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This paper takes as a start point the huge success of MPC
(Qin and Badgwell, 2003; Garćıa et al., 1989) in industry
and the corresponding huge interest in the academic liter-
ature. From early beginnings (Cutler and Ramaker, 1980;
Clarke et al., 1987), through a growing understanding of
how to ensure stability with terminal modes (Rawlings,
2000; Rossiter et al., 1998; Mayne et al., 2000) the lit-
erature is now awash with papers covering far more de-
manding issues, such as robustness (Kothare et al., 1996),
feasibility (Chisci et al., 2001; Mayne et al., 2005), non-
linear methods (Henson, 1998; Grüne and Pannek, 2017),
computational methods and much more.

As the literature focuses on more challenging problems
and scenarios it is unsurprising that the computational
demands grow and thus there is a significant interest in
efficient optimisation of MPC-related problems. However,
many of these papers resort to the classical assumption
that the degrees of freedom are the individual values of
the future inputs. Conversely, a few papers have asked
the question: would a re-parameterisation of the degrees
of freedom be useful (Cagienard et al., 2007; Abdullah
and Rossiter, 2021; Wang, 2009; Khan and Rossiter, 2013)
Indeed this concept is implicit in reference governor ap-
proaches (Garone et al., 2017) which use the input to
the loop as the degree of freedom rather than the input
itself and those are known to allow some computational
simplification.

The literature lacks a proper overview of the various
parameterisation approaches and some form of comparison
between them. When and why would you use a specific
parameterisation? Consequently, the main contribution of
this paper is to provide such a survey and to set out
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1. INTRODUCTION

For convenience hereafter, and without loss of generality,
take the following nominal square state-space model:

xk+1 = Axk +Buk; yk = Cxk + dk (1)

state xk, output yk, input uk and output disturbance dk,
input/output dimension N and state dimension Nx.

2.2 Performance index measures

A typical performance index J , for a constant target r and
uss,xss the expected steady-state input/state, is:

a number of criteria by which these methods can be
evaluated. In order not to over-complicate the paper, the
focus here will solely be on the linear case. Future work will
consider the differences when one extends these concepts
to the non-linear case.

Section 2 makes arguments for a workable set of criteria for
comparing different MPC algorithms. Section 3 introduces
several input parameterisations and the associated MPC
algorithms. Section 4 presents numerical comparisons and
the paper then finishes with conclusions.

2. OVERVIEW OF PERFORMANCE CRITERIA

This section sets out a number of criteria which can be
used to compare and contrast the various MPC algorithms
to be considered. Nevertheless, it is important to note
that, to some extent, any such criteria are arbitrary;
there is always some subjectivity in deciding how best
will be defined. It is reasonable to draw figures, as in
multi-objective optimisation (Ishibuchi, 1995), showing
how performance varies against different criteria with
different choices.

2.1 System definition

Keywords: Predictive control, Model predictive and optimization-based control, Monte Carlo
methods

Abstract: This paper provides an evaluation and comparison of popular parameterised model
predictive control approaches that have been proposed in the literature in recent years. Using the
Generalised Predictive Control (GPC) algorithm as the baseline algorithm, the paper sets out
a number of performance criteria to compare and contrast with several other MPC approaches.
Numerical examples use 100 random samples of 2, 3, and 4-state models and the approaches
are compared using the selected performance criteria.
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R

(2)

where the notation ∥x∥2Q = xTQx and ny, Nu are the
output and input prediction horizons.

2.3 GPC/DMC (Clarke et al., 1987): a default algorithm

Predictions over a finite horizon for model (1) can be
expressed in the following format (Rossiter, 2018).

Y = Pxxk +HUk (3)

for suitable Px, H and Y = [yT
k+1

,yT
k+2

, · · · ,yT
k+ny

]T ,

Uk = [uT
k ,u

T
k+1

, · · · ,uT
k+nu−1

]T ; assume uk+nu+i =
uk+nu−1, ∀i ≥ 0. Substitution of predictions (3) into per-
formance index (2), with nu = Nu, results in:

J = UT
k [HTQH +R]
︸ ︷︷ ︸

S

Uk +UT
k [2HTPx]
︸ ︷︷ ︸

P

xk + αk (4)

where αk does not depend on Uk. So, in a more generic
format the required MPC optimisation reduces to:

min
w

J = wTSw +wTPxk (5)

where here the substitution has been made that w = Uk

and matrices S, P are the core quadratic parameters which
impact on the conditioning of the optimisation.

2.4 Constraints and feasible regions

Most practical systems have constraints on inputs, states
and outputs, for example, with ∆uk = uk − uk−1:

u ≤ uk ≤ u; ∆u ≤ ∆uk ≤ ∆u
x ≤ xk ≤ x; y ≤ yk ≤ y

}∀k ≥ 0 (6)

More nuanced constraints not included here for simplicity.

We need to ensure that the predictions (3) for system
(1) do not violate constraints (6) for all future time.
Assuming we have sufficient asymptotic information on
the future inputs uk, this reduces to a set of linear matrix
inequalities:

NUk +Mxk + Luk−1 + Grk+1 + T dk ≤ f (7)

for appropriate matrices M,N ,L,G, T , f (e.g. (Gilbert
and Tan, 1991; Boyd et al., 1994; Blanchini and Miani,
2015)). This paper does not consider efficient computa-
tions (Pluymers et al., 2005).

One of the main aims of this paper is to evaluate different
MPC control designs and specifically, one core measure is
the volume, in x−space of the set associated to (7). Ideally
we want to know that we can satisfy constraints with the
allowable choices of Uk for as large a region of states as
possible. So, defining the feasible region as S:

S = { x : ∃Uk s.t. (7) } (8)

In practice the feasible region S depends on a number
of time varying values (uk−1, rk,dk), hence there is no
simple unique definition for the feasible region (Rossiter
and Dughman, 2018).

Remark 1. It is well known that the target value rk can be
a very useful tool for increasing feasible volumes (Rossiter,
2006) and indeed is an underlying motivation for reference
governor approaches (Garone et al., 2017) but that is
outside the remit of this paper.

One can argue that many industrial systems have a com-
mon steady-state which, using deviation variables, can be
represented as the origin. Thus we define all variables
as deviations about the target point, rk = 0. Similarly,
assume that simulations start from a steady-state such as
the origin so all subsequent states ultimately came from
the origin. This allows a weak assumption that assuming
uk−1 = 0 will not impact significantly on the desired vol-
ume comparisons for S; moreover the impact of uk−1 = 0
is likely to be similar across many algorithms. In a similar
way, while disturbances dk do affect the feasible region
(Rossiter, 2006; Rossiter and Dughman, 2018), this impact
is expected to be consistent across different parameterisa-
tions of the future inputs Uk, so, for a pragmatic com-
parison, it is judicious to ignore this effect. In summary,
this paper will focus its comparison on the following set
definition.

S = { x : ∃Uk s.t. NUk +Mx ≤ f } (9)

The expectation is that the comparative volumes for region
(9) across different MPC algorithms will be similar to those
achieved with the time varying regions defined in eqn. (8)
and thus enable a useful comparison.

2.5 Numerical conditioning

Although the optimisation complexity may be similar,
the optimisation conditioning may not be. It has long
since been known (Rossiter et al., 1998) that a re-
parameterisation of the d.o.f. can have a significant and
sometimes critical impact on the numerical conditioning,
especially for systems with open-loop unstable poles. This
impact would be even more important for processors using
fewer bits (lower accuracy).

Poor conditioning will predominantly enter through the re-
quired quadratic programming problem which will reduce
to a structure of the following form:

wTSw +wTPx s.t. Nw +Mx ≤ f (10)

One could argue that the conditioning of all these matrices
(S, P,N,M) will be important (and probably similar as
based on the same predictions), but it is likely that
matrix S will be most important as this is the one that
needs inverting and, being square and dependent on the
step response matrix, will capture the poor conditioning
present in all the other matrices. In summary, a useful
comparison criteria will be the condition number of the
matrix S in (10).

3. POPULAR INPUT PARAMETERISATIONS
WITHIN MPC

The main purpose of this paper is to explore whether the
choice of input parameterisation within the predictions has
a meaningful and useful impact on the various performance
criteria outlined in Section 2. If there is strong evidence of
this impact, then this choice becomes an important design
decision early in the control design process. This section
gives a concise introduction to a number of possible input
parameterisations which have appeared in the literature
with a focus on those which are more common.

Remark 2. For convenience the number of sample d.o.f. is
taken to be nu, that is, over how many samples are the
d.o.f. distributed? The total number of d.o.f. is Nnu.



7694 John A. Rossiter  et al. / IFAC PapersOnLine 56-2 (2023) 7692–7697

3.1 Using future input values directly in the open-loop

From the early days of MPC (Clarke et al., 1987; Cutler
and Ramaker, 1980) it was common to define the degrees
of freedom (d.o.f.) w within the predictions as follows:

w =







∆uk

∆uk+1

...
∆uk+nu−1






; {∆uk+nu+i = 0, ∀i ≥ 0} (11)

An equivalent parameterisation would be to use absolute
values, with uk and assumed to be constant after nu steps.

This choice is summarised in the constraints and cost func-
tions of (9), (10) (albeit there would be minor differences
depending on the choice of wk in (11); rates or absolute
values). Hence a core point is that:

S = HTQH +R (12)

Remark 3. With only input constraints and no input rate
constraints, the inequalities reduce to an Nnu dimensional
cuboid, which tailored QP algorithms can handle very
efficiently; this is discussed no further in this paper.

3.2 Using Laguerre Polynomials (LMPC)

An obvious weakness of (11) is the implied terminal
constraint that the input becomes constant after nu steps.
It is easy to find examples where that is far from the
expected or most desired input trajectory (Rossiter, 2018).
Consequently, some authors have considered the potential
benefit of building up the future input trajectories as a
combination of functions (Khan and Rossiter, 2013; Wang,
2004; Valencia-Palomo and Rossiter, 2012). The most
common choice seems to be Laguerre functions and there
are expected conditioning and computational advantages
in using orthonormal functions.

Assume the Laguerre polynomials Li(z) are defined as:

Li(z) =

∞

k=0

li,kz
−k (13)

The future inputs, for an infinite prediction horizon, are
defined using a linear combination of the Laguerre poly-
nomials, for example (using SISO case to simplify presen-
tation):

Uk =







l1,k+1 l2,k+1 l3,k+1 · · ·
l1,k+2 l2,k+2 l3,k+2 · · ·
l1,k+3 l2,k+3 l3,k+3 · · ·

...
...

...
. . .







  

F

w (14)

The matrix in (14) is somewhat awkward to work with,
hence it is easier to recognise that, assuming one needs
just the firstm functions, an equivalent form exists (Wang,
2004) which is much more amenable to the algebra re-
quired for MPC:







l1,k+1

l2,k+1

...
lm,k+1






= Ψ







l1,k
l2,k
...
lm,k







(15)

where Ψ is a suitable m × m matrix and similarly with
[l1,0 · · · lm,0]

T = L0 appropriately defined. Consequently,
after some small manipulation, one can find a generic and
compact input prediction representation of (14) using:

uk+i = LT
0 (Ψ

T )iw =⇒ uk = Fw (16)

It is noted that the formulation of the input predictions
using a state space model can enable convenient and
fast computations (Khan and Rossiter, 2013) for output
predictions, constraints and cost functions. Indeed, one
advantage of this latter form over (14) is that it works
much better with infinite horizon performance indices and
admissible sets, as one can exploit Lyapunov equations
rather than explicit enumeration.

Constraint inequalities with Laguerre MPC. At first
sight one might assume that the constraints can be as-
sessed using (7) directly, so substituting in from (14):

NFw +Mx ≤ f (17)

Optimisation problem with Laguerre MPC This formula-
tion of LMPC is analogous to GPC with the only obvious
difference being that, implicitly, the control horizon im-
plicit in (14) is taken to be much longer than the number
of sample d.o.f. nu; logically one could take Nu = ny.
Hence the predictions would be similar to (3):

Yk = Pxxk +HFwk; Fwk = Uk (18)

Substitution of predictions (18) into performance index
(2):

J = w
T
k [FTHTQHF + FTRF ]
  

S

wk

+w
T
k [2FTHTPx]
  

P

xk + αk
(19)

where αk does not depend onwk and we re-emphasise that
the H matrix here will be square rather than tall and thin
(as in GPC). The core point here is that the matrix to be
checked for conditioning is given as:

S = FTHTQHF + FTRF (20)

3.3 Input blocking MPC (IBMPC)

Input blocking (Cagienard et al., 2007) is another method
for extending the temporal impact of the d.o.f. while
keeping the dimension of the d.o.f. vector low. One assumes
that the input holds its value for a number of samples
between changes, so for example (using a block size of
b = 2 for illustration):

Uk

(k even)
=













vk

vk

vk+2

vk+2

...

vk+m−1

vk+m−1

vk+m













;
Uk

(k odd)
=













vk

vk+1

vk+1

vk+2

vk+2

.

.

.

vk+m

vk+m













; (21)

with {uk+mb+i = vk+m+i = vk+m, ∀i ≥ 0} and the d.o.f.
are w = [vT

k , · · · ,v
T
k+m]T .

Remark 4. The sample dimension of Uk is taken as mb+1
and to ensure recursive feasibility, Uk has a periodic time
varying structure, the period being equal to the block size
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b. It is straightforward to define matrices Mj , j = 1, ..., b
to give the relationship between d.o.f. w and Uk , e.g.

{Uk = M1wk; k = 0, b, 2b, ...};

{Uk = M2wk; k = 1, b+ 1, 2b+ 1, ...};

...

{Uk = Mbwk; k = b− 1, 2b− 1, 3b− 1, ...};

(22)

Constraints with IBMPC The constraint inequalities
exploit (22) with (7) and thus take the following periodic
time varying form to match the definition of Uk:

NMjw +Mx ≤ f ; j = 1, 2, · · · , b, 1, · · · , b, 1, · · · (23)

That is, j will cycle. In terms of numbers of inequali-
ties/rows in the constraints (23), for the same dimension
of w, this will be same as for GPC/DMC.

Performance index with IBMPC This formulation is
closely analogous to subsection 3.2.2 due to similarities
between the input parameterisations of (14) and (22). The
only significant difference is that the performance index is
periodically time varying, with period b. The predictions
are given as (with the appropriate columns of H):

Yk = Pxxk +HMjwk; Mjwk = Uk; j = 1, · · · b (24)

Substitution of predictions (24) into (2) yields:

Jj = w
T
k [HTMT

j QMjH +MT
j RMj ]

  

Sj

wk

+w
T
k [2MT

j HTPx]
  

Pj

xk + αk; j = 1, ..., b
(25)

where αk does not depend on wk and the performance
index is periodically time varying with period b. The core
parameter S (or Sj) is time varying:

Sj = [HTMT
j QMjH +MT

j RMj ], j = 1, · · · , b (26)

3.4 Dual mode MPC (DMPC)

Dual-mode predictions (Clarke and Scattolini, 1991; Kou-
varitakis et al., 1992; Rawlings and Muske, 1993; Scokaert
and Rawlings, 1998; Mayne et al., 2000) stem from a
similar motivation as the use of Laguerre functions, that
is, how do we embed a sensible long term dynamic into the
input predictions, but without requiring a large number of
d.o.f.? A simple answer is to also ask; what is a sensible
unconstrained control law? Then, base long term predic-
tions on this control law, assuming that no constraints are
violated. Here we use a simple state feedback uk = −Kxk

to represent this unconstrained control law (Scokaert and
Rawlings, 1998) and omit details linked to embedding inte-
gral action. The d.o.f. are parameterised as deviations from
the unconstrained control law. Hence, the proposed dual
mode structure (Rossiter et al., 1998) takes the following
form, to be considered alongside model (1):

Uk =












−Kxk

−Kxk+1

...
−Kxk+nu−1

−Kxk+nu

...












  

U

+


I
0





FD







ck

ck+1

...
ck+nu−1







  

w

(27)

or more generally Uk = U + FDwk. In (27) the first nu

predicted values of the input constitute the d.o.f. wk.

Constraint handling with DMPC In terms of constraint
handling, as dual-mode predictions for the inputs are
dynamic and converge asymptotically, then the number
of constraints to be checked will be similar to that for
the LMPC approach, that is 6NNT ; this assumes that the
dominant time constant is similar in both open-loop and
closed-loop.

Conceptually, the constraint inequalities can be defined
by a simple substitution of (27) into (7), for a sufficient
horizon (sayNT ). Following some simple algebra (Rossiter,
2018) the inequalities reduce to, for suitable Nd,Md:

Ndwk +Mdxk ≤ f (28)

Performance index with DMPC Dual-mode predictions
need more careful handling and it is generally considered
that one should use infinite costing horizons in (2); indeed
it is far more efficient to use infinite horizons rather
than finite horizons because one can easily use Lyapunov
equations to find the associated terms. Here we summarise
the result only (Rossiter, 2018). A combination of input
parameterisation (27) alongside system model (1), followed
by substitution into performance index (2) results in:

J = w
T
k Swk +w

T
k Pcxk + αk; (29)

for appropriate S, Pc. Significantly, the matrix S is block
diagonal with each block the same, so the condition
number of S does not change with the control horizon!

Remark 5. Early variants of DMPC (Scokaert and Rawl-
ings, 1998) expressed the d.o.f. as the first nu input values
in (27) but it is generally accepted that the corresponding
matrix S has worse conditioning than with the formulation
given here (Rossiter et al., 1998).

4. NUMERICAL COMPARISONS

All the algorithms can be reduced to the following format.
At each sample solve the following optimisation:

min
wk

Jk = w
T
k Swk +w

T
k Pxk s.t. Nwk +Mxk ≤ f (30)

The current value of input uk is deduced from wk.

4.1 Monte Carlo and normalised approach to comparison

A number of randomised examples are generated with 2, 3
and 4 stable poles which are inside a circle of radius 0.95.
The zeros are chosen randomly. In order to normalise the
comparisons, the process steady-state gains are all unity,
and consequently it is also reasonable to choose the weights
in the performance index on the outputs and inputs to
be unity. Given such a normalisation, one can assume
relatively fixed input constraints such as:

|∆uk| ≤ 0.5; −1.3 ≤ uk ≤ 1.3 (31)

Changing these values will affect the comparison but
this paper is looking for trends and generic messages
which, inevitably, may not apply to specific examples.
State constraints will be constrained to a scaled unit
box; the scaling allowing some movement beyond a unit
steady-state output. The output horizon ny is taken to be
large (circa 50) to ensure good practice guidance is met,
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Table 1. Upper bound of number of constraint
inequalities: NT is 4 times the dominant time
constant, N the system dimension and nu the

sample dimension of the d.o.f.

Algorithm Inputs Input rates Outputs

GPC/DMC 2Nnu 2Nnu 2NNT

Laguerre MPC) 2NNT 2NNT 2NNT

Input Blocked MPC 2Nnu 2Nnu 2NNT

Dual-mode MPC 2NNT 2NNT 2NNT

although, given the random nature of the model generation
and despite poles being faster than 0.95, even this is not
large enough for all cases.

4.2 Constraint inequalities

A likely upper bound on the number of constraint inequal-
ities required can be well approximated by the numbers
in Table 1. It is pertinent to note that, apart from input
constraints with GPC and simple blocking, the number of
inequalities required is not expected to vary much with
the choice of algorithm, largely because in order to ensure
good confidence of recursive feasibility, state constraints
need to be checked over a long horizon, irrespective of the
horizons in the performance index and irrespective of nu.

4.3 Unconstrained performance and dependence on nu

In the unconstrained case, the DMPC algorithm is auto-
matically optimal and therefore used as a benchmark for
other algorithms. The optimal cost is:

Jruntime =

∞∑

i=1

∥r− yk+i∥
2
I
+ ∥uk+i−1 − uss∥

2
I

(32)

The percentage difference between (2) and (32) (i.e.,
performance loss against DMPC) of GPC, LMPC, and
IBMPC algorithms are computed for nu ∈ [1, 9]. We
summarise the following observations:

• The use of the Laguerre input parameterisation may
improve unconstrained performance with low nu, but
the benefit is by no means assured, may not be
large/significant and can only be assessed on a case
by case basis.

• The use of input blocking ameliorates unconstrained
performance. The choice of appropriate block size is
critical in reducing this effect.

• There are instances where all algorithms initially
make the performance much worse at every nu in-
crement, which indicates the fundamental weakness
of horizon tuning.

4.4 Conditioning of the QP optimisation

It has been shown (Rossiter et al., 1998) that for DMPC,
using the closed-loop paradigm, the S matrix in (29) re-
duces to a diagonal where the diagonal blocks are identical.
Consequently, for the SISO case, the condition number is
one! Therefore, as in the previous section, DMPC can be
used as a benchmark of having the best possible condition
number. Figure 1 plots the logarithms of the condition
numbers for GPC, LMPC, and IBMPC at nu = 9 which
clearly illustrates the computational aspects of deploying

0 10 20 30 40 50 60 70 80 90 100
0

5

lo
g
(c

)

Log of Condition Number for 2-state systems

0 10 20 30 40 50 60 70 80 90 100
0

5

10

lo
g
(c

)

Log of Condition Number for 3-state systems

GPC LMPC IBMPC

0 10 20 30 40 50 60 70 80 90 100

Example number

0

5

lo
g
(c

)

Log of Condition Number for 4-state systems

Fig. 1. Condition number of GPC, LMPC, and IBMPC for
2, 3, and 4-state examples with nu = 9.

the three algorithms. We note the condition number for
LMPC is consistently the worst and IBMPC the best. The
implication is that LMPC would only be used wisely in
cases where nu is small. To our knowledge this observation
has not appeared previously in the literature.

4.5 Feasible volumes comparison

Feasible volumes for DMPC is used as a benchmark as
having relatively the smallest, and output constraints are
added to ensure the feasible region is closed (bounded)
and the volumes can be computed using the mpt3 toolbox
(Herceg et al., 2013). Figure 2 plots the relative feasible
volumes of the MAS (nu = 0) and MCAS (nu = 3) of GPC
and LMPC algorithms to DMPC algorithm for 10 samples
of 2, 3, and 4-state models. High relative volume for the
MAS of some of the 2-state models indicates that DMPC
algorithm yields very small MAS region. As reported in
previous works (Rossiter et al., 2010), LMPC algorithm
yields larger MCAS compared to GPC. However, for
many example 4-state models, the computation of MCAS
volumes for DMPC algorithm becomes unreliable and thus
are not excluded.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an overview of four input pa-
rameterisation approaches in MPC, namely GPC/DMC,
Laguerre MPC, Input-Blocked MPC, and Dual-Mode
MPC. We set out a number of criteria to evaluate and
compare these approaches. The different advantages and
disadvantages of each approach are discussed based on
sensible objective criteria. We compared the unconstrained
closed-loop performance, the condition number, the num-
ber of constraint inequalities, and the relative feasible
regions (MAS and MCAS) for small d.o.f. using numerical
examples through Monte-Carlo simulations. Depending on
priorities/example, the best approach changes.
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