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Can reference governors outperform tube-based predictive control?

Mohammad A.M. Sarbini1, John A. Rossiter2, Paul A. Trodden3

Abstract— This paper makes comparisons between a ref-
erence governor scheme and a tube-based MPC algorithm
for a simple tracking problem with output disturbances. The
key aim is to consider the extent to which a tube based
approach is merited in this scenario, or whether the same
feasibility assurances and good performance can be obtained
with a far simpler approach. The main features, properties, and
general setup of both methods are described and compared. The
tracking performance of both algorithms are analysed.

I. INTRODUCTION

Model predictive control (MPC) strategies have been

widely and successfully used in various industrial applica-

tions [20] due to the ability to handle multivariable pro-

cesses and constrained control problems. The theoretical

foundation has been developed to guarantee asymptotic sta-

bility, constraint satisfaction, and robustness for linear and

non-linear systems, based on the solution of tractable, on-

line optimisation problems. Most authors have recognised

the usefulness of the dual-mode paradigm [26], in which

Lyapunov theory is used provide a general framework for

stability guarantees and recursive feasibility by employing

suitable terminal ingredients, that is, a terminal cost and

terminal equality or inequality constraint [15].

The inclusion of terminal conditions however, implicitly

imposes restrictions on the states in the presence of distur-

bances and/or during target changes. The shifted terminal

set might not be an admissible invariant set and/or could be

unreachable within the available prediction horizon, resulting

in loss of feasibility. Moreover, computing the terminal sets

online for every new target or to increase the prediction hori-

zon for feasibility gains can be computationally expensive.

To deal with these issues, significant attention has been

given to develop stabilising MPC that deals with disturbed

and uncertain systems (e.g. [3], [14], [16], [18]). The main

objective can be described as defining an appropriate invari-

ant set for: (i) the disturbed system or (ii) the difference

between the nominal and disturbed system. The latter is

particularly well known in the literature as tube-based robust

MPC (TMPC) [3], [14]. The core idea is to contain the

uncertain closed-loop trajectories within the prescribed tubes

to ensure feasibility.

An alternative approach to regaining feasibility is to con-

sider, artificially and/or temporarily, changing the reference

target [12], [13], [24]. In contrast to standard tracking

MPC, the reference or command governors (R/CG) strategies

employ an artificial reference target as a decision variable
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Fig. 1. Reference governor applied to constrained closed-loop system

(see Fig. 1). The main idea is to augment with a non-linear

device cascaded to a primary closed-loop system to modify,

whenever necessary, the desired target r so that constraints

are satisfied. The tacit assumption within an R/CG schemes

is that infeasibility is often caused by a fast target changes

and thus, feasibility is retained by introducing an artificial

target. Classical RG schemes, such as presented in [5], [6],

[8] focused on simple computations to for the determination

of υ, therefore the tracking performance is suboptimal. For

optimality, command governors [1], [2] use similar ideas to

MPC where the artificial target trajectory is predicted online

at each time step. Interested readers are referred to [4], which

provides a recent survey on R/CG schemes.

In some respects, both TMPC and R/CG schemes attempt

to tackle infeasibility issues caused by different sources;

tubes provide feasibility guarantees against model uncer-

tainties such as disturbances whereas originally RG focused

on infeasibility due to fast/large target changes. Infeasibility

within an optimisation can also occur due to a fast/large

output disturbance acting on the closed-loop system and it

appears this issue has primarily being considered under tube-

based schemes. However, this paper proposes that in fact a

RG scheme may be equally adept at handling this scenario

and ensuring feasibility is retained, but with the advantage of

being far simpler to code and implement. The main purpose

of this paper is to draw attention to the potential of relatively

simple predictive approaches and thus pose the question of,

to what extent can a RG type of approach be equally effective

and ensure recursive feasibility results for a wider range of

uncertainty?

The paper is organised as follows. The general control

problem, model, assumptions, and control strategy is setup

in Section II. A TMPC formulation and R/CG schemes are

presented in Sections III and IV. Section V contrasts the

two schemes and discusses the implementation issues. Illus-

tration via numerical simulations are presented in Section

VI. Section VII gives the conclusion and future work.



Notation: R and I denote real and non-negative integer

numbers, respectively. ⊖ denotes Pontryagin set difference,

⊕ denotes Minkowski set sum, ‖x‖P =
√
xTPx for x ∈

Xnx . x
→k

represents future states of x. X◦ represents int(X).

(a, b) denotes the stacked vector
[

aT bT
]T

.

II. PROBLEM SETUP AND PRELIMINARIES

A. Actual system, nominal model, and main assumptions

Consider the linear, discrete-time invariant system,

xk+1 = Axk +Buk +wk (1a)

yk = Cxk + vk (1b)

zk = Fxk +Guk (1c)

where xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , and zk ∈ Rnz are

the states, control inputs, tracking outputs, and constrained

outputs, respectively, wk ∈ Rnw is the state disturbance,

vk ∈ Rnv is the output disturbance. Disturbances are

unknown but bounded and satisfy wk ∈ W ⊂ Rnx and

vk ∈ V ⊂ Rny .

A-1: The pair (A,B) is stabilisable, the pair (C,A) is

detectable, and the following condition holds:

rank

[

A− Inx
B

C 0

]

= nx + ny (2)

Remark 1: Condition (2) is necessary for the output y

to track an arbitrary set-point target rk, and implies that

ny ≤ nu.

The system (1) is subject to the state and input constraints

for all k ∈ N, or more compactly,

xk ∈ X,uk ∈ U, zk ∈ Z (3)

where X, U, and Z are specified sets of constraints. Matri-

ces F and G in (1c) are suitable half-space representations

of hyperreactangle with upper and lower bounds.

A-2: The set Z is a convex, compact polyhedron repre-

sented by Z = { z | Sz ≤ s } which satisfies 0 ∈ Z◦.

To ensure offset-free set-point tracking, we employ a

disturbance model [17] to estimate the states, disturbance,

and steady-state values

A-3: Under the specified constraints, all steady-state val-

ues are reachable,
[

A− Inx
B

C 0

] [

xs

us

]

=

[

Bddk

rk −Dddk

]

(4)

More specifically, this paper only considers output dis-

turbances (i.e. Bd = 0 and Dd = 1). If (4) has a unique

solution, we can define the deviation variables based on the

steady-states as x̃k = x̂k−xs and ũk = ûk−us. A possible

control law for tracking the steady-states is:

κs(x̂) = us −K(x̂k − xs) (5)

where K is the state feedback matrix chosen such that the

closed-loop system is stable, i.e., |λ(A−BK)| < 1, and

[

xs

us

]

=

[

Mx

Mu

]

(rk − dk) (6)

Remark 2: The control law (5) can equivalently be written

as κs(x̂, r,d) = −Kx̂k + L(rk − dk) where L = KMx +
Mu.

B. The MPC strategy for tracking

It is now well known that the dual-mode MPC schemes

in general provide good stability guarantees and recursive

feasibility [15]. A standard dual-mode MPC formulation for

tracking uses deviation variables:

min
u
→k

∥

∥x̃k+N |k

∥

∥

2

Qf

+

N−1
∑

i=0

∥

∥x̃k+i|k

∥

∥

2

Q
+

∥

∥ũk+i|k

∥

∥

2

R
(7a)

s.t. x̃k|k = x̃k, (7b)

x̃k+i+1|k = Ax̃k+i|k +Bũk+i|k, i ∈ IN−1
0 , (7c)

zk+i|k ∈ Z i ∈ IN−1
0 , (7d)

x̃k+N |k ∈ Xf(xs) (7e)

where N is the prediction horizon, u
→k

= (u0, . . . ,uN−1)
are the optimal solution for the input sequence, (Q,R) ≻ 0
are states and input weighting matrices, Qf is the terminal

cost matrix which satisfies Lyapunov equation, and Xf is

the terminal set. Readers will note the dependency of the

terminal set on the steady-states in (7d). Consequently if

the steady-state target to close the constraint boundary, part

of the the translated terminal set may lie outside the states

constraint set, i.e., Xf(xs) ( X, thus invalidating any claims

of positive invariance. The set of feasible initial states can

be expressed as:

XN =
{

xk

∣

∣

∣
∃u
→k

: Fxk +Gu
→k

≤ h

}

(8)

where F, G, and h are obtained from A, B, F , G, and h
via prediction equations over N . Details on how to compute

these are omitted as these are standard in the MPC literature.

C. Closed-loop prediction

Let the predicted control law be [25]:

ũk+i =

{

−Kx̃k+i + ck+i i ∈ IN−1
0

−Kx̃k+i i ≥ N
(9)

where the perturbations ck+i are the d.o.f. (or control moves)

available for constraint handling. It is well known that one

can re-parameterise (7) as

J = min
c
→k

∥

∥

∥
c
→k

∥

∥

∥

2

Sc

(10a)

s.t. z̃k+i|k ∈ ZN (xs) (10b)

where c
→k

= (cT
k|k, . . . , c

T
k+N−1|k), Sc = diag(BTQfB +

R) and ZN is the maximal controlled admissible set

(MCAS),

ZN =
{

xk

∣

∣

∣
∃ c
→k

: Fxk +Gc
→k

≤ h

}

(11)

where F, G, and h are computed using admissible set

algorithm such as [19] and therefore different from (8).



III. TUBE MPC

A. Tube of trajectories

Central to the notion of tubes is the disturbance invari-

ant sets [11], which is the set of states reachable from

the origin in the presence of a bounded disturbance. The

parameterisations of states, inputs, and local trajectories and

their respective “tubes” can be described in the following.

Due to the model uncertainty in (1), the predicted states

are described by a tube comprising a sequence of sets,

{X0,X1, . . . }. Each of these sets contains the possible states

at a given future time instant for all realisations of future

uncertainty:

xk = x̄k + ek, =⇒ Xk = x̄k ⊕ Ek (12)

where ek ∈ Ek is the prediction error. To ensure xk ∈ Xk for

all k ≥ 0, the proposed tube control law comprises of two

terms: (i) nominal control ūk, and (ii) correction to account

for the prediction error ek,

κτ (x̂) = ūk −Kτek, =⇒ Uk = ūk ⊕−KτEk (13)

where the feedback matrix Kτ is chosen such that Aτ =
A − BKτ is Hurwitz and ensures the evolution of ek is

bounded. The actual trajectory thus lies close to the nominal

trajectory inside Xk, which can be visualised as a tube of

trajectories with x̄k at the centre. The sets that form the tube

{E0, E1, . . . } evolve according to the closed-loop trajectory

of (1a), i.e.,

ek+1 = Aτek +wk, =⇒ Ek+1 = AτEk ⊕W (14)

Each set generated by Eq. (14) implies that Ek ⊂ Ek+1 for

all k ≥ 0, and therefore is a robust positive invariant (RPI)

set. If E0 = {0}, then Ek is defined as

Ek = W⊕AτW⊕ · · · ⊕Aj−1
τ W =

k−1
⊕

j=0

Aj
τW (15)

B. Robust constraint handling

Robust constraint satisfaction is guaranteed if (1c) holds.

By substituting Eq. (13) into Eq. (1c), we get

Fxk +Guk + FKek ≤ h, ∀ek ∈ Ek (16)

where Fτ = F − GKτ and the term Fτek represents the

additional constraint tightening that is computed by max-

imising the prediction error e; this can done by considering

k → ∞ in (15). Since Aτ is stable, then the minimum Robust

Invariant Set (mRPI) set exists [11] which is given by

Xm
τ =

∞
⊕

j=0

Aj
τW (17)

However unless Aτ is nilpotent, computing the exact rep-

resentation of (17) is impossible; instead its close outer ap-

proximation is employed, for example, in [23], [27]. Robust
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Fig. 2. Tube MPC scheme.

constraint handling can be ensured by tightening the original

state and input constraints (3) via Pontryagin difference,

X̄ = X⊖ Xm
τ (18a)

Ū = U⊖KτX
m
τ (18b)

Z̄ = Z⊖ (Xm
τ ×KτX

m
τ ) (18c)

Eq. (18) implies that by forcing a suitable tighter set of

constraints for the nominal system, the evolution of the

uncertain system controlled by (14) is robustly admissible.

Remark 3: The use of mRPI to characterise the tubes is

rigid and conservative. Other works in the literature such

as homothetic [21] and parameterised [22] tubes are further

extensions but the implementation is non-trivial and therefore

are not discussed here.

C. Implementation

The tube-based MPC is therefore similar to conventional

MPC with systematic constraint tightening procedure and

additional ancillary inner loop. The nominal problem is

solved online and the nominal trajectory is used as the

new target trajectory for the ancillary tube controller. Fig. 2

illustrates the block diagram of tube MPC scheme. Readers

will notice a similarity with cascade control. Tube MPC is

implemented according to Algorithm 1.

Algorithm 1 Tube MPC Algorithm

1: At each sampling instant, perform the optimisation (7)

or (10) with tightened constraints (18)

2: Apply the first value of the optimal solution for the input

sequence, u0

3: Determine the nominal state and input trajectory (x̄, ū)
4: Apply the control law (13)

IV. REFERENCE/COMMAND GOVERNORS

This section summarises the main concepts of RG/CG

schemes [8]. For a detailed exposition readers are referred

to the recent survey found in [4].

A. Closed-loop form

In this paper we setup the RG/CG scheme according to

the standard form in the RG/CG literature, see e.g. [4], [6],

[7], [9]. To that end, let the control law be:

κυ(x̂,υ) = −Kx̂k + Lυk (19)



where υk ∈ Rnυ is the modified reference. Applying (19) in

(1) yields

xk+1 = AKxk +BLυk +Bwwk (20a)

zk = FKxk +GLυk +Dwwk (20b)

where AK = A − BK, BL = BL, FK = F − GK,

GL = GL, and the matrices Bw and Dw are known with

appropriate sizes. The following assumptions [7], [9] are

made:

A-4: The input υ is assumed to be constant for all future

instants, i.e. υk+1 = υk.

Remark 4: If υk = rk, Eqs. (5) and (19) are equivalent.

Eq. (19) can be re-written as κυ(x̂,υ) = uυ −K(x̂− xυ)
where xυ = Mxυk, and uυ = Muυk.

B. Robust constraint handling in RG

The RG relies on the model (20) to predict future con-

straint violation using the maximal output admissible set

(MOAS) 1 [7]. Using Assumption (A-4), the constrained

output prediction is expressed as a function of the initial

states and inputs,

z
→i

= Fix0 +Giv0 + di (21a)

di = FK

i−1
∑

j=0

Ai−j−1
K Bwwj +Dwwi (21b)

where Fi = FKAi
K , Gi = H0−FKAi

KΓ, H0 = FKΓ+GK ,

Γ = (I −AK)−1BL is the map from the constant reference

υ to the steady-state, and Eq. (21b) computes the possible

effects of w on z. Consequently, the MOAS is given by

O∞ = { (x,υ) | Hxx+Hυυ ≤ h } (22)

The algorithm to compute Hx, Hυ , and h is well known [7]

therefore not elaborated. A key point of note is a close inner

approximation of Z, i.e. Zǫ = (1−ǫ)Z is usually required to

ensure the MOAS can be represented by a finite number of

linear inequalities. Moreover, the effects of w are captured

in vector h, using a LP.

C. Computation of υk

The goal of the RG is to enforce constraints by computing

υk online such that it is close to the original reference

rk. More specifically, the original RG scheme solves the

following LP problem:

max
κ∈[0,1]

κ(r,υ,x) (23a)

s.t. υk = υk−1 + κ(rk − υk−1), (23b)

(x,υ) ∈ O∞ (23c)

The parameter κ can be solved compactly from (22) and

(23b) [8]:

κ(r,υ,x) = min

{

min
j∈J

{H(r,υ,x)} , 1
}

(24)

1Often referred to as Maximal Positive Invariant (MPI) Set in MPC
literature

where

H(r,υ,x) =
hj −Hj

xxk −Hj
vυk−1

Hj
v(rk − υk−1)

and the index j represents the row of H and h.

The command governor (CG) schemes [1], [2] involve the

solution of Euclidean-norm projection problems, which can

be transformed into parametric QP problem similar to solving

standard MPC problems,

min
υ

‖υk − rk‖2R
s.t. (x,υ) ∈ O∞

(25)

D. Implementation

The R/CG schemes exploits the closed-loop dynamics

and the maximal admissible sets theory to predict future

constraint violations. These sets are computed offline and

finite determination are guaranteed if the AK is stable,

(provided by (A-1)), constraints are convex and compact

(provided by (A-2)), and by tightening the original constraint

by a small number (recall (A-3)). R/CG is implemented

according to Algorithm 2.

Algorithm 2 Reference/Command Governor

1: Determine (22) offline using Algorithm [7].

2: At each sample time, compute υk by solving (23)(25).

3: Apply (19) in (20).

V. TMPC-R/CG COMPARISON

A. Control laws and d.o.f.

Readers will notice Eqs. (5), (13), and (19) have a similar

structure. Eq. (5) is essentially the terminal (or mode-2)

control law for the dual-mode MPC. In Eq. (13), the nominal

trajectories (x̄k, ūk) are in essence the d.o.f of the tube

controller, as it was defined in [3] that ck = ūk+Kx̄k. In Eq.

(19) the d.o.f is transferred to the state trajectories (uυ,xυ)
(Remark 4) via the extra state υk. Therefore, the “terminal

region” for the RG is expanded for every admissible υk.

B. Feasible and terminal regions

In general, XN in MPC is used to compute a maximal

invariant terminal set that helps to enforce stability of the

closed-loop system. In RG, O∞ is used for constraint

enforcement only and closed-loop stability is enforced by

noticing from (23b) that for a constant rk, υk forms a

monotonic sequence over a compact set, which implies that

υk must converge to a constant. Clearly, the shape and size

of O∞ depends on the choice the state feedback controller

K and thus, Q and R. This is illustrated in Fig. 3 using the

double integrator example in Section VI-A. The projection

of the MOAS on the states, OR
t∗(x,υ) at slices of υ ∈

{ −1.9, 0, 1.9 } are also illustrated. The terminal set (white)

and feasible sets for tube MPC with increasing horizon

N ∈ [2, 14] are represented by darker shades. For small

N , which is typically desirable for applications with limited

computation, MPC schemes obviously may not be able to
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XN with N = 2, 4, 6, 10, 12, 14, and O∞.

reach targets close to the constraint boundary. However, the

RG scheme simply spans its feasible region due to the d.o.f.

provided by the extra state υ. In the context of predictive

control, it is desired to modify the terminal control law

(Eqs. (5), (9)) so that the associated terminal regions can

be enlarged without increasing N .

VI. NUMERICAL EXAMPLES

A. Double Integrator

Consider a double integrator example

xk+1 =

[

1 1
0 1

]

xk +

[

0.5
1

]

uk +wk,

yk =
[

1 0
]

xk + vk

zk =





1 0
0 1
0 0



xk +





0
0
1



uk

with state constraints |xk| ≤ 2, input constraints |uk| ≤
0.2, state disturbance |wk| ≤ 0.02, and output disturbance

vk = 0. State feedback controller is employed with Q = I
and R = 10. For the local tube controller, Qτ = 10I and

R = 0.02 is used and the prediction horizon for the tube

MPC is 6. An approximate mRPI set was computed using

the algorithm in [23] with ǫ = 5 × 10−5. We set Bw = I
and Dw = 0. Set calculations are performed using MPT3

toolbox [10].

B. Results and discussion

The performance of the RG and tube-based MPC for

the double integrator system are compared in Fig. 4 for

100 random disturbance samples tracking target at (r,v) ∈
[

−1.948 1.948
]

. The simulations show the capability of

RG scheme to satisfy constraints by simply moving the target

during target changes. The actual state trajectory for the tube

MPC has less spread as more aggressive control is employed

to contain the effects of random disturbances. However, this
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Fig. 4. Comparison of 100 realisations of RG (left) and tube MPC
(right) for double integrator example. Top: State trajectory around xs =
[1.948, 0]T . Middle: Output tracking trajectory. Bottom: Control signals.

comes at the cost of larger spread in the control inputs, due

to tighter tube control as implied by Eq. (18b), compared

to the RG scheme. It can also be seen that while RG

maintains the state trajectory further away from the constraint

boundary compared to tube MPC, it is able to operate its

input trajectory at the input constraint boundary during target

changes. For this particular scenario, the tracking cost for

the RG clearly outperforms tube MPC, even though the

tracking is suboptimal (i.e. ‖r − υ‖ 6= 0, see Table I) and

tube MPC is able to reach the true (nominal) steady-state

target. Moreover, RG scheme is able to handle large output

disturbances effectively by manipulating υ without losing

feasibility.

Table I compares the sizes of the feasible regions, tracking

cost, and the difference between the original and modified

reference for varying R/Q. The key observation here is

that under certain conditions, the RG-based scheme can

outperform tube MPC in terms of the tracking cost. However,

increasing R further degrades the overall performance where

the modified target deviates further away from the original

target. The tube MPC however provides a more consis-

tent performance regardless of the choice of the tracking

controller. Moreover, the admissible steady-state target is

influenced only by the size of the mRPI set, which depends

only on the tube controller.

For tube MPC, constraint tightening explicitly depends on

the size of the mRPI set, which depends on the choice of

the tube controller gain Kτ . Choosing higher penalty of the

states implies smaller tubes; the spread of the state trajectory

is smaller and hence the original constraint set is tightened

by the size of the mPRI set (see Eq. (18)). The RG scheme

has relatively conservative constraint handling due to Eq.

(21b), especially if relatively high input penalty is chosen, in

contrast to the feasible sets of tube MPC. This is implied by

the increase in ‖r − υ‖ as R/Q increases. This is expected

as for the RG scheme, the effects of random disturbance



TABLE I

COMPARISON OF SIZES OF XN , O∞ , AVERAGE TRACKING COST FOR

RG AND TUBE MPC

R/Q
Volume Cost

‖r − υ‖
O∞ XN RG TMPC

0.01 3.3256 5.5281 1.1339 0.8962 0.0000

0.1 3.3912 5.5281 1.0734 0.8887 0.0010

1 3.7546 5.5281 0.8322 0.8465 0.0186

10 5.0858 5.5281 0.7276 0.8620 0.0843

100 5.8189 5.5281 0.9065 1.0299 0.2740

depends on the closed-loop dynamics only. It is possible to

alleviate this issue by employing a tube controller within the

RG scheme.

VII. CONCLUSION

In this paper, the comparative performance of a tube MPC

and RG scheme are presented for the scenario of output

disturbances. Tube MPC is a popular robust predictive con-

trol technique to ensure recursive feasibility with disturbance

uncertainty. The setup relies on the use of RPI sets which,

in order to guarantee recursive feasibility, lead to tightened

state and input constraints. These restricted constraints are

known to cause relatively conservative performance and

also, reduce the operating range as one can no longer get

as near to the actual constraints. It is perhaps less well

investigated and publicised that implicity therefore, tube

MPC could lose feasibility more easily during large target

changes. This disadvantage is on top of the other challenge,

which is that the computation of the tubes themselves is far

from straightforward in practice, with the exception of low

dimension and simple examples.

An alternative approach for handling infeasibility during

target changes is a RG scheme. These are known to be very

simple in principle to understand and code. This paper has

brought attention to the fact that a simple RG approach

can also ensure recursive feasibility in the presence of

output disturbances and thus is a potentially a much simpler

approach for this scenario. Moreover, it does so without

restricting the potential targets that can be tracked and thus

may also outperform a tube approach.
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