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ABSTRACT
The time evolution of many physical, chemical, and biological systems can be modeled by stochastic transitions between the minima of the
potential energy surface describing the system of interest. We show that in cases where there are two (or more) possible pathways that the
system can take, the time available for the transition to occur is crucially important. The well-known results of the reaction rate theory for
determining the rates of transitions apply in the long-time limit. However, at short times, the system can, instead, choose to pass over higher
energy barriers with a much higher probability, as long as the distance to travel in phase space is shorter. We construct two simple models
to illustrate this general phenomenon. We also apply a version of the geometric minimum action method algorithm of Vanden-Eijnden and
Heymann [J. Chem. Phys. 128, 061103 (2008)] to determine the most likely path at both short and long times.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0135880

I. INTRODUCTION

The transition dynamics of complex systems having many
degrees of freedom can often be reduced to one or two reaction
coordinates. These are the system degrees of freedom that evolve
the slowest in time.1 All the other (maybe very many) degrees of
freedom are slaved to these slowest processes.2 The slow evolu-
tion of these systems is usually characterized by rare transitions
between metastable states separated by significant energy barriers.
The identification of the reaction coordinates in high-dimensional
(complex) systems remains extremely challenging.3 For example,
for large molecules, the center of mass is often a “slow” degree
of freedom, while the fluctuations of the individual atoms within
the molecule are the slaved “fast” degrees of freedom. This is the
case, e.g., in biomolecular conformation changes, such as protein
folding,4,5 nucleation-driven phase transformations,6 and surfac-
tant molecules in a liquid transitioning from being freely dis-
persed in the liquid or joined together in a micelle or adsorbing
to interfaces.7–9 An example of recent work to identify the rele-
vant reaction coordinates is Ref. 10, which uses machine learning.

Of course, for high-dimensional systems, the energy landscape is
often complex, with multiple critical points, barriers of various
sizes, and multiple transition paths connecting the stable states. For
such systems, algorithms based on simplifying assumptions, such
as no barrier recrossings, single transition states, a smooth land-
scape, and “long enough” (infinite) times, often fail to provide a
straightforward and accurate estimation of the rate6 or to even
identify the most likely path11,12 under perturbations of the energy
landscape.

We consider here a class of such stochastic dynamical systems
where there is a simple choice of two transition pathways away from
the initial state: one is over a smaller energy barrier (the activa-
tion energy barrier for chemical reactions), but the system has to
evolve a greater distance in phase space (i.e., has a longer reac-
tion pathway), while the other path is over a much higher energy
barrier but has a much shorter distance to travel in phase space.
The specific model systems of these types that we consider here
are displayed in Figs. 1(a), 2(a), and 2(b). Examples of systems of
this type include those where a surfactant molecule in a liquid has
a choice between adsorbing to an interface or forming micelles or
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FIG. 1. (a) 1D model potential; (b) probability density ρ(x, t) over time as the system evolves in the potential, having started at point A at time t = 0; (c) density at the two
saddle points vs time with equilibrium t →∞ values also shown.

FIG. 2. (a) A contour plot of our 2D poten-
tial ϕ together with the modified gMAM
results for the MLP, for various values of
the path power H. (b) A surface plot of ϕ
together with the t →∞ long-time MLP
(over the lower barrier) and the short-
time MLP for H = 250 (over the higher
barrier). Note that the surface color
scheme in (b) is the same as that used
for the contours in (a). In (c), we plot the
density at the two saddle points, ρ(xD, t)
and ρ(xE , t), as a function of time t.
The inset of (c) is a plot of the Helm-
holtz free energy difference (F − F0)

over time, where F0 = F(t →∞).
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those where a chemical reaction can proceed via a catalyzed or
non-catalyzed route, e.g., where the presence of water surrounding
the reacting molecules determines the reaction pathway and energy
barrier height.13 In the context of the Ginzburg–Landau equation
and other related partial differential equation models for stochastic
transitions, transition pathways conditioned on a specified timescale
were considered in Ref. 14 and it was shown that, sometimes, the
optimal paths contain large excursions.

The standard reaction-rate theory (RRT), which includes tran-
sition state theory and other related approaches,2 predicts that the
path over the lowest barrier is the most likely and, therefore, domi-
nates the dynamics, at least for simple energy landscapes. However,
even for these simple cases, we find that the standard RRT picture
does not hold and the behavior crucially depends on the timescale
over which the system is sampled. In particular, at shorter times (but
still much longer than the timescale of the fluctuating “fast” degrees
of freedom), the flux over the higher barrier can completely dom-
inate the dynamics of the system and, even at intermediate times,
the transition probabilities are very different from the predictions
of RRT approaches, which do not consider the time taken; i.e., RRT
only applies in the long-time limit. Due to this, even at timescales
approaching those corresponding to lower-barrier crossings (as pre-
dicted by RRT), the contributions to the overall rate from crossings
of the higher barrier can be significant, and so RRT does not give the
whole picture. Thus, the key finding of our work is that the length
of time over which barrier crossing problems are allowed to proceed
is critically important. In any system where the reaction is stopped
after a certain time, the reaction pathway predicted by RRT may not
be the one actually taken. An example of this is the recent study of
helium diffusion via hops between interstitial sites in PuO2.15 Here,
the authors found that in a 1 ns time window, surprisingly 9 out of 12
of the transitions proceeded via a higher-energy pathway. Another
situation where the time available may be critical is in the case of
flow reactors such as catalytic converters. However, in any system
that can explore the long-time limit, the predictions of RRT are
fully recovered. Conversely, if the potential landscape and reaction
coordinates are unknown and are inferred via densities and rates
measured from experiments or simulations necessarily performed
on a finite timescale, then the dominant long-time dynamics of the
system may be missed entirely.

Additionally, we develop a method for calculating the most
likely path (MLP) through the potential energy landscape, use-
ful for analyzing systems with two or more dimensions. Various
techniques to compute the minimum energy (and hence most
probable) path between two minima exist, including the string
method and the geometric minimum action method (gMAM;16,17

see also Refs. 14, 18, and 19). Such paths, sometimes known as
the instanton, are everywhere parallel to the potential gradient
and correspond to the infinite-time transition. In this work, we
extend the gMAM approach to finite-time transitions and derive
a modified algorithm to compute finite-time, out-of-equilibrium
paths. These are no longer parallel to the potential gradient and
correspond to the most probable path conditioned on a finite
duration. We find that these can be radically different from the
instanton and may pass through completely different interme-
diate states. We explain how these paths are connected to the
full transient dynamics of the system given by the Fokker–Planck
equation.

II. THEORY FOR STOCHASTIC DYNAMICAL SYSTEMS
We demonstrate our findings with two simple generic toy mod-

els. The first is one-dimensional (1D), and the potential energy
landscape has three minima. The system is initiated in the mid-
dle one and then has a choice to evolve either to the left or to the
right. Our second model potential is two-dimensional (2D). It has
two minima and two saddles, meaning two different classes of path
linking one minimum to the other. One path is shorter but over
a high barrier in the potential, while the other is further but over
a much lower barrier. RRT would suggest that the second is the
dominant transition pathway, but we find that this is not the case
if one only considers the system for sufficiently short times. These
systems are described by the overdamped stochastic equation of
motion,

Γ−1 dx
dt
= −∇ϕ(x) + η, (1)

where x is the “slow” relevant degree of freedom of the system (1D
or 2D in the cases considered here), ϕ(x) is the potential energy of
the system (strictly speaking, in systems where the irrelevant “fast”
degrees of freedom have been integrated out, ϕ is the constrained
free energy), Γ−1 is a friction constant that, henceforth, we set equal
to one (i.e., absorb it into the timescale), and η is a random force
originating from thermal fluctuations in the system. This is mod-
eled as a white noise with zero mean ⟨ηi(t)⟩ = 0 and correlator
⟨ηi(t)ηj(t

′
)⟩ = 2kBTΓ−1δijδ(t − t′), where kB is Boltzmann’s con-

stant and T is the temperature (i.e., the amplitude of the random
fluctuations).

The Fokker–Plank equation for the probability density ρ(x, t)
corresponding to Eq. (1) is20

∂ρ
∂t
= ∇ ⋅ [kBT∇ρ + ρ∇ϕ]. (2)

When ϕ = 0, this becomes ∂ρ
∂t = D∇2ρ, the diffusion equation, with

diffusion coefficient D = ΓkBT. Note that Eq. (2) can be written as a
gradient flow,

∂ρ
∂t
= ∇ ⋅ [ρ∇

δF
δρ
], (3)

with the Helmholtz free energy functional

F[ρ] = ∫ ρ[kBT ln ρ + ϕ]dnx, (4)

which is a Lyapunov functional for the dynamics in n dimensions.
Note that these are the equations of dynamical density functional
theory.21–23 For a given potential ϕ(x), the equilibrium density is
ρ(x) = ρ0e−βϕ(x), where β = (kBT)−1 and ρ0 is a constant determined
by the normalization of ρ(x); i.e., ρ−1

0 = ∫ e−βϕ(x)dnx.
When ϕ(x) has at least two minima, the quantity of interest

is the typical waiting time to observe transitions between the min-
ima. The standard RRT states that this transition rate k is given
by the Arrhenius (or Kramers) relation k = ν exp(−βΔϕ), where
Δϕ ≡ ϕ(xs) − ϕ(xA) is the height of the barrier, with xA being the
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position of the minimum and xs being the maximum (more gen-
erally, the saddle-point) on the barrier. The prefactor ν depends
on various factors,2 but it is the exponential that crucially deter-
mines the rate and can be thought of as originating from the ratio
ρ(xs)/ρ(xA), which is the probability of finding the system on the
barrier divided by the probability of it being at the minimum. How-
ever, this ratio ∝ exp(−βΔϕ) only in the long time t →∞ limit.
Solving Eq. (2) with the initial condition ρ(x, t = 0) = δ(x − xA), we
find that the RRT result can be completely wrong in some cases if
considering transitions with only a short time to occur.

III. RESULTS FOR 1D MODEL
We first consider the 1D potential ϕ(x) in Fig. 1(a); the equa-

tion for ϕ(x) is given in the Appendix. This potential has three
minima [labeled A, B, and C in Fig. 1(a)] at xB ≈ −2, xA ≈ 1, and
xC ≈ 2.5 and two maxima (labeled D and E) at xD ≈ −1 and xE ≈ 2.
We initiate the system in the minimum at A. It can then either move
to the right, over the much higher energy barrier at E, or it can go
to the left over the lower barrier at D. Going left, it has further to
travel.

In Fig. 1(b), we plot the density profile ρ(x, t) obtained from
solving Eq. (2) (using a simple finite difference scheme) for a
sequence of different times t. Rather than initiating the system with
the Dirac δ-distribution centered at xA, we use a narrow Gaussian
corresponding to a free diffusion for the short initial time t = 0.01.
By the time t = 0.5, we see a sizable peak in ρ(x, t) at C, the right-
hand minimum in ϕ(x), but very little density has made it to the

minimum at B. This is because B is further away, so in the early
stages, the system is more likely to cross the barrier at E, despite it
being higher than the barrier at D. It takes until t ≈ 30 for ρ(x, t) to
cease evolving in time and the system to reach the equilibrium dis-
tribution. Note also that, at t = 5, the density at C is higher than its
eventual equilibrium value. Once the system has “found” the lower-
energy minimum at B, the density moves back over the high barrier
at E to approach ρ0e−βϕ(x).

In Fig. 1(c), we plot the densities at the points D and E over
time. These are the locations of the two potential maxima (the bar-
riers). We see that at early times t ∼ 0.1, the probability of being at
the highest maximum E is sizable and well above the RRT proba-
bility ∼ exp[−βϕ(xE)], while the probability of being at the lower
maximum D is still ≈0, in contrast to the RRT prediction that the
probability ∼ exp[−βϕ(xD)]. Even at t ∼ 1, the RRT predictions are
still incorrect.

IV. RESULTS FOR 2D MODEL
We also consider a system evolving in the 2D potential dis-

played in Fig. 2; the precise expression for this potential is given
in the Appendix. Figure 2(a) shows a contour plot, while Fig. 2(b)
is a surface plot. This potential has a local minimum at point A,
(xA, yA) = (0.38,−0.47), and the global minimum at B, (xB, yB)

= (0.42, 0.47). There is a local maximum near the origin. We ini-
tiate the system at A. There are two routes to go from A to B: the
long route, round to the left in Fig. 2(a), through the saddle at point
D, (xD, yD) = (−1, 0), or the short route to the right through the
saddle at point E at (xE, yE) = (0.67, 0). The barrier height to the left

FIG. 3. Density profile ρ(x, y, t) at the times t = 0.01, 0.02, 0.03, 0.04, 0.1, and 5, going from top left to bottom right, for our 2D potential.
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is much lower, with βΔϕ = 1.4. In contrast, the barrier to the right
is twice as high, with βΔϕ = 2.8. Nonetheless, we see from Fig. 2(c),
which shows the density at the two saddle points (i.e., the tops of
the two transition barriers) over time, that at early times, the system
is more likely to take the shorter route to the right, even though it
is over the higher barrier. Note how similar Fig. 2(c) is to Fig. 1(c).
In the inset of Fig. 2(c), we plot the free energy [Eq. (4)] over time,
which, as expected, decreases monotonically over time. In Fig. 3, we
display the density profiles over time. These again show that at early
times, the probability for the particle to be at the higher barrier at
point E is much greater than at the lower barrier at D.

Just as Fig. 1 shows for the 1D model, Fig. 3 shows for the 2D
model that at later times, there are contributions to the dynamics
from returning over the two barriers to the start point. One can cal-
culate the total flux crossing any line on the 2D surface since from
Eq. (3), we can obtain the flux as j = −ρ∇ δF

δρ . However, because we
can only calculate the net flux and not the individual fluxes going
forward and backward over the barriers, the plots of the total flux
for our 2D model do not give us much additional insight and so are
not displayed.

V. PATH INTEGRAL FORMULATION
Stochastic processes can also be investigated using an action

formalism,24,25 in analogy with the path integral formulation of
quantum mechanics.26 The MLP can be determined by minimiz-
ing an action over the space of paths, as described by the minimum
action method (MAM) in Ref. 14. That work developed a general
large deviation theory for fields (e.g., the Ginzburg–Landau model
and the Brusselator), valid in the limit of small noise. The original
MAM method computes transition paths for any finite time, but
the infinite-time (i.e., RRT) limit is difficult to handle. The geomet-
ric reformulation (gMAM16,17) addresses this. To further elucidate
our findings from Secs. III and IV, i.e., that the finite-time transi-
tions can proceed via different paths from those suggested by the
long-time limit of RRT, we now modify the gMAM algorithm to
include finite transition times while retaining the geometric formu-
lation. An appealing feature of this for finite-time paths is that it
allows a correspondence between the MLPs in the stochastic system
and the solutions of Hamilton’s equations in an effective poten-
tial to be straightforwardly exploited. We introduce this formalism
below.

The Gaussian white noise η in Eq. (1) has a probability density
functional P[η] ∼ exp[− 1

4kBT ∫
t

0 η ⋅ η dτ]. Substituting (1) into this,
we immediately obtain

P[x] ∼ exp[−
1

4kBT∫
t

0
∣ẋ +∇ϕ∣2 dτ] ≡ exp[−

S[x]
4kBT

], (5)

for the probability weight attached to a path x(τ), and we have
defined the path action S. The transition probability P(x1, t∣x0, 0)
can now be written as a path integral,24,25

P(x1, t∣x0, 0) = ∫ Dx J [x] exp[−
S[x]
4kBT

] (6)

where J = ∣δη/δx∣ is the functional Jacobian arising from the
change of variables η→ x and the integral Dx is taken over all

paths x(τ) with endpoints x(0) = x0 and x(t) = x1. Note that some
constants are absorbed into the functional measure. This expres-
sion solves the Fokker–Planck Eq. (2) with the initial condition
ρ(x, 0) = δ(x − x0) but cannot be evaluated exactly except for sim-
ple special cases, such as quadratic ϕ. However, we are primarily
interested in transitions that require a significant energy barrier to be
surmounted, where the action is, hence, typically much larger than
kBT, and so the integral is dominated by paths that minimize S, i.e.,
paths that satisfy the Euler–Lagrange equations for S,

ẍ = ∇ϕ∇∇ϕ; ∣ẋ∣2 − ∣∇ϕ∣2 = H, (7)

where∇∇ϕ is the Hessian matrix of ϕ. These correspond to the (con-
servative) Hamiltonian motion of a particle of mass 2 (actually, 2×
friction2) moving in an effective potential F = −∣∇ϕ∣2, and the quan-
tity H is conserved along the path.27 H is analogous to the energy
in the effective system but has the dimensions of a power. Note
that here we are really saying that the dominant (non-differentiable)
paths lie within a small tube around the solution to (7) 28 and the
fluctuations around this can be integrated over to determine the pre-
exponential (entropic) factor in the transition rate—see, e.g., Ref. 26.
Here, we focus on determining the MLPs, rather than the rates
themselves, and extend the gMAM algorithm to incorporate the con-
straint of finite time. This stochastic–Hamiltonian correspondence
has also been explored in Ref. 29, where an alternative path-finding
algorithm was developed. This approach expresses the space of paths
using Chebyshev polynomials and minimizes the action using a Ritz
method. Inserting Eq. (7) into the action integral yields

S = 2[ϕ(x1) − ϕ(x0)] −Ht + 2∫
γ

√

H + ∣∇ϕ∣2∣dx∣, (8)

with the time for the path given by

t = ∫
γ

∣dx∣
√

H + ∣∇ϕ∣2
. (9)

S is Hamilton’s principal function for effective classical mechanics
and corresponds to the large deviation rate function for stochastic
dynamics. γ is the optimal path through the potential linking x0 and
x1, i.e., the solution of (7). The relation between the path power H
and the time t comes from either solving the classical equation of
motion or extremizing S over H. t →∞ corresponds to H → 0, pro-
vided that the path includes a critical point of ϕ, which is the case for
the transitions of interest. When H = 0, ẋ = ±∇ϕ, and γ is the min-
imum energy path, which can be determined using, e.g., gMAM.16

This path corresponds to t →∞ and the long-time average rate,
since

S→ 2Δϕ + 2∫
γ
∣∇ϕ∣ ∣dx∣ =

⎧⎪⎪
⎨
⎪⎪⎩

0, downhill path,

4Δϕ > 0, uphill path,
(10)

where Δϕ = ϕ(x1) − ϕ(x0). The last equality follows from the fact
that, for H = 0, the path is always (anti-)parallel to∇ϕ (note that the
converse to this statement is not necessarily true). This zero-power
path, the instanton, recovers the familiar Kramers form exp(−βΔϕ)
for the average rate at which an energy barrier of height Δϕ is
traversed. Different values of H correspond to different paths; the

J. Chem. Phys. 158, 124114 (2023); doi: 10.1063/5.0135880 158, 124114-5

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0135880/16793163/124114_1_online.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

equation of motion ẍ = −∇F has different boundary conditions. We
now refer to the path as γH , and note that γ0 is the absolute mini-
mum action path determined by the original gMAM algorithm. In
particular, the initial and final velocity vectors for γH have differ-
ent magnitudes and directions from those of γ0, which start and end
at rest.

The gMAM algorithm11,16,17 can be modified to include paths
with nonzero power H as follows: following the notation of
Ref. 16, parameterize the curve γH by a normalized arc length using
α ∈ [0, 1], and let X(α) = (X1(α), X2(α), . . .) be the parametric
equations of the curve. The path-dependent part of the action can
be written as

S − 2Δϕ = −Ht + 2∫
γ

√

H + ∣∇ϕ∣2∣dX∣

= ∫
γ

H + 2∣∇ϕ∣2
√

H + ∣∇ϕ∣2
∣dX∣

= ∫

1

0
g(α)X′2(α) dα, (11)

where the prime denotes differentiation with respect to α and

g(α) =
1

∣X′(α)∣
H + 2∣∇ϕ∣2
√

H + ∣∇ϕ∣2
. (12)

The Euler–Lagrange equation for X(α) then reads

δS
δXi
=

1
g
(∇ϕ)j(∇∇ϕ)ji

(H + 2∣∇ϕ∣2)(3H + ∣∇ϕ∣2)
(H + ∣∇ϕ∣2)2 − (gX′i )

′
= 0,

(13)

and X is evolved from an initial guess (e.g., the straight line from x0
to x1, although other initial configurations can be used) according to

dX
dτ
= −g

δS
δX

. (14)

The factor of g > 0 avoids potential numerical issues when H and
∇ϕ become small. Full details can be found in Ref. 16, where the
authors also present a robust and efficient numerical implementa-
tion that avoids the computation of the Hessian ∇∇ϕ. Note that
Ref. 11 investigates the convergence of gMAM as compared with the
string method, finding that gMAM more reliably identifies the MEP
in complex landscapes, independently of the initial guess.

Because H is defined implicitly in Eq. (9) and the path γH
depends on H, it cannot be determined a priori. If the time t is spec-
ified, a further iterative process would be required to find H. For
simple 1D paths, t is a decreasing function of H and a simple bisec-
tion would suffice, but in higher dimensions, it is not as simple since
different values of H can produce very different paths. As H becomes
large, it is much greater than all values of ∣∇ϕ∣2 and so the path γH
becomes the straight line from x0 to x1.

In Figs. 2(a) and 2(b), we display the MLP for various H, i.e.,
for various values of t, obtained from our extended gMAM algo-
rithm (a simple implementation in matlab takes a few minutes
on a laptop for these simple 2D examples; higher-dimensional cal-
culations would require a more sophisticated implementation). The
blue H = 0 path corresponds to t →∞, which is the MLP predicted

FIG. 4. 2D model potential; see Eq. (A2)

by RRT. As H is increased, we see from Fig. 2(a) that the MLP no
longer passes through the saddle point (the transition state of RRT)
at xD = (−1, 0), instead cutting the corner. For H ≥ 205, we see that
the MLP jumps to the other side of the potential and no longer goes
anywhere near point D and, instead, goes in the vicinity of point E,
i.e., over the much higher energy barrier; see, e.g., the H = 205 red
path in Fig. 2(a), which has the corresponding time t = 0.047. The
same paths are obtained whether starting from either a straight line
or an initial path chosen to be close to the infinite-time RRT path.
For times of order t ∼ 0.1, we find that paths via either route have
roughly the same path action, despite having very different barrier
heights. The convergence time was not significantly affected in this
case, though could be in others. An adaptive “time” step could be
added to accelerate the algorithm in cases with flat regions of S in
path space. Importantly, the action for the paths on either side of the
H ∈ [200, 205] bifurcation is very similar, although the path times
differ significantly. This implies a fairly large time window from
t ≈ 0.05 to t ≈ 0.17, where a similar amount of flux crosses both bar-
riers. For t < 0.05, the higher saddle dominates, and for t > 0.17, the
lower saddle dominates. The order of magnitude of this time is in
agreement with what we see in Fig. 2(c), from solving Eq. (2), i.e.,
the time when the densities at the two saddle points are equal. In
the Appendix, we give the values of H used together with the cor-
responding times t. This is all consistent with Fig. 3, which shows
the density ρ calculated by solving Eq. (2) directly for a range of
times t (again using a finite difference scheme). Note that these cal-
culations determine the entire density, assuming that this can be
written in the WKB form ρ = A exp(−S/kBT), where the prefactor A
depends, in some non-exponential way, on T. As kBT → 0, the expo-
nential term dominates the transition probability, but at finite kBT,
one should not expect exact quantitative agreement between the two
approaches since the path-finding algorithm only determines the
action S. It ought to be possible to compute fluctuations around
the dominant path25,26 to determine A as kBT → 0, although this is
beyond the scope of this article. Moreover, the path-finding meth-
ods, such as the modified gMAM presented here and in Ref. 29, can
be applied, in principle, to arbitrarily high dimensions, whereas the
direct integration of the Fokker–Planck equation quickly becomes
computationally intractable.
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VI. CONCLUDING REMARKS
We have shown that the important difference between the

finite-time minimum action paths and their infinite-time limit, the
instanton, is that conditioned on a finite time, the minimum action
(and hence most probable) path need not traverse the lowest energy
barrier. Although the instanton is the path from x0 to x1 involv-
ing the absolute minimum of hill-climbing, when constrained to a
finite time, a shorter path may be worth the extra uphill. This has
implications for any stochastic transition where only a finite time is
available for the reaction to occur, particularly if there are several
paths the system can take. Moreover, transition paths and energy
barriers inferred from experiments or simulations conducted over
too short a timescale could easily be very different from the paths
and barriers that dominate the system dynamics in reality.
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APPENDIX: MODEL POTENTIALS

In this appendix, we give further details about the model poten-
tials studied and also a table of times t corresponding to path
powers H.

1. 1D model potential
The 1D potential that we consider, displayed in Fig. 1, is

βϕ(x) = (
x
3
)

10
+ e−2(x+1)2

+ 3e−12(x−2)2

−
13
10

e−12(x−2.5)2

−
3

10
e−8(x−1)2

−
23
10

e−8(x+2)2

. (A1)

The precise locations of the three minima are x = xB = −2.011 726 4
(the global minimum), x = xA = 1.000 428 8 (a local minimum
and our start point), and x = xC = 2.522 979 7 (a local minimum),
and the two local maxima are at x = xD = −0.997 087 09 and
x = xE = 1.991 297 8.

The potential above was chosen so that there is roughly an order
of magnitude separation in the times it takes to reach each of the two
target minima. If they are any closer, the timescale separation is not
so clear. On the other hand, an even greater timescale separation
can be achieved by moving the left-hand minimum even further to
the left. A similar procedure was followed in constructing the 2D
potential below.

2. 2D model potential
The 2D potential that we consider, displayed in Figs. 2 and 4, is

βϕ(x, y) = 4(x2
+ 4y2

− 1)2
−

1
2

x − 2e−4(x− 1
2 )

2−4(y− 1
2 )

2

− e−4(x− 1
2 )

2−4(y+ 1
2 )

2

+ 3e−4(x−1)2−4y2

. (A2)

This potential has two minima at xA = (xA, yA) = (0.376
106 59,−0.470 945 57) (a local minimum and our start point) and
xB = (xB, yB) = (0.415 640 13, 0.468 367 80) (the global minimum).

The 2D potential has a local maximum near the origin at
x = (−0.097 396 665,−0.005 372 775 7), and there are two saddle
points at xD = (xD, yD) = (−0.983 928 63,−0.000 107 741 53) and
xE = (xE, yE) = (0.667 212 35,−0.022 398 035).

In Table I, we give the times t corresponding to various val-
ues of the path power H. Some of these paths are also displayed in
Fig. 2(a).

TABLE I. Time t for various H values.

H 0 0.01 0.02 0.03 0.1 2.5 5.0 10.0 25.0 50.0 100.0

t ∞ 7.84 6.85 6.28 4.70 1.61 1.21 0.888 0.575 0.405 0.277

H 195.0 200.0 205.0 212.0 235.0 245.0 250.0 300.0 400.0 500.0 1000.0

t 0.153 0.165 0.0478 0.0463 0.0419 0.0402 0.0413 0.0338 0.0255 0.0221 0.0168
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