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MscL was the first mechanosensitive ion channel identified in bacteria. The
channel opens its large pore when the turgor pressure of the cytoplasm
increases close to the lytic limit of the cellular membrane. Despite their
ubiquity across organisms, their importance in biological processes, and the
likelihood that they are one of the oldest mechanisms of sensory activation in
cells, the exact molecular mechanism by which these channels sense changes in
lateral tension is not fully understood. Modulation of the channel has been key to
understanding important aspects of the structure and function of MscL, but a lack
of molecular triggers of these channels hindered early developments in the field.
Initial attempts to activate mechanosensitive channels and stabilize functionally
relevant expanded or open states relied on mutations and associated post-
translational modifications that were often cysteine reactive. These sulfhydryl
reagents positioned at key residues have allowed the engineering of MscL
channels for biotechnological purposes. Other studies have modulated MscL
by altering membrane properties, such as lipid composition and physical
properties. More recently, a variety of structurally distinct agonists have been
shown bind to MscL directly, close to a transmembrane pocket that has been
shown to have an important role in channel mechanical gating. These agonists
have the potential to be developed further into antimicrobial therapies that target
MscL, by considering the structural landscape and properties of these pockets.
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Introduction

In cells, molecules are exchanged between membrane compartments by transporters and
channel proteins (Kung et al., 2010). Channel proteins gate in response to several activators
including changes in membrane potential, or the presence of a specific ligand (Martinac
et al., 2009; Alexander et al., 2011). The initial identification of an ion channel that gates in
response to mechanical force provoked extensive investigation in this area (Guharay and
Sachs, 1984). Mechanosensitive (MS) channels have an intrinsic ability to sense and respond
to changes in bilayer tension, allowing cells to sense mechanical stimuli in their environment
(Ranade et al., 2015). Bacterial MS channels sense changes in lateral tension generated in the
membrane during hypoosmotic shock, acting as the safety-valves that release solutes to
prevent cell lysis (Booth et al., 2007; Rasmussen, 2016). Bacterial MS channels can be divided
into two major structural families: MscL and the MscS-like superfamily (MscS, MscM,
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MscK, YbiO, YnaI, YbdG) (Booth, 2014). MscL was the first MS
channel to be identified (Lett et al., 1994) and is the last resort
osmolyte-release system in bacteria and archaea. A structure of
MscL from M. Tuberculosis (TbMscL) was the first to be solved via
x-ray crystallography (Chang et al., 1998). TbMscL, along with
Escherichia coli MscL (EcMscL), for which only a structure of its
isolated cytoplasmic domain has been reported, are the most well
studied (Walton and Rees, 2013). Despite extensive research focused
on MscL, complex mechanisms related to the channel are still being
uncovered. It was recently shown that MscL excretory activity is
regulated by alternative ribosome-rescue factor (arfA) sRNA,
linking osmotic and translational stress responses (Pratama, 2022).

The TbMscL structure showed that the protein was composed of
an amphipathic helix (S1) at the N-terminus of the protein on the
cytoplasmic side of the membrane, two transmembrane helices
(TM1 and TM2) and a cytosolic helix at the C-terminus (Chang
et al., 1998; Wang and Blount, 2023). TM1 and TM2 are connected
by a large periplasmic loop, and there are connecting loops between
the cytoplasmic helical bundle and the bottom of TM2. The pore is
lined by TM1 from each subunit (Chang et al., 1998; Walton et al.,
2015). The TM1 helix from each monomer contacts two other
TM1 helices from adjacent monomers, and two TM2 helices, one
from the same monomer and one from a neighbouring subunit.
TM1 helices are tilted from the plane of the bilayer and this gives
MscL a pore that opens like a camera iris (Betanzos et al., 2002). This
non-selective pore opens to an estimate diameter of ~30 Å, and
results in a conductance of ~3 nS (Lett et al., 1994; Cruickshank
et al., 1997; Wang and Blount, 2023). The open structure of MscL
has remained elusive, however a structure of MscL in an expanded
state from archaea has been reported (Li et al., 2015). The channels
only known natural stimuli is lateral tension in the bilayer, which is
not trivial in detergent aqueous buffer and a natural physiological
agonist has not been identified. As a result, researchers have
employed a variety of approaches to modulate the channel to
stabilize an activated state through the use of molecular means
and/or modifications, providing insights into the gating mechanism
ofMscL, and highlighting the protein as a target for the development
of antimicrobials, given its absence from eukaryotes.

Modulation of MscL through mutations
and post-translational modifications

Early methods for the modulation of MscL relied on mutational
studies that led to gain-of-function (GOF) or loss-of-function (LOF)
characteristics, many of which gave insights into the gating
mechanism of the channel. An early study used random
mutagenesis as part of a forward genetics approach (Ou et al.,
1998). This identified mutations that led to increased activation of
MscL and subsequent screening of gain-of-functionmutants showed
these were mostly hydrophilic and present in the first TM helix
(TM1) (Ou et al., 1998). Later, the structure of the TbMscL was
reported which demonstrated that many of the mutations were
present around the pore constriction site (Chang et al., 1998; Wang
and Blount, 2023). Random mutagenesis studies have been key in
identifying mutations that increase the activity of channels (GOF) or
increase the barriers or completely abolish gating. A high-
throughput screen of 348 mutations allowed the identification of

5 new GOF mutations and 45 new LOF mutations (Maurer and
Dougherty, 2003). Analysis of the mutations highlighted TM2 as
being functionally significant (Maurer and Dougherty, 2003). A later
study looked at the function of LOF mutants generated by a random
approach (Yoshimura et al., 2004). Patch-clamp measurements and
hypoosmotic shock experiments (Figure 1) showed that the
replacement of hydrophobic residues at the end of TM1 and
TM2 with hydrophilic residues would eradicate the ability of
MscL to open in response to membrane tension.

In the same study, systematic asparagine scanning mutagenesis
also identified residues at lipid-protein interface on the periplasmic
side that were essential for MscL gating (Yoshimura et al., 2004).
Systematic scanning or selective mutagenesis studies can also
identify mutation that modulate MscL channel behaviour. G22 is
a residue within the constriction site of MscL, that was identified in a
random mutagenesis screen as a severe GOF mutation (Ou et al.,
1998). Subsequent systematic mutation of G22 to the other
19 common mutations was done to analyse the effect on channel
gating and cell growth. Hydrophilic substitutions increased while
hydrophobic substitution decreased the pressure threshold
(Yoshimura et al., 1999). This suggested that G22 must move
from a hydrophobic environment, through a hydrophilic
environment, upon gating. A G22N mutant of MscL displayed
spontaneous opening in liposomes and was consistent with the
stabilization of an expanded state (Yoshimura et al., 2008).
Additional hydrophilic mutations that lead to GOF behaviour
within TM1 were identified using cysteine scanning (Levin and
Blount, 2004). These mutations lower the energy barrier for gating,
consistent with TM1 separation being coupled with channel
conductance (Levin and Blount, 2004). GOF mutations in
TM2 did not correlate with hydrophilicity, and it was thought
that these residues may be important in maintaining key lipid
interactions, which was confirmed later by high resolution
spectroscopic studies (Kapsalis et al., 2019). Another approach
used histidine substitution of residues that are predicted to line
the pore in different conformational states, and looked at the ability
of Ni2+, Cd2+ or Zn2+ ions to alter channel gating thresholds (Iscla
et al., 2004).

Iscla et al. (2008) used a scanning approach where cysteine
mutations were paired with sulfhydryl reagents that conferred
different charges and/or hydrophobicity to different sites,
allowing them to identify key residues that modulated channel
function and had roles in channel gating (Iscla et al., 2015a).
Cysteine scanning of the S1 domain of EcMscL showed the
region was important for normal channel function, even though
none of the cysteine mutations led to a non-functional MscL channel
in vivo (Iscla et al., 2008). Further work on the S1 domain using
continuous wave electron paramagnetic resonance (cwEPR)
spectroscopy and molecular dynamics (MD) simulations showed
that lipids strongly interact with the N-terminus during channel
expansion, leading to the proposal of the ‘dragging’ model (Bavi
et al., 2016; Bavi et al., 2017). The S1 amphipathic helix is directly
connected to the pore-lining segment in MscL, but this is not the
case for other mechanosensitive ion channels (Kefauver et al., 2020).
Coupling of a cysteine mutation at a pore-lining residue with
chemical modification to introduce a molecule has also allowed
the engineering of MscL so that the channel responds to a variety of
stimuli such as pH and light, with potential applications in
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biotechnology (Koçer et al., 2005; Koçer et al., 2006; Yang et al.,
2018; Yang et al., 2021). A pH sensitive channel was generated
through the attachment of sulfhydryl-reactive modulators to a G22C
mutant in the pore of EcMscL (Koçer et al., 2006; Yang et al., 2018;
Yang et al., 2021). Many of the mutations that led to increases in the
activation of MscL discussed here relied on the modification of pore-
lining residues (Yoshimura et al., 1999; Iscla et al., 2004). However,
as these residues were inaccessible to lipid molecules, they failed to
report on an allosteric lipid-mediated activation of MscL which
occurs in its natural environment. Additionally, many early studies
mostly depended on electrophysiology and cell viability/growth
assays (Figure 1), and therefore they lacked the ability to directly
detect gating and dynamics of MscL at a molecular level.

The introduction of an L89W mutation on the TM2 helix in
TbMscL offered insights into the gating mechanism of bacterial
mechanosensitive channels in response to tension in the
membrane. Previous studies of MscS have led to the
development of the lipid-moves-first model where the number
lipid acyl chains occupying TM pockets determined the

conformational state of the protein (Pliotas et al., 2012; Pliotas
et al., 2015; Pliotas and Naismith, 2017). Increases in lateral
tension were thought to cause the movement of lipids from the
pockets to the bulk bilayer, destabilizing the closed structure.
This model was extended to MscL as it also has TM pockets and
pulsed electron paramagnetic resonance (EPR) spectroscopic
studies suggested a similar mechanical sensing mechanism as
MscS (Kapsalis et al., 2019; Kapsalis et al., 2020). The
introduction of the mutation L89W at the entrance to these
TM pockets stabilized an expanded and subconducting state of
TbMscL (Kapsalis et al., 2019). In EcMscL, L89W corresponds to
M94 when aligning the sequence using CLUSTALX (Chang et al.,
1998), and to A95 when using Protein BLAST. Pulsed electron-
electron double resonance (PELDOR, also known as DEER)
(Pliotas, 2017; Bordignon et al., 2019; Hartley et al., 2020;
Ackermann et al., 2017) and electron spin echo envelope
modulation (ESEEM) spectroscopy (Hartley et al., 2020; Lane
et al., 2022) are powerful tools in the assessment of conformation
in integral membrane proteins (Figure 1). PELDOR

FIGURE 1
Key methods used to probe and investigate the modulation of MscL. Electrophysiology is a key functional methodology for understanding how
modulation in the form of mutations, post-translational modification, agonists and indirect modulators alter the functional parameters of the protein. In
early studies of MscL, this was often paired with cell viability and osmotic down-shock assays. X-ray crystallography allowed the visualisation of the
structure of TbMscL. Pulsed EPR techniques, such as PELDOR and ESEEM, allow the structural dynamics of the protein to be followed through Å
resolution distance measurements and by monitoring changes in solvent accessibility (Kapsalis et al., 2019; Wang et al., 2022). HDX-MS also informs on
changes in solvent accessibility, albeit at lower resolution than ESSEEM spectroscopy (Lane et al., 2022; Wang et al., 2022). Native mass spectrometry was
key to determining the effect of detergents and lipids on channel stoichiometry (Reading et al., 2015), while ion mobility mass spectrometry defined key
subconducting states of MscL in response to cysteine-specific post-translation modification in the pore (Konijnenberg et al., 2020). MD simulations have
been crucial in understanding modulation and mechanism of MscL (Bavi et al., 2016; Wray et al., 2016; Melo et al., 2017; Wang et al., 2022). Finally,
fluorescence resonance energy transfer (FRET) was used in establishing a helix-tilt model for MscL following opening of the channel using LPC (Wang
et al., 2014).
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measurements showed a conformational change consistent with
an expanded state in TbMscL (Kapsalis et al., 2019). This
approach also allowed structural alignment of TbMscL and
EcMscL in lipid nanodiscs, showing that L89W (TbMscL)
structurally corresponds to M94 in E. coli (Kapsalis et al.,
2020). PELDOR spectroscopy allows for high-resolution
distance measurements which can be used to follow folding
and conformational changes, and was utilized to assess the
correct folding of MscL when it was expressed in new strains
designed for efficient membrane protein expression (Michou
et al., 2019). The presence of the mutation also reduced the
threshold required for channel conductance in electrophysiology
measurements, consistent with a subconducting state. The data
suggests that the presence of a bulky tryptophan or sulfhydryl
modification at the entrance of lipid-accessible TM pockets
caused destabilization of the closed state by hindering the
penetration of lipid acyl chains into these TM pockets and
highlighting the importance of this region of the channel
(Kapsalis et al., 2019). The MTSSL spin label on a introduced
cysteine residue, modulated channel function as seen previously
for other sulfhydryl modification, but also allowed high-
resolution measurements to follow conformational changes in
the channel (Iscla et al., 2015b; Kapsalis et al., 2019). The
expanded state was characterized further using hydrogen-
deuterium exchange mass spectrometry (HDX-MS)
experiments and ESEEM spectroscopy measurements,
highlighting structural transitions that occur from modulation
by the L89W mutation. MD simulations of TbMscL in a lipid
bilayer under tension were completed to stabilize an expanded
state of TbMscL in response to mechanical stimuli, which showed
pore hydration (Wang et al., 2022). Comparison of the two states
showed they were structurally analogous and that the mutant
stabilized state was biologically relevant, further supporting the
lipid-moves-first model and the importance of the region of the
TM pockets in channel gating (Wang et al., 2022).

Modulation of MscL via direct binding
of molecules and antimicrobials

Some chemical compounds also have been shown to modulate MS
channels through direct interactions with the protein, primarily
targeting the MscL protein at the cytoplasmic-membrane interface
close to the region of the TM pockets (Figure 2) (Wang and Blount,
2023). The well-known antibiotic dihydrostreptomycin (DHS) crosses
the membrane primarily through MscL (Wray et al., 2016). DHS also
directly binds toMscL at the subunit interface near the constriction site,
which causes efflux of potassium and glutamate through the open
MscL, followed by the passing of DHS into the cytoplasm (Dubin et al.,
1963; Wray et al., 2016). This binding site is in the same region of the
TM pockets that were previously shown to have an important role in
mechanosensation. MD simulations suggest that MscL does not fully
open upon DHS binding but several structural changes associated with
a transition towards an open channel are observed, such as a rotation of
TM1 and the separation of the helices around the pore (Wray et al.,
2016). Ramizol was a compound identified through an in silico
screening approach as a MscL interactor and was shown to inhibit
the growth of MscL-expressing Staphylococcus aureus (Iscla et al.,

2015a), and in patch-clamp electrophysiology it reduced the gating
threshold of MscL (Iscla et al., 2015b). However, data suggests that
ramizol likely has other targets in the cell or may have some
amphipathic affect (Sidarta et al., 2022). However, it has the
potential to be developed as a therapeutic against bacteria and has
been through pre-clinical studies (Rao et al., 2016; Sidarta et al., 2022).

Curcumin, a flavonoid polyphenol from turmeric, and SCH-
79797 activate MscL and lead to membrane permeabilization
(Ingolfsson et al., 2007; Tyagi et al., 2015; Teow et al., 2016;
Gupta et al., 2018; Martin et al., 2020; Wray et al., 2021). SCH-
79797 and its derivatives have been shown to be affective against
antibiotic-resistant strains and infection models (Gupta et al., 2018).
SCH-79797 and related compounds bind directly to MscL,
activating the channel, and causing membrane permeabilization
(Wray et al., 2021). The binding site for SCH-79797 sits at the
interface of the N-terminal residues (S1) and the cytoplasmic side of
TM2, which is a similar region as seen for DHS but more peripheral
to the pore (Wray et al., 2021). Curcumin limits bacterial growth in a
MscL-dependent way and it also increases MscL channel activity.
However, a direct binding site for curcumin has not been identified
meaning it may act via altering the biophysical properties of the
membrane, e.g., by thinning of the membrane (Ingolfsson et al.,
2007). The organic molecules 011A and K05 have been identified as
agonists of MscL (Wray et al., 2019a; Wray et al., 2019b; Wray et al.,
2020). They bind to MscL and increase its sensitivity to lateral
tension (Wray et al., 2019a; Wray et al., 2020). The binding site is
positioned at cytoplasmic-membrane interface with residue
97 demonstrated as being an essential residue for the binding of
the compounds in EcMscL. This residue region was revealed by
high-resolution PELDOR/DEER distance measurement in lipid
bilayers to be structurally different in distinct MscL orthologues
(i.e., EcMscL and TbMscL) suggesting subtle differences within
these regions account for functional diversity between different
MscL orthologues (Kapsalis et al., 2020). Additionally, these
molecules increase the potency of the commonly used antibiotics
dihydrostreptomycin, kanamycin, tetracycline, and ampicillin
making them potentially useful as antibiotic adjuvants (Wray
et al., 2019b; Wray et al., 2020; Sidarta et al., 2022). Finally, a
structurally distinct small molecule, known as compound 262, was
shown by in silico docking experiments to be a potential MscL
agonist that binds to a similar pocket as 011A and K05 (Wray et al.,
2022). Therefore, all currently known agonists of MscL bind close to
the central pore, in or around the previously defined TM pocket
which responds to the availability of lipid acyl chains, despite being
structurally diverse (Figure 2) (Wang and Blount, 2023). Direct
modulators of MS channels are needed in order to help with
mechanistic studies of these proteins, and for the development of
novel antimicrobials. However, all these studies highlight MscL as a
druggable target, and there is potential for the development of new
compounds that target this pocket.

Modulation of MscL via membrane
properties and components

Modulators can act indirectly on MS channels, such as through
the modification of the physical or chemical properties of the
membrane. A decrease in membrane thickness was shown to
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lower the activation threshold of EcMscL, while decreased
membrane fluidity hampered EcMscS gating (Perozo et al., 2002;
Nomura et al., 2012; Xue et al., 2020). An atomistic MD study
showed that the thickness-dependent gating of MscL is likely to be
driven by the hydrophobic matching of the protein to the thickness
of the bilayer, largely through the interaction of F78 (TbMscL) with
the membrane surface on TM2 (Katsuta et al., 2019). Coarse-grained
molecular dynamic simulations of curved bilayers that were
generated through the asymmetric incorporation of
lysophosphatidyl choline (LPC) showed that upon asymmetric
incorporation, compression occurs in upper leaflet and dilation
occurs in the lower leaflet (Yoo and Cui, 2009). This is consistent
with experimental studies showing asymmetric LPC incorporation
can activate MscL, while the addition of cholesterol at varying
concentrations to azolectin liposomes increased the membrane
tension required to activate MscL (Perozo et al., 2002; Nomura
et al., 2012). The addition of cardiolipin to DOPE/DOPC
membranes increases the opening and closing thresholds for
MscL. However, this is complicated further as in azolectin
liposomes, MscL remains largely unaffected by the presence of
cardiolipin. Poly-unsaturated fatty acids also lower the tension
threshold of MscL (Ridone et al., 2018). MscL has also been
activated in bilayer containing a photoswitchable lipid molecule
(AzoPC). Light can switch AzoPC from its trans to cis state using
blue light which increases lateral tension in the membrane and
stabilises a subconducting state (Crea et al., 2022).

Several studies have highlighted the use of β-cyclodextrin (β-CD) in
the modulation of MS channels. Cyclodextrins work by mimicking
tension through the removal of lipids from liposomes or nanodiscs
which lowers lipid density (Zhang et al., 2021). β-CD was used to
stabilize a desensitised state of MscS from cryo-electron microscopy
(cryo-EM) studies, and another study showed that cyclodextrin-
induced lipid removal was also able to activate MscL despite the
high tensions required for gating of this channel (Cox et al., 2021).

Other amphipathic molecules, such as parabens, trinitrophenol,
trifluroethanol, and fluorouracil, have indirect effects on MS
channels through their intercalation into the membrane and their
activation effectiveness is proportional to their hydrophobicity, but is
also affected by their size and shape (Martinac et al., 1990; Nguyen et al.,
2005; Kamaraju and Sukharev, 2008; Bavi et al., 2022). MD simulations
of MscL in different bilayer environments in the presence of alcohols,
supported by experimental efflux assays, showed that straight-chain
alcohols increased channel gating periods (Melo et al., 2017).
Asymmetric effects of amphipathic molecules seems to represent a
general mechanism of regulation for mechanosensitive channel (Bavi
et al., 2022). ForMscS it was shown that parabens affect the sensitivity of
MscS differently depending on whether they are applied to the
cytoplasmic or periplasmic side (Kamaraju and Sukharev, 2008). On
the periplasmic side, they increased sensitivity, while on the cytoplasmic
side they decreased sensitivity. Alpha helical peptides, known as
piscidins, have been shown to lower the activating tension of MscL
and MscS in spheroplasts (Comert et al., 2019; Cetuk et al., 2020). It is
thought that they act through the modification of protein-lipid
boundary by inducing tension or membrane curvature. However,
these peptides likely have other targets as Escherichia coli (E. coli)
strains lacking MscL, MscS and MscK did not differ much from wild
type E. coli strains in response to piscidins. Gadolinium chloride
(GdCl3) exclusively acts as an inhibitor that blocks MS channel
gating (Berrier et al., 1992; Ermakov et al., 2010). Gd3+ interacts
with the lipid bilayer and causes it to compact, holding the MS
channels in their closed state. However, it was shown that GdCl3
could only inhibit the gating of MscL when anionic phospholipids were
present in the membrane, indicating that they may serve as a sort of
receptor to facilitate the interaction of Gd3+ with the bilayer (Ermakov
et al., 2010). Finally, the globular amphipathic peptide, GsMTx4, from
spider venom is another indirect modulator of the activity of MS
channels (Jung et al., 2006; Hurst et al., 2009; Kamaraju et al., 2010).
When applied to the cytoplasmic side it increased channel opening in

FIGURE 2
Binding sites for lipids and agonists of MscL. The TM pocket (red) of MscL is occupied by several lipid acyl chains that are proposed to determine the
conformational state of the MS channel proteins, according to the lipid moves first model initially proposed for MscS and then extended to MscL (Pliotas
et al., 2015; Pliotas and Naismith, 2017; Kapsalis et al., 2019). This was defined when either a bulky L89W (pink) mutation or a L89C sulfhydryl modification
(MTSSL) succeeded in stabilising an expanded subconducting state of the TbMscL, consistent with the modifications at the entrance of these
pockets restricting lipid acyl chain access (Kapsalis et al., 2019). This is proposed to have disrupted the link between the membrane and the channel,
destabilising the closed state. Several agonists of MscL have been identified and they all bind at the interface between the S1 and TM1 region of one
subunit with the TM2 of another at the membrane-cytoplasmic interface (Wray et al., 2016; Wray et al., 2020; Wray et al., 2021). These agonists all bind
close to the TM pocket and so these molecules could be disrupting protein-lipid interactions that are key to determining the conformational state of the
protein. Agonist studies were done on EcMscL but equivalent residues were highlighted on the structure of TbMscL (2OAR) in the absence of a structure
for EcMscL.

Frontiers in Chemistry frontiersin.org05

Lane and Pliotas 10.3389/fchem.2023.1162412

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1162412


MscL and MscS (Kamaraju et al., 2010). However, when applied to the
periplasmic side of a membrane patch, lower peptide concentrations of
2–4 µM decreased channel sensitivity to pressure, while at higher
concentrations (>12 µM) the opposite was true (Hurst et al., 2009).
However, all modulators discussed here are non-specific to the MscL
protein, acting indirectly.

Concluding remarks

Modulation of MscL through the introduction of mutations,
posttranslational modifications, alteration of membrane components,
and the direct modulation of binding molecules has provided insights
into themechanism of the channel protein with the largest known gated
pore to date.Modulators ofMS channels could be used as tools in future
mechanistic studies, for the stabilization of functional states of these
proteins, and for the development of biotechnological applications.
Aside from this, MscL is a particularly attractive target for drug
development. The channel has strong conservation among bacteria,
while being structurally distinct from eukaryotic channels, and is both a
direct target, but also has the potential to improve other antimicrobial
therapies through cell permeabilization (Doerner et al., 2012; Sidarta
et al., 2022;Wang and Blount, 2023). Overall, there is great potential for
new pioneering discoveries through the modulation of bacterial MS
channels in order to develop understanding of their structures,
mechanisms, and functions, but also for their use within
biotechnology and as targets for antimicrobial therapies.
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