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ABSTRACT

Social bot detection is of paramount importance to the resilience

and security of online social platforms. The state-of-the-art detec-

tion models are siloed and have largely overlooked a variety of data

characteristics from multiple cross-lingual platforms. Meanwhile,

the heterogeneity of data distribution and model architecture make

it intricate to devise an efficient cross-platform and cross-model

detection framework. In this paper, we propose FedACK, a new

federated adversarial contrastive knowledge distillation framework

for social bot detection. We devise a GAN-based federated knowl-

edge distillation mechanism for efficiently transferring knowledge

of data distribution among clients. In particular, a global generator

is used to extract the knowledge of global data distribution and

distill it into each client’s local model. We leverage local discrimi-

nator to enable customized model design and use local generator

for data enhancement with hard-to-decide samples. Local training

is conducted as multi-stage adversarial and contrastive learning to

enable consistent feature spaces among clients and to constrain the

optimization direction of local models, reducing the divergences

between local and global models. Experiments demonstrate that

FedACK outperforms the state-of-the-art approaches in terms of

accuracy, communication efficiency, and feature space consistency.
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learning.
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1 INTRODUCTION

Social bots imitate human behaviors on social networks such as

Twitter, Facebook, Instagram, etc. [43]. Millions of bots, typically

controlled by automated programs or platform APIs [1], attempt to

sneak into genuine users as a disguise to pursue malicious goals

such as actively engaging in election interference [11, 17], misin-

formation dissemination [8], and privacy attacks [37]. Bots are also

involved in spreading extreme ideologies [3, 18], posing threats

to online communities. Effective bot detection is necessitated by

the jeopardized user experience on social media platforms and the

induction of unfavorable social effects.

There is a new yet understudied problem in bot detection ś a

society of bots tend to be exposed to multiple social platforms

and behave as collaborative cohorts. Existing bot detection solu-

tions largely rely on user property features extracted from meta-

data [9, 41], or features derived from textual data such as a tweet

post [15, 39], before adopting graph-based techniques to explore

neighborhood information [14, 42, 46]. While such models can

uncover camouflage behaviors, they are siloed and subject to the

amount, shape, and quality of platform-specific data. To this end,

Federated Learning (FL) has becomes the main driving force of

model training across heterogeneous platforms without disclosing

local private datasets. Some studies [32, 44, 45, 49] augmented FL

by Generative Adversarial Networks (GANs) and Knowledge Dis-

tillation (KD) in a data-free manner to safeguard privacy against

intrusions. However, they have the following limitations:

i) Restriction to homogeneous model architecture. As FL models as-

sume homogeneousmodel architecture on a per client basis ś which

however no longer holds ś participants are stringently required

to conform to the same model architecture managed by a central

server. It is therefore imperative to enable each individual platform

to customize heterogeneous models as per unique data character-

istics. ii) Inconsistent feature learning spaces. The state-of-the-art
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Federated KD approaches are largely based on image samples and

assume consistent feature space. However, the distinction between

global and local data distribution tends to result in non-negligible

model drift and inconsistent feature learning spaces, which will

in turn cause performance loss. It is highly desirable to align fea-

ture spaces among different clients to improve the global model

performance. iii) Sensitivity to content language. Textual data based

anomaly detection approaches to date are sensitive to the languages

that the model is built upon. Existing solutions for cross-lingual con-

tent detection in online social networks either substantially raise

computational costs [10, 13, 50] or require labor-intensive feature

engineering to identify cross-lingual invariant features [7, 12, 36].

Arguably, how to incorporate into a synergetic model a variety of

customized models with heterogeneous data in different languages

to enable consistent feature learning space is still under-explored.

This paper proposes FedACK, a novel bot detection framework

through Federated Adversarial learning Contrastive learning and

Knowledge distillation. FedACK envisions to enable personaliza-

tion of local models in a consistent feature space across different

languages (see Fig. 1). We present a new federated GAN-based

knowledge distillation architecture ś a global generator is used to

extract the knowledge of global data distribution and to distill the

knowledge into each client’s local model. We elaborate two discrim-

inators ś both globally shared and local ś to enable customized

model design and use a local generator for data enhancement with

hard-to-decide samples. Specifically, the local training on each client

side is regarded as a multi-stage adversarial learning procedure to

efficiently transfer data distribution knowledge to each client and to

learn consistent feature spaces and decision boundaries. We further

exploit contrastive learning to constrain the optimization direc-

tion of local models and reduce the divergences between local and

global models. To replicate non-IID data distribution across multi-

platforms, we employ two real-world Twitter datasets, partitioned

by the Dirichlet distribution. Experiment shows that FedACK out-

performs the state-of-the-art approaches on accuracy and achieves

competitive communication efficiency and consistent feature space.

This work makes the following contributions.

• To the best of our knowledge, FedACK is the first social bot

detection solution based on federated knowledge distillation that

envisions cross-lingual and cross-model bot detection.

• contrast and adversarial learning mechanisms for enabling con-

sistent feature space for better knowledge transfer and repre-

sentation when tackling non-IID data and data scarcity among

clients.

• FedACK outperforms other FL-based approaches by up to 15.19%

accuracy improvement in high heterogeneity scenarios, and achieves

up to 4.5x convergence acceleration against the 2nd fastestmethod.

To enable replication and foster research, FedACK is publicly

available at: https://github.com/846468230/FedACK.

2 PRELIMINARIES

2.1 Background

Federated learning (FL). FL is a distributed learning paradigm that

allows clients to perform local training before aggregation without

sharing clients’ private data [4, 22, 27, 28, 30]. While promising,

FL can have inferior performance particularly when training data
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Figure 1: Incorporatingmultiple social platformswith hetero-

geneous languages, context spaces and model architectures

is not independent and identically distributed (Non-IID) on local

devices [25, 47], which could make the model deflected to a local

optimum [20]. Most of the existing works mainly fall into two

categories. The first is introducing additional data or using data

enhancement to address model drift issue caused by the non-IID

data. FedGAN [32] trains a GAN to tackle the non-IID data chal-

lenge in a communication efficient way but inevitably produces

bias. FedGen [49] and FedDTG [45] utilize generator to simulate

the global data distribution to improve performance. The second

category mainly focuses on local regularization. FedProx [25] adds

an optimization item to local training, and SCAFFOLD [20] uses

control variants to correct the client-drift in local updates while

guaranteeing a faster convergence rate. FedDyn [2] and MOON

[24] constrain the direction of local model updates by comparing

the similarity between model representations to align the local and

global optimization objectives. However, these approaches either

direct model aggregation to get the global model that causes non-

negligible performance deterioration [35] or neglect the impact of

data heterogeneity, which may lead to knowledge loss of local data

distribution during the model aggregation.

Federated knowledge distillation (KD). KD is first introduced to

use compact models to approximate the function learned by larger

models [5]. Knowledge is formally referred to as the softened logits,

and in a typical KD, a student model absorbs and mimics the knowl-

edge from teacher models [19]. KD is inherently beneficial for FL

since it requires less or no data to enable the model to understand

the data distribution. FedDistill [33] jointly refines logits of user-

data obtained through model forward propagation and performs

global knowledge distillation to reduce the global model drift prob-

lem. FedDF [26] proposes an ensemble distillation for model fusion

and trains the global model through averaged logits from local

models. FedGen [49] combines each local model’s average logits as

the teacher in KD to train a global generator. FedFTG [44] uses each

local model’s logit as the teacher to train a global generator and

distill knowledge by using the pseudo-data generated by the global

generator to fine tune the global model. However, none of them

focuses on enabling consistent feature space, which will lead to

ineffective knowledge dissemination. FL and KD have been largely

overlooked to date in social bot detection, which is investigated

in a siloed way [8]. FedACK can fill this gap through enhanced

adversarial learning with a shared discriminator and an exclusive

discriminator to support designated cross-model bot detection.

Cross-lingual content detection in social networks. Publishing

fake or misleading contents through social bots on social networks
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in different languages has become the norm rather than the excep-

tion. [7, 12] have explored the possibilities of cross-lingual content

detection by seeking cross-lingual invariant features. There is also

a huge body of research on cross-lingual text embedding and model

representation [10, 13, 29, 31, 50] for detecting hate speeches, fake

news or abnormal events. These works usually require huge efforts

in finding cross-lingual invariants in the data, and thus computa-

tional inefficiency. While InfoXLM [6] could be applied in FedACK

as a substitute for our cross-lingual module, it may involve addi-

tional overhead given only a few mainstream languages in social

platforms. FedACK implemented text embedding by mapping the

cross-lingual texts into the same context space.

2.2 Problem Scope

We consider federated social bot detection setting that includes a

central server and K clients holding private datasets {D1, . . . ,D𝐾 }.

These private datasets contain benign accounts and different gener-

ations of bots. Presumably, different model architectures or param-

eters exist on different clients. FedACK focus on meta and text data,

rather than multimodal data. Instead of collecting raw client data,

the server tackles heterogeneous data distribution across clients

and aggregates model parameters for the shared networks. The

objective is to minimize the overall error among all clients:

argmin
𝑤

L(𝑤) =
1

𝐾

𝐾
∑︁

𝑘=1

1

𝑁𝑘

𝑁𝑘
∑︁

𝑖=1

L(𝑥𝑘𝑖 , 𝑦
𝑘
𝑖 ;𝑤), (1)

where L is the loss function that evaluates the prediction model𝑤

on the data sample (𝑥𝑘𝑖 , 𝑦
𝑘
𝑖 ) of D𝑘 = {(𝑥𝑘𝑖 , 𝑦

𝑘
𝑖 )}|

𝑁𝑘

𝑖=1 in 𝑘-th client.

3 METHODOLOGY

As shown in Fig. 2, FedACK consists of cross-lingual mapping,

backbone model, and federated adversarial contrastive KD.

3.1 Cross-Lingual Mapping

We adopt a Transformer encoder-decoder-based method to achieve

the alignment of different language contents. In essence, given a𝑚-

word text 𝑥 = {𝑥1, ..., 𝑥𝑚} in one language and the corresponding

𝑛-word text 𝑦 = {𝑦1, ..., 𝑦𝑛} in another language, we use an En-

coder 𝜙𝐸 to transform the source text 𝑥 and the target text 𝑦 into

context representations 𝑧𝑥 = {𝑧𝑥1 , ..., 𝑧𝑥𝑚 } and 𝑧𝑦 = {𝑧𝑦1 , ..., 𝑧𝑦𝑛 }.

We devise aMapperM for converting between two context repre-

sentation spaces, i.e., 𝑧𝑥
′
=M(𝑧𝑦) and 𝑧𝑦

′
=M(𝑧𝑥 ).

We introduce an adversarial mechanism for optimizingM so

that the original 𝑧𝑥 and the mapped 𝑧𝑥
′ can be sufficiently similar.

We first obtain the embedding of the context representations:

𝑧𝑥 =

1

𝑚

𝑚
∑︁

𝑘=1

𝑧𝑥𝑘 , 𝑧
′
𝑥 =

1

𝑛

𝑛
∑︁

𝑘=1

𝑧′𝑥𝑘 . (2)

Then we use the discriminator 𝐷 to distinguish whether an embed-

ding 𝑧𝑥 or 𝑧′𝑥 is forward propagated fromM (𝑧𝑦 is equal to 𝑧′𝑦 ).

Accordingly, the loss of the discriminator is defined as:

L𝑑𝑖𝑠 = L𝑑𝑖𝑠𝑥 + L𝑑𝑖𝑠𝑦 ,

L𝑑𝑖𝑠𝑥 =(𝐷 (𝑧𝑥 ) − 𝑦𝑧𝑥 )
2 + (𝐷 (𝑧′𝑥 ) − 𝑦𝑧′𝑥 )

2,
(3)

where the label 𝑦𝑧 is set as 0 if an embedding 𝑧 is mapped fromM.

We combine the encoder 𝜙𝐸 and the mapperM into the generator.

Similarly, the loss of the generator is:

L𝑔𝑒𝑛 = (𝐷 (𝑧′𝑥 ) − 𝑦𝑧′𝑥 )
2 + (𝐷 (𝑧′𝑦) − 𝑦𝑧′𝑦 )

2, (4)

where the label 𝑦𝑧 is always set as 1 to produce sufficiently similar

representations to confuse the discriminator. We collect the context

representations (𝑧𝑥 , 𝑧𝑦, 𝑧𝑥
′, 𝑧𝑦

′) and decode them with a Decoder

𝜙𝐷 and generate the corresponding translation (𝑧𝑦, 𝑧𝑥 , 𝑧
′
𝑦, 𝑧
′
𝑥 ), where

𝑧𝑦 = 𝜙𝐷 (𝑧𝑥 ) and other terms are calculated in a similar way.

The loss of the Transformer is therefore defined as the cross-

entropy loss between 𝑥 and 𝑦:

L𝑡𝑟𝑎𝑛𝑠 = L𝑧𝑥 + L𝑧𝑦 + L𝑧𝑥 ′ + L𝑧𝑦 ′ ,

L𝑧𝑥 = −

𝑛
∑︁

𝑡=1

log 𝑃 (𝑦𝑡 |𝑧𝑦 < 𝑡, 𝑧𝑥 ),

L𝑧𝑥 ′ = −

𝑛
∑︁

𝑡=1

log 𝑃 (𝑦𝑡 |𝑧
′
𝑦 < 𝑡, 𝑧𝑥

′) .

(5)

3.2 Backbone Model for Feature Extraction

The main task is to let user-level backbone feature extractor model

𝜀 to extract features per user metadata (e.g., account properties) and

textual data (e.g., tweets). We concatenate the key items extracted

from the metadata into the property vector𝑢𝑝 , following the similar

way as [41, 42], which is converted into user’s property representa-

tion 𝑟𝑝 by a Multi-layer Perceptron 𝑟𝑝 = 𝑀𝐿𝑃 (𝑢𝑝 ). For textual data,

assume a user has posted M Tweets 𝑢𝑡 = {𝑡
1
1 , . . . , 𝑡

1
𝑄1
, 𝑡21 , . . . , 𝑡

𝑀
𝑄𝑀
},

possibly in the form of different languages; 𝑡
𝑗
𝑖 represents the 𝑖-th

word in the 𝑗-th tweet. We leverage the Encoder and Mapper deliv-

ered by the aforementioned cross-lingual module to convert each𝑢𝑡
into a uniformed contextual space, i.e., 𝑧𝑢𝑡 = {𝑧11, . . . , 𝑧

1
𝑄1
, 𝑧21
′
, . . . , 𝑧𝑀

𝑄𝑀
}.

A Convolutional Neural Networks (CNN) layer, i.e., TextCNN[21],

is then used to obtain the tweet-level representation ℎ𝑢𝑡 :

ℎ𝑢𝑡 = {ℎ𝑡1, . . . , ℎ
𝑡
𝑀 }, ℎ

𝑡
𝑗 = 𝐶𝑁𝑁 ({𝑧

𝑗
1, . . . , 𝑧

𝑗
𝑄1
}). (6)

An attention layer is used to quantify the influence of each tweet

on the overall semantics of the user and to calculate the user-level

tweet representation 𝑟𝑡 through weighted aggregation of all tweets.

The complete user-level representation 𝑟𝑢 is:

𝑟𝑢 = 𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑟𝑝 , 𝑟𝑡 )). (7)

3.3 Federated Adversarial Contrastive KD

Architecturally, we follow the conventional server-client design for

the Federated GAN-based KD. A client 𝑘 contains a global generator

𝐺 for KD, and a local generator 𝐺𝑘 for data enhancement. We use

two discriminators ś 𝐷1 shared across all clients with the same

architecture and initial parameters but trained on local data, and

𝐷2 exclusively designated for each client to satisfy its individual

demand. Each client uses a backbone model 𝜀 to get the user’s

representation 𝑟𝑢 = 𝜀 (𝑥𝑢 ) from local data D𝑘 . As a significant

departure from the state-of-the-arts, a new multi-stage adversarial

mechanism is proposed for jointly optimizing classification in both

discriminators at intra-client level and a contrastive mechanism for

aligning different feature spaces across clients. The notations are

detailed in Appendix A.1.
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Figure 2: The proposed FedACK framework.

3.3.1 Local Adversarial Contrastive KD. The adversarial learning

on a per client basis include the following multi-phases.

Stage-1: Training D1 and D2 as classifiers. We aim to facilitate

the two models to learn different decision boundaries for the same

class of samples and compress the feature space of the feature ex-

tractor. To tackle non-IID data distribution and data scarcity among

clients, we treat the shared global generator 𝐺 as teacher network

and distill the knowledge of global data distribution from it. For

each sample (𝑥𝑘𝑖 , 𝑦
𝑘
𝑖 ),𝐺 uses a standard Gaussian noise 𝑧 ∼ N(0, 1)

and label 𝑦𝑘𝑖 to generate pseudo-data 𝑥 = 𝐺 (𝑧,𝑦𝑘𝑖 ;𝜃𝐺 ). (𝑥
𝑘
𝑖 , 𝑥) is

fed into 𝐷1 to obtain the probability distributions (𝑝, 𝑝). We make

𝐷1 fit probability 𝑝 of real data 𝑥𝑘𝑖 close to 𝑝 to distill knowledge

by minimizing Eq. (8):

L𝑘
𝑑𝑖𝑠

=

1

𝑁𝑘

𝑁𝑘
∑︁

𝑖=1

𝐷𝐾𝐿 (𝜎 (𝐷1 (𝑟
𝑘
𝑖 )) | |𝜎 (𝐷1 (𝑥)), (8)

where 𝜎 is the softmax function, 𝐷𝐾𝐿 is the KullbackśLeibler di-

vergence and 𝑟𝑘𝑖 = 𝜀 (𝑥𝑘𝑖 ). Similar L𝑘
𝑑𝑖𝑠

′
is performed for 𝐷2.

We induce an adversarial loss to measure the probability differ-

ence between 𝐷1 and 𝐷2:

L𝑘
𝑎𝑑𝑣

=

1

𝑁𝑘

𝑁𝑘
∑︁

𝑖=1

𝐷𝐾𝐿 (𝜎 (𝐷1 (𝑟
𝑘
𝑖 )) | |𝜎 (𝐷2 (𝑟

𝑘
𝑖 ))). (9)

In essence, maximizing Eq. (9) can produce distinct decision bound-

aries between two discriminators to compress overlapping decision

space. Intuitively, this is because 𝜀 would learn more precise feature

space if the representations could be correctly classified by both

discriminators. Similarly to Eq. (9), we calculate adversarial loss

L𝑘
𝑎𝑑𝑣𝑔

on the pseudo-data generated by the local generator𝐺𝑘 and

minimize it to intensify the above process. 𝐷1 and 𝐷2 also need

to correctly classify the pseudo-data randomly generated by 𝐺 to

deal with the issue of unbalanced and scarce data. To sum up, the

overall loss function of the discriminators is:

L𝑘𝐷 = L𝑘
𝑐𝑙𝑠
+ 𝛼 (L𝑘

𝑑𝑖𝑠
+ L𝑘

𝑑𝑖𝑠

′
) + 𝛾 (L𝑘

𝑎𝑑𝑣𝑔
− L𝑘

𝑎𝑑𝑣
) . (10)

Stage-2: Training 𝜀. We minimize the adversarial loss Eq. (9) to

reduce the difference between the probability outputs of two dis-

criminators for the same feature. This means that the same data

point can fall on the same side of the decision boundaries of the

two discriminators. The feature space of the feature extractor is

compressed and enforced to generate more precise features.

We use contrastive learning to navigate the optimization di-

rection of feature extractor, thereby overcoming the model drift

between local extractors and the global extractor. We expect the

newly optimized 𝜀𝑘𝑡 to produce a representation 𝑟 = 𝜀𝑘𝑡 (𝑥
𝑘
𝑖 ) as close

as possible to the 𝑟𝑔𝑙𝑜 = 𝜀𝑡 (𝑥
𝑘
𝑖 ) generated by the global extractor 𝜀

while as far away as possible from the last round result of the fea-

ture extractor 𝑟𝑝𝑟𝑒 = 𝜀𝑡−1 (𝑥
𝑘
𝑖 ). We define the following contrastive

loss function:

L
𝑘,𝑖
𝑐𝑜𝑛 = − log

exp(sim(𝑟, 𝑟𝑔𝑙𝑜 )/𝜏)

exp(sim(𝑟, 𝑟𝑔𝑙𝑜 )/𝜏) + exp(sim(𝑟, 𝑟𝑝𝑟𝑒 )/𝜏)
, (11)

where sim is the similarity measure function and 𝜏 denotes a tem-

perature parameter. This can not only reduce the local models’ drift

but also serve as a bridge with adversarial learning to make models

of different clients have a consistent feature space. The loss function

extractor is defined as follows:

L𝑘𝜀 = L𝑘
𝑐𝑙𝑠
+ 𝛾L𝑘

𝑎𝑑𝑣
+ 𝜇

1

𝑁𝑘

𝑁𝑘
∑︁

𝑖=1

L
𝑘,𝑖
𝑐𝑜𝑛 . (12)

Stage-3: Training 𝐺𝑘 . We maximize L𝑘
𝑎𝑑𝑣𝑔

to ensure 𝐺𝑘 can gen-

erate pseudo-data that falls near the decision boundaries of two

discriminators. This enforces such boundaries closer to the coin-

cidence region, which further compresses the consistent feature

space of the 𝜀. As𝐺𝑘 only generates the same data for each class, we

add the diversity lossL𝑣𝑎𝑟 to improve the diversity of the generated

data and prevent model collapse:

L𝑣𝑎𝑟 = 𝑒

1
𝑁 ∗𝑁

∑

𝑖,𝑗 ∈{1,· · · ,𝑁 }
(−∥𝑥̃𝑖−𝑥̃ 𝑗 ∥2∗∥𝑧𝑖−𝑧 𝑗 ∥2 )

, (13)

where 𝑥𝑖 = 𝐺𝑘 (𝑧𝑖 , 𝑦𝑖 ). The overall loss for generator 𝐺𝑘 can be

calculated through:

L𝑘𝑔 = L𝑘
𝑐𝑙𝑠
− L𝑘

𝑎𝑑𝑣𝑔
+ L𝑣𝑎𝑟 . (14)

3.3.2 Server Aggregation Knowledge Extraction. In each communi-

cation round, the client 𝑘 uploads the local parameters of {𝜃𝑘𝜀 , 𝜃
𝑘
𝐷1
}

to the server once the local training is finished, then waits for the



FedACK: Federated Adversarial Contrastive Knowledge Distillation for Cross-Lingual and Cross-Model Social Bot Detection WWW ’23, May 1–5, 2023, Austin, TX, USA

updated global 𝐺 , 𝐷 and 𝜀 from the server to start a new round

of local training. Once the server receives the latest parameters

of the participating clients, it performs the model aggregation by

weighted average and gets the updated global 𝜀 and 𝐷 :

𝜃𝜀 =

𝑀
∑︁

𝑘=1

∥ D𝑘 ∥

∥ D ∥
𝜃𝑘𝜀 , 𝜃𝐷 =

𝑀
∑︁

𝑘=1

∥ D𝑘 ∥

∥ D ∥
𝜃𝑘𝐷1

, (15)

where𝑀 is the number of participating clients.

To ensure global data distribution can adapt to local distributions

that may largely drift from each other, we exploit the global discrim-

inator 𝐷 and global generator 𝐺 for global knowledge extraction,

without a need for server-side KD using proxy data. client’s 𝐷1 is

used as the teacher network and define the loss of 𝐺 as:

L𝐺 =

1

𝐾

𝐾
∑︁

𝑘=1

∑︁

𝑥̃

𝛼
𝑘,𝑦
𝑡 [𝐷𝐾𝐿

(

𝜎 (𝐷𝑘1 (𝑥)) | |𝜎 (𝐷 (𝑥))
)

+ L𝑥̃
𝑐𝑙𝑠
], (16)

where 𝑥 is from empirical samples D𝐺 generated by 𝐺 using noise

𝑧 ∼ N(0, 1) and label 𝑦 ∼ 𝑝 (𝑦). 𝛼
𝑘,𝑦
𝑡 is the ratio of samples with

label 𝑦 stored in client 𝑘 against the same label samples in D. 𝑝 (𝑦)

is obtained by label counts from clients through communication.

3.4 Pipeline of FedACK

Alg. 1 summarizes the overall pipeline of FedACK. The cross-lingual

model 𝜙𝐸 andM for the backbone model 𝜀 are first trained on the

server (Line 2) and distributed to all clients. In each communication

round, FedACK first broadcasts the up-to-date 𝐺 , 𝜀 and 𝐷 to a

selected subset of clients 𝑆𝑡 (Line 5). Each client optimizes all the

required models 𝐷𝑘1 , 𝐷
𝑘
2 , 𝜀 and 𝐺𝑘 using local data (Lines 8-17).

When the parallel optimization completes, the server aggregates

the clients’ parameters in this round to update the global parameters

𝜃𝜀 , 𝜃𝐷 and to optimize the global generator 𝐺 (Lines 20-21).

4 EVALUATION

The experiments aim to answer the following questions:

• Q1. How does FedACK perform in classification under different

data distribution scenarios?

• Q2. How does FedACK perform in learning efficiency?

• Q3. Can FedACK learn consistent feature space across clients?

• Q4. What is the effect of the different parameter values in differ-

ent stages of FedACK?

• Q5. How does the cross-lingual module perform when combined

FedACK and other baselines?

4.1 Experimental Setup

4.1.1 Software andHardware. FedACK is implementedwith Python

3.8.10, Pytorch 1.7.1 and runs on two servers, one is equipped with

NVIDIA Tesla V100 GPU, 2.20GHz Intel Xeon Gold 5220 CPU and

512GB RAM, and the other is equipped with NVIDIA GeForce RTX

3090 GPU, 3.40GHz Intel Xeon Gold 6246 CPU and 256GB RAM.

4.1.2 Datasets. We conduct experiments on twoTwitter bot datasets

Vendor-19 [40] and TwiBot-20 [16], the largest ones in the public

domain by far. We mix the Vendor-19 with a dataset of benign

accounts Verified which is presented in [41]. The newly released

TwiBot-20 dataset exposes users’ social relationships and enables

the use of advanced graph representation-based algorithms. More

dataset statistics are outlined in Appendix A.2.

Algorithm 1: FedACK

Input: Local data D𝑘 , 𝑘 = 1, · · · , 𝐾 , corpus data D𝑐 , models𝐺𝑘 ,

𝜙𝐸 ,M, 𝜀 , 𝐷𝑘
1 , 𝐷

𝑘
2 ,𝐺 , 𝐷

Output: Local model 𝐷2, global models 𝜙𝐸 ,M, 𝜀 ,𝐺

1 initialization;

2 Server trains 𝜙𝐸 ,M via Eq.(5) based on D𝑐 , and transfers 𝜃𝜙𝐸
, 𝜃M

to clients;

3 for each communication round 𝑡 = 1, . . . ,𝑇 do

4 𝑆𝑡 ← random subset (𝐶 fraction) of the 𝐾 clients;

5 Server broadcasts {𝜃𝐺 , 𝜃𝜀 , 𝜃𝐷 } to 𝑆𝑡 ;

6 for each client 𝑘 ∈ 𝑆𝑡 in parallel do

7 Client 𝑘 updates {𝜃𝐺 , 𝜃
𝑘
𝜀 , 𝜃

𝑘
𝐷1
} ;

8 for each local epoch 𝑒 = 1, · · · , 𝐸 do

9 calculate L𝑘
𝐷

via Eq.(10) ;

10 {𝜃𝑘
𝐷1
, 𝜃𝑘

𝐷2
} ← {𝜃𝑘

𝐷1
, 𝜃𝑘

𝐷2
} − ∇L𝑘

𝐷
;

11 end

12 for each local epoch 𝑒 = 1, · · · , 𝐸 do

13 calculate L𝑘
𝜀 via Eq.(12), 𝜃𝑘𝜀 ← 𝜃𝑘𝜀 − ∇L

𝑘
𝜀 ;

14 end

15 for each local epoch 𝑒 = 1, · · · , 𝐸 do

16 calculate L𝑘
𝑔 via Eq.(14), 𝜃𝑘

𝐺𝑘
← 𝜃𝑘

𝐺𝑘
− ∇L𝑘

𝑔 ;

17 end

18 Client 𝑘 sends {𝜃𝑘𝜀 , 𝜃
𝑘
𝐷1
} back to server;

19 end

20 Server update {𝜃𝜀 , 𝜃𝐷 } ← Eq.(15) ;

21 Server calculate L𝐺 for𝐺 via Eq.(16) ;

22 𝜃𝐺 ← 𝜃𝐺 − ∇L𝐺

23 end

4.1.3 Data heterogeneity. We use Dirichlet Distribution Dir (𝛼) to

mock the non-IID given in [23] and split the bot dataset with het-

erogeneity. 𝛼 is an indicator of Dirichlet distribution ś the smaller

𝛼 is, the more heterogeneous the data distribution is.

4.1.4 Baselines. As federated KD provided a natural pathway to

privacy preservation without sharing original data ś the key con-

cern in cross-platform bot detection ś federated KD-based ap-

proaches baselines that can handle heterogeneity of non-IID data

are the pedestal focus of the comparison. FedAvg and [28], FedProx

[25] improve the local model training and update under hetero-

geneity through adding an optimization item. FedDF [26] employs

data-free knowledge distillation to improve the global model on

server side. FedEnsemble [34] uses an ensemble mechanism for

combining the output of all models to predict a specific sample.

FedDistill [34] shares label-wise average of logit vectors among

users for data-free knowledge distillation without network parame-

ter shared. FedGen [49] and FedFTG [44] offer flexible parameter

sharing and knowledge distillation.

4.1.5 Model Parameters. The cross-lingual module is trained upon

the corpus released in [48]. To be fair, the same cross-lingual mod-

ule and backbone model 𝜀 (same architecture and initial parameters)

are used upon all baseline approaches. For the transformer architec-

tures in the cross-lingual module, we use the same configuration of

[38]; the number of layers, feed-forward hidden size, model hidden

size and the number of heads are 6, 1024, 512, and 8, respectively.
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(f) TwiBot-20 (𝛼 = 0.1).

Figure 3: Visualization of data heterogeneity. The darker color means more training samples with a label available to the client.

Table 1: Comparison of the average maximum accuracy of different methods for social bot detection (%).

Dataset Vendor-19 TwiBot-20

Setting 𝛼 = 1 𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 1 𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05

FedAvg 71.30±0.60 61.06±1.52 60.88±2.85 59.81±2.48 54.04±0.50 55.41±1.35 51.37±0.77 52.46±0.02

FedProx 84.37±0.43 78.25±1.02 51.86±0.04 63.27±2.32 74.34±0.06 73.32±0.25 51.86±0.04 52.30±0.63

FedDF 86.37±1.23 80.17±2.21 63.16±1.37 67.01±1.78 72.12±1.96 71.25±1.03 55.23±1.32 53.35±1.41

FedEnsemble 81.12±2.22 76.70±1.21 64.51±2.56 68.05±1.15 55.98±2.55 54.15±0.04 54.21±0.04 54.15±0.04

FedDistill 79.68±0.58 68.77±1.13 52.88±0.06 70.25±0.39 64.11±0.29 63.34±0.56 50.00±0.00 54.30±0.05

FedGen 90.05±0.33 84.83±0.96 65.12±0.60 70.79±2.39 74.14±0.47 73.12±2.09 59.19±2.70 55.78±1.79

FedFTG 88.31±1.41 82.17±1.52 66.01±1.25 68.39±1.94 74.27±1.21 74.13±0.53 60.14 ±1.74 56.17±1.27

FedACK-A 91.31±0.52 84.79±1.05 66.10±2.90 68.21±1.95 77.16±1.09 74.70±1.64 63.52±1.09 55.39±1.24

FedACK 88.58±1.91 87.05±2.03 76.04±3.40 75.27±2.50 77.08±1.83 78.26±2.60 67.81±2.20 60.14±1.32

Gain ↑ 1.26∼20.01 ↑ 2.22∼25.99 ↑ 10.03∼24.18 ↑ 4.48∼15.46 ↑ 2.82∼23.12 ↑ 4.13∼24.11 ↑ 7.67∼16.44 ↑ 3.97∼7.84

The mapper is an MLP with three linear layers with a hidden di-

mension of 512, and the discriminator is an MLP with four linear

layers with a hidden dimension of 512. The MLP used for extract-

ing property features in the backbone model has two linear layers

with a hidden dimension of 512. TextCNN [21] used in 𝜀 has four

convolution kernels of size [2, 3, 4, 5]. The generators in FedACK

are MLP with two linear layers with a hidden dimension of 256.

The discriminators in FedACK are MLP with 3 linear layers with a

hidden dimension of 256. Common parameters for training the mod-

els include: batch size (64), learning rate (0.01), optimizer (Adam),

global communication rounds (100), and local updating steps (5).

4.1.6 Methodology and Metrics. The comparison is five-fold: 1)

effectiveness (model accuracy and capability of handling hetero-

geneity), 2) efficiency (the number of communication rounds re-

quired to achieve a target accuracy) and 3) the effect of learning

consistent feature space. 4) sensitivity (variation of model accuracy

under different hyperparameter settings) 5) cross-lingual valida-

tion (performance gains of our proposed cross-lingual modules in

cross-platform scenarios where multiple languages coexist). Since

the samples of different categories in the datasets are balanced, we

simply use accuracy and deviation as the main metrics.

4.2 Effectiveness (Q1)
Wevary the hyperparameter dataset partition𝛼 from {1, 0.5, 0.1, 0.05}

for each dataset to validate the performance of different methods

with varying degrees of data distribution heterogeneity. The dark-

ness of coloring represents the sample number of a specific class

stored on a client. As shown in Fig. 3, increased data heterogeneity

(e.g., 𝛼 = 0.1) leads to more clients store only one class of samples.

Accuracy Comparison. Table 1 compares the accuracy among

baseline algorithms. All experiments are repeated over 3 random

seeds. Overall, our method outperforms all baselines in any scenario.

FedACK achieves 1.26%∼10.03% accuracy improvement in absolute

terms when compared with the runner-up methods (i.e., FedGen,

FedFTG). While FedProx can achieve relatively competitive perfor-

mance when data heterogeneity is less intense (e.g., 𝛼 = {1, 0.5})

due to its limit to local model updates, it cannot well handle more

heterogeneous data distribution. The data-free knowledge distilla-

tion in FedGen and FedFTG can substantially improve the server’s

global model; however, they are insufficient to effectively tackle

feature space inconsistency and model drift. The performance gain

FedACK is more significant against other baselines when data het-

erogeneity increases (e.g., 𝛼 = {0.1, 0.05}), indicating its superiority

in handling data heterogeneity. Appendix A.3 further demonstrates

the improvedmodel generalization in our approach when compared

with other baselines.

Ablation Study.We generated a new variant model, FedACK-A,

that excludes the contrastive module. As shown in Table 1, the ac-

curacy of FedACK-A is outstanding when data heterogeneity is low

but falls off when higher heterogeneity manifests. This indicates
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(d) TwiBot-20 (𝛼 = 0.5).

Figure 4: Learning Curve of (a-b) Vendor-19 and (c-d) TwiBot-20 in 100 communication rounds in different 𝛼 settings.

Table 2: The round number to reach the target accuracy on

Vendor-19 (80%, 70%) and TwiBot-20 (70%, 65%).

Dataset Vendor-19 TwiBot-20

Setting 𝛼 = 1 (80) 𝛼 = 0.5 (70) 𝛼 = 1 (70) 𝛼 = 0.5 (65)

FedAvg unreached unreached unreached unreached

FedProx 25.3±3.1 32.6±2.3 13.3±2.8 24.0±7.3

FedDF 22.3±2.4 38.4±3.1 50.3±5.2 60.2±6.4

Ensemble 9.0±1.1 6.0±1.4 unreached unreached

FedDistill 60.0±1.0 unreached unreached unreached

FedGen 7.3±0.4 5.0±0.8 10.6±0.9 4.6±1.2

FedFTG 43.5±37.5 15.6±16.5 12.6±0.5 9.4±2.3

FedACK 4.6±3.8 2.3±0.9 2.33±1.25 1.67±0.94

the adversarial training and global knowledge distillation alone can

function effectively in the face of low heterogeneity. The contrastive

learning mechanism is of importance to constrain the model op-

timization direction, which demonstrate the necessity of learning

consistent feature spaces when dealing with data heterogeneity.

4.3 Efficiency (Q2)

Fig. 4 shows the learning curve of different methods within 100

communication rounds and FedACK is among the top performers.

FedDistill has the best stability, rapidly approaching a stable level

only after a dozen rounds of communication, but the achievable

accuracy is merely lower than 0.65, making it less competitive when

compared with other methods. FedACK can very quickly converge

to a high level of accuracy after the initial rounds and remains high

in the following communication rounds.

Table 2 reports the average number of rounds required for each

method to achieve the target accuracy in different settings. Un-

reached means the failure of achieving the target accuracy (80%, 70%

for Vendor-19; 70%, 65% for TwiBot-20) in all three runs with differ-

ent random seed. FedACK achieves target accuracywith aminimum

number of communication rounds under any circumstance. FedGen,

the second best performer, still requires 1.6∼4.5 times the communi-

cation rounds of our method. This is because FedACK incorporates

the proportion of the label of each pseudo sample in each client

into a part of knowledge during global knowledge extraction and

classification. This indicates the importance of each client to the

knowledge of a specific sample. FedACK also limits the feature

space and optimization direction of the models at the client side,

resulting in quicker convergence to target a given accuracy.
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Figure 5: Decision boundaries and feature space of two ran-

domly selected clients from FedACK trained on Vendor-

19. The x-axis and y-axis represent the values of the 2-

dimensional features output by 𝜀 described in Sec 4.4.

4.4 Feature Space Consistency (Q3)

We also conduct an experiment to show how FedACK learns the

feature space. Fig. 5 visualizes the learnt feature space and the deci-

sion boundaries of two classifiers in FedACK on Vendor-19 dataset.

We tweak the feature extractor 𝜀 to produce 2-dimension features

for each input sample. We randomly select two clients after training

FedACK in 100 communication rounds and plot the features of test-

ing data samples. It can be observed that adversarial learning makes

the two classifiers in any of the two clients learn distinct decision

boundaries. The different decision boundaries impose restrictions

on the feature space learned by the feature extractor. To extract

features from the same class of samples and locate them in overlap-

ping areas on the same side of the decision boundary, the feature

extractor compresses the generated features into a linear region

for simultaneous classification. Another observation on Fig. 5(a)

and Fig. 5(b) is that the feature extractors learn a consistent feature

space across clients due to the contrastive learning that limits the

update direction of the feature extractors. These findings show the

advancements of FedACK in learning feature spaces.

4.5 Sensitivity (Q4)
We investigate the hyper-parameters sensitivity based on the Vendor-

19 dataset. The hyperparameters include 𝛾 for adjusting the propor-

tion of adversarial loss, and 𝜇 and 𝜏 for adjusting the proportion of

contrastive loss. The number of repeated random seeds is set as 5.

As shown in Fig. 6(a), when the heterogeneity of data distribution

is marginal (i.e., 𝛼 = 1), the accuracy is insensitive to 𝛾 . However,

when the heterogeneity increases (i.e., 𝛼 going down), noticeable

accuracy variation manifests among different settings of 𝛾 . Similar
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(a) FedACK with different 𝛾 in adversarial learning. (b) FedACK with different 𝜇 in contrastive learning. (c) FedACK with different 𝜏 in contrastive learning.

Figure 6: Hyperparameter Sensitivity (𝛾, 𝜇, 𝜏) of FedACK (a-c) on Vendor-19 under different data heterogeneity settings (𝛼).

observations can be found in Fig. 6(c), indicating a discrepancy in

the accuracy among different 𝜏 . These findings implicate a great

need for carefully examining and fine-tuning such parameters in

the adversarial and contrastive loss on a case-by-case basis, con-

sidering the data characteristics (particularly the heterogeneity of

data distribution), to target the optimal model performance. Fig 6(b)

depicts the accuracy under different combinations of 𝜇 and 𝛼 . Ob-

servably, for a given data distribution, the model accuracy reaches

its peak when 𝜇 increases to 0.5, before falling off if 𝜇 continues to

increase. This is largely due to a balance between adversarial loss

and contrastive loss. The dominance of either side will lead to a

degradation of the model’s effectiveness.

4.6 Cross-Lingual Validation (Q5)

As there is no publicly available datasets in the field of social bot

detection designated for cross-lingual performance at the time of

writing, we synthesize an experimental cross-lingual dataset by

randomly selecting half the social accounts from Vendor-19 dataset

and translating their tweets into Chinese using Google Translate.

We use the same experiment settings described in Section 4.1. We

pre-train the cross-lingual mapper by using the cross-lingual sum-

marization corpus NCLS [48] and then combine the pre-trained

encoder 𝜙𝐸 and mapperM with FedACK and other baselines. By

default, each method is evaluated with the cross-lingual mapperM

enabled. Each method with the suffix -NC means the model only

uses 𝜙𝐸 to extract features from text content withoutM.

Experimental results are shown in Table 3. The observations

are three-fold: i) FedACK constantly outperforms others in all cir-

cumstances. The accuracy can increase 3.28∼6.45 in absolute value,

when data heterogeneity is low (𝛼 = 1). ii) Compared with the

model variant withoutM (e.g. FedACK-NC), the accuracy of the

model (e.g. FedACK) equipped with the cross-lingual mapper is

unsurprisingly improved. This once again demonstrates the sub-

stantial capability and necessity of coping with cross-lingual issues.

It is worth noting that there is also a diminishing performance gain

from cross-language mapping as the 𝛼 value gets smaller. This is

because the heterogeneity of data distribution becomes the domi-

nating challenge to accuracy, and the cross-lingual module itself is

insufficient and thus brings limited benefit. iii) Equipped with the

cross-lingual mapper, each method can well tackle the multi-lingual

scenarios. There is marginal disparity between the model accuracy

in the case of a singular language environment (shown in Table 1)

Table 3: Comparison of the averagemaximum accuracy (%) of

different methods with/without(-NC) cross-lingual mapping.

Gain is the disparity between FedACK and other baselines.

Dataset Vendor-19

Setting 𝛼 = 1 𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05

FedDistill-NC 78.14±1.30 67.01±0.16 66.35±0.25 69.24±0.30

FedDistill 80.03±0.59 68.87±0.30 67.20±0.22 70.18±0.45

FedGen-NC 81.94±0.82 77.88±0.52 70.65±2.73 72.73±2.20

FedGen 83.20±1.07 79.63±0.57 72.42±2.18 73.26±0.53

FedFTG-NC 78.18±1.04 76.79±1.22 67.61±1.57 72.30±1.20

FedFTG 82.85±1.52 77.29±3.42 69.65±0.95 73.15±1.27

FedACK-NC 84.54±1.30 79.37±1.24 73.99±2.55 74.48± 1.50

FedACK 86.48±0.99 81.16±1.06 75.05±2.78 74.18±1.67

Gain ↑ 3.28∼6.45 ↑ 1.53∼12.29 ↑ 2.63∼7.85 ↑ 0.92∼4.0

and the accuracy when multiple languages co-exist in the tweet

features (as shown in Table 3). This demonstrates the robustness

and effectiveness of the proposed mapper for cross-lingual con-

tents. Among all the comparative baselines, our method has the

least degradation caused by the existence of multiple languages,

owing to the unified feature space mapping for different languages.

5 CONCLUSION

Social bots have been growing in the social media platforms for

years. State-of-the-art bot detection methods fail to incorporate in-

dividual platforms with different models and data characteristics. In

this paper, we devise a GAN-based federated knowledge distillation

mechanism for efficiently transferring knowledge of data distribu-

tion among clients. We elaborate a contrast and adversarial learning

method to ensure consistent feature space for better knowledge

transfer and representation when tackling non-IID data and data

scarcity among clients. Experiments show that FedACK outper-

forms baseline methods in terms of accuracy, learning efficiency,

and feature space consistency. In the future, we will theoretically

investigate the feature space consistency and extend FedACK to fit

graph-based datasets with diversified entities and relations.
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A APPENDIX

A.1 Glossary of Notations

In Table 4, we summarize the main notations used in this work.

A.2 Statistics of Datasets

Table 5 summarizes the basic statistic information of datasets used

in this work.

A.3 Generalization Experiment

To validate the generalization of our method, we collected four

additional public social bot detection datasets: Varol-17, Gilani-

17, cresci-19, botometer-feedback-19. To simulate the scenario of

bot detection in uniting multiple social platforms, we select one

dataset from Vendor-19 and TwiBot-20 as the test dataset. Each

of the remaining datasets is distributed to a specific client. In this

circumstance, there are five clients and a server, and each client

represents a social platform. We aim to demonstrate the enhanced

model proposed in this work can still competitively detect new

variants that have never been seen before, when all platforms share

the characteristics of their own social bots with other platforms.

As shown in Table 6, the difficulty detection in the two datasets

is entirely different. For most of the approaches, the classification

accuracy of TwiBot-20 dataset is merely 50%, which indicates a

huge discrepancy of bot features among datasets. In other words,

the detection models learnt from the early generations of bots can

Table 4: Notations.

Symbol Definition

L Defined loss function

𝐾 ; 𝑁𝑘 Number of clients; Number of samples in 𝑘-th client

𝑥𝑚 ; 𝑦𝑛 The𝑚-th word and 𝑛-th word in two different language contents

𝜙𝐸 The encoder for text content representation

𝜙𝐷 The decoder for translating context representation

M The cross-lingual mapper for converting context representation

𝑧𝑥 Text context representation vector

𝜖 The backbone model for user feature extraction

𝑢𝑡 The tweets set from 𝑡-th user

𝑡𝑚𝑖 The 𝑖-th word in user’s𝑚-th tweet

ℎ𝑡𝑚 Representation for𝑚-th tweet posted by 𝑡-th user

𝑟𝑝 ; 𝑟𝑡 User’s property representation; tweet-level representation

𝑟𝑢 ,𝑟 User-level representation

𝐺 ; 𝐷1, 𝐷2 Generator; Discriminators

D𝑘 The local data stored in the 𝑘-th client

D The data set collected from all clients

(𝑥𝑘𝑖 , 𝑦
𝑘
𝑖 ) The 𝑖-th sample pair stored in the 𝑘-th client

N(0, 1) The gaussian distribution

𝑥 The pseudo-data generated by generators

𝑝; 𝑝 Probability of local data; Global data distribution probability

𝐷𝐾𝐿 The KullbackśLeibler divergence

𝜏 The temperature parameter for smoothing similarity value

𝛾, 𝜇 The weight hyperparameter in the defined loss function

𝜃 The parameters of the designed model

𝑀 The number of clients participating in the communication

𝛼
𝑘,𝑦
𝑡 Ratio of samples with label 𝑦 stored in 𝑐𝑙𝑖𝑒𝑛𝑡𝑘 against in D

Table 5: Statistics of datasets.

Dataset Humans Bots Total number

Vendor-19 [40] 1860 568 2428

TwiBot-20 [16] 4175 5286 9461

Table 6: Comparison of the averagemaximumaccuracy of dif-

ferentmethods which are tested on a specific dataset (Vendor-

19 or TwiBot-20) and trained from the other datasets.

Test Dataset Vendor-19 TwiBot-20

FedAvg 76.53±0.11 49.63±1.09

FedProx 74.26±3.57 54.21±2.01

Ensemble 76.01±0.65 51.98±5.50

FedDistill 73.11±0.95 51.19±1.12

FedGen 77.52±0.65 62.30±0.93

FedFTG 76.51±1.15 60.12±1.01

FedACK 78.13±1.38 64.79±1.61

hardly detect the bots in TwiBot-20 in an accurate manner. By

contrast, our approach can achieve a higher accuracy due to the

ability to learn a consistent feature space; as a result, the bot account

features in different clients can be effectively shared. Additionally,

constraining the optimization direction of the client model can

facilitate our model to obtain better representation ability, and

hence a better generalization than others.
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