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Abstract

Background: Hyperpolarized gas MRI is a functional lung imaging modality

capable of visualizing regional lung ventilation with exceptional detail within a

single breath.However, this modality requires specialized equipment and exoge-

nous contrast, which limits widespread clinical adoption. CT ventilation imaging

employs various metrics to model regional ventilation from non-contrast CT

scans acquired at multiple inflation levels and has demonstrated moderate spa-

tial correlation with hyperpolarized gas MRI.Recently,deep learning (DL)-based

methods, utilizing convolutional neural networks (CNNs), have been leveraged

for image synthesis applications. Hybrid approaches integrating computational

modeling and data-driven methods have been utilized in cases where datasets

are limited with the added benefit of maintaining physiological plausibility.

Purpose: To develop and evaluate a multi-channel DL-based method that com-

bines modeling and data-driven approaches to synthesize hyperpolarized gas

MRI lung ventilation scans from multi-inflation, non-contrast CT and quantita-

tively compare these synthetic ventilation scans to conventional CT ventilation

modeling.

Methods: In this study, we propose a hybrid DL configuration that integrates

model- and data-driven methods to synthesize hyperpolarized gas MRI lung

ventilation scans from a combination of non-contrast, multi-inflation CT and CT

ventilation modeling. We used a diverse dataset comprising paired inspiratory

and expiratory CT and helium-3 hyperpolarized gas MRI for 47 participants with

a range of pulmonary pathologies. We performed six-fold cross-validation on

the dataset and evaluated the spatial correlation between the synthetic venti-

lation and real hyperpolarized gas MRI scans; the proposed hybrid framework

was compared to conventional CT ventilation modeling and other non-hybrid

DL configurations. Synthetic ventilation scans were evaluated using voxel-wise

evaluation metrics such as Spearman’s correlation and mean square error

(MSE), in addition to clinical biomarkers of lung function such as the venti-

lated lung percentage (VLP). Furthermore, regional localization of ventilated

and defect lung regions was assessed via the Dice similarity coefficient (DSC).

Results: We showed that the proposed hybrid framework is capable of

accurately replicating ventilation defects seen in the real hyperpolarized gas

MRI scans, achieving a voxel-wise Spearman’s correlation of 0.57 ± 0.17

and an MSE of 0.017 ± 0.01. The hybrid framework significantly outper-

formed CT ventilation modeling alone and all other DL configurations using
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2 Model/DL functional lung image synthesis

Spearman’s correlation. The proposed framework was capable of generat-

ing clinically relevant metrics such as the VLP without manual intervention,

resulting in a Bland-Altman bias of 3.04%, significantly outperforming CT ven-

tilation modeling. Relative to CT ventilation modeling, the hybrid framework

yielded significantly more accurate delineations of ventilated and defect lung

regions, achieving a DSC of 0.95 and 0.48 for ventilated and defect regions,

respectively.

Conclusion: The ability to generate realistic synthetic ventilation scans from

CT has implications for several clinical applications, including functional lung

avoidance radiotherapy and treatment response mapping.CT is an integral part

of almost every clinical lung imaging workflow and hence is readily available for

most patients; therefore, synthetic ventilation from non-contrast CT can provide

patients with wider access to ventilation imaging worldwide.

KEYWORDS

Functional lung imaging, CT ventilation, Hyperpolarized gas MRI, Deep learning, Image synthesis

1 INTRODUCTION

Lung diseases represent significant global health

challenges.1,2 Imaging of the lungs constitutes a key

component of clinical care, providing both anatomi-

cal and functional information for a wide range of

lung pathologies. Functional lung imaging modalities

such as single-photon emission computed tomogra-

phy (SPECT), positron emission tomography (PET) and

hyperpolarized gas magnetic resonance imaging (MRI)

have shown efficacy in several applications such as

early diagnosis, functional lung avoidance radiotherapy

and treatment response evaluation.3–5 Hyperpolarized

gas MRI is a functional lung imaging modality capable

of visualizing regional lung ventilation with exceptional

detail within a single breath.6 Quantitative biomarkers

derived from this modality, including the ventilated lung

percentage (VLP), provide further insights into regional

ventilation.7 However, this modality requires special-

ized equipment, including a laser polarizer, and inhaled

contrast agents such as helium-3 (3He) or xenon-129

(129Xe) noble gases, which currently limits widespread

clinical adoption.8

Computed tomography (CT) is the most widely used

anatomical imaging modality and is an integral part of

clinical care for most patients with lung pathologies. CT

ventilation imaging (CTVI) aims to model regional ven-

tilation from non-contrast CT scans acquired at multiple

inflation levels, either during tidal breathing or breath-

hold.9,10 CTVI assumes that changes in regional lung

volume and/or lung density between inflation levels

is representative of lung ventilation.11 Several metrics

have been proposed to generate synthetic ventilation

maps from multi-inflation CT, such as those that map

changes in Hounsfield units (CTHU) or the determi-

nant of the Jacobian (CTJAC).9,10 The CTHU metric is

based on differences in HU intensities between infla-

tion levels whereas the CTJAC metric is a measure of

volume expansion computed directly on the deforma-

tion vector field between inflations. Previous validation

of CTVI methods included assessing Spearman’s cor-

relation with well-established lung function measures,

such as spirometry, resulting in moderate correlations,

ranging from 0.38 to 0.73 for both the CTHU and CTJAC

methods.12,13 CTVI models have also been validated

against nuclear imaging modalities, exhibiting moderate

correlation with SPECT and PET imaging14,15; how-

ever, these studies report highly variable results and

often use small numbers of patients.16 Furthermore,

nuclear medicine imaging has a relatively poor spa-

tial and temporal resolution and a susceptibility to

aerosol deposition artifacts, particularly within defect

regions.17,18 In addition, the requirement of radioac-

tive contrast agents makes nuclear medicine imaging

unattainable for some patient groups, for example, pedi-

atrics. By using hyperpolarized gas MRI for validation,

Tahir et al.19 showed moderate Spearman’s correlations

of several CTVI metrics.

Recently, deep learning (DL)-based methods utiliz-

ing convolutional neural networks (CNNs) have become

widespread in numerous lung imaging applications,

including image synthesis.20 Zhong et al.21 used a CNN

to synthesize CT-based ventilation surrogates from

4DCT, reporting a mean square error (MSE) of 7.6%.

However, a limitation of this approach is that CT venti-

lation images, used as the ground truth ventilation, are

in themselves the subject of intense validation efforts.22

Ren et al.23 have shown the capability of deriving syn-

thetic perfusion maps from CT using SPECT perfusion

as ground truth; a 3D UNet CNN was used, achieving

an average Spearman’s correlation of 0.81 using three-

fold cross-validation. A Dice similarity coefficient (DSC)

value of 0.81 was achieved for both high-functional and

low-functional lung regions. Furthermore, Liu et al.24

proposed a CNN-based approach to synthesize Techne-

gas SPECT ventilation images from non-contrast 4DCT.

They demonstrated, after post-processing, Spearman’s

correlations of 0.73 and 0.71 for 10-phase and 2-

phase 4DCT, respectively. Ten-fold cross-validation was

used, achieving an average DSC across all folds of
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Model/DL functional lung image synthesis 3

0.83 for high-functional lung regions, 0.61 for medium-

functional lung regions, and 0.73 for low-functional lung

regions. Subsequently, Grover et al.25 investigated the

utility of CNNs for synthesizing Galligas PET ventilation

images, demonstrating a mean Spearman’s correlation

of 0.58 and a mean DSC for high, medium, and low

functional regions of 0.55. However, SPECT and PET

have significantly longer acquisition times compared to

CT imaging which facilitates acquisition within a sin-

gle breath. This leads to the possibility of time-delayed

ventilation filling,26 reducing the relationship between

structural and functional imaging modalities.Conversely,

hyperpolarized gas MRI ventilation has an acquisition

time spanning a single breath, similar to that of CT,

leading to a potentially more accurate representation of

ventilation at a specific point in time. Capaldi et al.27 has

recently used a 2D UNet CNN to map free-breathing

proton MRI to 3He hyperpolarized gas MRI, achieving

a Pearson correlation of 0.87 and a mean DSC of

0.90 and 0.37 for ventilated and defect lung regions,

respectively. However, synthesizing hyperpolarized gas

MRI directly from multi-inflation CT has not yet been

demonstrated.

Despite promising results achieved by DL synthesis

techniques in multiple domains, there has been a lack of

widespread adoption due to an inability to produce phys-

iologically consistent results. Additionally, there is often

a shortage of available data representative of a diverse

population; to this end, several researchers have pro-

posed the use of hybrid approaches that leverage com-

putational modeling alongside data-driven approaches,

such as deep learning,28 precluding the requirement

for large datasets. For example, hybrid physics- and

model-based approaches have been used in weather

forecasting,29 earth surface modeling,30 and spatiotem-

poral dynamic systems evolution in robotics.31 Hybrid

approaches have also been used for data generation in

situations where there is limited data available.32

We hypothesized that a hybrid framework that inte-

grates physiological-based multi-inflation level CT ven-

tilation modeling and CNN-based DL may generate

accurate surrogate ventilation maps. Accordingly, we

propose a hybrid model- and DL-based framework,

where conventional CTHU models are used alongside

structural inspiratory and expiratory CT scans as inputs

to a CNN for functional lung image synthesis. In addition,

we propose an automatic pipeline for predicting VLPs

from the DL-generated synthetic ventilation scans using

CNN-based segmentation. Due to the relatively small

dataset, data-driven approaches alone are unlikely to

generate accurate synthetic ventilation images, espe-

cially in patients with significant ventilation defects.

Therefore, the combination of data-driven and phys-

iological modeling approaches utilizes both methods’

benefits to produce physiologically consistent results,

whilst also allowing features to be learnt from underlying

patterns in the available data.

2 MATERIALS AND METHODS

2.1 Dataset

The dataset comprised paired inspiratory and expiratory

CT and hyperpolarized 3He MRI scans for 47 patients

originating from three clinical observational studies that

were approved by the National Research Ethics Com-

mittee (REC). Lung cancer (n = 16) data was collected

between 2015 and 2017 (REC: 14/LO/0481).19 Asthma

(n = 12) data was collected between 2012 and 2013

(REC: 11/EM/0402).33 Cystic fibrosis (n = 19) data

was collected between 2013 and 2014 (REC: 12/YH

/0343).34

2.2 Image acquisition

Image acquisition details for CT and 3He MRI across

the three studies are provided in Table 1. Additional

image acquisition details are given in the subsequent

sections.

2.2.1 CT acquisition

Study 119: comprised 16 lung cancer participants. All

participants underwent radiotherapy planning breath-

hold CT on a 16-slice Lightspeed scanner (GE Health-

care, Princeton, New Jersey, USA); each acquisition was

acquired within 15−20 s.

Study 233: comprised 12 asthma participants. All

participants underwent high-resolution breath-hold CT

with a Sensation 16 CT scanner (Siemens, Forchheim,

Germany).

Study 334: comprised 19 cystic fibrosis participants.

All cystic fibrosis participants underwent low dose inspi-

ratory and ultra-low dose expiratory non-contrast CT

imaging, following the protocol of Loeve et al.,35 on a

GE Lightspeed VCT 64 CT scanner (GE Healthcare,Mil-

waukee, Wisconsin, USA). The CT scanner tube voltage

was 80 kV for children weighing < 35 kg and 100 kV for

those weighing 35 kg and above. Inspiratory scans were

performed with a modulating tube current (max 150 mA)

and expiratory scans were performed at a fixed cur-

rent of 25 mA; as a result, expiratory scans were lower

dose.

2.2.2 MRI acquisition

All subjects underwent 3D volumetric 3He hyperpolar-

ized gas MRI in the coronal plane at FRC+1L with full

lung coverage at 1.5T on a HDx scanner (GE Health-

care,Milwaukee,Wisconsin,USA).Helium was polarized

on-site to around 25% polarization (GE Healthcare,

Amersham, UK). Flexible quadrature radiofrequency
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4 Model/DL functional lung image synthesis

TABLE 1 CT and hyperpolarized gas MRI acquisition details.

Study: Name: Study 1 Study 2 Study 3

Disease: Lung cancer Asthma Cystic fibrosis

Total subjects: 16 12 19

CT scans: Acquisition orientation: Axial Axial Axial

Dose mode: Radiotherapy planning High resolution Ultra-low dose (expiration) & low

dose (inhalation)

Breathing inflation: FRC & FRC+1L FRC & TLC Inspiratory & expiratory

breath-hold

Slice thickness: 2.5 mm ∼ 2.1 mm 2.5 mm

In-plane resolution: ∼ 0.98 × 0.98 mm2
∼ 0.8 × 0.8 mm2

∼ 0.6 × 0.6 mm2

Tube voltage / Current: 120 kV / 315 mA 120 kV / 120 mA 80-100 kV / 25−150 mA

Hyperpolarized

gas MRI scans:

Hyperpolarized gas: 3He 3He 3He

Dimension: 3D 2D 2D

Sequence: Balanced steady-state

free precession

Spoiled gradient echo Spoiled gradient echo

Acquisition orientation: Coronal Coronal Coronal

Breathing inflation: FRC+1L FRC+1L FRC+1L

Slice thickness: 5 mm 10 mm 10 mm

In-plane resolution: ∼ 4 × 4 mm2
∼ 3 × 3 mm2

∼ 3 × 3 mm2

TR / TE: 1.9 / 0.6 msec 3.6 / 1.1 msec 3.6 / 1.1 msec

Field of view: 40 cm 38.4 cm 30-40 cm

Flip angle: 10◦ 8◦ 8◦

Bandwidth: ±166.6 kHz ±63 kHz ±63 kHz

Time-difference: Same day < 4 days Same day

Abbreviations: 1L, 1 liter; 2D, 2-dimensional; 3D, 3-dimensional; 3He, helium-3; CT, computed tomography; FRC, functional residual capacity; MRI, magnetic resonance

imaging.; SD, standard deviation; TE, echo time; TR, repetition time.

coils were employed for transmission and reception of

MR signals at the Larmor frequency of 3He (Clinical MR

Solutions, Brookfield, WI, USA). An anatomical proton

(1H) MRI in the same breath as 3He MRI was acquired

for each patient.Details of this acquisition for each study

are provided below:

Study 119: Same-breath 1H MRI scans were acquired

at the same resolution as 3He MRI using the scan-

ner’s inbuilt body coil with a 3D spoiled gradient-echo

sequence. Repetition time/echo time were equal to

1.9/0.6 ms with a flip angle of 5◦ and ± 83.3 kHz

bandwidth.

Study 233: Same-breath 1H MRI scans were acquired

at the same slice thickness as 3He MRI with an in-plane

resolution of 3 × 6 mm2 using the scanner’s inbuilt body

coil with a 2D steady-state free-precision sequence.

Repetition time/echo time was equal to 2.4/0.7 ms with

a flip angle of 50◦ and ± 167 kHz bandwidth.

Study 334: Same-breath 1H MRI scans were acquired

at the same resolution as 3He MRI using an eight-

element chest receiver array with a 2D steady-state

free-precession sequence. Repetition time/echo time

was equal to 2.9/0.9 ms with a flip angle of 50◦

and ± 250 kHz bandwidth.

2.3 Image segmentation

The Chest Imaging Platform (CIP)36 (Harvard, Mas-

sachusetts, USA) was used to generate segmentations

of the lung parenchyma on inspiratory and expiratory

CT scans. These segmentations were subsequently

reviewed and manually edited by multiple experienced

observers, specifically, B.A.T and J.R.A. Segmentation

of the lung parenchyma from 1H MRI scans was con-

ducted using spatial fuzzy c-means clustering.37 1H MRI

segmentations were subsequently manually edited by

two experienced observers, namely, B.A.T and P.J.C.H;

both observers have a PhD in respiratory imaging.

2.4 Image registration

Inspiratory and expiratory CT scans were aligned

using deformable image registration and subsequently

registered to the spatial domain of 3He MRI via a

corresponding anatomical 1H MRI scan as previously

described.19,38 Registration pipelines consisted of rigid,

affine and diffeomorphic stages. All registrations were

conducted using the advanced normalization tools
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Model/DL functional lung image synthesis 5

F IGURE 1 Example coronal slices for three patients with lung cancer, cystic fibrosis, or asthma of inspiratory and expiratory CT scans (a)

before and (b) after deformable registration to the spatial domain of (c) hyperpolarized gas MRI.

(ANTs) registration framework39 based on parameters

provided previously.40 For each patient, two registrations

were performed:

1. Inspiratory CT to expiratory CT

2. Expiratory CT to 1H MRI (same-breath as 3He MRI)

Figure 1 shows example unregistered inspiratory and

expiratory CT images with the corresponding warped

CT images in the domain of 3He MRI.Registrations were

quantitatively assessed for overlap using the DSC.41

2.5 CT ventilation modeling

CT-based surrogate ventilation images were computed

using the CTHU model-based metric originating from

theory proposed by Simon et al.42 CTVI scans were

generated at expiratory geometry and computed using

voxel-wise intensity differences in HU values based on

the formulation by Guerrero et al.9 shown below:

CTHU = 1000
HUinsp − HUexp

HUexp

(

1000 + HUinsp

) (1)

where HUinsp represents the HU of voxels in the

warped inspiratory scan that spatially correspond to vox-

els in the expiratory scan. HUinsp and HUexp represent

the HU of inspiratory and expiratory voxels, respec-

tively.CTHU aims to measure the change in the fractional

content of air, in a voxel-wise manner, between expi-

ratory and inspiratory phases.43 The method assumes

that there is uniform air distribution in a given parenchy-

mal voxel and that the observed change in lung density

between respiratory phases is attributable solely to

changes in ventilation. Tahir et al.19 previously demon-

strated improved performance of the CTHU metric over

other CTVI metrics, such as CTJAC, via Spearman’s cor-

relation with hyperpolarized gas MRI on a subset of

the data used in this study. Several CTVI works have

employed various degrees of filtering to account for

image noise and possible registration errors.15,19,44,45

This has previously been used for post-processing of

CTHU ventilation images in the range of 1 × 1 × 1 to

7 × 7 × 7 median filtering.19 To this end, we applied

median filtering to CTHU ventilation images across the

whole lung region with a kernel size 6 × 6 × 1, due to

the anisotropic resolution of 3He MRI.

3 DEEP LEARNING EXPERIMENTS
AND EVALUATION

3.1 CNN architecture configurations

We evaluated four CNN configurations using either

single-channel or multi-channel inputs as follows:

1. expiratory CT

2. inspiratory CT

3. expiratory CT + inspiratory CT
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6 Model/DL functional lung image synthesis

4. inspiratory CT + expiratory CT + CTHU model

For each configuration, input feature maps constitut-

ing patches of 128 × 128 × 48 voxels were used due

to memory constraints. Patches were fed into a 3D fully

convolutional neural network with VNet architecture.46

The network consisted of convolutional steps contain-

ing between one and three convolutional layers with

subsequent deconvolutional steps, enforcing the origi-

nal input resolution.As demonstrated by Milletari et al.,46

each step is designed to learn residual functions by

initially processing the first convolutional layer using a

non-linear activation function and subsequently repli-

cating this output to the last convolutional layer within

the step.46 Convolutional operations in the initial input

block used two convolutional layers with 5 × 5 × 5

kernels and a stride of 1 followed by 2 × 2 × 2 ker-

nels with a stride of 2 to reduce image dimensionality.

For the multi-channel configurations 3) and 4), we con-

catenated network blocks, combining the feature maps

from spatially aligned inspiratory CT, expiratory CT and

CTHU modeling.This allowed the network to make use of

concordant features represented across multiple infla-

tion levels and modalities.47 The rest of the network

consisted of four convolutional blocks that contained

a varying number of convolutional layers with either

5 × 5 × 5 kernels with a stride of 1 or 2 × 2 × 2 kernels

with a stride of 2, resulting in a maximum of 248 chan-

nels. Each convolutional operation employed a PReLU

non-linear activation function with valid padding. Subse-

quent deconvolutional blocks, with the same structure

as the convolutional blocks, were used to reduce the

number of channels. Fine-grained feature forwarding

introduced residual functions to corresponding convo-

lution and deconvolution steps. The final output block

made use of a 1 × 1 × 1 convolutional layer.

3.2 CNN training parameters

All hyperpolarized gas MRI, CT and CTHU ventilation

scans were masked by their respective lung parenchy-

mal segmentations, thereby eliminating the effect of

background voxels and allowing the network to focus

on features within the lung parenchyma. All hyperpo-

larized gas MRI scans used in the dataset underwent

pre-processing to normalize image intensities to val-

ues between 0 and 1. Training data was augmented to

reduce overfitting whilst still maintaining physiological

plausibility. To do this, we employed constrained random

rotations with limits −10◦ to 10◦ and scaling of −10%

to 10%, where a different random rotation or scaling for

each axis was applied at an interval within the defined

limits above. The data augmentation method used does

not increase the overall number of scans in the dataset;

instead, each scan is given random scaling and rota-

tion factors before being fed into the network. Therefore,

the number of epochs can be increased as each time

a scan is passed through the network, it is plausibly

augmented by a different random factor at each epoch.

Batch normalization was applied for each pass using

a mini-batch size of 2 with the aim of reducing covari-

ate shift between network layers.48 The weights of the

network were trained from scratch and initialized using

Xavier initialization,representing a Gaussian distribution

with mean of 0 and variance of 1/N,where N represents

the number of weights and biases. A root mean square

error (RMSE) loss was used to optimize the network

employing Adam49 optimization with an initial learning

rate of 1 × 10−5, reducing by a factor of 10 after 1500

epochs and trained for a total of 2150 epochs. L2 regu-

larization with a decay of 0.00001 was used to penalize

large network weights and minimize potential overfitting.

Training and testing were performed using TensorFlow50

1.15 and Python 3.6.51 Training was parallelized across

four NVIDIA Tesla V100 GPUs each with 16GB of RAM.

Due to the somewhat limited size of the dataset, we

employed 6-fold stratified cross-validation, generating

six separately trained models tested on a random sub-

set of 7 or 8 patients. The use of cross-validation to

increase the size of the testing set allowed for infer-

ential statistical analyses to be conducted. Each model

was stopped at 2150 epochs to constrain model train-

ing, mitigating overfitting. All DL configuration outputs

were subsequently median filtered with a kernel size

of 6 × 6 × 1 in line with the filtering applied to CTHU

ventilation images.

3.3 Quantitative evaluation

Synthetic ventilation images generated via the CTHU

method and DL configurations were quantitatively eval-

uated using both voxel-wise and clinical metrics. Fol-

lowing previous works in the CTVI field and the VAM-

PIRE grand challenge, Spearman’s correlation (𝜌) was

selected as the primary evaluation metric.22 DL-based

methods were additionally assessed using the MSE

metric. Further, based on voxel-wise evaluation metrics,

the clinical metric of VLP was computed on the best per-

forming approach. Furthermore, regional localization of

ventilated and defect lung regions was assessed via the

DSC.

3.3.1 Spatial correlation

The spatial correlations of the DL-generated synthetic

ventilation images and the CTHU model against cor-

responding 3He MRI scans were assessed at full

resolution using Spearman’s 𝜌 on all voxels within the

lung region, defined by the same-breath 1H MRI lung

segmentation. Spearman’s 𝜌 quantifies the degree of

monotonicity between any two ventilation images. It
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Model/DL functional lung image synthesis 7

F IGURE 2 Hybrid model- and DL-based synthetic ventilation workflow and accompanying automatic calculation of VLP.

takes a range between −1 and 1 where 1 represents

a perfect positive correlation and −1 represents a per-

fect negative correlation. Consequently, a Spearman’s 𝜌

of 0 represents no correlation. Spearman’s 𝜌 was used

as the primary evaluation metric in this work.

3.3.2 Mean square error

Quantitative performance was further evaluated for all

DL-based approaches using the voxel-wise MSE met-

ric. The MSE represents the mean square difference

between estimated values and actual values across all

voxels within the lung region. MSE is derived from the

square of errors and, therefore, always takes a pos-

itive value with the MSE approaching 0 as the error

concordantly decreases.

3.3.3 Clinical evaluation

The quantitative biomarker of the VLP has been used

extensively in the hyperpolarized gas MRI literature as

a robust measure of lung function. VLP is calculated

by comparing structural and ventilated lung segmenta-

tions to generate a percentage value of ventilated lung

volume as follows:

VLP (%) =

(

ventilated lung volume

total lung volume

)

× 100 (2)

In our clinical lung image analysis workflow, VLP

values are derived from expert segmentations of hyper-

polarized gas MRI for ventilated lung volumes and
1H MRI for total lung volume.8 In this study, we com-

pared these expert VLP values to VLP values derived

using the same 1H MRI expert segmentations for total

lung volume and DL-generated ventilated lung seg-

mentations. We used a previously validated nn-UNet

CNN developed for automatic hyperpolarized gas MRI

segmentation52 to segment synthetic ventilated lung

regions from the best performing DL configuration and

the CTHU ventilation model. These segmentations were

used to calculate VLP automatically without manual

editing. Figure 2 depicts a high-level description of the

hybrid model/DL workflow and the automatic calcula-

tion of VLP values using DL and expert approaches.

In addition to VLP values, DSC overlap values were

computed between DL-generated or CTHU-generated

ventilated lung segmentations and expert 1H MRI
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8 Model/DL functional lung image synthesis

TABLE 2 Evaluation of overlap between inspiratory and

expiratory CT and expiratory CT and 1H MRI.

Study

Insp CT to Exp CT

Median DSC (range)

Exp CT to 1H MRI

Median DSC (range)

Study 1 0.984 (0.969, 0.989) 0.963 (0.942, 0.973)

Study 2 0.986 (0.977, 0.988) 0.948 (0.930, 0.960)

Study 3 0.983 (0.970, 0.990) 0.919 (0.864, 0.955)

Median (range) DSC values are given for the three studies comprising the data

used in this work.

segmentations to define both ventilated and defect

regions.

3.3.4 Statistical analysis

Statistical analysis was performed using GraphPad

Prism 9 (GraphPad, San Diego, CA). In this work, a

p-value < 0.05 was considered statistically significant.

A one-way repeated measures analysis of variance

(ANOVA) test for multiple comparisons was used to

determine differences between DL configurations for

both voxel-wise Spearman’s 𝜌 and MSE.Post-hoc paired

t-tests were used to assess differences in Spearman’s

𝜌 between the CTHU ventilation model and the four DL

configurations compared to the reference 3He MRI ven-

tilation scans. Kruskal-Wallis tests were used to assess

differences in Spearman’s 𝜌 between the three stud-

ies contained within the dataset.Bland-Altman analyses

of bias were used to compare expert VLP values to

DL-derived and CTHU-derived VLP values for the best

performing DL-based configuration. Paired t-tests were

used to assess differences in overlap of ventilated

and defect lung regions for the best performing DL

configuration and the CTHU ventilation model.

4 RESULTS

4.1 Image registration

Registrations between inspiratory CT and expiratory CT,

and expiratory CT and 1H MRI were evaluated using

the DSC metric. All studies generated a median (range)

DSC value exceeding 0.98 for inspiratory and expiratory

CT,and 0.91 for expiratory CT and 1H MRI (see Table 2).

4.2 Qualitative and quantitative
evaluation

Qualitatively, there are numerous examples of the hybrid

DL-generated synthetic ventilation images accurately

replicating gross ventilation defects in the ground-truth

hyperpolarized gas MRI scans. Figure 3 shows qualita-

tive spatial agreement between 3He MRI and synthetic

ventilation approaches for three example cases. For the

three cases displayed, the hybrid DL method, with inspi-

ratory CT, expiratory CT and the CTHU model as inputs,

generated the highest Spearman’s 𝜌 compared to the

CTHU model and all other DL configurations. For Case

1, the differences in performance between DL configura-

tions demonstrate that when a singular structural image

is used as an input, the resulting synthesized ventilation

scan is unable to capture gross ventilation defects in the

left lung; however, when the hybrid DL configuration is

utilized, the resulting synthetic scan accurately captures

gross ventilation defects which mirror defects observed

in the hyperpolarized gas MRI scan.

Significant differences between methods were deter-

mined by a one-way ANOVA test (P < 0.05). The

hybrid method yielded statistically significant improve-

ments in Spearman’s 𝜌 compared to the CTHU model

with mean ± SD 𝜌 of 0.57 ± 0.17 versus 0.51 ± 0.22

(P = 0.003). Furthermore, this approach significantly

outperformed all other DL configurations, which did not

employ the CTHU model as an input (P < 0.05). DL-

based approaches were additionally assessed using

voxel-wise MSE; the hybrid configuration generated the

lowest MSE based on descriptive statistics. No signifi-

cant differences were observed between the three best

performing DL-methods using the MSE metric. Table 3

summarizes the descriptive statistics for all methods

across 47 patients via six-fold cross-validation.

Figure 4 shows Spearman’s correlations between
3He hyperpolarized gas MRI for both the CTHU ventila-

tion model and DL-based configurations; the proposed

hybrid framework demonstrated significantly greater

Spearman’s correlations when compared to all other

DL configurations and the CTHU ventilation model.Addi-

tionally, MSEs between 3He hyperpolarized gas MRI

and DL configurations are displayed, indicating minimal

significant differences between DL configurations.

The dataset contains scans from three independent

research studies with varying acquisition protocols from

participants with varying pulmonary pathologies.No sig-

nificant difference in Spearman’s ρ between datasets

was observed using the CTHU ventilation model.A signif-

icant difference was observed between the Spearman’s

𝜌 of Study 1 and Study 3 using the hybrid DL configu-

ration (P = 0.03); no other significant differences were

observed (Study 1 vs. Study 2, P = 0.93; Study 2 vs.

Study 3, P = 0.51).

4.3 Clinical evaluation

The hybrid model/DL configuration exhibited signifi-

cant improvements in Spearman’s 𝜌 when compared

to all other methods investigated. Therefore, we further

investigated this configuration using a clinical metric,

namely, VLP. Using the workflow defined in Figure 2,

we compared expert VLP values to those computed
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Model/DL functional lung image synthesis 9

F IGURE 3 Example coronal slices from the CTHU model and the four DL frameworks for three cases compared to 3He MRI. Spearman’s 𝜌

values between each method and 3He MRI are provided. Red arrows demonstrate examples of replicated defects. Cases 1 and 2 are from lung

cancer patients and Case 3 is from a cystic fibrosis patient.

TABLE 3 Descriptive statistics for the CTHU model and DL

configurations after combining the testing set performance via

six-fold cross-validation.

Spearman’s 𝜌 MSE
Synthetic ventilation

generation method Mean ± SD Mean ± SD

CTHU model 0.51 ± 0.22 N/A

DL (expiration CT) 0.52 ± 0.20 0.024 ± 0.01

DL (inspiration CT) 0.47 ± 0.21 0.020 ± 0.01

DL (expiration CT + inspiration

CT)

0.52 ± 0.19 0.020 ± 0.01

DL (expiration CT + inspiration

CT + CTHU model)

0.57 ± 0.17 0.017 ± 0.01

Mean ± SD Spearman’s 𝜌 for the DL configurations and the CTHU model are

shown. Additionally, mean ± SD MSE are given for the DL configurations. The

best 𝜌 and MSE values are shown in bold.

from synthetic ventilation scans generated by the hybrid

configuration. Figure 5 shows fused structural and func-

tional images with corresponding VLP values for four

cases in the dataset. Cases with significant ventilation

defects were chosen to illustrate the hybrid framework’s

ability to replicate gross defects. For example, Case 2

shows almost no ventilation signal in the left lung of

the hyperpolarized gas MRI scan which is largely repli-

cated in the output of the hybrid configuration. We used

Bland-Altman analyses of bias to compare VLP values

derived from hyperpolarized gas MRI versus VLP values

derived using the hybrid DL configuration and the CTHU

ventilation model as shown in Figure 6. The hybrid DL

synthetic ventilation surrogates resulted in a bias of only

3.04% with limits of agreement (LoA) of −15.45% to

21.53% compared to the CTHU ventilation model which

produced a bias of −10.74% with LoA of −47.55% to

26.07%.

DSC values of ventilated and defect lung regions

for the hybrid DL and CTHU model are compared to

expert ventilated and defect lung regions computed

using hyperpolarized gas MRI (see Table 4). The hybrid

DL configuration produced significantly greater DSC

values for both the ventilated and defect lung regions,

achieving a median (range) DSC of 0.946 (0.715,0.977)

and 0.483 (0.288, 0.743) for ventilated and defect lung

regions, respectively.

5 DISCUSSION

In this work,we proposed a hybrid model- and DL-based

framework, integrating CTHU models of lung ventilation

and structural, multi-inflation CT as inputs to a VNet

CNN capable of producing synthetic ventilation scans

that correlated well with corresponding ground-truth
3He MRI ventilation scans. To the best of our knowl-

edge, this work represents the first use of DL to predict

hyperpolarized gas MRI ventilation directly from multi-

inflation CT. As shown in Figures 3 and 5, the synthetic

ventilation scans generated using the hybrid framework

mimic moderate-to-large defects present in the corre-

sponding 3He MRI scans. This has the potential to

produce DL-based synthetic ventilation scans from rou-

tinely acquired CT scans without exogenous contrast.

Compared with conventional CTHU modeling, the hybrid

framework yields a statistically significant improvement
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10 Model/DL functional lung image synthesis

F IGURE 4 (Top) Spearman’s 𝜌 values for synthetic ventilation

scans derived from the CTHU model and DL configurations. A paired

t-test compared CTHU with the hybrid DL configuration. One-way

ANOVA tests compared Spearman’s 𝜌 values for DL configurations.

(Bottom) MSE values for synthetic ventilation scans derived from DL

configurations. One-way ANOVA tests compared MSE values for DL

configurations. Only significant p-values are provided.

in spatial correlation.The comparison with CTHU ventila-

tion surrogates is somewhat limited due to the inclusion

of pulmonary vessels in CTHU images. Commonly, ves-

sels are excluded from CTHU images;however, this adds

a significant time-consuming manual intervention step.

The hybrid configuration developed here can poten-

tially learn to accommodate pulmonary vessels without

manual intervention through learning mechanisms. 1H

MRI scans used in this study were acquired using

spoiled-gradient echo sequences; pulmonary vessels

are significantly more challenging to identify using these

sequences compared to balanced steady-state free-

precession MRI53 or CT; hence delineating correspond-

ing vessels in imaging modalities is a significant chal-

lenge. In addition to outperforming conventional CTHU

modeling, the hybrid configuration significantly outper-

formed all other DL configurations using Spearman’s

correlation, indicating the significant benefit of leverag-

ing classical modeling and data-driven approaches. The

hybrid configuration’s performance is further enhanced

by harnessing a combination of structural and func-

tional modalities. Functional CTHU ventilation images

have demonstrated moderate correlation with hyper-

polarized gas MRI previously19; however, differences

remain. By combining structural CT images at multiple

inflations with CTHU images, additional information con-

tained within the structural images can be utilized to

modify the predicted ventilation image via a deep learn-

ing approach. The measured Spearman’s correlations

of the CTHU model and the hybrid configuration demon-

strate some correlation with each other, but, crucially

the inclusion of structural CT images in combination

with the CTHU images as inputs generated a signifi-

cant improvement in Spearman’s 𝜌 compared to the

conventional CTHU method or the DL configurations not

integrating CTVI modeling. Although Spearman’s 𝜌 was

utilized as the primary evaluation metric, performance

was also evaluated using the MSE. The MSE was not

calculated for the CTHU ventilation model as this model

is directly derived from HU values, which have physio-

logical meaning, limiting a direct quantitative comparison

with hyperpolarized gas MRI where specific voxel inten-

sity values are arbitrary and not consistent between

scans.The MSE was calculated for all DL configurations,

indicating minimal significant differences between DL

configurations; this is potentially due to the MSE assess-

ing specific values of intensity, compared to correlations

between corresponding voxel intensities, and may be

less important than correlated regions of low intensity.

We evaluated the hybrid framework on a diverse and

challenging dataset using six-fold cross-validation. The

dataset contained scans of patients with one of three

lung pathologies, namely, lung cancer, moderate-to-

severe asthma or mild cystic fibrosis. The scans were

pooled from three separate clinical studies, resulting

in a wide range of acquisition protocols in the dataset:

high-dose and low-dose CT; different CT scanner types,

settings and breathing maneuvers; 2D versus 3D 3He

MRI; differences in in-plane resolutions and slice thick-

nesses.The proposed hybrid framework exhibited some

differences between studies present in the dataset, that

is, between Study 1 and Study 3; however, it cannot be

determined whether this variation in performance is

due to differences in participant disease or the image

acquisition parameters used. The lack of differences

when comparing performance of the remaining study

combinations indicates a level of robustness and gen-

eralizability to both disease and acquisition parameters.

6-fold cross-validation was employed, resulting in six
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Model/DL functional lung image synthesis 11

F IGURE 5 Fused ventilation (jet colormap showing minimum to maximum ventilation) and structural scans (grayscale) from four patients

derived from either (top) 3He MRI and warped expiratory CT or (bottom) the proposed hybrid configuration and warped expiratory CT. All cases

are from lung cancer patients with significant ventilation defects; red arrows indicate defects replicated in synthetic ventilation scans. VLP and

Spearman’s 𝜌 values are given.

F IGURE 6 Comparison of VLPs derived from hyperpolarized gas MRI versus (a) the hybrid model/DL configuration and (b) the CTHU

ventilation model using Bland-Altman analysis.

separately trained models. This expanded the number

of scans available for evaluation; however, the dataset

remains relatively limited in size, containing only 47

patients. Future work will aim to expand the dataset

further and investigate novel data augmentation tech-

niques, including synthetic data generation. There is

a potential that, as the amount of available represen-

tative scans increases, configurations excluding CTVI

modeling may generate synthetic ventilation images

that are more correlated with hyperpolarized gas MRI

scans. In future work, if the dataset is expanded, we can

assess whether the inclusion of the CTVI modeling still

provides significant performance benefits.

TABLE 4 Median (range) DSC of the hybrid DL configuration

and CTHU ventilation model for ventilated and defect lung regions.

Region Hybrid DL CTHU

Ventilated lung 0.946 (0.715, 0.977) 0.903 (0.046, 0.956)

Defect lung 0.483 (0.288, 0.743) 0.426 (0.049, 0.730)

The best DSC values are shown in bold.

The VNet CNN architecture was used due to its

fully convolutional nature. Fully convolutional networks

contain no fully connected layers and hence contain sig-

nificantly fewer parameters than conventional networks

with fully connected layers; this minimizes the network’s
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12 Model/DL functional lung image synthesis

ability to simply memorize scans within the training set,

referred to as overfitting. The fully convolutional VNet

not only reduces the overall number of parameters but

also makes the number of parameters independent of

image matrix size. Therefore, the network was trained

and tested on scans with different matrices and acquisi-

tion protocols using fixed-size patches of 128× 128× 48

voxels. We further reduced the possibility of overfitting

using L2 weight regularization with a decay of 0.00001

to penalize large network weights.

Segmentations of ventilated lung volumes derived

from hyperpolarized gas MRI and thoracic cavity vol-

umes derived from structural 1H MRI segmentations

have been extensively used in the literature to gener-

ate VLPs, an established biomarker of regional lung

function.7 We demonstrated that VLPs derived from the

proposed hybrid framework are comparable with ground

truth VLPs from 3He MRI, producing a significantly

reduced bias compared to the CTHU method. Bland-

Altman analysis of bias, however, indicated that there

was reduced accuracy in patients with more significant

ventilation defects, resulting in higher predicted VLP val-

ues than the corresponding expert values. In addition

to VLP analysis, synthetic ventilation scans were seg-

mented using a DL-based segmentation algorithm52 to

provide regional localized comparisons of ventilated and

defect lung regions. The hybrid DL configuration gener-

ated a median DSC of 0.95 for ventilated regions and

0.48 for defect regions, significantly outperforming the

DSC achieved by the CTHU method. Both VLP values

and regional overlap values require the segmentation

of synthetic ventilation scans and are, therefore, sus-

ceptible to biases in the segmentation algorithm used;

the automatic segmentation method used here was

trained to segment hyperpolarized gas MRI and not syn-

thetic ventilation scans.52 There is limited consensus

on the appropriate segmentation schema required for

the delineation of ventilated and defect regions, result-

ing in an inability to produce accurate comparisons

between research studies. It is possible that ventilated

lung regions were overestimated during segmentation

due to the less pronounced changes in ventilation het-

erogeneity. Further investigation to improve automatic

segmentation of synthetic ventilation scans generated

by the hybrid configuration could reduce these biases.

As previously demonstrated by Levin et al.,54 the min-

imum resolution of functional lung images need not be

higher than the smallest pulmonary gas exchange unit,

namely, the acinus, which has been estimated to be on

the order of 10 × 10 × 10 mm3 in adult humans. They

further indicate that resolutions of 20 × 20 × 20 mm3

may be appropriate due to the spatial clustering of most

ventilation defects.54

Our study only investigates one CTVI modeling

method, namely, CTHU; however, several other CTVI

methods have been used in the literature. Subsequent

research will aim to assess the differences in perfor-

mance of the hybrid approach using classical CTVI

metrics, such as CTJAC, and emerging metrics with

more robust formulations.10,55 One key consideration

is the requirement of accurate registration between

multi-inflation CT and hyperpolarized gas MRI. Building

a network capable of synthesizing ventilations scans

independent of image registration would reduce the

computational costs and time taken to generate syn-

thetic images. Both the CTHU metric and the proposed

hybrid model rely on accurate registrations and, conse-

quently, are susceptible to errors in cases where the

registration is suboptimal. Removing this requirement

would eliminate biases due to errors in registration.

A previous approach by Westcott et al.56 utilized tex-

ture analysis, feature selection and classical machine

learning methods to generate synthetic lung ventilation

maps from thoracic CT in COPD patients. They eval-

uated the synthetic ventilation maps using whole-lung

metrics; however, more accurate voxel-wise evaluation

metrics were not reported.

The ability to generate synthetic ventilation scans

from CT has implications for several clinical applications,

including functional lung avoidance radiotherapy3,4 and

treatment response mapping.5 Kida et al.57 has pre-

viously demonstrated that a Spearman’s 𝜌 of ∼0.4

between CTHU and SPECT images produces clinically

indistinguishable radiotherapy plans. In this study, we

observed correlations of ∼0.6 between the hybrid DL

configuration and hyperpolarized gas MRI, indicating the

former’s potential clinical utility in functional lung avoid-

ance radiotherapy.Synthesizing hyperpolarized gas MRI

in comparison to other functional lung imaging modali-

ties such as SPECT has several advantages, including

enhanced spatial and temporal resolution and the lack

of aerosol deposition artifacts or time-delayed ventila-

tion filling effects. CT is an integral part of almost every

clinical lung imaging workflow and hence is readily avail-

able for most patients; therefore, synthetic ventilation

from non-contrast CT can provide patients with wider

access to ventilation imaging worldwide.

6 CONCLUSION

We propose a hybrid model/DL framework to synthesize

ventilation scans from routinely acquired non-contrast

multi-inflation CT and classical CTVI modeling.We show

that a synergy between model-based CTVI and CNN-

based learning yields statistically significant improve-

ments in performance compared with conventional CTVI

modeling alone and other DL configurations that do not

integrate modeling.
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