amount of data available is at a pre- 
mium [7,10] . The approach adopted in this work, to optimise model 
parameters, exploits repeated measurements to ensure good fits to data, 
based on statistical criteria, while maximising the use of the data avail- 
able (as described in [12] ). The method ensures data meet the assump- 
tions of using a least-squares cost function, via stabilising the variance of 
the noise estimated from the difference of repeats. Scaling of the data, 
by stable noise estimates, allows optimisation of model parameters to 
be stopped based on the criteria of the distribution of the squared error 
having a chi-squared per-degree-of-freedom ( 𝜒2 

𝑟𝑒𝑑 
) equal to 1. The model 

parameters were optimised using Levenburg-Marquardt error back prop- 
agation [15,16] . 

All neural networks trained were multi-layer perceptrons with tanh 
activation functions in the hidden layer and a linear output neuron. For 
models trained to find mappings from process parameters to melt pool 
geometry, surface roughness, or RTH the input space is three dimensions 
consisting of laser power, head speed, and feed rates. During training, 
each combination of the input factors is presented in combination with 
every repeat of the output target data. 

For the mappings between the melt pool geometry to the surface 
roughness or RTH, the input space is two-dimensional consisting of the 
length and height measurements. Every measurement and repeat of the 
input factors were presented in combination with every repeat of the 
output target data. 

The model order selected for each network (the number of hidden 
units) was selected as the lowest model order capable of finding an 
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Fig. 1. Schematic of the melt pool measure- 
ment process from the x-ray images. 

Table 1 
Process parameters settings. The dataset consists of samples for all combinations of these values. 

Laser Power (W) 50 100 150 200 

Substrate Traverse Speed ( 𝑚𝑚𝑠 −1 ) 1, 2.5 & 5 1, 2.5 & 5 1, 2.5 & 5 1,2.5 & 5 
Powder Feed rate ( 𝑔 𝑚𝑖𝑛 −1 ) 1,2, & 3 1,2, & 3 1, 2, & 3 1, 2, & 3 

optimal parameter solution that gave a square-error distribution with 
𝜒2 
𝑟𝑒𝑑 

= 1 . 
For all fits, the least-squares cost function, residual distributions, 

and regression plots between training target data and model outputs 
are shown in the supplementary material. 

2.3. Data transformation and variance stabilisation 

Bland-Altman plots (see supplementary material) show that the melt 
pool height, roughness, and surface addition measurements have noise 
distributions whose variance is correlated with the mean of the mea- 
surements 1 ; similar observations were found in [12] . For datasets with 
unequal variance, minimization of an ordinary least-squares cost func- 
tion is no longer guaranteed to give the best linear unbiased estimate 
(BLUE) of the optimal model parameters. 

To overcome this issue, and ensure data is being used to best ef- 
ficiency, we consider variance stabilization [17–20] via a non-linear 
transformation of the form: 

𝑓 ( 𝑥 ) = 𝑥 𝜃 (2) 

to transform the stochastic variations to a domain such that the data 
meets the ordinary least squares assumptions. The parameter 𝜃 is op- 
timised by minimising, with respect to 𝜃, the negative log-likelihood 
function given by: 

− log 𝐿 ( 𝑣 𝑖 , 𝑟 𝑖 |𝜃) = 

𝐼 ∑

𝑖 =1 

[ ( 𝑓 ( 𝑣 𝑖 ; 𝜃) − 𝑓 ( 𝑟 𝑖 ; 𝜃)) 
2 

2 𝜎2 
𝑓 

+ log ( 
√
2 𝜋𝜎𝑓 ) 

− log 
(|||

𝜕 𝑓 ( 𝑣 𝑖 ; 𝜃) 

𝜕𝑣 𝑖 
+ 

𝜕 𝑓 ( 𝑟 𝑖 ; 𝜃) 

𝜕𝑟 𝑖 

|||
)]

(3) 

where 𝑣 𝑖 is the 𝑖 th measurement of a variable and 𝑟 𝑖 is a repeat of the 
𝑖 th measurement for the same variable. The function is minimised by an 
exhaustive search over the parameter range −3 ≤ 𝜃 ≤ 3 . Minimisation of 
this function maximises the likelihood of the measurement noise having 
a Gaussian distribution and stabilises the variance. A full derivation of 
Eq. (A.1) may be found in the appendix ( Section Appendix A ). 

The negative log-likelihood functions for each variable (melt pool 
length and height, roughness, and material deposition) are shown in the 
supplementary material, with the optimal values for 𝜃 shown in Table 2 . 

1 Heteroscedasticity. 

After stabilisation, each variable is normalised by the standard devia- 
tion of the transformed repeatability noise distribution 2 . In this domain, 
each variable has the property of being in units of standard deviations 
of noise. Distances computed over spaces constructed with variables in 
this domain have a Euclidean geometry and a statistical interpretation 
similar to a z-score. 

3. Results 

3.1. Data pre-processing 

The melt pool length, melt pool height, surface roughness and RTH 

measurements were transformed using the power law of Eq. (2) with 𝜃
optimised by minimising the negative log-likelihood given by Eq. (3) . 
The negative log-likelihood functions, and the associated pre- and post- 
transform Bland-Atlamn plots, are shown in the supplementary material 
with the value of 𝜃 at the minimum indicated. 

Table 2 shows the Shapiro-Wilks test results and kurtosis for the dis- 
tribution of the difference of repeats, pre- and post-transformation, for 
each variable. The value of 𝜃 found corresponding to the minimum of 
the negative log-likelihood is also shown. Prior to transformation all the 
𝑝 -values, for all variables, indicate that the noise distributions are sig- 
nificantly different to a unit Gaussian; the kurtosis scores also reflect 
this with values greater than 3 indicating super-Gaussian distributions. 
Post-transformation the melt pool height, surface roughness, and RTH 

all show distributions that are no longer significantly different from that 
of a unit Gaussian with kurtosis scores that are closer to 3. 

For the melt pool length the transform parameter, 𝜃, is close to 1 
and has minimal effect. The Shapiro-Wilks scores remain significant 
and the distribution of the noise remains super-Gaussian. Inspection 
of the Bland-Altman plot (supplementary material figure 3), for melt 
pool length, shows that pre-transform there is little indication of het- 
eroscedasticity. In this case, the power law function is not able to trans- 
form the variable to a form where normality is increased. It may be 
noted that the normality of the residual distribution is not a require- 
ment to attain the BLUE estimator, however, homoscedasticity is. For 
non-linear estimation, as in the estimation of neural network parame- 
ters, many of the properties derived from linear estimation theory hold, 
at least asymptotically [21] , and thus post-transformation the variables 
meet these criteria. 

2 𝑓 𝑠𝑐𝑎𝑙𝑒𝑑 ( 𝑥 ) = 
𝑓 ( 𝑥 ) 
𝜎𝑓 ( 𝑥 ) 
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Table 2 
Shapiro-Wilk scores, 𝑝 -values, and kurtosis for raw and stabilised datasets. Stabilised datasets are indicated with 
a T in parenthesis. The estimated stabilisation parameter for the function 𝑓 ( 𝑥 ) = 𝑥 𝜃 is also shown. 

S-W 𝑝 -value kurtosis 𝜃 S-W (T) p (T) kurtosis (T) 

length 0.95 0.02 4.7 0.92 0.95 0.02 4.6 
height 0.81 < 0.001 6.9 0.25 0.98 0.64 2.6 
Roughness 0.97 0.05 4.2 0.15 0.99 0.74 2.7 
RTH 0.92 < 0.001 5.3 0.54 0.99 0.87 2.9 

Fig. 2. Regression map of melt pool geometry to surface roughness with shaded region showing the area within a standard deviation of the minimum (central 
figure; The blue circles show data locations). Regression maps of the process parameters to for height and length (subplots) for two laser power settings (200W and 
50W). Shaded areas indicate parameter combinations that correspond to the surface roughness minimum (black dots show data locations). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

3.2. Regression fits 

3.2.1. Process parameters to melt pool geometry mappings 
Low-order regression maps from process parameters to melt pool ge- 

ometrical measures were found, that meet the goodness-of-fit criteria, 
from the full range of the process parameters used experimentally (see 
supplementary material for regression maps at 4 power settings). 

The results of the analysis show that melt pool length is dependent on 
laser power and traverse speed alone; powder feed rate has no significant 
effect. The melt pool length shows a clear proportional relationship to 
the energy density, increasing with increased power and decreased head 
speed. 

The results for melt pool height are more complicated. For traverse 
speeds of (1 and 2 𝑚𝑚 𝑠 −1 ) there is evidence to show that melt pool 
height has a relationship dependent on both energy density and powder 
feed rate; for traverse speed of 2 𝑚𝑚 𝑠 −1 significant change with powder 
feed-rate only occurs for high laser powers ( > 150 𝑊 ). For head speeds of 
5 𝑚𝑚 𝑠 −1 no significant change in the melt pool height with laser power 
or feed rate is supported by the data. 3 

3.2.2. Meltpool to roughness mapping 
The central plot, of Fig. 2 , shows the lowest order (3 hidden units) 

regression map found, that meets the goodness-of-fit criteria, between 
melt pool geometry and surface roughness. The blue circles show the 

3 The apparent drop in melt pool height shown in the regressions, for low 

powder feed-rate, is not constrained by any data and is unreliable. 

locations of the measured data 4 and the shaded area of the plot corre- 
sponds to a region of a standard deviation (of repeatability noise) around 
the minimum. The plot shows that melt pools with a longer length and 
lower height correlate with lower levels of surface roughness. There is 
some evidence to show that the ratio of height to length is determining 
factor but more evidence of this is required. It may also be noted, from 

the pre-transformation Bland-Altman plots, that lower height melt pools 
have significantly lower repeatability variations than taller melt pools, 
suggesting that melt pool dynamics, and not just static geometry, have 
a role in determining surface roughness. 

The subplots of Fig. 2 show regression maps generated directly be- 
tween process parameters (speed and feed rate) and melt pool length 
and height. The shaded areas indicate the mapping of the minimum, of 
melt pool geometry to surface roughness, to the process parameters for 
two laser power settings (200W and 50W). For 50W there is no speed 
setting that enables a melt pool length and height combination to be re- 
alised that corresponds to the minimum area of surface roughness. For 
all other power settings, the minimum surface roughness was attainable 
to within error. 

3.2.3. Process parameters to roughness mapping 
Figure 3 shows regression maps directly from process parameters 

to surface roughness for 4 laser power settings (full regression meets 
goodness-of-fit criteria with 5 hidden nodes). The figures show that, for 
areas well constrained by data (black dots), the roughness does not sig- 

4 Regions of the plot with no data are unconstrained and no meaningful in- 
ference may be made from these regions. 
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Fig. 3. Mapping of process parameters to sur- 
face roughness measured at the 4 laser power 
settings. Shading indicates ±1 standard devi- 
ation around the minimum surface roughness 
found in mapping melt pool geometry to sur- 
face roughness (The black dots show the data 
locations). (For interpretation of the references 
to colour in this figure legend, the reader is re- 
ferred to the web version of this article.) 

nificantly change with laser power although it should be noted that the 
regression is over a 3d input space and areas that appear unconstrained 
in two dimensions may be constrained by data in the z direction. 

The shaded areas of the plots indicate ±1 standard deviation around 
the minimum surface roughness found in mapping melt pool geometry 
to surface roughness ( Fig. 2 ). The process parameters indicated by these 
areas, although not directly matching, correlate with the results associ- 
ated with mappings to and from the melt pool geometry measures. 

3.2.4. Process parameters to resultant track height 
Figure 4 shows regression maps from process parameters to surface 

addition for 4 laser power settings (full regression meets goodness-of- 
fit criteria with 8 hidden nodes). A low-order mapping between melt 
pool geometry and RTH could not be found that met the goodness-of-fit 
criteria. 

The figures show a significant increase in RTH with an increase in 
both powder feed rate and energy density. It may also be noted that RTH 

significantly increases with laser power for all combinations of head 
speed and powder feed rate. Crucially, this suggests, for the range of 
parameters studied, that RTH may be maximised independently of the 
melt pool geometry thus enabling minimum surface roughness to be 
achieved simultaneously. 

4. Discussion and conclusions 

This work has applied a rigorous machine learning framework to 
analyse a repeated measures data set collected from Synchrotron in situ 
X-ray imaging of the DED-AM process. The data set is small and care 
has been taken to ensure that the regression models fit the data and 
are reliable via variance stabilisation and the use of reduced chi-square 
(chi-square per degree of freedom) as a goodness-of-fit criterion. 

Bland-Altman plots show that, except for melt pool length, the mea- 
sured data have heteroscedastic repeatability errors and are thus are 

not directly suitable for optimisation of model parameters via a least 
squares cost function. The data was stabilised via a non-linear function 
optimised by maximising a novel log-likelihood function that maximises 
the normality of the distribution of the difference of repeats. This is in 
contrast to methods such as Box and Cox which is model dependent and 
considers the distribution of residuals. 

Stabilised measurements were scaled by the standard deviation of 
the stabilised repeatability noise (difference of repeats). In this domain, 
the measurements have an interpretation that is in units of the standard 
deviation of repeatability noise. Thus, regression maps may be used to 
relate statistically significant changes in the input space to statistically 
significant changes in the output space e.g. melt pool geometry to sur- 
face roughness. 

Neural networks were used, as generalised regressors, to map be- 
tween: (a) process parameters and melt pool geometry, (b) process pa- 
rameters and surface roughness, (c) melt pool geometry and surface 
roughness, and (d) process parameters and RTH. In each case the model, 
with the lowest model order, that was able to meet the reduced chi- 
square goodness-of-fit criteria was used. For mapping between melt pool 
geometry and RTH a low order model could not be found that met the 
goodness-of-fit criteria. 

Figure 3 shows that, across all powers, the minimum surface rough- 
ness is achieved at the highest velocities and lowest feed rates. We hy- 
pothesise that high velocity and low powder feed rate gives a smaller 
melt pool with smaller surface waves and hence lower surface undula- 
tions. Contrary to a general understanding, the results show that pro- 
cess parameter do not have a direct relationship to surface roughness. 
Rather than an indirect relationship exists through control of the melt 
pool geometry, and possibly dynamics, through appropriate selection 
of traverse speed and powder feed rate. The framework allowed for an 
area of minimum surface roughness to be identified within the limits 
of the data and mapped back to the process parameters. Crucially, it 
was found that laser power had no significant effect on surface rough- 
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Fig. 4. Mapping of process parameters to sur- 
face addition at the 4 power settings (The black 
dots show the data locations). (For interpre- 
tation of the references to colour in this fig- 
ure legend, the reader is referred to the web 
version of this article.) 

ness over the range of process parameters used and that longer length 
and lower height melt pools significantly correlated with the minimum 

in the surface roughness. In terms of melt pool dynamics, lower-height 
melt pools have less variability in the difference of repeated measure- 
ments which may have a direct correlation with surface roughness but 
this requires further evidence and analysis. 

It was found that RTH had a significant correlation with all three 
process parameters used. In contrast, laser power had no significant cor- 
relation with surface roughness and thus, in terms of optimisation of 
the DED process, it is feasible to maximise RTH over the range of head 
speed and powder flow rates that minimise the surface roughness. As 
an example for a traverse speed of 3 . 5 𝑚𝑚 𝑠 −1 and feed-rate of 5 𝑔 𝑚𝑖𝑛 −1 

(predicted minimum roughness by the models) the RTH is predicted 
to increase from 40 𝜇𝑚 to 336 𝜇𝑚 with an increase in laser power from 

150W to 200W. 
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Appendix A. Log-Likelihood derivation 

For continuous variables (random variable following a continuous 
probability distribution) the likelihood is defined in terms of a proba- 
bility density. Thus, the log-likelihood of a sampled continuous variable 
having a Gaussian probability density is commonly defined as 

− log 𝐿 = 

𝐼 ∑

𝑖 =1 

[ 𝑥 2 
𝑖 

2 𝜎2 
+ log ( 

√
2 𝜋𝜎) 

]
(A.1) 

where 𝑥 𝑖 is the 𝑖 th sample from a continuous variable. 
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However, in some circumstances an estimation process may need to 
adjust the data variables and the use of the density is not appropriate. 
For scientific validity we must work with a cost function based on the 
probability of a given event, this is independent of arbitrary experimen- 
tal choices. i.e. 

𝑃 ( 𝑎 ≤ 𝑥 𝑖 ≤ 𝑏 ) = 𝑃 ( 𝑓 ( 𝑎 ; 𝜃) ≤ 𝑓 ( 𝑥 𝑖 ; 𝜃) ≤ 𝑓 ( 𝑏 ; 𝜃)) (A.2) 

for any continuous and differentiable monotonic function 𝑓 ( 𝑥 ) . 
The relationship between probabilities and probability densities is 

given by 

𝑃 ( 𝑥 ) = ∫
𝑥 + 

𝑥 − 

𝑝 ( 𝑥 ) 𝑑𝑥 ≈ 𝑝 ( 𝑥 )Δ𝑥 (A.3) 

where 𝑃 ( 𝑥 ) is the probability of 𝑥 being in the interval ( 𝑥 − , 𝑥 + ) , Δ𝑥 is 
the interval given by 𝑥 + − 𝑥 − and 𝑝 ( 𝑥 ) is the probability density over 𝑥 . 
In the limit of Δ𝑥 tending to zero, the approximation becomes exact. In 
terms of the reproducibility noise, we have 

𝑃 ( 𝑎 ≤ ( 𝑣 𝑖 − 𝑟 𝑖 ) ≤ 𝑏 ) = 𝑝 ( 𝑣 𝑖 − 𝑟 𝑖 )Δ( 𝑣 𝑖 − 𝑟 𝑖 ) (A.4) 

= 𝑝 ( 𝑓 ( 𝑣 𝑖 ; 𝜃) − 𝑓 ( 𝑟 𝑖 ; 𝜃))Δ( 𝑓 ( 𝑣 𝑖 ; 𝜃) − 𝑓 ( 𝑟 𝑖 ; 𝜃)) (A.5) 

where 𝑣 𝑖 is a measurement, for a build, 𝑖 , with a given a set of process 
parameters and 𝑟 𝑖 is a repeated measurement for the same build. 

Thus 

𝑃 ( 𝑎 ≤ ( 𝑣 𝑖 − 𝑟 𝑖 ) ≤ 𝑏 ) = 𝑝 ( 𝑓 ( 𝑣 𝑖 ; 𝜃) − 𝑓 ( 𝑟 𝑖 ; 𝜃)) 
𝛿( 𝑓 ( 𝑣 𝑖 ; 𝜃) − 𝑓 ( 𝑟 𝑖 ; 𝜃)) 

𝛿( 𝑣 𝑖 − 𝑟 𝑖 ) 
Δ( 𝑣 𝑖 − 𝑟 𝑖 ) 

(A.6) 

This probability definition may be used to define a cost function, in 
terms of 𝜃, that maximises the overall probability of the reproducibility 
noise being drawn from a Gaussian distribution as 

− log 𝑃 ( 𝑣 𝑖 , 𝑟 𝑖 |𝜃) = 

𝐼 ∑

𝑖 =1 

[ ( 𝑓 ( 𝑣 𝑖 ; 𝜃) − 𝑓 ( 𝑟 𝑖 ; 𝜃)) 
2 

2 𝜎2 
𝑓 

+ log ( 
√
2 𝜋𝜎𝑓 ) 

− log 
(|||

𝛿( 𝑓 ( 𝑣 𝑖 ; 𝜃) − 𝑓 ( 𝑟 𝑖 ; 𝜃)) 

𝛿( 𝑣 𝑖 − 𝑟 𝑖 ) 

|||
)
− log (Δ( 𝑣 𝑖 − 𝑟 𝑖 )) 

]
(A.7) 

where 𝜎𝑓 = 𝜎𝑓 ( 𝑣 𝑖 ; 𝜃)− 𝑓 ( 𝑟 𝑖 ; 𝜃) . The perturbations of 𝑣 𝑖 and 𝑟 𝑖 are independent 
and thus 𝛿( 𝑣 𝑖 − 𝑟 𝑖 ) = 𝛿𝑣 𝑖 − 𝛿𝑟 𝑖 ; eliminating the final constant term gives 
a Gaussian log-likelihood function (in terms of probability density) for 
the transformed data as 

− log 𝐿 ( 𝑣 𝑖 , 𝑟 𝑖 |𝜃) = 

𝐼 ∑

𝑖 =1 

[ ( 𝑓 ( 𝑣 𝑖 ; 𝜃) − 𝑓 ( 𝑟 𝑖 ; 𝜃)) 
2 

2 𝜎2 
𝑓 

+ log ( 
√
2 𝜋𝜎𝑓 ) 

− log 
(|||

𝜕 𝑓 ( 𝑣 𝑖 ; 𝜃) 

𝜕𝑣 𝑖 
+ 

𝜕 𝑓 ( 𝑟 𝑖 ; 𝜃) 

𝜕𝑟 𝑖 

|||
)]

(A.8) 

It may be noted that this has additional differential terms to the orig- 
inal log-likelihood definition (Eq. (A.1) ), which are needed in order to 
compensate for the changes in density arising from data transformation. 

Supplementary material 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.addlet.2023.100137 . 
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